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Prefacee

The purpose of this volume is to bring together a number of different
perspectives on modern mathematics, with the aim of understanding how
the work of historians, philosophers, and mathematicians can be integrated
in an interdisciplinary study of mathematics. Several of the essays adopt
such an interdisciplinary approach, whereas others favor an autonomous
pursuit of the history of mathematics or of the philosophy of mathematics.
In our judgment, this juxtaposition of old and new styles accurately
represents the state of the field at this time.

The volume is the outgrowth of a conference held at the University of
Minnesota, Minneapolis, 17-19 May, 1985. The conference and the pub-
lication of proceedings were supported by generous grants from the Alfred
P. Sloan Foundation and the College of Liberal Arts and Institute of
Technology of the University of Minnesota. We also wish to thank a
number of the scholars who served as commentators at the conference:
Thomas Drucker of the University of Wisconsin-Madison; Philip Ehrlich
of Brown University; Emily Grosholz of Pennsylvania State University;
Joelle Proust of CNRS/Nice; and Helena Pycior of the University of
Wisconsin-Milwaukee.

In 1974, Garrett Birkhoff of Harvard University organized and the
American Academy of Arts and Sciences sponsored a Workshop on the
Evolution of Modern Mathematics. (The proceedings are published in the
November 1975 issue of Historia Mathematica.) The purpose was to bring
together a distinguished group of historians and mathematicians to review
and discuss the history of mathematics since 1800, a subject that had re-
ceived relatively little attention in comparison with earlier periods of
mathematics history. The meeting was an unmitigated success, both in
providing a forum for discussion between these two bodies of profes-
sionals, and in producing a valuable set of proceedings.
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viii Preface

In our opinion, in the decade since the 1974 workshop there has been
an upsurge of interest in an interdisciplinary approach to historical and
philosophical problems connected with mathematics. There have also been
recent developments internal to each discipline: historians of mathematics
have recognized the need for a more sophisticated historiography and for
greater attention to the social context in which the work of mathemati-
cians is set; philosophers of mathematics have moved away from the grand
foundational programs of the early twentieth century and the preoccupa-
tion with the demise of those programs.

For these reasons, we believed it was important once again to take ap-
praisal of our fields. Looking to the 1974 workshop as our model, we
brought together a distinguished group of historians, mathematicians, and
for the first time philosophers actively working in this area. Indeed, as
a measure of the continuity of this area, seven of the authors represented
in this volume were participants in the 1974 workshop. Our authors were
requested to keep in mind not only the historical, philosophical, and
mathematical significance of their topics, but also to devote special at-
tention to their methodological approach. These approaches came under
considerable discussion during the conference. We can only hope that our
proceedings will be as influential as those of the 1974 workshop.

W. A. and P. K.
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Philip Kitcher and William Aspray

An Opinionated Introduction

Each of the essays that follow could be sent forth as an orphan, with
only the most perfunctory comment, to make its own solitary way in the
world, and some of them would undoubtedly do well. However, we believe
that there are important reasons for setting them side by side, that each
gains from the company of the others. In our judgment, the present volume
offers a representation of the current state of history and philosophy of
mathematics. Hence we have felt encouraged—perhaps foolhardily—to
offer perspectives on the past, the present, and the future. This introduc-
tion attempts to sketch the history of the philosophy of mathematics in
the last century and the recent history of the history of mathematics. We
then endeavor to relate the individual studies not only to one another,
but also to the traditions of work in the history of mathematics and in
the philosophy of mathematics. We conclude with some speculations about
the present trends and possible futures. Quite plainly, any effort of this
kind must embody the authors' ideas, perspectives, and, maybe, prejudices
about what kinds of researches are important. So we have rejected the
plain title "Introduction" and announced our essay for what it is—an
opinionated introduction.

1. Philosophy of Mathematics: A Brief and Biased History

Philosophers of mathematics may argue about many things, but, until
recently, there has been remarkable agreement concerning when their
discipline began. Prevailing orthodoxy takes the history of the philosophy
of mathematics to start with Frege. It was Frege who posed the problems
with which philosophers of mathematics have struggled ever since, Frege
who developed modern logic and used it to undertake rigorous explora-
tion of the foundations of mathematics, Frege who charted the main
philosophical options that his successors were to explore. To be sure, there
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4 Philip Kitcher and William Aspray

were earlier thinkers who considered mathematics from a philosophical
point of view, scholars of the stature of Kant, Mill, and Dedekind. But
they belong to prehistory.

The orthodox account embodies something of Frege's own view of what
he achieved, as well as reflecting his harsh judgments about some of his
predecessors and contemporaries (see Frege 1884). Within the last decades
there have been criticisms of the conventional wisdom, in part because
philosophers have discovered merit in the work of some of Frege's
predecessors (Parsons 1964, 1969 and Friedman 1985 on Kant; Kessler
1980 and Kitcher 1980 on Mill; Kitcher 1986 on Dedekind) and in part
because there have been systematic and thorough studies of Frege's place
in the history of philosophy (Sluga 1980; Resnik 1980). Nevertheless,
because Frege has so often been seen as the fons et origo of real philosophy
of mathematics, it is well to begin with him and his accomplishments.

Frege was originally trained as a mathematician, and it is clear from
his early writings that he became interested in integrating late-nineteenth-
century mathematics into an epistemological picture that he drew (at least
in large measure) from Kant. During the 1870s he seems to have become
convinced that Kant's ideas about arithmetic were incorrect and that the
deficiency could only be made up by a thorough revision of logic, a pro-
ject that he began in his brilliant monograph (1879). By 1884, he was
prepared to publish his most articulate account of the philosophy of
mathematics. At the outset, he adopted the view that the central problem
for the philosophy of mathematics was to identify the foundations of
mathematics (1884, 1-2). Holding that the task of setting arithmetic on
a firm foundation was a natural extension of the enterprise of the foun-
dations of analysis (pursued by Dedekind, Weierstrass, Heine, and others),
Frege undertook to review the possibilities.

Since the goal of the foundationalist is to display the proper justifica-
tion for the mathematical statements under study, Frege suggested that
there were as many possible approaches as his background epistemology
allowed—to wit, three. The basic division is between justificatory pro-
cedures that are a priori and those that are a posteriori. Within the category
of the a priori, there are two options. Arithmetic is either ultimately
derivable from logic plus definitions of the special arithmetical vocabulary,
or it is founded (at least in part) on some a priori intuition (as Frege took
Kant to claim). Having argue that arithmetical statements do not admit
empirical justification and that no a priori intuition is available in the case
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of arithmetic, Frege concluded that arithmetic was simply a development
of logic.

In fact, he knew of and argued against a fourth possibility. From the
perspective of the Grundlagen (Frege 1884), arithmetic is taken to be a
science with a definite content. Elsewhere, Frege responded to the pro-
posal that, strictly speaking, arithmetical statements are meaningless and
arithmetic is simply a game that mathematicians (and others) play with
signs (see the essays collected in Frege/Kluge 1971). We believe that, un-
til the end of his life, Frege operated with the view that there were only
a very small number of possibilities for finding the proper justification
of arithmetical statements and that the strategy of elimination of alter-
natives, adopted in his early writings, had a profound effect on the develop-
ment of his views (see Kitcher 1979).

Frege's eliminative argument for logicism was only the first step in the
project of Grundlagen. Having argued that arithmetic had to be a develop-
ment of logic, Frege took it upon himself to exhibit the development. One
important part of the task was to delineate clearly the principles of logic—
an enterprise that Frege had already begun (1879) and was to continue
(1893-1903). Another was to show how the concepts of arithmetic could
be defined in logical terms. Most of Grundlagen was devoted to the latter
project, and Frege argued first that attributions of number are assertions
about concepts and subsequently that the natural numbers should be iden-
tified with the extension of particular concepts.

If Frege was the "onlie begetter" of the philosophy of mathematics,
then it is easy to identify his offspring. First, and of prime importance
in the later history of the field, is his conception of the central problems.
Philosophers (or philosophically minded mathematicians) should disclose
the foundations of parts of mathematics by identifying the proper justifica-
tions for the statements belonging to those parts. Second is his taxonomy
of options: logicism, formalism, appeals to some kind of intuition (in the
manner of Kant), and (definitely bringing up the rear) empiricism. Third
is the collection of arguments that are designed to reveal logicism as the
only possible position. Fourth is the analysis of arithmetical discourse and,
in particular, the claim that arithmetical statements record the properties
of (logical) objects. Last, but definitely not least, is the elaboration of
a logical system, which, to our mind, constitutes the greatest single achieve-
ment in the history of logic—bar none.

Of course, Frege's ideas suffered a temporary setback. In 1902 Russell
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discovered that the logical system, so painstakingly constructed and so
little appreciated, was inconsistent. Ironically, if the discovery of Russell's
paradox cast doubt on Frege's substantive ideas about the nature of
mathematics, it served only to underscore the importance of the task in
which he had been engaged. In the last decades of the nineteenth century,
professional mathematicians rarely saw Frege as tackling a genuine prob-
lem that was continuous with the difficulties that Weierstrass and his school
had attempted to address. Although the disentangling of concepts of con-
tinuity and convergence had an obvious mathematical payoff, there seemed
little point to the minute excavation of the foundations of arithmetic. The
paradoxes of set theory, first noted by Cantor and Burali-Forti in the 1890s
and sharply presented in Russell's observation about Frege's system,
changed that confident assessment. They showed that the intuitive reason-
ing about sets (or systems, collections, or multitudes) on which mathemati-
cians had relied, increasingly and with ever greater explicitness, during
the latter part of the nineteenth century, were surprisingly hard to repre-
sent in a precise fashion. Nobody had doubted that there was a "proper
justification" for the principles of arithmetic. But the first serious attempt
to identify it had exposed difficulties in widely adopted modes of reason-
ing that were disturbingly reminiscent of those that had been recently
resolved in the foundations of real analysis.

For the first three decades of the twentieth century, the philosophy of
mathematics was dominated by the rival claims of three main foundational
programs, each of which pursued the Fregean task of exposing the prop-
er justification for arithmetic (and analysis), and each of which embodied
a response to the paradoxes. This is not to deny that there were critics,
most prominently Poincare, who offered alternative visions of what
philosophy of mathematics ought to be (see Goldfarb, this volume). But
Frege's identification of philosophy of mathematics with foundations of
mathematics won the day, and the principal differences were internal to
the general Fregean framework. Closest to Frege's original approach was
the program undertaken by Russell and Whitehead in Principia
Mathematica, although it was apparent, almost from the beginning, that
some of the principles that Russell and Whitehead took as their starting
assumptions were not uncontroversially logical. The theory of types was
able to circumvent the paradoxes, but the accommodation of arithmetic
it offered was purchased at the cost of axioms, most notoriously the ax-
ioms of infinity and reducibility, that sat uneasily with Frege's characteriza-
tion of laws of logic—laws without which no thinking is possible.
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A second proposal, deeply at odds with Frege's doctrine that math-
ematics is a doctrine all of whose statements have an identifiable content,
was Hilbert's suggestion that a foundation for mathematics should be pro-
vided by constructing finitary consistency proofs for mathematical systems.
As Hilbert's program was articulated in its mature form (Hilbert 1926),
there is a body of contentful mathematical statements whose credentials
are above suspicion. This body of contentful statements is to be used in
proving the consistency of formal systems in which contentful mathematics
is itself embedded and which also include ideal statements. The role of
these ideal statements is to facilitate transitions among the contentful
statements, and the set-theoretic paradoxes show us that, if we are careless
in adjoining such ideal auxiliary statements to our mathematical systems,
we generate contradictions. Consistency proofs will guard us against such
possibilities—so long, of course, as they are given within a mathematical
framework (contentful mathematics) that cannot itself be questioned.
Hence, for Hilbert, the important task is to give finitary consistency proofs
for formal systems that formalize classical mathematics. Godel's theorems
seemed to show that the task cannot be completed, even when the part
of classical mathematics in question is first-order arithmetic. (For il-
luminating discussions of Hilbert's program and of the significance of
Godel's incompleteness theorems, see Kreisel 1958; Resnik 1974; Detlefsen
1979; Tait 1981; Simpson forthcoming.)

The third program, developed by Brouwer, sought a foundation for
mathematics by returning to Kant. Brouwer claimed that we construct the
objects of mathematics and that our knowledge of their fundamental prop-
erties is based on an a priori intuition. Through this intuition, we are able
to recognize a potential infinity of mathematical entities (the natural
numbers), and these can form the basis for further constructions. But
classical mathematics goes astray both in its positing of objects that are
beyond the reach of human constructive powers and it its use of non-
constructive existence proofs, achieved through the employment of the
law of excluded middle. Brouwer, and later Heyting (1956), proposed to
substitute for classical mathematics an alternative that would be free of
these mistakes and that would be true to the constructive/intuitive foun-
dation of mathematics. To the response that the result was a mutilation
of mathematics, in which long, ugly proofs of intuitionistic analogs re-
placed the simple and elegant classical proofs and theorems, they responded
that such alterations were needed to avoid the profligate and incoherent
metaphysics of the classical mathematicians. (For seminal works in classical
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intuitionism, see Brouwer 1949, Heyting 1956; a recent development of
constructivist mathematics is Bishop 1967; Dummett 1977 gives a profound
interpretation of the intuitionist program; for an interesting alternative
view, see Shapiro 1985).

The three programs we have mentioned correspond to three of the four
possibilities that occur in Frege's eliminative argument for logicism. Russell
and Whitehead carry on with the logicist strategy, Hilbert develops a
sophisticated version of the idea that (at least part of) mathematics is a
formal game, and Brouwer suggests that the foundation of mathematical
knowledge lies in nonlogical, a priori, intuition. The one of Frege's op-
tions that does not issue in a developed program is the suggestion of which
he was most scornful: there is no empiricist tradition in the philosophy
of mathematics in the early twentieth century (although Curry's version
of formalism has some connections with empiricism; see his 1951).

In noting the relationship between the dominant themes in philosophy
of mathematics from 1900 to 1930 and Frege's basic epistemological
categories, we should not overlook the fact that each of the programs also
has roots in nineteenth-century mathematics (for different amplification
of the theme, see Resnik 1980 and Stein, this volume). However, insofar
as they continue the Fregean identification of philosophy of mathematics
with the foundations of mathematics and insofar as they see the task of
laying the foundations as finding a priori justifications for parts of
mathematics, they are naturally seen as internal modifications of a very
general research program that Frege set for his successors. We shall now
suggest that the next phase of developments in the philosophy of
mathematics remained deeply Fregean in spirit.

During the 1920s and early 1930, logicism underwent a fundamental
change, a change that would affect the credibility of each of the alter-
native views of the foundations of mathematics. Inspired by their reading
of Wittgenstein's Tractatus, the logical positivists suggested that the idea
of tracing arithmetic back to logic-plus-definitions gave the false ap-
pearance that two different types of principles were fundamental to
mathematics. Instead, they recommended, we should think of logic itself
as tacitly embodying the definitions that we have fixed for the logical
vocabulary, the connectives and quantifiers. Thus the entire corpus of logic
and mathematics can be conceived as elaborating the conventions that
underlie our language; the statements that make up this corpus are true
by virtue of meaning (see Carnap 1939; Ayer 1936; Hempel 1945). From
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this perspective it does not matter, in the end, whether the axioms of
various bits of mathematics are (or are derivable from) laws of logic. What
counts is that they should be (or be derivable from) principles that em-
body the conventions that govern the primitive vocabulary.

The significance of this change for the credibility of the other programs
is that it provides a way to accommodate certain ideas of formalism and
to remove the sting of the intuitionist critique of classical mathematics.
One of the chief points of dispute between Hilbert and Frege had sur-
rounded Hilbert's early proposal that the primitive vocabulary of an ax-
iomatic system is implicitly defined by the axioms that are set down. On
Frege's conception of logic (which held no place for the notion of an
uninterpreted statement), this claim of Hilbert was absurd (see Resnik 1980
for a lucid discussion of the controversy.) In the wake of the develop-
ment of the semantics of logic (see Goldfarb 1979 and Moore, this volume),
Frege's conception of logic was abandoned and logicists came to adopt
Hilbert's proposal. Thus, at a time when the mature Hilbert program was
in difficulties, it appeared possible to salvage part of Hilbert's early motiva-
tions. Furthermore, instead of conceiving intuitionism to be a rival
mathematics, the emphasis on the conventionality of logic made it possi-
ble to see intuitionistic logic and mathematics as embodying a different
set of conventions. The system based on those conventions could be
tolerated as an interesting curiosity, something that could be placed
alongside classical mathematics but that could not pose any threat of
displacement (see Carnap 1937).

The new logicism represented both a return to Frege and a departure.
Because of Frege's opposition to the founding of mathematics on intui-
tion, his scorn for empiricism, and his emphasis that mathematical
statements are meaningful, the logical positivists could legitimately cite
him as a predecessor. However, their ideas about logic and semantics were
importantly different from those that Frege had espoused (see Dummett
1973; Sluga 1980; Ricketts 1985). Hence there was a genuine transition
between one version of logicism, on which the principles of logic were
seen as fundamental to all thought, to another, on which logic was true
by convention (Friedman, this volume, provides an illuminating account
of part of the transition).

The new form of logicism avoided awkward questions about how we
know the principles that prescribe to all thought, but it quickly became
vulnerable to a different challenge. In 1936, Quine published a seminal
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article containing two distinct arguments against the idea that logic and
mathematics are true by convention. The first of these arguments con-
tends that any part of our knowledge can be replaced by a system whose
principles are true by convention. Thus it appears (although Quine does
not hammer home the point) that the thesis that logic and mathematics
are true by convention cannot explain the epistemological status of these
disciplines, unless their epistemological status is the same as that of other
branches of inquiry. The second argument, adapted from an idea of Lewis
Carroll, is that logic could not be true by convention for the simple reason
that logic is required to extract the consequences of any conventions we
may lay down.

Quine's second argument seems to have been more immediately influen-
tial than his first, for it prompted a reformulation of the canonical doc-
trines of the new logicism. Although logicists continued to describe logic
and mathematics as conventional, they preferred to speak of the truth of
these disciplines as resting on semantical rules—rules that were explicitly
formulated in the construction of formal systems aimed at explicating prior
mathematical usage and that were taken to underlie that prior usage—
rather than thinking of truth as resulting from an explicit convention (see
Carnap 1939; Hempel 1945). Quine's first argument unfolded into a cri-
tique of the notion of semantical rule (and the related notion of truth by
virtue of meaning) designed to circumvent these reformulations. Thus in
(1953), in (1962), and in a host of later writings, Quine argued at length
that there are no statements true by virtue of meaning. One consequence
of these arguments was a muted (and underdeveloped) empiricism.

As logicism suffered under Quine's attack on its fundamental concep-
tion of logical truth, a different Fregean theme underwent a revival. Since
he did not believe the truths of logic to be true in virtue of meaning and
therefore as devoid of factual content (as some of the positivists main-
tained), Frege saw no tension between claiming that arithmetic is disguised
logic and declaring that numbers are objects. Logical positivism
downplayed the latter declaration, and the positivists sometimes main-
tained that, as statements that are true in virtue of meaning, truths of logic
and mathematics are devoid of any reference. Quine's scrutiny of the con-
cept of truth by virtue of meaning led him to pose the ontological ques-
tions: what, if anything, is mathematics about? Accepting Frege's analysis
of the logical forms of arithmetical statements and adopting the seman-
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tics for first-order languages developed by Tarski, Quine came to Frege's
own Platonistic conclusion: mathematics is about abstract objects, num-
bers and sets. (Earlier, Goodman and Quine [1947] had explored the possi-
bility of managing without any abstract objects at all, but they concluded
that nominalism was inadequate to allow for the truth of those math-
ematical statements that are required in empirical science.) Quine's later
writings have attempted to show that the only abstract objects needed by
mathematics and science are sets and to integrate this Platonistic position
with his epistemology.

Quine was not alone in fostering a renaissance of Frege's doctrine that
numbers are objects. In investigating one of the great outstanding prob-
lems in set theory in the 1940s, the truth of Cantor's continuum hypothesis
(which states that the power of the continuum is 81), Gödel pondered
the possibility that the continuum hypothesis is independent of the ax-
ioms of set theory (that is, the axioms of a standard set theory such as
ZF or NBG). A possible response to the discovery of independence (which
Godel envisaged and which was established in part by his own work and
in part by subsequent work of Paul Cohen) would be to claim that the
continuum hypothesis has no truth value until we specify the system in
which it is to be embedded. Thus, just as there are Euclidean and non-
Euclidean geometries, and just as the parallel postulate holds in the former
but not the latter, so, perhaps, we shall have to talk about Cantorian and
non-Cantorian set theories. Gödel took this response to be profoundly
misguided. Even if the continuum hypothesis were found to be indepen-
dent of the rest of set theory (as in fact it was), we should continue to
ask whether it is true and to seek principles that give an adequate and
complete characterization of the universe of sets. Pursuing the point, Gödel
contended that there is a definite world of mathematical entities, that these
entities are independent of human thought, and that human beings have
a way of apprehending the fundamental properties of these entities. In
a phrase that was to resonate in subsequent philosophy of mathematics,
he wrote that the truth of the axioms of set theory "forces itself upon
us" (Gödel 1964).

Like Quine, Gödel departed from the positivist conception that, in
mathematics and logics, truth is dependent not on reference to objects
but on meaning (or, in the more primitive versions, on conventions).
Frege's old conception of mathematics as a body of statements about
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abstract objects came to occupy center stage in the philosophy of
mathematics, appearing as the only serious possible view about
mathematical ontology and mathematical truth. But some of the connec-
tions within Fregean epistemology had now been broken. Frege's own
wedding of the ontological thesis to the claim that mathematics is logic
seemed no longer available, for, according to the orthodox view of logic,
logic has no special content, not even objects so ethereal as those apparently
needed for mathematics. Quine's attacks on the notion of truth by virtue
by meaning had apparently led him to a version of empiricism about
mathematics that was not vulnerable in the ways that Mill's empiricism
had been, but it was far from clear what positive claims about mathe-
matical knowledge were embodied in Quine's writings. Finally, Gödel's
ontological Platonism was accompanied by a clear and straightforward
epistemological thesis that fractured Frege's old (Kantian) link between
intuition and the construction of mathematical objects. According to
Gödel, we have the ability to intuit the properties of mind-independent
objects, and this accounts for our knowledge of the basic principles of
set theory (and, in the future, it may account for the principles that we
add to complete our knowledge of the universe of sets). Yet, although
it may be relatively easy to understand, Gödel's view is not so easy to
believe, for the notion of intuition on which it relies appears somewhat
nebulous. Frege's old warning is apt: "We are all too ready to invoke inner
intuition, whenever we cannot produce any other ground of knowledge"
(1884, 19).

During the 1950s and 1960s, the philosophy of mathematics centered
around efforts to displace the versions of logicism, formalism, and intui-
tionism that had been current in previous decades and to articulate a neo-
Fregean view of mathematics whose distinctive claim was that set theory
(specifically some extension of ZF) provided the foundations for mathe-
matics. To a large extent, epistemological issues were neglected in favor
either of technical explorations (concerning the import of the Gödel-Cohen
discoveries or the significance of the Lowenheim-Skolem theorem, for ex-
ample) or of attempts to show the superiority of neo-Fregeanism to one
or the other of the (now unfashionable) earlier foundational programs.
However, in the 1960s and early 1970s, a number of important criticisms
of the Platonist orthodoxy began to emerge, and these criticisms have
played a major role in shaping current work in the philosophy of
mathematics.
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On the neo-Fregean conception, all mathematics is embedded in set
theory and all the entities of mathematics are sets. In particular, numbers
are sets. But, it appears, if numbers are sets then they must be particular
sets, and the philosopher should be able to identify which ones they are.
However, mathematicians have long recognized that arithmetic can be
reduced to set theory in many different ways: the natural numbers can
be identified with the von Neumann numbers, the Zermelo numbers, or
with any of an infinite number of other sequences of sets. Quine (1960,
1970) used the point to argue for his own ideas about reference and reduc-
tion, but the most forceful posing of the problem occurred in an article
by Benacerraf (1965). In effect, Benacerraf's discussion delineated three
options for the philosopher of mathematics: we can either try to find some
principle for choosing one of the set-theoretic identifications of the natural
numbers as privileged (and Benacerraf carefully explored some main
possibilities, with negative results), we can try to maintain the thesis of
ontological Platonism without identifying numbers with any particular
sets (as Quine had argued, and as subsequent writers—White 1974; Field
1974; Resnik 1980, 1981; Maddy 1981—were to do), or we can abandon
ontological Platonism. In the 1960s and 1970s, few philosophers were
prepared to consider the last option.

However, there were occasional expressions of dissent. In 1967, Put-
nam contrasted the "mathematics of set theory" picture (our neo-
Fregeanism) with an alternative that he called "mathematics as modal
logic" (Putnam 1967). His suggestion was that mathematical statements
can be formulated as necessary conditionals whose antecedents are the
conjunctions of axioms of standard mathematical theories. In this way,
we may capture parts of the idea that mathematics is concerned with the
properties of structures, while avoiding the conventionalist notions that
accompanied that idea during the heyday of positivism. Putnam also pro-
posed that neither the neo-Fregean picture nor the modal logic picture
should be viewed as offering the fundamental correct view of mathematics.
Both should be recognized as "equivalent descriptions."

A more direct attack on ontological Platonism was offered in 1973 by
Chihara, who developed a detailed account of a nominalist version of
mathematics. Chihara proposed to reevaluate the Quinean argument for
Platonism by showing how the mathematics needed for science could be
articulated without commitment to abstract entities. Chihara's work may
fairly be taken as the beginning of a revival of interest in nominalism,
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which has been pursued in his own subsequent work and (in different ways)
in Gottlieb (1980) and Field (1980, 1982, 1984, 1985).

However, the most influential study of the new orthodoxy in philosophy
of mathematics was another article by Benacerraf (1973). Benacerraf con-
structed a dilemma, designed to show that our best views about mathe-
matical truth do not fit with our ideas about mathematical knowledge.
Start from the relatively unproblematic theses that there are some math-
ematical statements that are true and that some of these are known by
some people. Then a task of philosophy is to provide an account of the
truth of those statements that are true and an account of how we know
the mathematics that we know. On our best accounts of truth in general
and of the form of mathematical statements (accounts that derive from
Frege and Tarski), true statements of mathematics owe their truth to the
properties of and relations among mathematical objects (paradigmatical-
ly sets). It appears that such objects are outside space and time—for there
seem to be too few spatiotemporal objects to go around, and, in any case,
the truths of mathematics seem independent of the fates of particular
spatiotemporal entities. According to Benacerraf, on our best account of
human knowledge, knowledge requires a causal connection between the
knower and the objects about which the knower knows. Since mathemati-
cal objects are outside space and time, there can be no such connection
between them and human beings. Hence, on the best accounts of truth
and knowledge, mathematical knowledge turns out to be impossible after
all.

Since the early 1970s, much of the research in the philosophy of
mathematics has been devoted to evaluating the merits of neo-Fregeanism
in the light of the studies that I have briefly reviewed. Particularly impor-
tant has been the task of finding an appropriate response to Benacerraf's
dilemma. Some writers (notably Steiner 1975; Maddy 1980; Kim 1982)
have argued that neo-Fregeanism is unthreatened by the dilemma: they
hold that a proper understanding of the conditions on human knowledge
will allow for us to have knowledge of objects that are outside space and
time. Others (Lear 1977; Jubien 1977) have deepened the dilemma and
have proposed revisions of neo-Fregeanism to accommodate it. In addi-
tion, some writers have proposed approaches to the ontology of
mathematics that question the thesis that mathematical objects are sets.
The less radical of these is structuralism, the doctrine that mathematics
describes the properties of mathematical structures. More radical is the
nominalism of Chihara, Gottlieb, and Field.
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Structuralism is a natural reaction to Benacerraf s other problem, the
question of how to identify the genuine natural numbers among all the pos-
sibilities that set theory supplies. It is tempting to reply that all the set
theoretical identifications share a common structure and that it is this
structure that is the subject matter of arithmetic, not any particular

-sequence of sets. One can remain completely within the preferred on-
tological framework of neo-Fregeanism by supposing that arithmetic
describes the properties of a structure that is multiply realized in the
universe of sets (White 1974; Field 1974; see Kitcher 1978 for criticism
and Maddy 1981 for an attempt at revival). Alternatively, the structuralist
may treat mathematical structures as entities in their own right, contend-
ing that set theory, like other mathematical disciplines, is concerned with
a particular kind of structure (Resnik 1975, 1981, 1982; Shapiro 1983a).
On either of these approaches, mathematical entities seem to be abstract
objects, so that the structuralist ontology will have to be supplemented
with a response to Benacerraf's dilemma. But structuralism may also be
articulated with an eye to coping with the epistemological difficulty raised
by Benacerraf, perhaps by using notions from modal logic (as in Putnam
1967 or in Jubien 198la, 1981b) or by working out a constructivist ver-
sion of structuralism (Kitcher 1978, 1980, 1983). We believe that it is worth
noting that structuralism has some obvious kinship with the ways in which
some contemporary mathematicians (especially algebraists) present their
discipline—and this seems particularly true of the version of structuralism
favored by Resnik and Shapiro.

Contemporary nominalism has been elaborated in three rather different
ways. Chihara's version (1973, 1984) retains the traditional idea that
statements appearing to bear commitment to the existence of abstract ob-
jects can be reconstrued as assertions about linguistic entities. Gottlieb
(1980) proposes to reinterpret the quantifiers, making use of substitional
quantification to avoid commitment to abstract entities (see Parsons 1971
for a lucid account of substitutional quantification and Parsons 1982 for
an illuminating appraisal of Gottlieb's program). Field (1981, 1982, 1984,
1985) has made the most decisive break with the tradition, arguing that
physical theories can be reformulated so that they bear no commitment
to numbers or to other mathematical entities. The conclusion he draws
is that mathematical knowledge is simply logical knowledge, and that
mathematical vocabulary functions as a device for obtaining consequences
that would have been more difficult to reach without that vocabulary.
It seems to us that there is an obvious similarity here to Hilbert's notion
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of "ideal statements," and indeed Field's program might seem closer to
Hilbert's formalism rather than to traditional nominalism. (For penetrating
evaluations of Field's work, see Malament 1982 and Shapiro 1983b.)

Besides these two lines of reaction to problems (actual or perceived)
with neo-Fregeanism, there have been a number of other important devel-
opments in recent philosophy of mathematics. Some philosophers have
been primarily concerned to explore the special issues that arise within
various parts of logic and set theory, the status of conceptions of set, the
credentials of second-order logic, the role of reflection principles, and so
forth. Thus Parsons has produced an important series of essays (collected
in his 1984) that examines questions of ontology as they arise locally in
various versions of set theory and in other parts of mathematics. Boolos
(1975, 1984, 1985) has offered a fresh approach to second-order logic,
which resists the orthodox account (originally defended by Quine 1963
and 1970) that second-order logic is a cloudy way of doing set theory.
Both these investigations have provided glimpses of fresh approaches to
the more general problems discussed above, approaches that preserve in-
sights from traditions that had previously seemed outmoded.

Because the influence of Frege's ideas on contemporary philosophy of
mathematics is so evident, it should hardly be surprising that some cur-
rent work in the philosophy of mathematics is centered around reappraisals
of Frege. Thus, there have been detailed explorations of parts of Frege's
philosophy of mathematics (Resnik 1980; Wright 1983), attempts to ar-
ticulate Fregean themes (Modes 1984; Boolos 1985), and an important
series of investigations of the conceptions of logic and knowledge in which
Frege's technical work was set (Goldfarb, this volume; Ricketts 1985).
Although philosophical exploration of the origins of the main categories
of analytic philosophy may initially appear rather remote from questions
about mathematics, it is surely appropriate to remind ourselves that the
problems whose history we have been tracing are continuous with the cen-
tral problems of epistemology and metaphysics in the twentieth century.
Understanding how the latter problems emerged will, perhaps, enable us
to avoid errors and confusions in formulating them, mistakes that may
lead us to favor nonsolutions or may prevent us from finding any solu-
tions at all.

We have attempted to give a whirlwind tour of present work in
mainstream philosophy of mathematics and to show where that work
comes from. We now want to emphasize a point that has, we hope, been
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obvious to the reader who is following the story for the first time. Although
our tale begins with the researches of mathematicians, originating with
questions that seem to arise from the mathematics of the late nineteenth
century, and although, with the discovery of the paradoxes, the task of
providing foundations for mathematics seems to assume some mathe-
matical importance, the distance between the philosophical mainstream
and the practice of mathematics seems to grow throughout the twentieth
century. Philosophy of mathematics appears to become a microcosm for
the most general and central issues in philosophy—issues in epistemology,
metaphysics, and philosophy of language—and the study of those parts
of mathematics to which philosophers most often attend (logic, set theory,
arithmetic) seems designed to test the merits of large philosophical views
about the existence of abstract entities or the tenability of a certain pic-
ture of human knowledge. There is surely nothing wrong with the pursuit
of such investigations, irrelevant though they may be to the concerns of
mathematicians and historians of mathematics. Yet it is pertinent to ask
whether there are not also other tasks for the philosophy of mathematics,
tasks that arise either from the current practice of mathematics or from
the history of the subject.

A small number of philosophers (including one of us) believe that the
answer is yes. Despite large disagreements among the members of this
group, proponents of the minority tradition share the view that philosophy
of mathematics ought to concern itself with the kinds of issues that oc-
cupy those who study other branches of human knowledge (most obviously
the natural sciences). Philosophers should pose such questions as: How
does mathematical knowledge grow? What is mathematical progress?
What makes some mathematical ideas (or theories) better than others?
What is mathematical explanation? Ideally, such questions should be ad-
dressed from the perspective of many areas of mathematics, past and pre-
sent. But, because the tradition is so recent, it now consists of a small
number of scattered studies, studies that may not address the problems
that are of most concern to mathematicians and historians or explore
episodes or areas within mathematics that most require illumination.

If the mainstream began with Frege, then the origin of the maverick
tradition is a series of four papers by Lakatos, published in 1963-64 and
later collected into a book (1976). Echoing Popper, Lakatos chose the title
Proofs and Refutations, and the choice is, in part, apt. One obvious theme
of the essays is the discussion of a segment of the history of mathematics
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in terms of categories that are adapted from Popper's methodology for
the natural sciences. We believe that the significance of the papers is best
appreciated by looking past the suggested Popperian solutions to the prob-
lems that Lakatos was seeking to address. Selecting the sequence of at-
tempts to formulate precisely and to prove the Euler-Cauchy conjecture
about the relation among the faces, edges, and vertices of polyhedra as
his historical example, Lakatos posed such questions as: How do
mathematical definitions get revised? How are methods of proof modified?
Are there methodological rules that mathematicians follow in pursuing
these changes? If so, what are they? Now we take it that questions like
these are important both for historians of mathematics and, perhaps, for
practising mathematicians. Any serious investigation of the history of
mathematics must embody some ideas about how the subject proceeds
when it is done properly, and Lakatos's questions promise to move
historiography beyond a set of tacit ideas, distilled from a (possibly in-
compatible) collection of sources, toward the explicit formulation of
methodological principles. If we had such a canon, then historians could
use it to investigate the match between actual history and the ideal, per-
haps finding intriguing cases in which some extrinsic factor prompted a
departure from the recommendations of methodology. Moreover, math-
ematicians might find it illuminating both to see how their chosen field
of investigation had emerged from the mathematics of the past and how
certain kinds of methodological considerations were paramount in fashion-
ing its central concepts. It is not even out of the question that the answers
to Lakatos's questions might help illuminate disputes among mathemati-
cians about the legitimacy of various approaches or the significance of
certain ideas.

Although Lakatos's discussion was the first extended philosophical
treatment of methodological issues in mathematics, there were similar
themes in the earlier work of Wilder, who subsequently developed his ap-
proach further (1975). Steiner (1975) and Putnam (1975) argued for the
importance of nondeductive arguments in mathematical justification (as
opposed to mathematical discovery, which had been explored with great
thoroughness and elegance by Polya [1954]). In subsequent work, Steiner
has discussed the character of mathematical explanation (1978) and has
posed again Wigner's famous question about the "unreasonable effec-
tiveness" of mathematics in the scientific investigation of the world.
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Grosholz (1980, 1985) has investigated the manner in which new
mathematical fields emerge from the synthesis of prior disciplines. The
general task of articulating an account of mathematical methodology,
begun by Lakatos, has been tackled by writers from several different
perspectives (see, for example, Hallett 1979; Kitcher 1983).

The work that we have mentioned focuses on a few episodes in the
history of mathematics and on a scattering of fairly elementary examples
from contemporary mathematics. Many mathematicians are inclined to
take this as symptomatic of the inevitable irrelevance of the general ap-
proach, rather than as a side effect of the fact that responsible studies
begin with examples that are best suited for developing the central ideas
of the new field. We hope that the enterprise of articulating the meth-
odology of mathematics will attract scholars who are able to investigate
examples from all phases of the development of mathematics, including
the most exciting current contributions, and that, as this is done, the skep-
ticism of parts of the mathematical community will be overcome.

The current state of the philosophy of mathematics thus reveals two
general programs, one that is continuous with Frege's pioneering endeav-
ors, and which conceives of the philosophy of mathematics as centered
on the problem of the foundations of mathematics, and another that is
new and less well developed, and which takes the central problem to be
that of articulating the methodology of mathematics. It is natural to
wonder whether the two programs are compatible. Both Lakatos and
Kitcher proceed to the enterprise of exploring the methodology of math-
ematics after arguing that there is no a priori foundation for mathematics.
Parsons (1986) has questioned the idea that there is a genuine inconsistency
between the search for a priori foundations and the contention that there
is a serious problem of the growth of mathematical knowledge. Moreover,
the work of some writers who have pondered methodological questions
(Steiner 1975, 1983; Maddy 1982) seems to presuppose that the two pro-
grams are ultimately compatible.

The present volume brings together contributors to the Fregean tradi-
tion and enthusiasts for new departures. We shall now take a look at the
recent history of the history of mathematics, before offering our views
about how exactly the spectrum of historical and philosophical approaches
is distributed among the essays.
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2. History of Modern Mathematics:cs:
A Brief and Biased History

We have seen that contemporary philosophy of mathematics has grown
out of two traditions: one studying the foundations of mathematics in
the analytic style prevalent in twentieth-century philosophy, and the other
a recent approach drawing on both history and philosophy to investigate
the methodology of mathematics. Contemporary history of mathematics
also has two flourishing traditions. One is an older tradition, affiliated
with professional mathematics and mathematics education, that studies
the history of great men and ideas from their published papers. The other
tradition, affiliated most closely with postwar professional history of
science, focuses on conceptual and social issues and employs a wide range
of source materials.

One of our objectives is to identify trends in the history and philosophy
of modern mathematics since the last assessment of the field in 1974 at
the American Academy of Arts and Sciences Conference on the Evolu-
tion of Modern Mathematics (see the November 1975 issue of Historia
Mathematica for details). The "great ideas" tradition has flourished for
hundreds of years (see Jayawardene 1983) with no recent signs of change.
We only hastily recount its history before turning our attention to newer
trends that have been stimulated in great part by the historical commun-
ity. This focus on recent trends may seem to disparage the continuing
contributions made in the old style of mathematics history, although it
is not our intention to do so. Two other caveats should be kept in mind.
First, our attention is restricted to the history of modern mathematics;
thus, we do not consider the ample fine scholarship of mathematics before
the nineteenth century. Second, the reader may detect a bias toward English
language literature and to research conducted by mathematicians and
historians of the United States. This shortcoming is a simple reflection
of our knowledge of the state of the field.

Although historians of mathematics have traced their discipline back
to antiquity, our interest is in more recent historical work. The first im-
portant modern turn came with the Gottingen encyclopedia historian
Kastner, who introduced a higher standard of scholarship at the end of
the eighteenth century. In the nineteenth century a number of editions
of manuscripts, bibliographies, and general histories of mathematics were
published in Europe, especially in Germany (e.g., Cantor 1880-1908;
Todhunter 1861).
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In the first two decades of the twentieth century, science educators
gained an appreciation for the value of the history of science in teaching
science because of the human dimension it gives to science as well as its
demonstration of the importance of science in western civilization. This
recognition stimulated the preparation of elementary histories of the
sciences and shorter historical articles useful to undergraduate teachers
of science. Smith (1906) was among the first to produce these materials
for mathematics. It is evident from the number and duration of these
publications that history has proved to be an effective tool in introducing
students to the culture of mathematics. General histories by Cajori (1968),
Smith (1923-25), Archibald (1932), Bell (1940), Boyer (1968), and Eves
(1976), as well as the journal Scripta Mathematica, founded by Archibald,
Smith, and others in 1932 for the philosophical, historical, and expository
study of mathematics, all had this educational purpose in mind.

This pedagogic movement stimulated more scholarly research. The
results are seen in the historical dissertations written in the 1920s and 1930s
at Columbia under Smith and at Michigan under Louis Karpinski, the
increased production of historical articles, and the new bibliographies (e.g.,
Loria 1946) and source books (e.g., Smith 1929) that appeared.

Meanwhile, the mathematical community came to appreciate the value
of technical historical surveys of mathematics to their research—both to
reappropriate methods and facts lost over time and to understand the
origins of research areas. The work that established history's research value
beyond any doubt was the Encykloäpdie der mathematischen Wissen-
schaften (1898-1935), in which Felix Klein and other distinguished math-
ematicians attempted a comprehensive review of mathematics as it existed
at the turn of the century. Many other historical studies (e.g., Dickson
1919-23) and volumes of collected papers were prepared by and for math-
ematicians between the world wars. After 1945 these internalist histories
appeared at an accelerated rate.

The seeds of a new tradition in history of mathematics were sewn in
the 1930s by George Sarton through his efforts to professionalize history
of science in the United States. Sarton's own contributions to the history
of mathematics (Sarton 1936) are best viewed as a continuation and rein-
forcement of the older tradition. Indeed, the orientation of historians in
the 1930s and 1940s was decidedly internalist. Their work focused on the
content of science, and they were skeptical of history of science or
mathematics conducted by those without advanced scientific training. This
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led to a natural alliance between the fledgling history of science and the
scientific disciplines and to a unified approach that "explored the filia-
tion and intellectual contexts of successful ideas" (Thackray 1983, 17).

In the 1950s the first professional historians of science entered the
universities, bringing with them an increase in the number and sophistica-
tion of historical studies of science. Most of these studies were internalist,
but a separate "externalist" tradition developed, inspired by the work of
Robert Merton. The externalist studies traced the social structure of the
scientific community and the relation of this community to the external
world. Internalist and externalist approaches were seldom employed in
the same study.

In this period the rise of the history of science profession had little im-
pact on the history of modern mathematics, except perhaps to publicize
the importance and legitimacy of historical study and to stimulate the
mathematical community to produce greater numbers of collected works,
monographs, and smaller studies. Modern mathematics received almost
no attention from historians of science in this period for at least two
reasons. First, the number of practitioners was small and they tended to
be scientific generalists, or at least to focus on a wide range of scientific
activities in a single chronological period. Mathematics, especially after
the mid-eighteenth century, was considered to have a content and method
distinct from the other sciences, and even today this belief creates a gulf
between historians of modern mathematics and historians of other modern
sciences. Second, following Sarton and Merton, early historians of science
were attracted to the great revolutions in science—particularly to the Scien-
tific Revolution. Thus, the little energy of early historians of science for
mathematics was consumed in the study of topics from the sixteenth
through the early eighteenth centuries, particularly the rise of algebra, the
beginnings of analytic geometry, and, most of all, the calculus.

In the 1960s and early 1970s the history of science profession grew at
a rapid pace, stimulated in part by the substantial government support
to science and its cultural study. As the number of practitioners increased,
subspecialties in histories of the individual sciences emerged. History of
science programs—Harvard and Wisconsin in particular—produced their
first historians of modern mathematics: Michael Crowe, Joseph Dauben,
Judith Grabiner, Thomas Hawkins, Uta Merzbach, and Helena Pycior.
Since then, a small but continuous stream of young historians with train-
ing in both history of science and mathematics has entered the field.
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The line drawn between internal and external history of science was
too tenuous to resist fading. In the 1970s and 1980s, historians of science
have balanced their internalist studies with social studies and have advanced
a more sophisticated historiography incorporating both internal and ex-
ternal factors. These studies increasingly consider social factors when ex-
amining not only the institutions of science, but also the form and con-
tent of scientific ideas.

Social histories of modern mathematics are relatively uncommon, prob-
ably because in comparison with other sciences mathematics is regarded
as least affected by factors beyond its intellectual content. Yet mathemati-
cians have long recognized the importance of communities such as those
in Gottingen, Paris, Berlin, and Cambridge in sponsoring particular styles
of research and producing certain kinds of research mathematicians; a
number of studies of institutions, their educational programs (Biermann
1973), and the individuals who shaped them (Reid 1970, 1976) have
appeared.

For Sarton, the study of national science made no sense because history
of science was the study of scientific ideas, which knew no national bound-
aries. But mathematicians have long understood that there are national
differences, both in the subjects studied and the way in which they are
approached. One famous example is the geometric approach to calculus
in vogue in eighteenth- and early-nineteenth-century Britain in contrast
to the analytic approach of Leibniz favored on the Continent. But con-
trasts can be drawn in nineteenth-century mathematics, as well, for ex-
ample, between German and British approaches to applied mathematics,
between the Italian and French work in projective geometry and the Ger-
man work in transformational geometry, and in the German dominance
of the arithmetization of analysis. The appreciation of national styles of
mathematics has resulted in a few studies, for example of the introduc-
tion of Continental methods into British analysis (Enros 1979). American
mathematics has come under close scrutiny, partly through the interests
of American mathematical societies and further encouraged by the na-
tion's bicentennial celebration in 1976 (Tarwater 1977). In the 1980s,
American mathematics has become an active area of research.

Although mathematicians and historians have come to understand the
value of studying professional societies, journals, prizes, institutions, fund-
ing agencies, and curricula, they have considerably less appreciation for
the study of the social roots of the form and content of mathematics. This



24 Philip Kitcher and William Aspray

is evidence of the firmly seated belief that mathematicians but not their
ideas may be affected by external factors. This attitude is slowly begin-
ning to change, as Daston (this volume) and others are able to demonstrate
the interplay between social factors and mathematical ideas. Another group
assaulting this belief are the feminist historians (J. LePage, E. Fee, E.
F. Keller), who variously are trying to establish cognitive differences be-
tween male and female mathematicians and to explain why mathematics
has long been considered a male vocation.

Historical studies conducted before the 1960s sometimes projected con-
temporary standards of proof, rigor, problem definition, and discipline
boundary onto their mathematical subject. The effect was to "explain"
the subject in anachronistic concepts and terminology, to select topics for
study only insofar as they had a connection to more recent developments,
and to praise or damn these efforts on the basis of whether they anticipated
(took a step toward) the current state of mathematical knowledge. Thus,
the focus was on the great "successes" and sometimes the "blunders"
of the greatest mathematicians. To accomplish this they studied the great
men (there were almost no women mathematicians) without considering
the lesser, but able practitioners that comprised the wider mathematical
community. These studies of the great ideas were accompanied by anec-
dotal biographies of the great men, in the worst cases amounting to no
more than hagiographic tributes. These authors relied principally upon
their mathematical acumen and personal experiences to evaluate the
published corpus of the great mathematicians, instead of examining a wider
range of published and unpublished documents.

One historian of science has noticed a similar trend in historical writing
about the sciences (Thackray 1983, 33):

Discipline history by scientists has usually been based on an in-
dividualistic epistemology, in keeping with the image of the scientist
as one voyaging through strange seas of thought, alone. There are also
individualistic property relations in science, giving importance to the
adjudication of rival claims. One result has been an historical interest
in questions of priority—of who first exposed "error" and established
"right" answers, or who developed successful instruments and
techniques.

With the advent of a professional history of science, a new and more
sophisticated historiography has arisen and is being put into practice in
the history of mathematics. This historiography measures events of the
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past against the standards of their time, not against the mathematical prac-
tices of today. The focus is on understanding the thought of the period,
independent of whether it is right or wrong by today's account. The
historiography is more philosophically sensitive in its understanding of
the nature of mathematical truth and rigor, and it recognizes that these
concepts have not remained invariant over time. This new historiography
requires an investigation of a richer body of published and unpublished
sources. It does not focus so exclusively on the great mathematicians of
an era, but considers the work produced by the journeymen of mathematics
and related scientific disciplines. It also investigates the social roots of
mathematics: the research programs of institutions and nations; the im-
pact of mathematical patronage; professionalization through societies,
journals, education, and employment; and how these and other social fac-
tors shape the form and content of mathematical ideas.

The new historiography has not been universally adopted. Historical
works of the older style continue to be written by mathematicians and
some historians. Perhaps because of the perceived differences in method
and content between mathematics and the other sciences and because of
the slow rate at which the history of science profession has produced
scholars interested in modern mathematics, historiographic change has
been relatively slow in coming. However, one area of considerable activ-
ity is the preservation and use of archival materials. The mathematics com-
munity has a long tradition of publishing collected papers of eminent
mathematicians. This tradition continues today, but attention is also be-
ing given to the publication of collections of unpublished manuscripts and
correspondence such as those of Wiener, Godel, and Russell that are now
in production. Many fine European archival collections relating to
nineteenth-century mathematics (e.g., at Institute Mittag-Leffler, the Berlin
Akademie der Wissenschaften der DDR, the West Berlin Staatsbibliothek
Preussischen Kulturbesitz, and others in Cambridge, Freiburg, and Got-
tingen) have been in existence for many years, but they have received lit-
tle attention over the years. Recently, historians have used these materials
to great effect in preparing new interpretations and more accurate accounts
of classic events—for example, Dauben (1979) on Cantor, Moore (1982)
on the set-theoretic paradoxes, and Hawkins (1984) on the Erlanger Pro-
gram m. Others have used these sources to pioneer new areas—for exam-
ple, the work of Cooke (1984), Koblitz (1983), and Kochina (1981) on
Kovalevskaya.
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Institutions have been founded in the last decade with a major objec-
tive of collecting and preserving important archival materials on
mathematics. These include the Archives of American Mathematics at the
Humanities Research Center of the University of Texas, the Charles Bab-
bage Institute for the History of Information Processing Archives at the
University of Minnesota, the Bertrand Russell Archives at McMaster
University, and the Contemporary Scientific Archives Center at Oxford
University. For more information on archival resources in repositories in
the United States, see Merzbach (1985).

The new professionalism in history of mathematics is reflected in the
formation and growth of specialist societies and journals in the 1970s
and 1980s. These include the Canadian and British societies for the his-
tory of mathematics and the journals Historia Mathematica, Archive for
History of Exact Science, History and Philosophy of Logic, Annals of
the History of Computing, Mathematical Intelligencer, and Bolletino
di storia della scienze matematiche. Joseph Dauben, Ivor Grattan-
Guinness, and Kenneth May have made noteworthy contributions to
professionalization.

The professionalization of the history of mathematics has stimulated
the production of a rich set of publications. The remainder of this section
presents a brief survey of the literature of the 1970s and 1980s. For reasons
of space and manageability, the survey is restricted to full-length studies.
This does not do justice to the contributions of some scholars, like Thomas
Hawkins or Helena Pycior, who contribute primarily through journal ar-
ticles. For a fuller discussion of both book and journal literature see
Grattan-Guinness (1977), Jayawardene (1983), and Dauben (1985).

Historians of mathematics have long appreciated the value of
bibliographies. Dauben (1985, p. xxii) lists nine bibliographies produced
in the nineteenth century, and his list does not include important ones
appearing in the journal literature, notably the bibliographies produced
between 1877 and 1900 by Moritz Cantor in Zeitschrift fur Mathematik
und Physik. In the twentieth century there have been four major
bibliographies of the history of mathematics: Sarton (1936), Loria (1946),
May (1973), and Dauben (1985). The two of greatest research value to-
day are the last two. May's bibliography is intended to be comprehen-
sive, and therefore lists everything of which he knew, whereas Dauben's
is selective, critical, and annotated. Sarton and May in particular saw their
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bibliographic work as important to discipline building, as a way to define
the field and to guide further research.

Mathematicians have also long been interested in general histories of
their field. May (1973) lists approximately 150 general histories written
between 1742 and 1968, and Dauben (1985) lists 29 such works of current
value. Some (e.g., Struik 1967) provide a synoptic overview suitable for
introducing students to the field, whereas others (e.g., Cantor, 4 vols.,
1880-1908) with more comprehensive coverage serve as reference works
to the mathematically educated. These two needs have been met in recent
years by Boyer (1968) and Kline (1972), respectively. Kline's work is par-
ticularly impressive, generally accurate and far in advance of its pred-
ecessors in interpretation. There is growing opportunity, however, for a
new general history of mathematics able to synthesize the more detailed,
focused studies being produced today. Others (Bourbaki 1974, Dieudonn
1978) have written general histories of mathematics intended to advance
their position on the "correct" approach to mathematics.

Sourcebooks of mathematics have been published throughout the twen-
tieth century. Their function is to unite in one volume primary source
material on a single topic, so as to make these materials more widely
available and easier to compare. Sourcebooks have found frequent use
in the classroom, and it is no surprise to learn that the first ones appeared
(Smith 1929) at the time when it was first recognized that history can be
an effective tool in introducing students to the culture of science and
mathematics. Nor is it surprising that the number of Sourcebooks to ap-
pear has increased in proportion to the professionalization of the history
of mathematics. Some of these recent Sourcebooks (Calinger 1982) are
intended primarily for educational use, whereas others (van Heijenoort
1967; Birkhoff 1973) fulfill an additional need of the practicing mathemati-
cian for access to classic papers.

Since the late nineteenth century, mathematicians have regularly paid
tribute to the most eminent members of their profession by publishing
their collected works or selected editions of their papers. These volumes
are not merely honorific, for they serve a useful research function. Dauben
(1985) has identified about 300 mathematicians active before World War
I whose collected works have been published since 1880. A survey of a
subset of Dauben's list consisting of mathematicians from the nineteenth
or twentieth century indicates steady publication of their collected works
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over the last ten decades, with little activity in the 1940s (because of the
war, presumably) and a slight increase in the 1960s and 1970s. Volumes
published in recent years seem to be more sensitive to historical concerns,
for example in being less likely to introduce anachronistic modernization
in notation. In fact, many of the recent collections have simply photo-
reproduced the articles as they originally appeared in print. In the last
ten years a number of the older of these collected works have been re-
printed, demonstrating their enduring value. Although collected works
are primarily published to meet mathematical research needs—at least in
the case of modern mathematicians, whose collected works are published
in far greater (absolute) numbers than those of "mathematicians" of the
sixteenth through eighteenth centuries—they also serve the historical com-
munity. Thus the number published and kept in print is likely to increase.

Dauben (1985) also identifies about 75 mathematicians (active before
World War I) whose correspondence has been published. Of these a
disproportionately high percentage (in comparison to the number of
mathematical practitioners at different periods of time) flourished prior
to the nineteenth century, perhaps indicating the unavailability of more
recent correspondence. It may also result from a lessening in the number
and quality of letters over the last century with the improved opportunities
for mathematical communication through journals and professional
meetings, easier travel, and more recently the widespread use of the
telephone and the computer. Or perhaps an explanation is provided by
the fact that early mathematicians were often involved in a range of scien-
tific activities, that history of science (especially of the Scientific Revolu-
tion) matured more rapidly than history of modern mathematics, and that
historians place greater value on correspondence than scientists do. If the
history of modern mathematics follows the trend in the history of science,
the number of volumes of collected correspondence will grow and will
have increasingly sophisticated annotation and analysis.

Biographies of eminent mathematicians have been popular among
mathematicians and mathematics educators since early in the century, when
history was first perceived as an effective introduction to the culture of
mathematics. Before that time, mathematical biographies had appeared
only occasionally, often written by younger contemporaries of the
biographical subject, such as Koenigsberger (1904) on Jacobi. Although
full-length biographies were written in the early twentieth century, most
biographical writings were semipopular sketches emphasizing the personal
and the anecdotal. Some of these were very popular, serving pedagogic
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function and also offering "intellectual challenge, inspiration, and recre-
ation to mature practitioners" (Thackray 1983, 39). But as the field has
matured, these works have outlived their historical utility. One immense-
ly popular example (Bell 1937) is castigated by historians today for its gross
historical inaccuracies.

In recent years many full-length biographies have appeared.
Biographical subjects since 1970 include Babbage (Hyman 1982), Cantor
(Dauben 1979), Lazare Carnot (Gillispie 1979), Courant (Reid 1976),
Dedekind (Dugac 1976), Fisher (Box 1978), Fourier (Grattan-Guinness and
Ravetz 1972), Gauss (Hall 1970; Wussing 1974), Hamilton (Hankins 1980),
Hilbert (Reid 1970), Kovalevskaya (Cooke 1984; Koblitz 1983; Kochina
1981), Neyman (Reid 1982), Turing (Hodges 1983), and Ulam (Ulam 1976).
Some of these (Reid 1970, 1976, 1982; Ulam 1976) are semipopular and
continue the older biographical tradition. Others (Dauben 1979, Gillispie
1979, Hankins 1980) have employed a rich set of source materials to ex-
amine in detail the mathematical contributions of their subject in his or
her social and intellectual context. There is considerable variability in the
extent to which these works emphasize the mathematics (Dugac 1976;
Cooke 1984) or the personalities and social context (Reid 1970; Koblitz
1983). Even the semipopular biographies are historiographically mature
in comparison to biographies written earlier in the century. Constance
Reid, for example, is attuned to institutional context in her studies of
Courant, Hilbert, and Neyman. And as one historian (Thackray 1983,
40) has noted, biographies result in "a fresh awareness of the subtle, elusive
quality of the [scientists'] ideas and of the persistence and intricacy of
their patterns of thought. That awareness has done much to challenge
stereotypes of science as impersonal, value-free inquiry." Popular and
scholarly biographies are likely to appear in increasing numbers in the com-
ing decades.

In the last fifteen years, mathematicians and historians have begun to
publish monographs on the historical development of subdisciplines withi
mathematics. These studies either survey the history of a subdiscipline from
its modern roots in the nineteenth century, or they examine in detail some
particular problem or episode and demonstrate how it contributed to sub-
discipline formation. Three studies are models of this kind of research
because of their mathematical and historical acumen: Moore (1982) on
Zermelo and the origins of axiomatic set theory, Hawkins (1970) on
measure and integration theory, and Wussing (1969) on the abstract group
concept. Others include Mehrtens (1979) and Novy (1973) on algebra;
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Dugac (1980), Grattan-Guinness (1970), Goldstine (1980), Grabiner (1981),
Medvedev (1976), and Monna (1975) on analysis; Bashe (1985), Goldstine
(1972, 1977), and Williams (1985) on computing; Dieudonne (1974), Gray
(1979), Pont (1974), and Scholz (1980) on geometry and topology; Biggs,
Lloyd, and Wilson (1976) on graph theory; Edwards (1977) and Weil (1975,
1984) on number theory; and Maistrov (1974) on probability. As this list
indicates, analysis has drawn by far the greatest attention. Applied
mathematics, non-Euclidean and projective geometry, operations research,
probability, and statistics have received little attention. Undoubtedly, the
number of historical studies of subdisciplines will multiply in the coming
years. Authors will come increasingly to appreciate the importance of ex-
amining correspondence, unpublished manuscripts, records of professional
societies, and the work of lesser mathematicians in understanding the con-
tributions of the leading mathematicians. These writers will also be more
historically sensitive than their predecessors to projection of modern stan-
dards of notation, rigor, problem definition, and disciplinary boundaries
onto the mathematics of the past.

At least mathematicians who participated in the founding of academic
programs, professional organizations, or journals have long appreciated
the impact of institutions on mathematics. A good example is R. C. Archi-
bald, not only a leading figure in the rise of mathematics in the United
States between the two wars, but also a devoted student of its history.
His 1938 semicentennial history of the American Mathematical Society
provides useful information on the society's financial affairs, program-
matic activities, and key personnel. In the last fifteen years, interest in
mathematical institutions has increased among both mathematicians and
historians. Biermann (1973) has produced a fine study of the Berlin school
of mathematics. Enros (1979) has traced the formation and effect of the
Cambridge Analytic Society. Kuratowski (1980) has provided us with
reminiscences of Polish mathematical figures and institutions between the
two wars.

Stimulated by the interest of such senior American mathematicians as
Birkhoff, Bochner, Browder, Halmos, MacLane, Stone, and Tucker and
by the United States bicentennial celebration in 1976, there has been
heightened interest during the last decade in the history of American
mathematics (Tarwater 1977; May 1972). Historians and mathematicians
including Aspray, Cooke, Grabiner, Merzbach, Reingold, Rickey, and
Rider are continuing investigation of this history, and many additional
studies should appear in the coming decade.
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Outside of histories of specific institutions, little has been written on
the social context of mathematics. Fang and Takayama (1975) present a
survey of methods and theory in the social history of mathematics.
Mehrtens, Bos, and Schneider (1981) have edited a useful volume of con-
ference proceedings on the social history of nineteenth-century mathe-
matics, focusing mainly on professionalization and education. Interest in
women in mathematics has resulted in several volumes of biographical
sketches of women mathematicians (Osen 1974; Perl 1978), as well as a
recent industry producing full-length biographies of famous women in
mathematics, including Ada Lovelace (Stein 1985), Germain (Bucciarelli
and Dworsky 1980), Kovalevskaya (Cooke 1984; Kochina 1981; Koblitz
1983), and Noether (Brewer and Smith 1981; Dick 1981). A number of
other, more sociologically oriented studies of women in mathematics are
now underway.

Some of the most effective recent work in the history of science has
brought to bear both internal and social factors in a unified historical
analysis. MacKenzie's study (1981) of British statistics and Daston's arti-
cle in this volume point the way to this kind of integrated historical study
of the history of modern mathematics.

3. The Essays

We have divided the essays in this volume into four sections with the
aim of bringing together papers that address similar topics or share com-
mon themes or approaches. The first section consists of three studies that
tackle the traditional area of concern to philosophers of mathematics—
logic and the foundations of mathematics. The second contains essays that
articulate the historian's enterprise in different ways, either by displaying
the structure of some particular episode of the history of modern
mathematics or by using a historical example to comment on how that
enterprise should be conducted. In the third section, historians and
philosophers of mathematics explore the two fields in attempts to find
illumination of one by the other. Finally, the fourth section comprises
two studies of the interactions between mathematics and the broader social
context.

In "Poincare Against the Logicists," Warren Goldfarb considers Poin-
care's criticisms of the logicist program. On Goldfarb's account, Poincare
was not primarily guilty of missing the point of the work of Frege, Russell,
Couturat, and others. His objections were founded in a quite different
conception of the philosophy of mathematics. The root of the difference
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is Poincare's refusal to emancipate logic from psychology in the way for
which Frege had campaigned.

Poincare criticized the logicist definitions of the numerals on the
grounds that they were ultimately circular, and he contended that the prop-
er resolution of the set-theoretic paradoxes should proceed by honoring
the vicious circle principle. Goldfarb argues that the former criticism is
not an "elementary logical blunder," but the product of Poincare's in-
sistence that legitimate definitions must trace the obscure to the clear, where
the notions of clarity and obscurity are understood psychologically. Poin-
care rejected the framework elaborated by Frege, within which what we
actually think of in connection with a given mathematical notion becomes
irrelevant and all that is pertinent is the logical issue of what concepts are
rationally presupposed. Similarly, Goldfarb contends that the full force
of Poincare's vicious circle principle and the notion of predicativity to
which it gives rise can only be appreciated by recognizing Poincare's con-
cerns about the mutability of mathematical definitions. Here again, he
was refusing to adopt a central principle of the logicist view, that "logic
applies to a realm of fixed content."

Ultimately, then, the difference between Poincare and his opponents
comes down to a deep divergence in agendas for the philosophy of
mathematics. Where Frege and later logicists saw the task of finding foun-
dations as one of showing how mathematics results from the most general
conditions on rational thought, Poincare saw mathematics as the product
of natural objects—human beings—so that the task of finding founda-
tions is intimately linked to bringing clarity (judged by the standards ap-
propriate for such beings) to areas that are currently obscure (again, judged
by the standards appropriate for such beings). As Goldfarb hints, this con-
trast between Poincare and the defenders of the logicist program is not
only useful for throwing into relief the central tenets of logicism, but it
also enables us to see interesting parallels between the early criticisms of
logicism and contemporary naturalistic approaches to the philosophy of
mathematics.

Michael Friedman also explores an episode from the history of logicism.
"Logical Truth and Analyticity in Carnap's Logical Syntax of Language"
illuminates the differences among different phases of the logicist program
by seeing Carnap's endeavors in Syntax as an ingenious—but unsuccess-
ful—attempt to find an intermediate position between the early logicism
of Frege and the later conventionalism that would come under fire from
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Quine. On Friedman's interpretation, the Fregean influence on Carnap
runs very deep. Although it may appear that Carnap preserved little of
any significance from Frege, and though the claim to reconcile Frege and
Hilbert may seem spurious, Friedman argues that Carnap's own view of
his connections to the tradition was correct.

Like Goldfarb, Friedman sees the Fregean enterprise as an attempt to
show how mathematics is "built in to the most general conditions of
thought itself." Carnap endorsed Wittgenstein's interpretation of Frege's
view of logic: logic sets forth the conditions on rational thinking by
elaborating those features that make any system of representation possi-
ble. But he transformed the Wittgensteinian insight, suggesting that logic
can be formulated exactly as "the syntax either of some particular language
or of languages in general." The disjunction prepares us for Carnap's new
version of logicism. Recognizing that the principles that emerge from the
syntax of "languages in general" will not suffice to generate classical
mathematics, Carnap proposed to relativize logic. Thus, he offered the
Principle of Tolerance, designed to permit freedom of choice with respect
to languages and syntax—and thus freedom of choice with respect to logic.
The task of foundations of mathematics remains in its Fregean form, for
we are to show how mathematics is "built in" to the structure of thought
and language, but the new relativization is supposed to accommodate the
insights and achievements of Hilbert and Godel.

Friedman goes on to argue that the new program was unstable. Car-
nap's sensitivity to the Godel results forced him to complicate his account
of analyticity. Indeed, Friedman claims, the full import of the Godel
theorems, appreciated only belatedly by Carnap, prevented him from
characterizing analyticity along the lines favored by Frege and the early
Wittgenstein, so that Carnap was pushed toward the «o«-Fregean con-
strual of analyticity as truth-in-virtue-of-meaning that makes him vulner-
able to Quinean criticisms. Hence, through its focus on an important tran-
sitional episode, Friedman's essay brings before us an interpretation of
the entire history of logicism. The gap between Frege's original attempt
to show how mathematics is built in to the general conditions of rational
thought and the conventionalist idea that mathematical propositions are
true in virtue of the concepts they contain is bridged by Carnap's heroic
effort to honor Frege's view of foundations and yet discover a founda-
tion for classical mathematics.

Gregory Moore considers the history of logic in the late nineteenth and
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early twentieth centuries from the different perspective of the historian.
Moore's project is to investigate the way in which first-order logic became
the canonical framework for the logical formulation of mathematics. His
main thesis presents a striking irony: the canonization of first-order logic
was achieved through the work of Skolem, specifically work that was
designed to show the limitations on first-order formalism and to argue
on this basis for the relativity of important mathematical concepts.

Moore reviews the history of modern formal logic from the mid-
nineteenth century, beginning with Boole's algebra of logic. The connec-
tion with Boole is important for his argument, for part of the novelty of
his story is the influence of the Boole-Peirce-Schroder tradition on
Lowenheim (and, indirectly, on Skolem). Moore proceeds to examine the
contributions of Peirce and Frege, emphasizing how different the Fregean
picture of logic is from that which became accepted in the 1920s. As Moore
notes, Frege did not separate the first-order part of his system from the
rest, so that, in Frege's conception of the subject, there would have been
no thought of responding to the difficulties with the notorious Basic Law
V (the source of the Russell paradox) by banishing the second-order
machinery from the province of logic. Instead, Moore proposes, the in-
fluence of Peirce and Schroder was essential for this separation to occur.

To see how this influence worked on Lowenheim and Skolem, it is
necessary to achieve a clearer view of Schroder's accomplishments than
has been available. Because we have seen Schroder through the lenses of
Frege's criticisms, we have not understood either how he advanced the
approach to logic favored by Boole and Peirce or how he influenced
Hilbert. Moore seeks to correct the distortion. He also explains how Russell
and Whitehead perpetuated the Fregean conception of logic, in which there
is no place for any study of logic as a system or for any conception of
a metalanguage. Thus Moore offers a picture of the state of logic in the
first decades of the century: because of the influence of Principia
Mathematica, Frege's conception of logic was dominant; nonetheless, there
were indirect influences from the Peirce-Schroder tradition, through the
work of Peano and Hilbert, and the work of Peirce and Schroder con-
tinued to be studied in its own right. (For lucid presentation of ideas that
have some kinship with Moore's, see Goldfarb 1979.)

In the final sections of his essay, Moore argues in some detail that the
important result for which Lowenheim is famous developed directly out
of his research on Schroder's system of logic. He goes on to present
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Skolem's further elaboration of Lowenheim's result, the explicit formula-
tion of it as a theorem about first-order logic, and Skolem's connection
of the resultant theorem with the relativity of notions of cardinality. A
final, surprising, twist to the story is that even such talented mathematical
logicians as von Neumann and Godel were apparently unaware that the
Skolem relativity thesis does not hold in second-order systems. Thus, in
Moore's historical reconstruction, the naive idea that the canonization of
first-order logic was inevitable once it was recognized that Frege's original
system leads to paradox gives way to a complex and subtle account, in
which now unfashionable historical traditions exert an influence and in
which substantive philosophical doctrines have an important role to play.

Like Moore, Harold Edwards is concerned to alter our common vision
of a historical episode. There is a familiar tale that reports the baneful
influence of Kronecker on late-nineteenth-century mathematics. In this
tale, Kronecker plays the part of the wicked and powerful gnome, whose
evil schemes almost prevent the heroic prince (Cantor) from unlocking
the gate of paradise (the transfinite). Fortunately, despite nervous
breakdowns induced by Kronecker's machinations, despite his enforced
banishment to Halle, the hero succeeds, and, in the light of the set-theoretic
universe, the dark incantations of the villain are almost forgotten.

On Edwards's account, the usual historical assessment of Kronecker
is almost as far from reality as most fairy stories. Edwards concedes that
Kronecker's constructivist views have been a minority tradition in the
history of the philosophy of mathematics. However, he finds no evidence
for the allegations that Kronecker was personally hostile and aggressive,
or for the charge that he was more guilty than other German professors
of manipulating the social context of late-nineteenth-century mathematics
to advance his own philosophical ideas. Edwards suggests that we should
free ourselves from the stereotypes and consider Kronecker's work—both
the actual mathematics that he produced and the philosophical viewpoints
that motivated it—on its own merits. For the latter, we can find little that
is explicit in Kronecker, except for a few scattered statements, and Ed-
wards briefly suggests that we think of contemporary constructivists, such
as Bishop, as pursuing Kronecker's main themes. On the other hand,
Kronecker's mathematical papers are a treasure trove for historical
investigation.

Edwards concedes that identifying the treasures is not easy. Kronecker's
mathematical style is difficult. Edwards attempts to convey the ideas that
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he finds valuable by drawing a contrast between the work of Dedekind
and Kronecker on divisibility in algebraic number theory. For Kronecker,
it was important that the divisors be defined in such a way that the
statements about them continue to hold under extensions or contractions
of the field. Even more significantly, Kronecker's way of treating divi-
sion was directed toward computing with divisors. Edwards claims that
not only do these features mark a difference between Kronecker's approach
and the familiar Dedekindian treatment in terms of ideals, but they con-
stitute advantages in Kronecker's point of view. He concludes by
speculating that a detailed exposition of the contributions of Kronecker
may enable us to achieve a more sympathetic appreciation of construc-
tivist ideas about mathematics.

Garrett Birkhoff and M. K. Bennett reevaluate the historical assessments
of the influence of Felix Klein and his Erlanger Progamm. They view their
work as a companion piece to a 1984 article by Thomas Hawkins that
used a rich collection of published and unpublished sources to call into
question the reception of Klein's work in the decades following its publica-
tion, as well as the authorship of the fundamental ideas. Relying mainly
on published writings and letters by leading mathematicians (Lie, Engel,
E. Cartan, and Weyl), and on their own familiarity with the role of con-
tinuous groups in geometry, Birkhoff and Bennett emphasize Klein's con-
tributions in developing and disseminating group-theoretic concepts in
geometry and geometric function theory.

Joseph Dauben shares with Edwards the concern that contemporary
ideas and fashions may all too easily limit our appreciation of the content
and development of past mathematics. Dauben chooses for his study an
episode that has received great attention from historians and philosophers
of mathematics. In Cauchy's Cours d'Analyse, there is a celebrated
"theorem" to the effect that the sum of a convergent series of continuous
functions is continuous. We know that the "theorem" is false, and
historians have shown how the efforts to refine the theorem in the light
of counterexamples gave rise, at the hands of Seidel and Weierstrass, to
the modern distinction of convergence and uniform convergence.

Cauchy had an argument for his claim, a "proof" of the "theorem,"
and any satisfactory account of the development of concepts of conver-
gence should explain how Cauchy's argument works, showing how a math-
ematician of his stature could have been led to advance the statements
he did. Some recent developments in model theory and analysis allow us
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to consider a radical possibility. Perhaps Cauchy's "theorem" is actually
correct, and it is we who are mistaken in interpreting it. Robinson's non-
standard analysis permits us to consider the possibility of nonstandard
continua—continua in which Cauchy's result would hold and in which
his argument would work. In a provocative essay, Lakatos proposed that
this is indeed the case, and suggested that we view the transition from
Cauchy to Weierstrass not in terms of the disambiguation of concepts of
convergence but as the replacement of the nonstandard continuum with
the standard one.

Dauben presents Lakatos's approach to the history of analysis, con-
trasting it with the more traditional attempts to diagnose the subtle fallacy
in Cauchy's reasoning. Dauben argues that the Lakatosian reinterpreta-
tion cannot be sustained, and he uses this conclusion to explore the
methodological constraints that a historian of mathematics should honor.
The danger that he sees, one that has become the most commonplace for
historians of science during the past thirty years, is that contemporary
notions will be read back into the mathematics of the past, so that the
history of mathematics will consist, not in a sequence of efforts to fathom
the mathematics of our predecessors on its own terms, but in "discoveries"
of "anticipations" of the latest interesting ideas. We believe that Dauben's
resistance to this "Whig history" is salutary for the history of mathematics,
and that it is of a piece with the attempts of Moore and Edwards to reclaim
those figures of the past whose ideas seem at odds with contemporary
fashions.

Dauben goes on to consider the influence of historical researches on
Robinson's own presentation of his ideas. He points out that, despite the
formal equivalence of nonstandard and standard analysis, Robinson was
still able to contend that his approach enjoyed a special intuitive evidence
and that he could base this claim on the history of analysis. Moreover,
in opposition to those (like Bishop) who deny the meaningfulness of
nonstandard analysis, Dauben describes the findings of studies that show
how beginning students are able to solve calculus problems with greater
skill if they are trained in the Robinsonian approach. Thus, like the great
mathematicians of the eighteenth century, it seems that the neophytes of
today can often make good use of infinitesimalist reasoning.

Richard Askey offers a perspective on the practice of history of
mathematics that may at first appear to run counter to that taken by
Dauben. Askey suggests that historians of mathematics ought to know
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a lot of mathematics—in fact, he hints, far more than they do. Unless
they are trained beyond "the current undergraduate curriculum and first-
year graduate courses," there is a danger that they will overlook those
episodes in the history of mathematics that are really significant and con-
centrate on peripheral issues. However, Askey does not simply suggest
that history of mathematics should be turned over to professional
mathematicians, as a recreation in which they can indulge when they take
themselves to be on the verge of their dotage. History has its own stan-
dards and methodological canons, and Askey, despite his keen interest
in history, is quite modest about his knowledge of these. The heart of his
paper is thus a plea for cooperation and development. Mathematicians
can contribute "protohistory" (our term, not his) by drawing the atten-
tion of historians to problems and episodes that are mathematically signifi-
cant. The mathematician, playing protohistorian, will not attempt any
coherent treatment of these episodes. The goal will simply be to assemble
"mathematical facts" whose normal form may be the attribution of a rela-
tion of kinship between the writings of a past mathematician and some
(perhaps sophisticated) piece of contemporary mathematics. Once con-
fronted with these suggestions of kinship, the historian must go to work,
following the canons and standards of the discipline. However, part of
Askey's message is that doing the work properly may involve a great deal
of further study in mathematics.

Historians are likely to view protohistory as incomplete in two respects.
The more obvious deficiency, touched on in the last paragraph, is that
the mathematician's recognition of kinship needs to be scrutinized from
the perspective of an understanding of the concepts and standards in force
in the historical epoch under study. In addition, we should not assume
that the most significant historical problems concern work that has any
straightforward connection with (or offers any anticipation of) problems
and methods of current interest. Askey seems to us tacitly to appreciate
the point when he couches his discussion in terms of the writing of history
that mathematicians will find interesting.

Askey illustrates his general proposal by recounting some of his own
historical research on series identities. After contending that some of the
historical attributions commonly made by professional mathematicians
seem erroneous, Askey recounts the reactions of historians to his work.
His tale seems clearly to be one of missed communication. The technical
discussions of series identities and hypergeometric series are dismissed as
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not amounting to "real history." Nonetheless, we are sympathetic to
Askey's contention that his research—and work like it—brings before
historians things that they ought to know. Hence, we accept half of his
general thesis: mathematicians can help historians of mathematics by
assembling "mathematical facts," an activity that Askey explicitly
recognizes as not the same as full history.

But this is only part of Askey's thesis, for he argues that historical in-
vestigations may be of value in the development of mathematics. Askey
relates how ongoing work on the Bierberbach conjecture led to a problem
about series identities. His own historical interests had led Askey to a
perspective from which he could assist in the solution of this problem.
Thus, the excavation of ideas from past mathematics may contribute to
current research. Here we find a familiar theme, but one which Askey
illustrates in a dramatic way. Perhaps there are hints of something similar
in Ed wards's suggestions for resurrecting the main ideas of Kronecker's
number-theoretic work.

We believe that the juxtaposition of Dauben's essay with Askey's is
especially happy, for both can be seen as warning against a particular sort
of danger. To do adequate history of mathematics one must avoid both
dangers, relinquishing both the chauvinism of the professional historian
(as Dauben surely would) and the chauvinism of the professional
mathematician (as Askey clearly does). If we may be allowed yet another
variation on Kant's celebrated dictum: For the purposes of doing history
of mathematics, knowledge of contemporary mathematics without
historiographical sensitivity is empty, historiographical sensitivity without
knowledge of contemporary mathematics is blind.

Lorraine Daston is also concerned to find ways in which the math-
ematics of the past can be treated accurately without introducing anach-
ronistic distinctions. "Fitting Numbers to the World: The Case of Prob-
ability Theory'' considers the contemporary distinction between pure and
applied mathematics and its relation to the eighteenth-century idea of
"mixed mathematics." Daston focuses her discussion by considering three
branches of eighteenth- and early nineteenth-century probability theory,
three fields of inquiry that we might naturally call applications of prob-
ability theory. She endeavors to show how differently the mathematicians
who pursued these fields conceived of them when they placed them under
the rubric of mixed mathematics.

Daston begins with a review of the historical roots of ideas about the
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relation of mathematics to the external world. She concludes that, for the
mathematicians of the Enlightenment, "abstract" mathematics occupied
one end "of a continuum along which mathematics was mixed with sen-
sible properties in varying proportions." "Mixed" mathematics occupied
much of the energy of eighteenth-century mathematicians, and yet, as
Daston notes, there was a sense that, in introducing a greater "mixture"
of sensible ideas, mathematicians ran the risk of error and "retrogression."

Daston's first illustration concerns the art of conjecture, and her discus-
sion centers on one celebrated problem and its impact. The problem is
the St. Petersburg paradox—a paradox in virtue of the fact that applica-
tion of the art of conjecture to a contrived game offers a recommenda-
tion that is intuitively unacceptable. Daston argues that we can only see
the St. Petersburg paradox as a paradox—that is, as the eighteenth-century
discussants saw it—if we recognize the status of the art of conjecture as
a piece of mixed mathematics. The ability of the problem to threaten the
credentials of probability theory must strike us as absurd if we approach
the situation from the perspective of our modern distinction between pure
and applied mathematics. We can consign the puzzle to economics. Our
eighteenth-century predecessors could not.

The second example concerns the use of probability in a legal context,
the probability of judgments. Daston explains how the mathematical com-
munity set itself the task of deciding on the optimal design of a tribunal
of judges, where the criterion for optimality consisted in minimizing the
risk of error. The hope, bizarre as it now seems, was that, by treating
judges as akin to dice, the practice of legal judgment could be "reduced
to a calculus." Daston relates the fate of this discipline, showing how the
understanding of legal reasoning became divorced from the calculus of
probabilities, so that a branch of "mixed mathematics" came to be viewed
as a faulty combination of an unassailable piece of pure mathematics
(probability theory) and a misguided application.

Finally, she presents us with one of the success stories in the "applica-
tion" of probability theory, the development of actuarial mathematics.
Here Daston seeks to understand why the use of probability theory in in-
surance took so long to become established, why the early ventures in ac-
tuarial mathematics were undertaken with such extreme caution, why an
antistatistical attitude was displaced so slowly. The kernel of her answer
is that the phenomena to be discussed seemed insusceptible to proper
mathematical analysis because it appeared that statistical treatment would
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blur subtle distinctions that experienced insurers would be able to use ad-
vantageously in their decisions.

Taken together, the three examples show how the eighteenth-century
notion of mixed mathematics differed from our concept of applied
mathematics, how the distinction of a pure discipline from its applica-
tions can be achieved, and how mathematical theories are sometimes
dependent on the fates of their applications. It seems to us that Daston's
essay raises interesting philosophical questions concerning the traditional
topic of the relation of mathematics to reality and that her treatment of
the examples she has chosen offers some fruitful suggestions for address-
ing those issues. Moreover, her study shows the effect of the social con-
text on the development of a branch of mathematics. In this way, Daston
touches on themes akin to those pursued by Grabiner and Aspray.

If Daston demonstrates how the detailed study of the history of
mathematics can have significance for philosophical issues, then it seems
to us that Howard Stein's essay shows how attention to philosophical ques-
tions can shed considerable light on episodes in the history of mathematics.
Stein is explicitly concerned to trace the main foundational programs of
the early twentieth century to mathematical roots in the nineteenth cen-
tury. He begins from the thesis that mathematics underwent a "second
birth" in the nineteenth century and that it is a primary task for philosophy
to understand this transformation. After reviewing the early-nineteenth-
century developments in algebra, analysis, and geometry, Stein identifies
several "pivotal figures"—Dirichlet, Riemann and Dedekind—the latter
two greatly influenced by Dirichlet's teaching. With the filiations to the
early nineteenth century in place, he then begins a more detailed account
of some late-nineteenth-century developments.

The account starts with a problem, a problem that occupies anyone
who ponders Dedekind's dual status as a respected mathematician and
as a figure in the "foundations of mathematics." Why did Dedekind write
his monograph on the natural numbers (Was sind und was sollen die
Zahlen?)! Stein's answer consists in a careful tracing of the connections
between the project of this monograph and Dedekind's earlier work in
number theory, work that shows the influence of both Gauss and Dirichlet.
The account culminates in the contention that the famous supplement to
Dirichlet's lectures in number theory not only served as a major source
in the history of algebraic number theory, but was also the origin of some
of Dedekind's deepest philosophical ideas. Stein uses this contention to



42 Philip Kitcher and William Aspray

provide an illuminating contrast between the project undertaken by
Dedekind in his monograph and the famous enterprise that Frege began
in Begriffsschrift.

After what he concedes may sound like a panegyric on Dedekind (and
one of us agrees that panegyrics are not here misplaced), Stein turns to
consider the work of Kronecker. After noting Kronecker's famous
stringent requirements on mathematics, the insistence on constructivity,
he points out that Kronecker excepted geometry from these requirements.
Considering Kronecker's position in the light of Riemann's conception
of geometry, Stein argues that the demands Kronecker made are ultimately
unjustified. The concession granted to geometry ought to be allowed to
other areas of mathematics as well.

Finally, Stein turns his attention to the work of Hilbert. Here he is con-
cerned to recapture the insights of Hilbert's early foundational work—
the work of the Grundlagen der Geometrie—and to view the later slogans
about the meaninglessness of finitary mathematics as overstatements of
a sensible attitude that was present in all of Hilbert's foundational thought.
For Stein, Hilbert's fundamental point is that there is no formal require-
ment on mathematics beyond consistency, and the original, deep sugges-
tion is that the consistency of systems is itself open to mathematical in-
vestigation. The results of Godel and others thus constitute a "final irony"
in the story of Hilbert's development.

Any brief summary inevitably misrepresents Stein's inquiry, for his ma-
jor theme is the intricacy of the connections among early-twentieth-century
foundational programs, long-standing philosophical issues, and
achievements within nineteenth-century mathematics. The articulation of
that theme offers a new view of the main traditions and problems in
philosophy of mathematics. Michael Crowe's essay, "Ten Misconceptions
about Mathematics and Its History," also proposes to revise commonly
accepted views. But Crowe's strategy is more direct. He sees much
historical writing as, tacitly or explicitly, adopting ideas about mathematics
and its history that cannot be sustained on closer inspection. Instead of
offering a detailed discussion of a single episode, Crowe argues by assem-
bling counterexamples drawn from a variety of periods and subjects in
the history of mathematics.

Traditional historiography is in the grip of a conception of mathematics
as deductive, certain, and cumulative. Mathematics students, many
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mathematics teachers, and even some historians of mathematics think that
mathematical statements are invariably correct, that the structure of
mathematics accurately reflects its history, that mathematical proof is un-
problematic, and that standards of rigor are unchanging. They also assume
that the methodology of mathematics is radically different from the
methodology of science, that mathematical claims admit of decisive
falsification, and that the philosophical options are empiricism, formalism,
intuitionism, and Platonism. Crowe's attack on this tenfold conception
uses a number of recent philosophical sources, notably Lakatos, and ranges
over examples from many branches of modern mathematics—algebra,
geometry, analysis, vector algebra and analysis.

We believe that Crowe has issued a broad and clear challenge, and we
think that there are three main lines of response. First, one may object
to his treatment of the mathematical examples, holding that when the cases
are elaborated more carefully, the theses that he is concerned to rebut can
survive unscathed. Second, a critic might urge that the theses themselves
cannot be so straightforwardly assessed and that considerable preliminary
conceptual analysis is required before they can be confronted with
historical analysis. (What does it mean to claim that mathematics is "cer-
tain" or that "standards of rigor" are immutable?) Finally, there is the
rejoinder that Crowe has simply erected a straw man and that the actual
practice of doing history of mathematics is free of the simplistic ideas that
he castigates. Whatever the merits of any (or all) of these objections, we
think that Crowe has raised interesting questions about the historiography
of mathematics and that the theses that he has selected deserve to be ana-
lyzed and evaluated by philosophers and historians of mathematics.

As its title suggests, Felix Browder's "Mathematics and the Sciences"
focuses on the relationship between mathematics and the natural sciences.
Browder is concerned to illustrate a recent major trend in preconceptions
about the most significant directions in mathematical research. He starts
by reviewing a number of ways in which, in the last decade, developments
in the natural sciences, most notably physics, have employed very
sophisticated mathematical ideas. He continues by considering the rela-
tionship between mathematics and computer science, noting that those
parts of mathematics that seem least applicable in physical modeling—to
wit, algebraic number theory and mathematical logic—have been of enor-
mous value in computer science. Browder suggests that the old distinc-



44 Philip Kitcher and William Aspray

tion between "applicable" and "inapplicable" mathematics may be out-
moded, and he opposes any attempt to separate natural science from the
"artificial" sciences.

However, any picture of mathematics that ignores the autonomy of
mathematical research appears to Browder to be misguided. Whether the
solution of a mathematical problem is undertaken in the context of a
physical theory or without any particular physical result in mind, those
who tackle that problem are functioning as mathematicians. Thus Browder
is led to consider historically influential attempts to specify the nature of
mathematics and of mathematical problems. He goes on to note two dif-
ferent ways in which important ideas in recent mathematics have emerged
from interactions between prior mathematics and the sciences. He con-
cludes by relating these examples to the history of mathematics, arguing
that the current dialogue between mathematics and the sciences is merely
the latest exchange in a conversation that has been going on since the seven-
teenth century and that has been of value to all the disciplines that have
been party to it.

Philip Kitcher's "Mathematical Naturalism" offers an agenda for the
philosophy of mathematics that is distinct from the set of problems that
have dominated the subject since Frege. Kitcher argues that the identifica-
tion of philosophy of mathematics with the construction of a foundation
for mathematics depends on a commitment to apriorism. The principles
to which mathematics is to be reduced are supposed to be a priori, and,
if they do not have this special epistemological status, then the reduction
loses its point. Kitcher outlines some arguments for believing that an
apriorist theory of mathematical knowledge will not succeed, and he
recommends a naturalistic approach to mathematical knowledge, accord-
ing to which the mathematics of one generation is built on the achievements
of the previous generations. Within this framework, the problems that
occupy center stage are those of understanding rational development of
mathematics and of characterizing mathematical progress.

The later sections of Kitcher's essay are focused on these problems.
Kitcher argues that there are various different notions of rationality that
ought to be given a place in a history and philosophy of mathematics.
He contrasts cases in which mathematical change is driven by factors ex-
ternal to the discipline and those in which the prior state of a branch of
mathematics furnishes reasons for amending it in a particular way. On
the basis of this distinction, he proposes that mathematical progress should
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be understood in terms of the advancement of ends that are ultimately
external to mathematics. The connections between mathematics and prac-
tical concerns or the results of other sciences may, in some cases, be ex-
tremely remote, but, Kitcher contends, even the most "useless" parts of
mathematics constitute objectively valuable accomplishments in virtue of
the fact that they result from practical projects through a chain of rational
transitions.

The position Kitcher sketches provides an alternative not only to
apriorist epistemologies for mathematics but also to Platonist accounts
of mathematical truth. Kitcher uses his treatment of the problems of
mathematical rationality and mathematical progress to propose that truth
in mathematics is what is achieved in the long run through the applica-
tion of the principles that govern the rational development of mathematics.
He points out that this proposal would have some radical consequences
for the usual image of mathematics, and he concludes by suggesting some
ways in which his proposals might be articulated in the history and
philosophy of mathematics.

The last two essays are concerned with the interplay between
mathematics and society. Judith Grabiner uses the recent controversies
about the claims of artificial intelligence to illustrate a general pattern of
change in the history of science. According to Grabiner, there are many
episodes in the development of the sciences that go through the following
phases: first, new ideas and methods are introduced; they prove successful
in solving some outstanding set of problems and are taken up en-
thusiastically by their originators, who proclaim that vast insights are at
hand; provoked by what they see as overambitious claims, detractors out-
side the discipline criticize the use of the new ideas and methods, finding
fault even with the results originally accomplished; finally, there is a more
thorough critique from within the scientific community.

Grabiner provides a number of examples of this general pattern. She
discusses the methodological revolution in seventeenth-century science,
the eighteenth-century "spirit of systems," the Industrial Revolution, the
introduction of Darwinian ideas in mid-nineteenth-century biology. In each
example she shows how the episode divides naturally into four phases.
Thus, in the last case, the ideas of Darwin and Wallace achieved initial
success in accounting for phenomena of biogeographical distribution, rela-
tionships among organisms past and present, adaptations, and so forth.
In the hands of the social Darwinists and eugenicists, Darwinism was hailed
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as the key to solving all kinds of social problems. These enthusiastic ex-
trapolations provoked continued criticism from outsiders, who objected
even to the early achievements of Darwinian evolutionary theory. Final-
ly, the more thorough internal critique from practicing biologists and social
scientists trimmed away the excesses of social Darwinism while preserv-
ing the genuine biological successes.

Grabiner suggests that we are currently in the middle of the last stage
in the debate about artificial intelligence. She outlines the early successes
of computer science and relates the confidence with which its advocates—
such as Simon, Newell, and McCarthy—predicted dramatic results both
in constructing machines that would perform all kinds of intelligent tasks
and in shedding light on the nature of human intelligence. Grabiner cites
the philosophers Dreyfus and Searle as prominent representatives of the
external critics, who announce the "triviality" of the entire venture. The
role of internal critic is filled by Weizenbaum, who has attempted to chart
the limits of artificial intelligence research instead of dismissing it entirely.

While Grabiner is concerned with the ways in which mathematical ideas
(and scientific ideas) are elaborated, disseminated and criticized in the
social context, William Aspray focuses on the impact of social structure
on the development of mathematics. Aspray considers one of the most
prominent success stories in the history of American mathematics, the
development of mathematics at Princeton in the early decades of the twen-
tieth century. He begins by giving a detailed account of the conditions
under which professional mathematicians worked at the end of the nine-
teenth century. After showing how heavy teaching loads and few incen-
tives to research were the order of the day, Aspray describes how Wilson's
presidency at Princeton University initiated the building of a modern
mathematics department.

A key figure in the building was Fine. Originally trained as a classicist,
Fine had pursued his mathematical education in Germany and had become
impressed with the high academic quality of the German universities.
Returning to Princeton, first as a professor and later as dean, Fine devoted
considerable energies to reorganizing the structure of appointments and
the commitments to research. Veblen was also instrumental in the develop-
ment of a research community in mathematics at the university, and Aspray
traces the ways in which mathematical research was fostered by Fine and
Veblen.

The implementation of the program would have been impossible
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without funding from a wealthy patron, and Fine was fortunate to secure
support from a former classmate. One of the important consequences of
the influx of money was the opportunity to construct a building for the
mathematics department, Fine Hall, designed by Veblen to facilitate ex-
change of ideas among mathematicians. Aspray documents the significance
of this physical facility in attracting promising young mathematicians either
to come to Princeton or to return there. He also recounts the founding
of the Institute for Advanced Study and shows how cooperation between
the institute and the university further promoted Princeton as a center
for mathematical research. The exodus of brilliant mathematicians from
central Europe in the 1930s combined with the attractiveness of Princeton
as a haven to create an extraordinary mathematical community.

Although Aspray does not exhibit in detail how the institutional fac-
tors he describes actually influenced the development of any particular
mathematical field, his central message is abundantly clear. It is surely
hard to believe that the ideas of the great mathematicians who were at
Princeton in the 1930s were unaffected by their frequent exchanges with
one another. Those exchanges were made possible by a number of historical
contingencies: the drive of a university president, accidents in the educa-
tion of a dean, the lucky business success of a classmate, an unwonted
understanding of the importance of architecture, the emergence of an evil
dictatorship. We do not ordinarily think of the course of mathematics
as being affected by such chances. Aspray reminds us that they may easi-
ly leave their mark.

4. Common Themes and Possible Futures

We would like to conclude by pointing to some connections (and con-
trasts) among the essays and by offering some brief speculative comments
about the possible future of history of mathematics, philosophy of
mathematics, and history-and-philosophy of mathematics. Some common
themes are already indicated in our division of the articles. Other connec-
tions crisscross the groupings we have imposed.

A. Reading the past through the categories of the present. Many of
the writers are concerned to warn against the dangers of Whig history.
This is especially obvious in the essays of Dauben and Daston, but it is
implicit in the studies of Edwards, Moore, Crowe, and Kitcher as well.
Askey's paper serves as an important reminder that sensitivity to the
possibility that the conceptions of the past may not be those of the pre-
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sent needs to be tempered by an ability to pose questions about affinities
between old and new ideas. We believe that Dauben, Daston, et al., have
drawn an important lesson from the general history of science, a lesson
that has often been neglected in the work of historians of mathematics,
and that Askey's insights are complementary to their recommendations.
Perhaps there may be some divergence of opinion or of emphasis implicit
in the essay by Birkhoff and Bennett, which offers a more traditional ex-
ercise in the history of mathematics—to wit, the assembly of connections
among the works of past mathematicians, conceived in the image of pre-
sent mathematics. We believe that mathematicians will continue to find
this kind of historical research interesting and illuminating.

B. Correcting common distortions of particular figures. Several essays
are concerned to stress the fact that familiar ideas about some great figure
or achievement of the past are quite inaccurate. Thus Edwards contends
that we have a badly distorted picture of Kronecker, Moore argues that
we do not understand Skolem's work, Goldfarb suggests that the debate
between Poincare and the logicists has been misunderstood, Friedman
claims that Carnap's connections with Frege's logicism have been missed,
and Stein proposes that we do not see how the foundational work of Frege,
Hilbert, and Brouwer was connected to nineteenth-century mathematics.
We see these essays as underscoring the need to be cautious in reading
the past through the spectacles of the present.

C. Relating mathematics to the social context. Although only the essays
by Grabiner and Aspray are explicitly devoted to studying the interactions
between mathematics and social institutions, several other authors touch
on this theme. Thus Daston considers the ways in which the enterprises
of the eighteenth and nineteenth centuries shaped the development of prob-
ability theory, Browder examines the response of mathematics to extra-
mathematical concerns, and Kitcher is concerned to emphasize the need
to consider broader notions of rationality and to appreciate the effects
of institutions on mathematical practice. None of the authors adopts the
radical view that the evolution of mathematics is entirely driven by social
forces, but those we have mentioned are sympathetic to the claim that
the history of mathematics cannot be adequately written in a purely "in-
ternal" idiom. Thus historians of mathematics are beginning to turn to
the appreciation of social factors, embracing the methodology that has
affected general history of science in the past decade. Although we hold
no brief for the extreme claims sometimes made on behalf of the sociology
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of knowledge, we believe that this is an extremely important trend that
will illuminate many aspects of the historical development of mathematics.

D. Finding a foundation for mathematics. The question whether
philosophy of mathematics should consist in identifying foundations for
mathematics provokes one of the clearest divisions in the volume. Goldfarb
and Friedman are both sympathetic to the Fregean project, and their subtle
reconstructions of logicist ideas indicate how they believe that that pro-
ject has been misunderstood. Crowe and Kitcher are, just as obviously,
unsympathetic to the traditional view of philosophy as laying foundations.
The character of the opposition is, in some ways, parallel to the debate
between Poincare and the logicists, and, as we have noted, Goldfarb hints
at the relevance of his interpretation to current philosophical controversies.

E. The relation between history and philosophy of mathematics. Several
of the contributors appear to envisage a fruitful relationship between
historical and philosophical study of mathematics. However, we think it
fair to say that there is no single view of that relationship. Moore employs
the techniques of the historian to explore the genesis of a philosophically
important thesis—that logic is first-order logic. Dauben uses ideas in con-
temporary philosophy of mathematics to illuminate the work of the past
and, conversely, appeals to the history of mathematics to counter some
current philosophical arguments. Daston argues at length that the historian
cannot come to terms with significant features of past mathematics without
philosophical analysis of major categories and distinctions. In complemen-
tary fashion, Stein contends that our understanding of contemporary pro-
grams in philosophy of mathematics will prove deficient if we do not see
their roots in the history of mathematics. Crowe warns against a variety
of historiographical errors that he takes to be the product of simplistic
philosophical ideas about mathematics. Kitcher is also concerned to use
philosophy to outline a positive historiography, and he adds the sugges-
tion that historical research is needed to complete the philosophical pro-
ject of understanding our mathematical knowledge.

If this is an adequate representation of where things stand in the pre-
sent, what (if anything) can we predict about the future? In our judgment,
it would be surprising if the historiographical sensitivities that many of
the contributors want to stress (A) were to be forgotten in future research
in history of mathematics. We suspect that there will continue to be revi-
sions in our common understanding of those few mathematicians who have
actually been studied by historians (B). We hope that the work of enhanc-
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ing and deepening our appreciation of past mathematics will exemplify
that cooperation between mathematicians and historians that Askey's essay
identifies.

What of the interplay between mathematics and the broader social con-
text? We think the essays of Grabiner and Aspray establish that it is
sometimes necessary to locate factors in society that are efficacious in
modifying the course of mathematics. Perhaps historians of mathematics
will find, as general historians of science have already found, that the most
illuminating studies integrate social factors with the forces recognized by
those older historical traditions that focus on the ''dynamics of ideas."
In our judgment, Daston offers a vision of this unified approach. Kitcher's
essay also offers a preliminary attempt to sketch a historiography ap-
propriate to it.

The future course of philosophy of mathematics looks much less cer-
tain. We should note explicitly that the present collection represents only
those trends in contemporary philosophy of mathematics that are con-
cerned in some way with history. As we have emphasized in our biased
history of the philosophy of mathematics, there are currently many dif-
ferent ways in which the post-Fregean tradition is being elaborated.
Goldfarb and Friedman represent just one version of this tradition, a ver-
sion that emphasizes the need for reanalyzing the philosophical roots of
Anglo-American philosophy. Their contributions to the volume share the
theme that the important Fregean enterprise is to show how mathematics
is "built in" to the conditions of all rational thought.

Crowe, Browder, and, most explicitly, Kitcher argue for the maverick
approach, originally pioneered by Lakatos, on which the project of secur-
ing foundations for mathematics is regarded as pointless. A major part
of the argument is that a successful Fregean foundation for mathematics
would trace mathematical theorems to axioms that have a special status
(that are a priori in the sense that Kitcher ascribes to that notion). To set-
tle the dispute between the two points of view, a number of issues need
to be addressed: Is it impossible to find foundations that are a priori in
this sense? Is this the sense of apriority that is crucial for the Fregean pro-
ject? Would a demonstration that mathematics is reducible to axioms that
are "built in" to the conditions of rationality be epistemologically signifi-
cant? Is it reasonable to expect any such demonstration?

Stein's essay hints at a different image for the philosophy of
mathematics, one that stresses the filiations both to the history of
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mathematics and to philosophical questions that have engaged thinkers
since Plato. Thus, in our judgment, Stein offers a revision of the main
twentieth-century tradition in philosophy of mathematics, but one that
is less radical than that suggested by Lakatos, Crowe, Kitcher, et al. We
think that it will be interesting to see which, if any, of the approaches
we have mentioned prove influential in the philosophy of mathematics
in the next decade.

Finally, what are the chances for an informative synthesis and for the
development of history-and-philosophy of mathematics? We are encour-
aged by the number of contributors who have succeeded in bringing
together historical and philosophical insights. Even if there is no uniform
view of how history and philosophy should relate to one another (E), the
essays that follow demonstrate that each field can help the other. To our
minds, this is especially evident in the essays of Daston, Stein, and Moore,
where, in very different ways, the authors have forged a genuine synthesis.

Although the communication between historians and philosophers, ob-
vious both in the papers and in discussions at the conference, is exciting,
we are less sanguine about the prospects for dialogue among historians,
philosophers, and mathematicians. One disappointing feature of con-
ference discussions was the tendency for some of the mathematicians pres-
ent to dismiss the work of historians and philosophers as ignorant inva-
sion of the mathematicians' professional turf. We believe that Askey's
discussion in his essay captures what bothers these mathematicians, while
formulating the point in a constructive way. Genuine progress is possible
if all parties to the dialogue recognize that each of the others has profes-
sional expertise that the rest lack and that the point of the conversation
is to remedy deficiencies, not to announce that one's own profession has
all the answers.

It is evident that professional historians and philosophers of mathe-
matics know less mathematics than professional mathematicians, and, even
when the historian or philosopher has considerable "second-hand"
knowledge, it is rare to find someone who has worked creatively in more
than one of the disciplines. But typically the mathematician is far more
ignorant of the practice and standards of history or philosophy than the
historian or philosopher is ignorant of mathematics. Thus, while the
mathematician may be bothered by the fact that the historian of number
theory is not au fait with the advances of the 1960s, 1970s, and 1980s,
historians and philosophers are just as irritated by crude precursor-hunting
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masquerading as history and by attempts at "philosophy" that consist
in the mathematician's pet expositions of the parts of their subject that
interest them most. We hope that it will help to make the point explicit
so that more scholars will be led to pose questions of the kind that Askey
takes for his title and to advance constructive suggestions of the sort
presented in his essay.

In short, we counsel patience and the search for mutual understand-
ing. The interdisciplinary study of mathematics has come a considerable
distance since Birkhoff's pioneering attempt to bring historians and
mathematicians together in 1974. We are optimistic that that study will
continue to flourish and hope that the present collection of essays will
advance that end.
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Warren Goldfarb

Poincare against the Logicists

Although the great French mathematician Henri Poincare wrote on
topics in the philosophy of mathematics from as early as 1893, he did not
come to consider the subject of modern logic until 1905. The attitude he
then expressed toward the new logic was one of hostility. He emphatical-
ly denied that its development over the previous quarter century represented
any advance whatsoever, and he dismissed as specious both the tools devis-
ed by the early logicians and the foundational programs they urged. His
attack was broad: Cantor, Peano, Russell, Zermelo, and Hilbert all figure
among its objects. Indeed, his first writing on the subject is extremely
polemical and is laced with ridicule and derogation. Poincare's tone subse-
quently became more reasonable but his opposition to logic and its foun-
dational claims remained constant.

Poincare's first paper on logic (1905) is a response to a series of ar-
ticles published the previous year by Couturat, who was the purveyor of
logicism to the French. Poincare seems particularly outraged at the
logicists' claim to have conclusively refuted Kant's philosophy of math-
ematics. Thus Poincare is moved to write in the area by a purely philo-
sophical animus.1 No mathematical issues are on his mind; his concern
is with general, philosophical claims about the nature of mathematics, and
he is reacting to claims of this sort made by the partisans of the new logic.
Apparently, then, to questions in the foundations of mathematics Poin-
care wishes to provide answers opposed to those of the logicists. Such a
description of the situation, however, is simplistic. Rather, as I hope to
make clear, Poincare's conception of what the questions in the founda-
tions of mathematics are differs considerably from that held by the logi-
cists. An examination of the differences that operate at this level can, I
believe, illuminate both logicism and the rejection of logicism.

61
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A second reason for interest in Poincare's writings on foundations lies
in the fact that two of his points continue to figure in contemporary discus-
sions. The first is what I shall call Poincare's petitio argument. Poincare
alleges that any program of grounding number theory in something else
will invariably beg the question; for if that foundation is to be carried
out, number theory (and in particular mathematical induction) will have
to be presupposed. The second is Poincare's vicious circle principle, which
precludes mathematical definitions that are impredicative, that is, that in-
volve quantified variables ranging over a universe that contains the defined
entity. Indeed, Poincare's introduction of the notion of predicativity is
his most influential contribution to foundational studies.

I shall treat these two points in turn. An analysis of the petitio argu-
ment can provide helpful clues both about Poincare's view of founda-
tional questions and about the construal of logicism that is needed to turn
the objection aside. Matters are less straightforward with the vicious cir-
cle principle, and my treatment will be more purely historical. I shall trace
how Poincare arrives at the principle and how, after seeing its force, he
begins to argue for it more philosophically. Those arguments, together
with his remarks on the technical import of the principle, provide further
insight into his central motivations.

My discussion is limited to Poincare's explicit writing on logic and foun-
dations. It might well be most interesting and fruitful to investigate rela-
tions between his foundational views and his mathematical work in other
areas, but unfortunately there is little go on. As I have mentioned, Poin-
care comes to discuss foundations solely for philosophical reasons. Unlike
Hilbert, Cantor, and others, no technical factors drive him on. As a result,
his papers on foundations are disconnected from his positive work in
mathematics. (Again, this contrasts with his philosophical writings on
geometry, in which, for example, analysis situs is explicitly discussed.) Of
course, it may be noted that Poincare's style of mathematics generally
was more constructive than, say, Hilbert's—Poincare was a French analyst.
The question is whether anything specific can be drawn from this that
would illuminate his position on foundations. Such an investigation is
beyond the scope of this paper. My aim below is to sort out what the foun-
dational issues are; it is a subsequent task to find out whether and how
Poincare's stand on these issues can be clarified by attention to his
mathematical work.
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I

Poincare begins his attack on the new logic with the avowed aim of
showing that the new logicians have not eliminated the need for intuition
in mathematics. By showing this, he says, he is vindicating Kant (1905,
815). This avowal is misleading, for in Poincare's hands the notion of
intuition has little in common with the Kantian one. The surrounding Kan-
tian structure is completely lacking; there is no mention, for instance, of
sensibility or of the categories. Indeed, in (1900), his address to the Paris
Congress, Poincare explicitly separates mathematical intuition from im-
agination and the sensible. Thus there is no hint of an epistemological
framework in which the notion functions. For Poincare, to assert that
a mathematical truth is given to us by intuition amounts to nothing more
than that we recognize its truth and do not need, or do not feel a need,
to argue for it. Intuition, in this sense, is a psychological term; it might
just as well be called "immediate conviction."2 As a result of the unstruc-
tured nature of the notion, Poincare's argument in (1905) can be purely
negative. If a mathematical proposition is convincing, that is, it seems
self-evident to us, and the purported logical proofs of it are insufficient,
then, tautologously, intuition in Poincare's sense is what is at work.

Such a sense of "intuition" underlies another of Poincare's criticisms,
namely, that the logicists have done nothing but rename the chapter in
which certain truths are to be listed: what was called "mathematics" is
now called "logic." These truths, he says, "have not changed in nature,
they have changed only in place" (1905, 829). This is merely a renaming,
he claims, for since the axioms the logicists use are not merely "disguised
definitions," they must rest on intuition. He emphasizes this even with
respect to truth-functional logic. Here Poincare is simply ignoring a cen-
tral philosophical point of logicism. Frege and Russell take logic to con-
sist of those general principles that underlie all rational discourse and all
rational inference, in every area, about matters mathematical or empirical,
sensible or nonsensible. Consequently, the truth of these principles could
not stem from any faculty with a specialized purview; certainly, their truth
does not play any particular role in constituting the world of experience.
If one persists, as Poincare does, in claiming that intuition is needed, then
one has in fact robbed "intuition" of all content.3

Poincare also complains that logicism errs insofar as "in reducing
mathematical thought to an empty form.. .one mutilates it" (1905, 817).
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He sees logicists as saying something analogous to "all the art of playing
chess reduces to rules for the movement of the pieces," whereas, of course,
one does not understand chess just by knowing those rules. In his Paris
Congress address, he stresses how intuition is needed to gain an under-
standing of proofs in analysis, even after the correctness of each step in
the proof has been recognized; and in (1905) he talks of intuition as that
which guides the choice of conventions to adopt and of routes to take
toward a proof. Intuition thus becomes merged with a notion of what
might be called "mathematical sagacity." For here Poincare's concern
is explicitly with the psychology of mathematical thinking, with a faculty
or skill that enables a person to do mathematics, or to do it well.4

A similar concern is exhibited in Poincare's discussion of the continuum
in (1893), amplified in (1902). His remarks amount to a speculation about
what could be called the psychogenesis of the idea of the continuum, that
is, how we came to think or how we come to think of this mathematical
structure. By 1903 Poincare was acquainted with Dedekind's construc-
tion of the real numbers. He applauds it for reflecting the "origin of the
continuum": we come to "admit as an intuitive truth that if a straight
line is cut into two rays their common frontier is a point" (1902, 40).
Nothing could be further from Dedekind's outlook; Dedekind, after all,
explicitly offers his construction to show how to rid analysis of any
geometrical elements.

In invoking this sense of intuition, in (1905), Poincare raises the charge
that logicism does not accurately portray the psychology of mathematical
thinking. He then claims to forswear the charge: he admits that there is
a distinction between context of discovery (or invention) and context of
justification, and that intuition in the broader sense pertains to the former
whereas the logicists are concerned with the latter (1905, 817). His more
serious antilogicist arguments are not of this sort, on the surface. However,
closer scrutiny reveals a continued dependence on a psychologistic con-
ception of the foundational enterprise. This can be seen in his petitio
argument.

There are, in fact, several forms of this argument in Poincare's writing.
The clearest is directed against the notion that mathematical induction
is not a principle with content, but is just an implicit definition of the
natural numbers. Poincare notes that such a definition must be justified
by showing that it does not lead to contradiction; yet any such demonstra-
tion would have to rely on mathematical induction. The argument is a
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good one but it has force only against a naive version of Hilbert's posi-
tion. Early on, Hilbert saw that if axioms are to endow talk of their ob-
jects with warrant, a consistency proof is needed. He was unclear about
the status of such a proof at first. Subsequently, he came to see that one
cannot hope to ground mathematics without residue in this way; rather,
the metamathematical reasoning employed has to be taken for granted.
His formalist program rests on the idea that the residue would be finitary
mathematics, a small part of number theory. Finitary mathematics includes
some amount of induction—although Hilbert was never explicit about the
matter—namely, induction on decidable number-theorectic predicates (that
is, quantifier-free induction). There is no petitio since there is no claim
that all number-theoretic principles are to be legitimized from scratch.

To be sure, Poincare's arguing in this manner is explicable. Hilbert's
sketch in (1904) of the application of his early ideas of implicit definition
to number theory is quite unclear. The distinction between mathematics
and metamathematics does not become rigorous until nearly two decades
later, and the question of limitation of means available in the metatheory
does not exist in 1904, even in embryo. More to the historical point,
Couturat (1904), to which Poincare is responding, does not distinguish
Hilbert's notion of implicit definition from the Frege-Dedekind-Russell
strategy for explicit definition of the numbers. Hence it is not surprising
that Poincare thinks of the project of reducing arithmetic to logic as be-
ing carried out by implicit definition. In point of fact, the logicists ob-
jected strongly to the idea of implicit definition. Frege and Russell (and,
later on, Couturat) insist that existence is not proved by consistency; rather,
consistency is vouchsafed by showing existence. Hence this form of the
argument does not touch logicism.

Another form is more relevant. In a sarcastic passage (1905, 823), Poin-
care examines definitions of particular numbers given in Peano-writing
by Burali-Forti (1897). He notices, in the definition of zero, the use of
the concept "in no case," and, in the definition of one, the concept that
would be rendered in ordinary language "a class that has only one
member." He concludes, "I do not see that the progress is considerable."
Similarly, he cites phrases used in introducing logical machinery, such as
"the logical product of two or more propositions," as showing that a
knowledge of number must be presupposed. In general,

It is impossible to give a definition without enunciating a phrase, and
difficult to enunciate a phrase without putting in it a name of a number,
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or at least the world "several," or at least a word in the plural. And
then the slope is slippery, and at each instant one risks falling into a
petitio principi (1905, 821).

Here Poincare is making what is, by our lights, an elementary logical
mistake. As Frege warned, there can be an appearance of circularity; but
this appearance is dispelled when one distinguishes uses of numerical ex-
pressions that can be replaced by purely quantificational devices from the
full-blooded uses of such expressions that the formal definition is meant
to underwrite. The former involve no arithmetic, and no mathematical
induction; hence there is no petitio. In a reply to Poincare, Couturat makes
this point reasonably well, if rather untechnically (Couturat 1906). He
argues, for example, that what is presupposed is not the number one but
rather unity (or, as Frege might prefer to say, objecthood). Poincare never
cedes the point. In (1906), he abandons it for the sake of the discussion,
to avoid, as he puts it "the spectacle of an interminable guerrilla war."
He adds, "I continue to think that M. Courturat defines the clear by the
obscure, and one cannot speak of x and y without thinking two" (1906,
294).

Thus Poincare does not accept the logical distinctions that would rebut
the charge of petitio. The distinction he does invoke, between "clear"
and "obscure," is a psychological one. Indeed, in this context clarity and
obscurity amount to no more than familiarity and unfamiliarity. (I take
it that we do not find the quantificational notions to which Poincare is
objecting particularly obscure.) In this, Poincare is going beyond his point
that mathematical induction is psychologically convincing enough that no
further grounding of it is needed (all we need do is cite "intuition"); he
is claiming that any attempt to ground it further must fail, because it will
have to reduce familiar notions to ones less familiar. Now that is not the
logicists' criterion of success; they were under no illusion that the notions
to which arithmetic is to be reduced would be more familiar to their au-
dience. The contrast between Poincare and Frege here is striking (there
is, however, no evidence that Poincare was acquainted with Frege's work).
Frege explicitly mentions that familiarity poses a danger, since a familiar
inferential step will seem self-evidently correct to us, "without our ever
being conscious of the subordinate steps condensed within it" (1884, 102).
As a result, such a step will be too readily deemed intuitive, rather than
composed of smaller steps each of which is purely logical. Thus familiari-
ty can obscure the need for analysis of our reasoning.
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Poincare's example "one cannot speak of x and y without thinking two"
highlights the psychologistic nature of his argument. Despite Couturat's
urging that logically the number two is not presupposed in the use of two
variables, Poincare rests on the alleged psychological fact that in this case
we do always think of two. Again the contrast with Frege is stark. Frege
argues emphatically that the "ideas and changes of ideas which occur dur-
ing the course of mathematical thinking" are irrelevant to the founda-
tions of arithmetic (1884, vi); and that, more generally, a sharp distinc-
tion must be made between the mental or physical conditions under which
a person comes to understand, appreciate, or believe a proposition and
the ultimate rational basis of the proposition. In the absence of such a
distinction, Frege adeptly urges, we would have to take into account in
mathematics the phosphorus content of the human brain (ibid.); this, for
Frege, is a reductio. Indeed, this distinction is required even to make prop-
er sense of the claim that mathematics is a priori. It may well be true that
a person cannot do mathematics without having had experiences; but such
a fact is irrelevant to the grounds for the propositions of mathematics,
which is what the claim of a priori status concerns (Frege 1884, 3 and 12).

The contrast with Frege shows how Poincare is—despite his disclaimer—
construing the project of the foundations of mathematics as being con-
cerned with matters of the psychology of mathematics and faulting logicism
for getting it wrong. Now there is a subtle aspect to this difference be-
tween Poincare and the logicists. I claimed, noncontroversially, that Poin-
care's objection is logically in error: the notions used in the definition of
number do not presuppose number. But to accept this is to accept the
notion of presupposition that is first made available through modern logic.
We all agree that the notions "in no case," "a class with one object,"
and so on, do not presuppose any number theory, because of the way they
can be rendered using (first-order) quantificational logic. In our accep-
tance of this rendering as being the criterion of presupposition, we have
already accepted at least part of the picture that the logicists were urging.
If we take Poincare to reject even such a use of logic, and to claim that
if certain thoughts always occur to us in such cases then the content of
those thoughts is "presupposed," we can make some sense of his objec-
tion. It is, of course, questionable whether such a position is ultimately
coherent; but, in any case, the distance between Poincare's stance and
that of any logicist is at this point unbridgeable.

More generally, the Fregean distinctions I've been stressing—between
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habitually accepted inferences and fully analyzed inferences, and between
empirical conditions a person must satisfy in order to arrive at certain
propositions and the ultimate rational basis for the propositions—must
be given content by establishing a means for saying what analysis and
justification look like: that is, for saying what counts as showing that one
proposition is the basis for another. Only thus can the opposition be ex-
hibited between a Fregean project and one of describing how people ac-
tually come to hold various propositions. It is the new logic itself that
provides those means. Thus the questions that logicism is asking are
themselves first given sense by the framework the logicists develop for
answering them. And that the new logic does this, by being explicatory
of "analysis" and of "justification," is part of the reason Frege takes
it to deserve the honorific "logic."

In this there is a circle of a peculiarly philosophical sort. If you don't
buy the picture, you needn't buy the picture. But, in fact, entrance into
the circle is hard to resist: for the notion of nonpsychologistic justifica-
tion can be seen as, and was urged to be, just the fully thought-through
version of the sort of rigor at which proofs in mathematics, in the or-
dinary, unreconstructed, sense, already aim. (This point had particular
force given the achievements of the arithmetiziers of analysis.) Poincare
can then be painted, or caricatured, as holding that in pursuing math-
ematics we seek such justifications, but with regard to matters he wants
to think of as basic (because they are familiar), the proper story is a
psychological one. For Frege, to be content with this is to make the rigor
of all proofs as illusion.

In any case, the objection I've discussed is, by our lights, simply
mistaken, and Poincare does not return to it after 1905 (although he ap-
parently thinks well enough of it to reprint the relevant paragraphs in
[1908]). He does, however, give a more sophisticated petitio argument in
(1909b), in criticizing Russell's theory of types. Descendants of this argu-
ment are still discussed today, in large measure due to Parsons (1965).
The clearest version focuses on the fact that to formulate the (formal)
system of logic, to which arithmetic is to be reduced, we inductively define
the formulas and the notion of derivation. The very foundations of logic,
it is alleged, are thereby shown to require induction.

This version of the argument may appear to have more force than Poin-
care's original one; but, I believe, the appearance is misleading. Its seem-
ing force stems from the fact that, in contemporary logic, formal systems
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are automatically treated from a metatheoretical standpoint. Consider,
for example, a Hilbertian view: here the justification of a mathematical
proposition starts with the assertion that the proposition, as a formal ob-
ject, is a theorem of a certain formal system. That assertion is, of course,
a metamathematical one, requiring notions defined by recursion. Thus,
even before the question of a consistency proof for the system enters,
arithmetic must be invoked. (As before, this causes the Hilbertian no
problem, since he does not claim to eliminate induction.) Contemporary
foundational discussions, although ordinarily not committed to Hilbert's
formalism, share this starting point; investigation of the status of a prop-
osition begins with a metamathematical assertion about its provability in
some system.

With respect to logicism, though, the formal system plays a markedly
different role. The logical system Frege or Russell proposes is meant to
be the universal language, inside of which all reasoning takes place. There
is no metatheoretical stance either available or needed. Justification is just
what is done inside the system. To give the ultimate basis for a proposi-
tion is to give the actual proof inside the system, starting from first prin-
ciples; that is, it is to assert the proposition with its ground, not to assert
the metaproposition "this sentence is a theorem." The role of formality
in logicism is limited: it enables us to be sure that all the principles needed
for the justification of the proposition have been made explicit, but it is
neither essential to the nature of the justification nor constitutive of its
being a justification. To a logicist, the charge the number theory is being
invoked is based, in the end, on thinking that not judgments but the
manifestations of judgments—that is, the formal symbols—are the ob-
jects of study. Frege steadfastly argued against this construal. Logic is
not about manipulations of signs on paper, even though it may be a
psychological necessity for us, in order to be sure that we are proceeding
logically, to verify proofs by syntactic means.

Frege explicitly mentions a similar issue:

A delightful example of the way in which even mathematicians can con-
fuse the grounds of proof with the mental or physical conditions to
be satisfied if the proof is to be given is to be found in E. Schroder.
Under the heading "Special Axiom" he produces the following: "The
principle I have in mind might well be called the Axiom of Symbolic
Stability. It guarantees us that throughout all our arguments and deduc-
tions the symbols remain constant in our memory—or preferably on
paper." (1884, viii)
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Of course, if we are to be able to do mathematics, the signs will have to
remain constant before our eyes; but that hardly says that mathematics
presupposes the physics of inkblots. Similarly, if we are to be able to do
logic we probably will have to be able to count, so that, for example, we
can count the number of parentheses in a formula. On the logicist view,
that does not show that logic presupposes counting.5

In sum, the logicists' conception of logic as the universal framework
of rational discourse reduces the sophisticated form of Poincare's objec-
tion to the original, naive form. That conception yields a distinction be-
tween the justification of a proposition and the means for expressing and
checking putative justifications. Knowledge about the formal system of
logic pertains only to the latter; possession of such knowledge is among
the conditions under which a person, in fact, will be able to give correct
justifications. As we have seen, it is a central tenet of antipsychologism
that such conditions are irrelevant to the rational grounds for a proposi-
tion. Thus the objection is defeated.

Of course, Poincare does not accept any such distinction; if the formal
system is "comprehensible" only to one who already knows arithmetic,
then the theorems of the formal system presuppose arithmetic (see 1909b,
469). Here again, "presupposition" is for Poincare a notion based in
psychology, not logic; the dispute between Poincare and the logicists
amounts, at bottom, to a difference in the conception of the foundational
enterprise.

Thus in the end none of the forms of the petitio argument has force
against logicism. Poincare's ultimate reliance in them on a psychologistic
view of the questions in the foundations of mathematics underlines what
is involved in the logicists' establishment of their radically anti-
psychologistic view. One can reject that view, but, as Poincare himself
exhibits, such a rejection leaves little foundational role for logic at all.
The rejection pervasively affects the basic notions of justification, presup-
position, and proof; as a result, the general questions one asks about
mathematics are considerably transformed. On this score, some current
approaches that seek naturalistic accounts in the philosophy of mathe-
matics are in the same position as psychologism.6 Consequently, the ex-
tent to which such approaches are capable of addressing the problems
that gave rise to the subject of foundations of mathematics is highly
unclear.
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II

Poincare first enunciates the vicious circle principle in (1906), and his
subsequent foundational writings focus almost exclusively on it. By 1906,
Poincare had gained a far more extensive acquaintance with the new logic.
In particular, he had read Whitehead (1902), in which the logicist con-
struction of the numbers is outlined, and Russell (1905), in which Russell
discusses various paradoxes and gives the famous delineation of routes
to avoid them—namely, the zigzag theory, the theory of limitation of size,
and the no-classes theory.

Poincare introduces the vicious circle principle in a discussion of
Richard's paradox, the paradox of the set of definable decimals. This set
is denumerable, and from an enumeration of it a Cantor-diagonal decimal
can be formed. That decimal is not among the enumerated ones but is,
it seems, definable and hence is in the set. Poincare draws the vicious cir-
cle principle from Richard's own solution of the paradox (Richard 1905).
The set E of definable decimals, Poincare says, must be construed as com-
posed just of the decimals that can be defined "without introducing the
notion of the set E itself. Failing that, the definition of E would contain
a vicious circle" (1906, 307). He then proposes as a general principle that
only those definitions that do not contain a vicious circle should be taken
to determine sets.

An analysis of the Richard paradox as resting on some type of circularity
is extremely plausible, since the paradox exploits a notion of definability
that allows definitions containing reference to the notion of definability
itself. Most contemporary solutions of the paradox recognize this and pro-
ceed by stratifying notions of definability. On such views, the circle that
would otherwise exist is peculiar to semantic or intensional notions like
"definability." Poincare's analysis, however, has a different cast. He
focuses his challenge not on the notion of definability but on the set of
decimals specified by invoking the notion.7 This leads Poincare to apply
the analysis more widely; he descries the same circularity in the set-theoretic
paradoxes as well.

Thus Poincare immediately goes on to claim that the vicious circle prin-
ciple solves the Burali-Forti paradox of the order type of the set of
ordinals—a paradox that Poincare, like Russell but unlike Burali-Forti
himself, recognized from the first to be a true paradox. He says, "One
introduces there the set E of all ordinal numbers; that means all ordinal
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numbers that one can define without introducing the notion of the set
E itself" (1906, 307). Thus paradox is blocked. The extension of the vicious
circle analysis to this paradox is a bold step, for there is a real distinction
between this case and that of the Richard paradox. An item qualifies for
membership in the Richard set only if there is a sequence of words that
defines it. Since the truth or falsity of the latter condition may depend
on the composition of the Richard set, a circle is apparent. In contrast,
an item qualifies for membership in the Burali-Forti set if and only if it
is an ordinal, and this condition in no way depends on the Burali-Forti
set. Nonetheless, Poincare alleges a vicious circle: one that arises if the
condition is applied universally. Therefore, he takes the vicious circle prin-
ciple to restrict the range of candidates for membership in the set, name-
ly, to items that can be given independently of the set.

Poincare's treatment of the Burali-Forti paradox may have been in-
fluenced by a lesson Russell drew from it: "There are some properties
such that, given any class of terms all having such a property, we can
always define a new term also having the property in question. Hence we
can never collect all the terms having the said property into a whole"
(Russell 1905, 144). For Russell, this lesson does not constitute an analysis
or solution of the paradox; it is only an indication of what is to be analyzed.
Poincare can be seen as taking it in a more definitive manner: a specifica-
tion of a set must be interpreted as simply not applicable to any "new"
term producible from that set.

So far, then, Poincare is using the vicious circle principle to bar from
membership in a set anything that in some sense presupposes that set. In
this form, the principle can also be used to block the Cantor and Russell
paradoxes. This is not yet, however, the full strength of the principle that
Poincare urges. (Indeed, under a suitable interpretation of "presupposes,"
both the simple theory of types and the so-called iterative conception of
set wind up abiding by a restriction of this sort.)

The full force of Poincare's principle first emerges in his use of it to
criticize the logicist definition of number. A finite number is defined as
a number that belongs to every inductive set, that is, every set that con-
tains 0 and contains n + 1 whenever it contains n. Poincare claims that
to avoid a vicious circle, the inductive sets invoked in the definition can-
not include those specified by reference to the set of finite numbers. If
such a restriction is adopted, then mathematical induction cannot be de-
duced for such sets; many basic laws of arithmetic become unprovable,
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and the logicist claim is defeated. Now, the vicious circle principle, so con-
strued, restricts not just the candidates for membership in the set being
defined, but also the range of the quantifiers in the definition. This yields
the notion of predicativity in its modern sense: quantifiers occurring in
specifications of sets must be construed as not including in their range
of variation the set that is being defined, or anything defined by reference
to that set.8

Poincare makes one further application of the vicious circle principle
in (1906). Earlier (1905, 25-29), he had pointed out that the then extant
proof of the Schroder-Bernstein theorem invoked mathematical induction
by utilizing an inductive construction of a sequence of sets. This belied
the claim that cardinal number theory can be developed without special
mention of the finite numbers. In 1906 Zermelo sends Poincare a different
proof: instead of an inductive construction, the intersection U of all sets
with a certain property P is formed; the theorem is obtained by showing
that a particular set defined from U has property P, and thus is among
the sets intersected. Poincare invokes the vicious circle principle to block
the argument, for it rules out from the sets intersected any set in whose
definition the intersection U itself figures. Here again, the principle is taken
to restrict the range of quantifiers in the definition of a set.

The restriction Poincare urges can be put, in the formal mode, thus:
the quantifiers in a specification of a set cannot legitimately be instan-
tiated by names that contain reference to that set. In (1906) he gives a
general reason for his restriction, namely, that a purely logical proof must
start from identities and definitions, and proceed in such a way that when
definienda are replaced by definientia, one obtains an "immense
tautology" (1906, 316). Impredicative definitions block such a replace-
ment; hence they cannot be allowed in logic. In the polemical setting of
1906, this remark cuts no ice: logicists and set theorists did not think that
their proofs must reduce to tautologies. On the technical level, however,
it is a tremendously prescient remark. Although adherence to a predicativ-
ity constraint does not ensure reducibility to tautology in a literal sense,
in many settings it does yield conservative extension results, which fail
once impredicative definitions are allowed.

Poincare's proposal met much criticism. In particular, Russell and
Zermelo both found the same flaw in it: the very formulation of the vicious
circle principle, they charge, violates the principle.

It is precisely the form of definition said to be predicative that con-
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tains something circular; for unless we already have the notion, we can-
not know at all what objects might at some time be determined by it
and would therefore have to be excluded. (Zermelo 1908, 191)

That is, if the specification "class of $s" is taken as meaning "class of
things that have $ but do not presuppose the class of 4>s," then the
specification involves the notion of the class of $s, and so a vicious circle
has been introduced. Russell repeats the point often, and likens it to an
attempt to avoid insulting a person with a long nose by remarking "When
I speak of noses, I except such as are inordinately long" (Russell 1908,155).

Now, as was pointed out above, for Poincare the vicious circle princi-
ple amounts to a restriction on legitimate instantiations for the quantified
variables in a specification of a set. In their criticism, Zermelo and Russell
are assuming that such a restriction must arise from explicit limitations
on the quantifiers, limitations that are part of the content of the specifica-
tion. It is those explicit limitations that introduce the circle. Poincare never
answered this objection. For him, one presumes, a specification of a set
stands as is, without explicit reference to the cases that are ruled out. The
effect of the vicious circle principle comes in the application of the
specification. The restriction on instantiations need not be grounded in
an explicit anterior fixing of the quantifiers' ranges.

The difference between Poincare and the logicians here is fundamen-
tal. For Russell and Zermelo, inference is a matter of universal and subject-
neutral logical laws. An inference seemingly licensed by such a general
law can be blocked only by so construing the content of the statement
concerned as to make the law inapplicable. In this sense, logic is the ar-
biter of content. But, as we may surmise from section I, Poincare does
not share this conception of universal logical laws; hence he does not
recognize any need for a notion of fixed content to ground restrictions
on inference.

Such a denial is unintelligible from Russell's and Zermelo's point of
view and is unsatisfactory from most contemporary ones. Contemporary
predicative systems arrange their entities in a hierarchy; a definition with
quantifiers ranging over entities of level at most n in the hierarchy
automatically defines something at level n + 1. As a result, the defined
entity need not be invoked to restrict the ranges of the quantifiers in its
definition.
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Zermelo presses another criticism as well, which has become a stan-
dard "classical" argument against the predicativity constraint.

After all, an object is not created through.. .a "determination"; rather,
every object can be determined in a wide variety of ways. . . . A defini-
tion may very well rely upon notions that are equivalent to [i.e., have
the same extension as] the one to be defined. (1908, 191).

Zermelo thus totally rejects the vicious circle principle.
Russell, in contrast, adopts the vicious circle analysis and frames his

logical system accordingly. The result is the ramified theory of types.
Russell's disagreement with Zermelo can be focused on Zermelo's second
objection. That objection requires a principle of extensionality about the
entities under consideration, and here Russell parts company from the set
theorists (and from Frege as well). Russell's logical theory concerns not
extensional entities like sets, but intensional entities, namely, properties
and propositions. Zermelo's point about equivalent notions is thereby
rendered irrelevant; different definitions do determine different entities.
Moreover, since the ranges of quantifiers in a definition are essential to
the content of the defined proposition or property, support can be ob-
tained for a hierarchy of propositions and properties that abides by the
predicativity constraint. Vicious circles are thereby avoided, but not by
ad hoc fiats; rather, the restrictions "result naturally and inevitably from
our positive doctrines" (Russell 1908, 155). Thus, although Russell ac-
cepts Poincare's proposal, philosophically his system is quite differently
based.9 Indeed, Poincare is unsympathetic to Russell's theory (see 1909b,
§§3-4); he continues to be hostile to formal systems, and to any call for
more fundamental laws that would issue in the predicativity constraint.

Zermelo presses one further objection to Poincare. He notes that many
standard mathematical proofs involve impredicative reasoning, citing in
particular the "fundamental theorem of algebra" (every algebraic equa-
tion has a root in the complex numbers), and, more generally, the pano-
ply of theorems on maxima and minima (Zermelo 1908, 191). Thus the
predicativity constraint would require the rejection of reasoning and results
universally accepted by mathematicians. This criticism has particular force
against Poincare, who explicitly denies that foundational studies could
affect mathematics: "[Mathematics] will pursue step by step its accustomed
conquests, which are definitive and which it will never have to abandon"
(1906, 307).
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Poincare is quick to reply (1909a, 199). He agrees that the standard
proof of the fundamental theorem of algebra uses impredicative reason-
ing, and he sketches a maneuver that avoids it. (The maneuver relies on
the replacement of a set of real numbers with a certain greatest lower bound
by a sequence of rational numbers with the same bound.) Indeed, the same
sort of maneuver is later used by Weyl (1918) to show that all the basic
theorems of the theory of continuous functions, including those on max-
ima and minima, are predicatively provable. However, Poincare ends his
reply with a curious paragraph.

More generally, if we envisage a set E of positive real numbers... one
can prove that this set possesses a lower limit e; this lower limit is defined
after the set E; and there is not petitio principii since e is not in general
part of E. In certain particular cases, it can happen that e is part of
E. In these cases, there is no more a petitio principii, since e is not part
of E in virtue of its definition, but as a result of a proof posterior to
both the definition of E and that of e. (1909a, 199)

The paragraph is odd in that it seems to have nothing to do with
predicativity. In it, Poincare notes the distinction between the greatest
lower bound ("lower limit") of a set of reals and a minimum attained
by a member of the set; and he warns that the assertion that a greatest
lower bound is a minimum requires a further proof. But the impredicative
reasoning to which Poincare objects does not involve any claim that an
object, defined by reference to a certain set, is a member of the set purely
in virtue of its definition; a further proof is, in fact, supplied.

Zermelo is quick to exploit this oddity. In a reply, he shows that Poin-
care's remark, altered by replacing the words "real numbers" and "lower
limit" by "sets" and "intersection," would vindicate his logicist-style
definition of finite number. He concludes, "I am able to evidence the
legitimacy of my proof by thus appealing to the authority of M. Poincare
himself" (Zermelo 1909, 193).

The oddity of the passage can be dispelled, however, by reflection on
what Poincare means by "a proof posterior to both the definition of E
and that e." The oddity arises if "posterior" is read as meaning, simply,
"subsequent." Yet Poincare probably intends "posterior" to be under-
stood in light of the vicious circle principle, in which case a stronger stric-
ture emerges. For a proof that is posterior in such a sense cannot contain
certain instantiations; in particular, no quantifier in the specification of
E can be instantiated by a term that makes reference to e. The original
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proof of the fundamental theorem does not abide by this stricture.
Moreover, when so understood, the passage cannot be used to legitimate
Zermelo's definition of finite number. In short, the passage should be read
not as expounding the vicious circle principle, but as relying on it. As a
result, Poincare's charge that illicit conclusions are being drawn about
an object "in virtue of its definition" is subtler than it appears. Indeed,
in the passage Poincare is using the vicious circle principle to push together
the obvious fallacy of assuming a greatest lower bound to be a minimum
and the controversial step of applying a definition impredicatively.10 At
bottom, he is urging, the same fallacy lurks in both.

This is further evidenced in Poincare's characterization, in his last paper
on foundations, of impredicative definitions as being composed of two
postulates: "The object X to be defined has such-and-such relation to all
individuals of genre G; X is of genre G" (1912, 154). Now if the genre
G is taken to be a given set of reals and the relation is taken to be that
of greatest lower bound, then the two postulates yield the conflation of
greatest lower bound and minimum, an illegitimate conflation, to be sure,
but not because of any impredicativity. However, if the genre represents
not the set of reals but the range of quantifiers used in specifying the set,
then the two postulates exhibit the form of an impredicative definition.

Among Poincare's other late writings on foundations, (1909b) is par-
ticularly revealing. He starts with an extended discussion of the Richard
paradox, taking it to show that whether a given sentence defines a real
number, and if so which one, may depend on whether the Richard set
has already been defined. Hence "definability" means something different
before the Richard set is defined and after. As he puts it, the classifica-
tion of real numbers into definable or not is "mutable." He then infers
generally that impredicative definitions are fallacious, because after such
a definition is enunciated, the entity taken to be defined by it may cause
a change in meaning in that very definition. Impredicative definition thus
engenders fallacies of equivocation. Thus, as before, Poincare analyzes
the Richard paradox as arising not from anything peculiar in the notion
of definability, but from difficulties caused by an object introduced by
a definition; the emphasis here, though, is on the general lesson learned
from the paradox.

For Poincare, the Richard paradox is not just one antinomy among
many to be solved, as Russell viewed it. Rather, its solution exposes the
mutability in mathematical definitions generally; hence the solution must
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apply to all of mathematics. Underlying this step is the idea that all en-
tities that mathematics legitimately treats must be definable. Indeed, Poin-
care urges, "the only objects about which it is permissible to reason are
those which can be defined in a finite number of words (1909b, 464). Yet
since, for Poincare, definability has no formal analysis, no prior limit can
be put on the objects that may, one day, be subject to our reasoning. Poin-
care's rejection of the notion of a fixed range of quantifiers is explicit
here. A universal theorem does not relate to all objects, imaginable or
not, in such a range; rather, it asserts only that each particular case of
the theorem—each case defined in a finite number of words that will be
considered by the mathematicians or by succeeding generations of
mathematicians—can be verified (1909b, 480).

This construal of generality, and the insistence on definability, reflect
Poincare's repeated denial of the existence of the actual infinite. "Every
proposition about the infinite should be the translation, the abbreviated
statement, of propositions about the finite" (1909b, 482). Poincare is not
here calling for some kind of finitist reduction, however. As a result of
the lack of predetermined limits to "definability," the array of proposi-
tions about the finite that are abbreviated by a given proposition about
the infinite is open-ended rather than fixed.

From all this, the view of mathematics that moves Poincare may be
surmised. Mathematics is a matter of our thinking and verbalizing
mathematically. There is nothing beyond our words and thoughts that can
anchor or ground the discipline. The idea that our classifications are what
we reason about, is a direct rejection of the tenet, central to logicism (but
not limited to it), that logic applies to a realm of fixed content. Once that
tenet is rejected, logic cannot be thought of as the basic rationality-framing
subject that Frege and Russell took it to be; indeed, logic loses all claim
to priority. It is no wonder, then, that Poincare is blind to the advances
of the new logic and resists the purely logical sense of presupposition.
Similarly, Poincare's view of the vicious circle principle as governing ap-
plications of definitions, rather than as constraining the content of those
definitions, becomes explicable. The immutability of our classifications
is to be secured by our subsequent behavior: we must not do anything
that would cause mutation. Immutability is not secured by reference to
a logical structure present from the start.

The priority of the finite in Poincare also stems from his psychologism.
The finitude of our minds is, presumably, the basis for his insistence that
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everything about which we can reason must be definable in a finite number
of words, where definability is left unanalyzed, its extent a matter of the
conduct of future generations of mathematicians. Moreover, Poincare per-
vasively assumes intuitive knowledge of the realm of the finite and the
principles governing it. From this ground, the question of the justifica-
tion of such principles applied to the infinite can first be launched. For
logicists, in contrast, the distinction between finite and infinite is first made
out after logic is in place; there might be questions of whether infinite
structures exist, but there can be no question of whether logic is also "true
of" the infinite. Poincare does, in the end, recognize this contrast.
Characteristically, he supports his own stance on priorities by reference
to the order in which students can most effectively be instructed in
mathematics. This is, as he puts it, "how the human spirit naturally pro-
ceeds" (1909b, 482). He concludes,

M. Russell will doubtless tell me that these are not matters of
psychology, but of logic and epistemology. I shall be driven to respond
that there is not logic and epistemology independent of psychology.
This profession of faith will probably close the discussion, since it will
show an irremediable divergence of views.

Poincare is here being far more perspicacious than many subsequent writers
on the foundations of mathematics. The divergent views are not divergent
answers to the same questions; they are deeply opposed construals of those
questions. What counts as giving "foundations" for mathematics is en-
tirely different for Poincare than for Russell, Frege, or Zermelo. This dif-
ference is not readily adjudicable through the arguments found in the ex-
plicit controversies of the literature.

That is not to say that the differences are not susceptible to argument
at all; the arguments, though, may have to operate at a far more general
philosophical level. It is puzzling that Poincare's apparently naturalistic
view issues in prohibitions of forms of mathematical reasoning that are
widely accepted and that have led, by themselves, to no mathematical
crises. Thus, it can be suspected that Poincare's strictures ultimately rest
on more than straightforward psychological grounds. In that case, a
foothold will be provided for Frege's powerful arguments against
psychologism; if it is not to succumb to these arguments, Poincare's view
may well have to be elaborated into a full-blown metaphysical psycho-
logism such as Brouwer's.

For all that, the notion of predicativity is undeniably illuminating and
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important. One can only admire Poincare's genius in arriving at a notion
that would prove to be technically so fecund. There remain, however, many
questions as to its philosophical bases and the proper place of predicativity
considerations in the philosophy of logic and mathematics; these ques-
tions require, and deserve, much further investigation.11

Notes
1. This marks a distinction between Poincare's writings on geometry and those on foun-

dations. (I use the latter term throughout this paper to mean foundations of analysis and
number theory.)

2. Poincard's psychological rendering of Kantian terms is explicit in an earlier article,
where he says that mathematical induction is "an affirmation of a power of the mind" and
that "the mind has a direct intuition of this power" (Poincare 1894, 382).

3. For more on this theme, see Goldfarb (1982). In that article, I also note that the ques-
tion of whether mathematics is analytic or synthetic in Kant's sense is not an issue for the
logicists, since the new logic renders the distinction as Kant drew it philosophically insignifi-
cant. (Frege in [1884] redefines "analytic"; Russell in [1902] baldly asserts that logic is syn-
thetic in Kant's sense.) Poincare is unaware of this. He represents the logicists as claiming
that mathematics is analytic in Kant's sense, and he often speaks of his own aim, against
the logicists, as being that of showing this claim false.

4. In an article on the teaching of mathematics (1899), Poincare stresses the importance
of imparting intuition, in just this sense.

5. A similar point is made by Russell in explicit reply to Poincare (Russell 1910, 252).
6.1 have in mind here particularly the approach urged by Kitcher (1984). I do not mean

to include Quine's very different sort of naturalism.
7. On this point Poincar6 was quickly criticized by Giuseppe Peano (1906). The distinc-

tion Peano suggests, between semantic paradoxes and set-theoretic paradoxes, was given
canonical form in Ramsey (1925).

8. A terminological note: Originally Russell used "predicative" for properties that define
classes, i.e., those $ such that [x|$x] exists. PoincarS proposes in (1906) that properties
are predicative only if they contain no vicious circles. In later writings, Poincar6 simply defines
"predicative" to mean containing no vicious circles. Russell follows this later usage, which
is the one that has come down to us.

9. The justifications for Russell's ramified theory of types are discussed in detail in
Goldfarb (forthcoming).

10. The distinction between greatest lower bound and minimum became a well-known
issue in late-nineteenth-century analysis, through critical scrutiny of Dirichlet's fallacious
argument for the Dirichlet Principle, which relied on conflation of the two. The problem
of finding a correct proof for the principle received much attention, and Poincar6 himself
contributed to its solution. Monna (1975) gives an excellent historical account of this issue.

11.1 am grateful to Burton Dreben, Peter Hylton, and Thomas Ricketts for helpful sug-
gestions and comments.
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Michael Friedman

Logical Truth and Analyticity

in Carnap s

"Logical Syntax of Language"

Throughout his philosophical career, Carnap places the foundations
of logic and mathematics at the center of his inquiries: he is concerned
above all with the Kantian question "How is mathematics (both pure and
applied) possible?"1 Although he changes his mind about many particular
issues, Carnap never gives up his belief in the importance and centrality
of this question—nor does he ever waver in his conviction that he has the
answer: the possibility of mathematics and logic is to be explained by a
sharp distinction between formal and factual, analytic and synthetic truth.
Thus, throughout his career Carnap calls for, and attempts to provide

an explication for the distinction between logical and descriptive signs
and that between logical and factual truth, because it seems to me that
without these distinctions a satisfactory methodological analysis of
science is not possible.2

For Carnap, it is this foundation for logic and mathematics that is distinc-
tive of logical—as opposed to traditional—empiricism. As he puts it in
his intellectual autobiography: "It became possible for the first time to
combine the basic tenet of empiricism with a satisfactory explanation of
the nature of logic and mathematics."3 In particular, we can avoid the
"non-empiricist" appeal to "pure intuition" or "pure reason" while, at
the same time, avoiding the naive and excessively empiricist position of
J. S. Mill.4

Indeed, from this point of view, Carnap's logicism and especially his
debt to Frege become even more important than his empiricism and his
connection with the Vienna Circle. The point has been put rather well,
I think, by Beth in his insightful article in the Schilpp volume:

His connection with the Vienna Circle is certainly characteristic of his
way of thinking, but by no means did it determine his philosophy. It

82
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seems to me that the influence of Frege's teachings and published work
has been much deeper. In fact, this influence must have been decisive,
and the development of Carnap's ideas may be considered as
characteristic of Frege's philosophy as well.5

Carnap endorses this assessment in his reply to Beth,6 and it is quite con-
sistent with what he says about his debt to Frege elsewhere.7

Yet when one looks at Logical Syntax,* which is clearly Carnap's richest
and most systematic discussion of these foundational questions, the idea
that Carnap is continuing Frege's logicism appears to be quite problematic.
Not only does Carnap put forward an extreme "formalistic" (purely syn-
tactic) conception of the language of mathematics—a conception that, as
he explicitly acknowledges, is derived from Hilbert and would be anathema
to Frege (§84)—his actual construction of mathematical systems exhibits
none of the characteristic features of logicism. No attempt is made to define
the natural numbers: the numerals are simply introduced as primitive signs
in both of Carnap's constructed languages. Similarly, no attempt is made
to derive the principle of mathematical induction from underlying logical
laws: in both systems it is introduced as a primitive axiom (in Language
I it appears as a primitive [schematic] inference rule [R14 of §12]). In short,
Carnap's construction of mathematics is thoroughly axiomatic and, as
he explicitly acknowledges (§84), appears to be much closer to Hilbert's
formalism than to Frege's logicism.

Carnap's official view of this question is that he is putting forward a
reconciliation of logicism and formalism, a combination of Frege and
Hilbert that somehow captures the best of both positions (§84).9 In light
of the above, however, it must strike the reader as doubtful that anything
important in Frege's position has been retained. For that matter, although
Carnap employs formalist rhetoric and an explicitly axiomatic formula-
tion of mathematics, nothing essential to Hilbert's foundational program
appears to be retained either. Thus, no attempt is made to give a finitary
consistency or conservativeness proof for classical mathematics. Carnap
takes Godel's results to show that the possibility of such a proof is "at
best very doubtful," and he puts forward a consistency proof in a
metalanguage essentially richer than classical mathematics (containing, in
effect, classical mathematics plus a truth-definition for classical math-
ematics), which, as Carnap again explicitly acknowledges (§§34h, 34i),
is therefore of doubtful foundational significance. At this point, then, Car-
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nap's claim to reconcile Frege and Hilbert appears hollow indeed. What
he has actually done, it seems, is thrown away all that is most interesting
and characteristic in both views.

Such an evaluation would be both premature and fundamentally un-
fair, however. To see why, we must look more closely at the centerpiece
of Carnap's philosophy—his conception of analytic truth—and how that
conception evolves from Frege's while incorporating post-Fregean ad-
vances in logic: in particular, advances due to Hilbert and Godel.

The first point to bear in mind is the familiar one that Frege's con-
struction of arithmetic is not simply the embedding of a special math-
ematical theory (arithmetic) in a more general one (set theory). Frege's
Begriffsschrift is not intended to be a mathematical theory at all; rather,
it is to function as the logical framework that governs all rational think-
ing (and therefore all particular theories) whatsoever. As such, it has no
special subject matter (the universe of sets, for example) with which we
are acquainted by "intuition" or any other special faculty. The principles
and theorems of the Begriffsschrift are implicit in the requirements of any
coherent thinking about anything at all, and this is how Frege's construc-
tion of arithmetic within the Begriffsschrift is to provide an answer to
Kant: arithmetic is in no sense dependent on our spatiotemporal intuition
but is built in to the most general conditions of thought itself. This, in
the end, is the force of Frege's claim to have established the analyticity
of arithmetic.

But why should we think that the principles of Frege's new logic delimit
the most general conditions of all rational thinking? Wittgenstein's Trac-
tatus attempts to provide an answer: this new logic is itself built in to any
system of representation we are willing to call a language. For, from Witt-
genstein's point of view, the Begriffsschrift rests on two basic ides: Frege's
function/argument analysis of predication and quantification, and the
iterative construction of complex expressions from simpler expressions via
truth-functions. So any language in which we can discern both func-
tion/argument structure—in essence, where there are grammatical
categories of intersubstitutable terms—and truth-functional iterative con-
structions will automatically contain all the logical forms and principles
of the new logic as well. Since it is plausible to suppose that any system
of representation lacking these two features cannot count as a language
in any interesting sense, it makes perfectly good sense to view the new
logic as delimiting the general conditions of any rational thinking what-
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soever. For the new logic is now seen as embodying the most general con-
ditions of meaningfulness (meaningful representation) as such.10

Carnap enthusiastically endorses this Wittgensteinian interpretation of
Frege's conception of analyticity, and he is quite explicit about his debt
to Wittgenstein throughout Logical Syntax (§§14, 34a, 52) and throughout
his career.11 Yet, at the same time, Carnap radically transforms the con-
ception of the Tractatus, and he does this by emphasizing themes that
are only implicit in Wittgenstein's thought. It is here, in fact, that Car-
nap brings to bear the work of Hilbert and Godel in a most decisive
fashion.

First of all, Carnap interprets Wittgenstein's elucidations of the no-
tions of language, logical truth, logical form, and so on as definitions in
formal syntax. They are themselves formulated in a metalanguage or
"syntax-language," and they concern the syntactic structure either of some
particular object-language or of languages in general:

All questions of logic (taking this word in a very wide sense, but ex-
cluding all empirical and therewith all psychological reference) belong
to syntax. As soon as logic is formulated in an exact manner, it turns
out to be nothing other than the syntax either of some particular
language or of languages in general. (§62)

This syntactic interpretation of logic is of course completely foreign to
Wittgenstein himself. For Wittgenstein, there can be only one language—
the single interconnected system of propositions within which everything
that can be said must ultimately find a place; and there is no way to get
"outside" this system so as to state or describe its logical structure: there
can be no syntactic metalanguage. Hence logic and all "formal concepts"
must remain ineffable in the Tractatus.12 Yet Carnap takes the work of
Hilbert and especially Godel to have decisively refuted these Wittgenstein-
ian ideas (see especially §73). Syntax (and therefore logic) can be exactly
formulated; and, in particular, if our object-language contains primitive
recursive arithmetic, the syntax of our language (and every other language)
can be formulated within this language itself (§18).

Secondly, Carnap also clearly recognizes that the linguistic or "syn-
tactic" conception of analyticity developed in the Tractatus is much too
weak to embrace all of classical mathematics or all of Frege's Begriff-
sschrift. For the two devices of function/argument structure (substitution)
and iterative truth-functional construction that were seen to underly Frege's
distinctive analysis of predication and quantification do not lead us to
the rich higher-order principles of classical analysis and set theory. As
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GodePs arithmetization of syntax again decisively shows, all that is forth-
coming is primitive recursive arithmetic. Of course, the Tractatus is itself
quite clear on the restricted scope of its conception of logic and
mathematics in comparison with Frege's (and Russell's) conception. Witt-
genstein's response to this difficulty is also all too clear: so much the worse
for classical mathematics and set theory.13

Carnap's own response is quite different, however, for his aim
throughout is not to replace or restrict classical mathematics but to pro-
vide it with a philosophical foundation: to answer the question "How is
classical mathematics possible?" And it is here that Carnap makes his most
original and fundamental philosophical move: we are to give up the "ab-
solutist" conception of logical truth and analyticity common to Frege and
the Tractatus. For Carnap, there is no such thing as the logical framework
governing all rational thought. Many such frameworks, many such systems
of what Carnap calls L-rules are possible: and all have an equal claim to
"correctness." Thus, we can imagine a linguistic framework whose L-rules
are just those of primitive recursive arithmetic itself (such as Carnap's
Language I); a second whose L-rules are given by set theory or some higher-
order logic (such as Carnap's Language II); a third whose L-rules are given
by intuitionistic logic; a fourth whose L-rules include part of what is in-
tuitively physics (such as physical geometry: cf. §50); and so on. As long
as the L-rules in question are clearly and precisely delimited within for-
mal syntax, any such linguistic framework defines a perfectly legitimate
language (Principle of Tolerance):

In logic there are no morals. Everyone is at liberty to build up his own
logic, i.e., his own form of language, as he wishes. All that is required
of him is that, if he wishes to discuss it, he must state his methods clear-
ly, and give syntactical rules instead of philosophical arguments. (§17)

Thus, Carnap's basic move is to relativize the "absolutist" and essential-
ly Kantian program of Frege and the Tractatus.

Carnap's general strategy is then concretely executed as follows. First,
within the class of all possible linguistic frameworks, one particular such
framework stands out for special attention. A framework whose L-rules
are just those of primitive recursive arithmetic has a relatively neutral and
uncontroversial status—it is common to "Platonists," "intuitionists," and
"constructivists" alike (§16); and, moreover, as GodePs researches have
shown, such a "minimal" framework is nonetheless adequate for for-
mulating the logical syntax of any linguistic framework whatsoever—



LOGICAL TRUTH AND ANALYTICITY IN CARNAP 87

including its own. So this linguistic framework, Carnap's Language I, can
serve as an appropriate beginning and "fixed point" for all subsequent
syntactic investigation—including the investigation of much richer and
more controversial frameworks.

One such richer framework is Carnap's Language II: a higher-order
system of types over the natural numbers including (higher-order) prin-
ciples of induction, extensionality, and choice (§30). This framework will
then be adequate for much of classical mathematics and mathematical
physics. Nevertheless, despite the strength of this framework, we can ex-
actly describe its logical structure within logical syntax; and, in particular,
we can show that the mathematical principles in question are analytic-in-
Language-II—m Carnap's technical terminology, they are included in the
L-rules ("logical" rules), not the P-rules ("physical" rules) of Language
II. So we can thereby explain the "mathematical knowledge" of anyone
who adopts (who speaks, as it were) Language II. Such knowledge is im-
plicit in the linguistic framework definitive of meaningfulness for such
a person, and it is therefore formal, not factual.

We are now in a position to appreciate the extent to which Carnap has
in fact combined the insights of Frege and Hilbert and has, in an impor-
tant sense, attempted a genuine reconciliation of logicism and formalism.
From Frege (and Wittgenstein), Carnap takes the idea that the possibility
of mathematics is to be explained by showing how its principles are im-
plicit in the general conditions definitive of meaningfulness and rationality.
Mathematics is built in to the very structure of thought and language and
is thereby forever distinguished from merely empirical truth. By relativiz-
ing the notion of logical truth, Carnap attempts to preserve this basic
logicist insight in the face of all the well-known technical difficulties; and
this is why questions of reducing mathematics to something else—to
"logic" in some antecedently fixed sense—are no longer relevant. From
Hilbert (and Godel), Carnap takes the idea that primitive recursive
arithmetic constitutes a privileged and relatively neutral "core" to
mathematics and, moreover, that this neutral "core" can be used as a
"metalogic" for investigating much richer and more controversial theories.
The point, however, is not to provide consistency or conservativeness
proofs for classical mathematics, but merely to delimit its logical struc-
ture: to show that the mathematical principles in question are analytic in
a suitable language. Carnap hopes thereby to avoid the devastating im-
pact of Godel's Incompleteness Theorems.
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Alas, however, it was not meant to be. For Godel's results decisively
undermine Carnap's program after all. To see this, we have to be a bit
more explicit about the details of the program. For Carnap, a language
or linguistic framework is syntactically specified by its formation and
transformation rules, where these latter specify both axioms and rules of
inference. The language in question is then characterized by its
consequence-relation, which is defined in familiar ways from the underly-
ing transformation rules. Now such a language or linguistic framework
will contain both formal and empirical components, both "logical" and
"physical' rules. Language II, for example, will not only contain classical
mathematics but classical physics as well, including "physical" primitive
terms (§40)—such as a functor representing the electromagnetic field—
and "physical" primitive axioms (§82)—such as Maxwell's equations. The
task of defining analytic-for-a-language, then, is to show how to distinguish
these two components: in Carnap's technical terminology, to distinguish
L-rules from P-rules, L-consequence from P-consequence (§§51, 52).

How is this distinction to be drawn? Carnap proceeds on the basis of
a prior distinction between logical and descriptive expressions (§50). In-
tuitively, logical expressions include logical constants in the usual sense
(connectives and quantifiers) plus primitive expressions of arithmetic (the
numerals, successor, addition, multiplication, and so on). Given the
distinction between logical and descriptive expressions, we then define the
analytic (L-true) sentences of a language as those theorems (L- or P-
consequences of the null set) that remain theorems under all possible
substitutions of descriptive expressions (§51). In other worlds, what we
might call "descriptive invariance" separates the L-consequences from
the wider class of consequences simpliciter. But how is the distinction be-
tween logical and descriptive expressions itself to be drawn? Here Car-
nap appeals to the determinacy of logic and mathematics (§50): logical
expressions are just those expressions such that every sentence built up
from them alone is decided one way or another by the rules (L-rules or
P-rules) of the language. That is, every sentence built up from logical ex-
pressions alone is provable or refutable on the basis of these rules. In the
case of descriptive expressions, by contrast, although some sentences built
up from them will no doubt be provable or refutable as well (in virtue
of P-rules, for example), this will not be true for all such sentences—for
sentences ascribing particular values of the electromagnetic field to par-
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ticular space-time points, for example. In this way, Carnap intends to cap-
ture the idea that logic and mathematics are thoroughly a priori.

It is precisely here, of course, that Godelian complications arise. For,
if our consequence-relation is specified in terms of what Carnap calls
definite syntactic concepts—that is, if this relation is recursively
enumerable—then even the theorems of primitive recusive arithmetic
(Language I) fail to be analytic; and the situation is even worse, of course,
for full classical mathematics (Language II). Indeed, as we would now
put it, the set of (Godel numbers of) analytic sentences of classical first-
order number theory is not even an arithmetical set, so it certainly cannot
be specified by definite (recursive) means. Carnap himself is perfectly aware
of these facts, and this is why he explicitly adds what he calls indefinite
concepts to syntax (§45). In particular, he explicitly distinguishes (recur-
sive and recursively enumerable) d-terms or rules of derivation from (in
general nonarithmetical) c-terms or rules of consequence (§§47, 48).

Moreover, it is here that Carnap is compelled to supplement his "syn-
tactic" methods with techniques we now associate with the name of Tar-
ski: techniques we now call "semantic." In particular, the definition of
analytic-in-Language-H is, in effect, a truth-definition for classical
mathematics (§§34a-34d). Thus, if we think of Language II as containing
all types up to a> (all finite types), say, our definition' of analytic-in-
Language-II will be formulated in a stronger metalanguage containing
quantification over arbitrary sets of type o> as well. In general, then, Car-
nap's definition of analyticity for a language of any order will require
quantification over sets of still higher order. The extension of analytic-
in-L for any L will therefore depend on how quantifiers in a metalanguage
essentially richer than L are interpreted; the interpretation of quantifiers
in this metalanguage can only be fixed in a still stronger language; and
so on (§34d).14

But why should this circumstance cause any problems for Carnap? After
all, he himself is quite clear about the technical situation; yet he never-
theless sees no difficulty whatever for his logicist program. It is explicitly
granted that Godel's Theorem thereby undermines Hilbert's formalism;
but why should it refute Frege's logicism as well? The logicist has no special
commitment to the "constructive" or primitive recursive fragment of
mathematics: he is quite happy to embrace all of classical mathematics.
Indeed, Carnap, in his Principle of Tolerance, explicitly rejects all ques-
tions concerning the legitimacy or justification of classical mathematics.
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What the logicist wishes to maintain is not a reduction or justification
of classical mathematics via its "constructive" fragment (as Hilbert at-
tempts in his finitary consistency and conservativeness proofs), but simp-
ly that classical mathematics is analytic: that it is true in virtue of language
or meaning, not fact. So why should Godel's Theorem undermine this
conception?15

To appreciate the full impact of Godel's results here, it is necessary
to become clearer on the fundamental differences between Carnap's con-
ception of analyticity or logical truth and that of his logicist predecessors.
For precisely these differences are obscured by the notion of truth-in-virtue-
of-meaning or truth-in-virtue-of-language—especially as this notion is
wielded by Quine in his polemic against Carnap. Thus, the early pages
of "Two Dogmas" distinguish two classes of logical truths.16 A general
logical truth—such as "No unmarried man is married"—is "a statement
that is true and remains true under all reinterpretations of its components
other than the logical particles." An analytic statement properly so-
called—such as "No bachelor is unmarried"—arises from a general logical
truth by substitution of synonyms for synonyms. This latter notion is then
singled 'out for special criticism for relying on a problematic conception
of meaning (synonymy); and this is the level on which Quine engages with
Carnap.

The first point to notice is that these Quinean criticisms are indeed rele-
vant to Carnap, but not at all to his logicist predecessors—for their analytic
truths simply do not involve nonlogical constants in this sense. Thus,
whereas Carnap's languages contain primitive arithmetical signs (the
numerals, successor, addition, and so), Frege's Begriffsschrift and Russell's
Principia do not. In these systems, the arithmetical signs are of course
defined via the logical notions of truth-functions and quantifiers (including
quantifiers over higher types). So Carnap needs to maintain that
arithmetical truths are in some sense true in virtue of the meanings of 'plus'
and 'times', say, whereas Frege and Russell do not—these latter signs simp-
ly do not occur in their systems.

But what about the logical notions Frege and Russell assume: the no-
tions we now call logical constants and Quine calls logical particles? Does
the same problem not arise for them? Do we not have to assume that the
general logical truths of the Begriffsschrift and Principia are true in vir-
tue of the meanings of 'and', 'or', 'not', 'all', and 'some'? According
to Wittgenstein's position in the Tractatus, the so-called logical constants
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do not, properly speaking, have meaning at all. They are not words like
others for which a "theory of meaning" is either possible or necessary.
Indeed, for Wittgenstein, "there are no...'logical constants' [in Frege's
and Russell's sensel" (5.4). Rather, for any language, with any vocabulary
of "constants" or primitive signs whatsoever, there are the purely com-
binatorial possibilities of building complex expressions from simpler
expressions and of substituting one expression for another within such
a complex expression. These abstract combinatorial possibilities are all
that the so-called logical constants express: "Whenever there is com-
positeness, argument and function are present, and where these are pres-
ent, we already have all the logical constants" (5.47). Thus, for Wittgen-
stein, logical truths are not true in virtue of the meanings of particular
words—whether of 'and', 'or', 'not', or any others—but solely in virtue
of "logical form" the general combinatorial possibilities common to all
languages regardless of their particular vocabularies.

Now this conception—that logical truths are true in virtue of "logical
form," and not in virtue of "meaning" in anything like Quine's sense—
is essential to the antipsychologism of the Tractatus. For, if logic depends
on the meanings of particular words—even "logical words" like 'and',
'not', and so on—then it rests, in the last analysis, on psychological facts
about how these words are actually used. It then becomes possible to con-
test these alleged facts and to argue, for example, that a correct theory
of meaning supports intuitionistic rather than classical logic, say. For Witt-
genstein, this debate, in these terms, simply does not make sense. Logic
rests on no facts whatsoever, and certainly not on facts about the mean-
ings or usages of English (or German) words. Rather, logic rests on the
abstract combinatorial possibilities common to all languages as such. In
this sense, logic is absolutely presuppositionless and thus absolutely
uncontentious.

The problem for this Tractarian conception has nothing at all to do
with the Quinean problem of truth-in-virtue-of-meaning or truth-in-virtue-
of-language. Rather, the problem is that the logic realizing this conception
is much too weak to accomplish the original aim of logicism: explaining
how mathematics—classical mathematics—is possible. Frege's Begriffs-
schrift cannot provide the required realization, because of the paradoxes;
and neither can Russell's Principia, because of the need for axioms like
infinity and reducibility. The Tractatus itself ends up with a conception
of logic that falls somewhere between truth-functional logic and a ramified
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type-theory without infinity or reducibility; and it ends up with a concep-
tion of mathematics apparently limited to primitive recursive arithmetic.17

So Wittgenstein may have indeed achieved a genuinely presuppositionless
standpoint, but only by failing completely to engage the foundational ques-
tion that originally motivated logicism.

At this point Carnap has an extremely ingenious idea. We retain Witt-
genstein's purely combinatorial conception of logic, but it is implemented
at the level of the metalanguage and given an explicit subject matter: name-
ly, the syntactic structure of any language whatsoever. At the same time,
precisely because logic in this sense is implemented at the level of the
metalanguage not the object-language, it no longer has the impoverishing
and stultifying effect evident in the Tractatus. For, although our purely
syntactic metalanguage is to have a very weak, and therefore uncontrover-
sial, underlying logic, we can nonetheless use it to describe—but not to
justify or reduce—much stronger systems: in particular, classical
mathematics. In this way Carnap hopes to engage, and in fact, to neutralize
the basic foundational question. Logic, in the sense of logical syntax, can
in no way adjudicate this question. Indeed, from Carnap's point of view,
there is no substantive question to be adjudicated. Rather, logic in this
sense constitutes a neutral metaperspective from which we can represent
the consequences of adopting any and all of the standpoints in question:
"Platonist," "constructivist," "intuitionist," and so on.

Corresponding to any one of these standpoints is a notion of logic
(analyticity) in a second sense: a notion of analytic-in-L. Sentences analytic-
in-L are not true in virtue of the abstract combinatorial possibilities
definitive of languages in general, but in virtue of conventions governing
this particular L—specifically, on those linguistic conventions that establish
some words as "logical" and others as "descriptive." Hence it is at this
point, and only at this point, that we arrive at the Quinean problem of
truth-in-virtue-of-meaning. And it is at this point, then, that Carnap's
logicism threatens to collapse into its dialectical opponent, namely
psychologism.

Carnap hopes to avoid such a collapse by rigorously enforcing the
distinction between pure and applied (descriptive) syntax. The latter, to
be sure, is an empirical discipline resting ultimately on psychological facts:
it aims to determine whether and to what extent the speech dispositions
of a given speaker or community realize or exemplify the rules of a given
abstractly characterized language L—including and especially those rules
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definitive of the notion of analytic-in-L. Pure syntax, on the other hand,
is where we develop such abstract characterizations in the first place. We
are concerned neither with the question of which linguistic framework is
exemplified by a given community or speaker, nor with recommending
one linguistic framework over others—classical over "constructive"
mathematics, say. Rather, our aim is to step back from all such questions
and simply articulate the consequences of adopting any and all such
frameworks. The propositions of pure syntax are therefore logical or
analytic propositions in the first sense: propositions of the abstract, purely
combinatorial metadiscipline of logical syntax.

Here is where Godel's Theorem strikes a fatal blow. For, as we have
seen, Carnap's general notion of analytic-in-L is simply not definable in
logical syntax so conceived, that is, conceived in the above "Wittgenstein-
ian" fashion as concerned with the general combinatorial properties of
any language whatsoever. Analytic-in-L fails to be captured in what Car-
nap calls the "combinatorialanalysis.. .of finite, discrete serial structures"
(§2): that is, primitive recursive arithmetic. Hence the very notion that
supports, and is indeed essential to, Carnap's logicism simply does not
occur in pure syntax as he understands it. If this notion is to have any
place at all, then, it can only be within the explicitly empirical and
psychological discipline of applied syntax; and the dialectic leading to
Quine's challenge is now irresistible.18 In this sense, GodePs results knock
away the last slender reed on which Carnap's logicism (and antipsychol-
ogism) rests.

In the end, what is perhaps most striking about Logical Syntax is the
way it combines a grasp of the technical situation that is truly remarkable
in 1934 with a seemingly unaccountable blindness to the full implications
of that situation. Later, under Tarski's direct influence, Carnap of course
came to see that his definition of analytic-in-L is not a properly "syntac-
tic" definition at all; and in Introduction to Semantics™ he officially re-
nounces the definitions of Logical Syntax (§39) and admits that no satisfac-
tory delimitation of L-truth in "general semantics" is yet known (§§13,
16). Instead, he offers two tentative suggestions: either we can suppose
that our metalanguage contains a necessity operator, so that a sentence
S is analytic-in -L just in case we have N(S is true) in ML; or we can sup-
pose that we have been already given a distinction between logical and
factual truth in our metalanguage, so that a sentence S is analytic-in-L
just in case 'S is true' is analytic-in-ML (§116).
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From our present, post-Quinean vantage point, the triviality and cir-
cularity of these suggestions is painfully obvious; but it was never so for
Carnap. He never lost his conviction that the notion of analytic truth,
together with a fundamentally logicist conception of mathematics, stands
firm and unshakable. And what this shows, finally, is that the Fregean
roots of Carnap's philosophizing run deep indeed. Unfortunately,
however, they have yet to issue in their intended fruit.
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Gregory H. Moore

The Emergence of First-Order Logic

1. Introduction

To most mathematical logicians working in the 1980s, first-order logic
is the proper and natural framework for mathematics. Yet it was not always
so. In 1923, when a young Norwegian mathematician named Thoralf
Skolem argued that set theory should be based on first-order logic, it was
a radical and unprecedented proposal.

The radical nature of what Skolem proposed resulted, above all, from
its effect on the notion of categoricity. During the 1870s, as part of what
became known as the arithmetization of analysis, Cantor and Dedekind
characterized the set n of real numbers (up to isomorphism) and thereby
found a categorical axiomatization for n. Likewise, during the 1880s
Dedekind and Peano categorically axiomatized the set M of natural
numbers by means of the Peano Postulates.1 Yet in 1923, when Skolem
insisted that set theory be treated within first-order logic, he knew (by
the recently discovered Lowenheim-Skolem Theorem) that in first-order
logic neither set theory nor the real numbers could be given a categorical
axiomatization, since each would have both a countable model and an
uncountable model. A decade later, Skolem (1933, 1934) also succeeded
in proving, by the construction of a countable nonstandard model, that
the Peano Postulates do not uniquely characterize the natural numbers
within first-order logic. The Upward Lowenheim-Skolem Theorem of Tar-
ski, the first version of which was published as an appendix to (Skolem
1934), made it clear that no axiom system having an infinite model is
categorical in first-order logic.

The aim of the present article is to describe how first-order logic grad-
ually emerged from the rest of logic and then became accepted by
mathematical logicians as the proper basis for mathematics—despite the
opposition of Zermelo and others. Consequently, I have pointed out where
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a logician used first-order logic and where, as more frequently occurred,
he employed some richer form of logic. I have distinguished between a
logician's use of first-order logic (where quantifiers range only over in-
dividuals), second-order logic (where quantifiers can also range over sets
or relations), <y-order logic (essentially the simple theory of types), and
various infinitary logics (having formulas of infinite length or rules of in-
ference with infinitely many premises).

It will be shown that several versions of second-order logic (sometimes
including an infinitary logic) were common before Principia Mathematica.
First-order logic—stripped of all infinitary operations—emerged only with
Hilbert in (1917), where it remained a subsystem of logic, and with Skolem
in (1923), who treated it as all of logic.

During the nineteenth and early twentieth centuries, there was no
generally accepted classification of the different kinds of logic, much less
an acceptance of one kind as the correct and proper one. (Infinitary logic,
in particular, appeared in many guises but did not begin to develop as
a distinct branch of logic until the mid-1950s.) Only very gradually did
it become evident that there is a reasonable such classification, as opposed
merely to the cornucopia of different logical systems introduced by various
researchers. Likewise, it only became clear over an extended period that
in logic it is important to distinguish between syntax (including such no-
tions as formal language, formula, proof, and consistency) and seman-
tics (including such notions as truth, model, and satisfiability). This distinc-
tion led, in time, to Godel's Incompleteness Theorem (1931) and thus to
understanding the limitations of even categorical axiom systems.

2. Boole: The Emergence of Mathematical Logic

Before the twentieth century, there was no reason to believe that the
kind of logic that a mathematician used would affect the mathematics that
he did. Indeed, during the first half of the nineteenth century the
Aristotelian syllogism was still regarded as the ultimate form of all reason-
ing. When the continuous development of mathematical logic began in
1847, with the publication of George Boole's The Mathematical Analysis
of Logic, Aristotelian logic was treated as one interpretation of a logical
calculus. Like his predecessors, Boole understood logic as "the laws of
thought," and so his work lay on the boundary of philosophy, psychology,
and mathematics (1854, 1).
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After setting up an uninterpreted calculus of symbols and operations,
Boole then gave it various interpretations—one in terms of classes, one
in terms of propositions, and one in terms of probabilities. This calculus
was based on conventional algebra suitably modified for use in logic. He
pursued the analogy with algebra by introducing formal symbols for the
four arithmetic operations of addition, subtraction, multiplication, and
division as well as by using functional expansions. Deductions took the
form of equations and of the transformation of equations. The symbol
v played the role of an indefinite class that served in place of an existen-
tial quantifier (1854, 124).

Eventually, a modified version of Boole's logic would become preposi-
tional logic, the lowest level of modern logic. When Boole wrote, however,
his system functioned in effect as all of logic, since, within this system,
Aristotelian syllogistic logic could be interpreted.

Boole influenced the development of logic by his algebraic approach,
by giving a calculus for logic, and by supplying various interpretations
for this calculus. His algebraic approach was a distinctly British blend,
following in the footsteps of Peacock's "permanence of form" with its
emphasis on the laws holding for various algebraic structures. But it would
soon take root in the United States with Peirce and in Germany with
Schroder.

3. Peirce and Frege: Separating the Notion of Quantifier
A kind of logic that was adequate for mathematical reasoning began

to emerge late in the nineteenth century when two related developments
occurred: first, relations and functions were introduced into symbolic logic;
second, the notion of quantifier was disentangled from the notion of prep-
ositional connective and was given an appropriate symbolic representa-
tion. These two developments were both brought about independently by
two mathematicians having a strong philosophical bent—Charles Sanders
Peirce and Gottlob Frege.

Nevertheless, the notion of quantifier has an ancient origin. Aristotle,
whose writings (above all, the Prior Analytics) marked the first appearance
of formal logic, made the notions of "some" and "all" central to logic
by formulating the assertoric syllogism. Despite the persistence for over
two thousand years of the belief that all reasoning can be formulated in
syllogisms, they remained in fact a very restrictive mode of deduction.



98 Gregory H. Moore

What happened circa 1880, in the work of Peirce and Frege, was not that
the notion of quantifier was invented but rather that it was separated from
the Boolean connectives on the one hand and from the notion of predicate
on the other.

Peirce's contributions to logic fell squarely within the Boolean tradi-
tion. In (1865), Peirce modified Boole's system in several ways, reinter-
preting Boole's + (logical addition) as union in the case of classes and
as inclusive "or" in the case of propositions. (Boole had regarded A + B
as defined only when A and B are disjoint.)

Five years later, Peirce investigated the notion of relation that Augustus
De Morgan had introduced into formal logic in (1859) and began to adapt
this notion to Boole's system:

Boole's logical algebra has such singular beauty, so far as it goes,
that it is interesting to inquire whether it cannot be extended over the
whole realm of formal logic, instead of being restricted to that simplest
and least useful part of the subject, the logic of absolute terms, which,
when he wrote [1854], was the only formal logic known. (Peirce 1870,
317)

Thus Peirce developed the laws of the relative product, the relative sum,
and the converse of a relation. When he left for Europe in June 1870,
he took a copy of this article with him and delivered it to De Morgan (Fisch
1984, xxxiii). Unfortunately, De Morgan was already in the decline that
led to his death the following March. Peirce did not find a better recep-
tion when he gave a copy of the article to Stanley Jevons, who had
elaborated Boole's system in England. In a letter of August 1870 to Jevons,
whom Peirce described as "the only active worker now, I suppose, upon
mathematical logic," it is clear that Jevons rejected Peirce's extension of
Boole's system to relations (Peirce 1984, 445). Nevertheless, Peirce's work
on relations eventually found wide currency in mathematical logic.

It was through applying class sums and products (i.e., unions and in-
tersections) to relations that Peirce (1883) obtained the notion of quanti-
fier as something distinct from the Boolean connectives. By way of ex-
ample, he let Ijj denote the relation stating that / is a lover of j. "Any
proposition whatever," he explained,

is equivalent to saying that some complexus of aggregates and products
of such numerical coefficients is greater than zero. Thus,

Z,.2.V>o
means that something is a lover of something; and
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means that everything is a lover of something. We shall, however,
naturally omit, in writing the inequalities, the > 0 which terminates
them all; and the above two propositions will appear as

(1883, 200-201)

When Peirce returned to the subject of quantifiers in (1885), he treated
them in two ways that were to have a pronounced effect on the subse-
quent development of logic. First of all, he defined quantifiers (as part
of what he called the "first-intentional logic of relatives [relations]") in
a way that emphasized their analogy with arithmetic:

Here, in order to render the notation as inconical as possible, we may
use £ for some, suggesting a sum, and II for all, suggesting a pro-
duct. Thus £,-#/ means that x is true of some one of the individuals
denoted by / or

In the same way,

If A: is a simple relation, IT/I!/.*// means that .every / is in this rela-
tion to every j, ]£ ( II/*// that some one / is in this relation to every
j It is to be remarked that S/x/ and IT /*,- are only similar to a sum
and a product; they are not strictly of that nature, because the in-
dividuals of the universe may be innumerable. (1885, 194-95)

Thus in certain cases Peirce regarded a formula with an existential quanti-
fier as an infinitely long prepositional formula, for example the infinitary
disjunction

A(i) or A(j) or A(k) o r

where /, j, k, etc. were names for all the individuals in the universe of
discourse. An analogous connection held between "for all /, A(i)" and
the infinitary conjunction

A(i) and A(j) and A(k) and

Here, and in the writings of those who later followed Peirce's approach
(such as Schroder and Lowenheim), the syntax was not totally distinct
from the semantics because a particular domain, to which the quantifiers
were to apply, was given in advance. When this domain was infinite, it
was natural to treat quantifiers in such an infinitary fashion, since, for
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a finite domain of elements /\ to /„, "for some /, A(i)" reduced to the
finite disjunction

A(ii) or A(i2) or ... or A(in),

and "for all /, A(i)" reduced to the finite conjunction

>4(/i) and A(i2) and. . . and A(in).

Thus, unlike the logic of Peano for example, the logic that stemmed from
Peirce was not restricted to formulas of finite length.

A second way in which Peirce's treatment of quantifiers was signifi-
cant occurred in what he called "second-intensional logic." This kind of
logic permitted quantification over predicates and so was one version of
second-order logic.2 Peirce used this logic to define identity (something
that can be done in second-order logic but not, in general, in first-order
logic):

Let us now consider the logic of terms taken in collective senses [second-
intensional logic]. Our notation . . . does not show us even how to ex-
press that two indices, / andy, denote one and the same thing. We may
adopt a special token of second intention, say 1, to express identity,
and may write I / , . . . . And identity is defined thus:

That is, to say that things are identical is to say that every predicate
is true of both or false of both . . . . If we please, we can dispense with
the token q, by using the index of a token and by referring to this in
the Quantifier just as subjacent indices are referred to. That is to say,
we may write

(1885, 199)

In effect, Peirce used a form of Leibniz's principle of the identity of in-
discernibles in order to give a second-order definition of identity.

Peirce rarely returned to his second-intensional logic. It formed chapter
14 of his unpublished book of 1893, Grand Logic (see his [1933, 56-58]).
He also used it, in a letter of 1900 to Cantor, to quantify over relations
while defining the less-than relation for cardinal numbers (Peirce 1976,
776). Otherwise, he does not seem to have quantified over relations.
Moreover, what Peirce glimpsed of second-order logic was minimal. He
appears never to have applied his logic in detail to mathematical problems,
except in (1885) to the beginnings of cardinal arithmetic—an omission that
contrasts sharply with Frege's work.
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The logic proposed by Frege differed significantly both from Boole's
system and from first-order logic. Frege's Begriffsschrift (1879), his first
publication on logic, was influenced by two of Leibniz's ideas: a calculus
ratiocinator (a formal calculus of reasoning) and a lingua characteristica
(a universal language). As a step in this direction, Frege introduced a for-
mal language on which to found arithmetic. Frege's formal language was
two-dimensional, unlike the linear languages used earlier by Boole and
later by Peano and Hilbert. From mathematics Frege borrowed the no-
tions of function and argument to replace the traditional logical notions
of predicate and subject, and then he employed the resulting logic as a
basis for constructing arithmetic.

Frege introduced his universal quantifier in such a way that functions
could be quantified as well as arguments. He made essential use of such
quantifiers of functions when he treated the Principle of Mathematical
Induction (1879, sections 11 and 26). To develop the general properties
of infinite sequences, Frege both wanted and believed that he needed a
logic at least as strong as what was later called second-order logic.

Frege developed these ideas further in his Foundations of Arithmetic,
where he wrote of making "one concept fall under a higher concept, so
to say, a concept of second order" (1884, section 53). A "second-order"
concept was analogous to a function of a function of individuals. He quan-
tified over a relation in the course of defining the notion of equipotence,
or having the same cardinal number (1884, section 72)—thereby relying
again on second-order logic. In his article "Function and Concept" (1891),
he revised his terminology from function (or concept) of second order to
function of "second level" (zweiterStufe). Although he discussed this no-
tion in more detail than he had in (1884), he did not explicitly quantify
over functions of second level (1891, 26-27).

Frege's most elaborate treatment of such functions was in his Fun-
damental Laws of Arithmetic (1893, 1903). There quantification over
second-level functions played a central role. Of the six axioms for his logic,
two unequivocally belonged to second-order logic:

(1) If a = b, then for every property/, a has the property/if and only
if b has the property /.

(2) If a property F(f) of properties/holds for every property/, then
F(f) holds for any particular property /.

Frege would have had to recast his system in a radically different form
if he had wanted to dispense with second-order logic. At no point did he
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give any indication of wishing to do so. In particular, there was no way
in which he could have defined the general notion of cardinal number as
he did, deriving it from logic, without the use of second-order logic.

In the Fundamental Laws (1893), Frege also introduced a hierarchy of
levels of quantification. After discussing first-order and second-order prop-
ositional functions in detail, he briefly treated third-order prepositional
functions. Nevertheless, he stated his axioms as second-order (not third-
order or (i)-order) prepositional functions. Frege developed a second-order
logic, rather than a third-order or (0-order logic, because, in his system,
second-level concepts could be represented by their extensions as sets and
thereby appear in predicates as objects (1893, 42). Unfortunately, this ap-
proach, when combined with his Axiom V (which was a second-order ver-
sion of the Principle of Comprehension), made his system contradictory—
as Russell was to inform him in 1902.

Although Frege introduced a kind of second-order logic and used it
to found arithmetic, he did not separate the first-order part of his logic
from the rest. Nor could he have undertaken such a separation without
doing violence to his principles and his goals.3

4. Schroder: Quantifiers in the Algebra of Logic

Ernst Schroder, who in (1877) began his research in logic within the
Boolean tradition, was not acquainted at first with Peirce's contributions.
On the other hand, Schroder soon learned of Frege's Begriffsschrift and
gave it a lengthy review.4 This review (1880) praised the Begriffsschrift
and added that it promised to help advance Leibniz's goal of a universal
language. Nevertheless, Schroder criticized Frege for failing to take ac-
count of Boole's contributions. What Frege did, Schroder argued, could
be done more perspicuously by using Boole's notation; in particular,
Frege's two-dimensional notation was extremely wasteful of space.

Three years later Frege replied to Schroder, emphasizing the differences
between Boole's symbolic language and his own: "I did not wish to repre-
sent an abstract logic by formulas but to express a content [Inhalt] by writ-
ten signs in a more exact and clear fashion than is possible by words"
(1883, 1). As Frege's remark intimated, in his logic prepositional func-
tions carried an intended interpretation. In conclusion, he stressed that
his notation allowed a universal quantifier to apply to just a part of a
formula, whereas Boole's notation did not. This was what Schroder had
overlooked in his review and what he would eventually borrow from Peirce:
the separation of quantifiers from the Boolean connectives.



THE EMERGENCE OF FIRST-ORDER LOGIC 103

Schroder adopted this separation in the second volume (1891) of his
Lectures on the Algebra of Logic, a three-volume study of logic (within
the tradition of Boole and Peirce) that was rich in algebraic techniques
applied to semantics. In the first volume (1890), he discussed the "identi-
ty calculus," which was essentially Boolean algebra, and three related sub-
jects: the prepositional calculus, the calculus of classes, and the calculus
of domains. When in (1891) he introduced Peirce's notation for quan-
tifiers, he used it to quantify over all subdomains of a given domain (or
manifold) called 1: "In order to express that a proposition concerning
a domain x holds... for every domain x (in our manifold 1), we shall place
the sign TLX before [the proposition]..." (1891, 26). Schroder insisted
that there is no manifold 1 containing all objects, since otherwise a con-
tradiction would result (1890, 246)—a premonition of the later set-theoretic
paradoxes.

Unfortunately, Schroder conflated the relations of membership and in-
clusion, denoting them both with 4 - (Frege's review (1895) criticized
Schroder severely on this point.) This ambiguity in Schroder's notation
might cast doubt on the assertion that he quantified over all subdomains
of a given manifold and hence used a version of second-order logic. In
one case, however, he was clearly proceeding in such a fashion. For he
defined x = 0 to be YLa(x^a), adding that this expressed "that a do-
main x is to be named 0 if and only ifx is included in every domain a..."
(1891, 29). In other cases, his quantifiers were taken, quite explicitly, over
an infinite sequence of domains (1891, 430-31). Often his quantifiers were
first-order and ranged over the individuals of a given manifold 1, a case
that he treated as part of the calculus of classes (1891, 312).

Schroder's third volume (1895), devoted to the "algebra and logic of
relations," contained several kinds of infinitary and second-order prop-
ositions. One kind, aQ, was introduced by Schroder in order to discuss
Dedekind's notion of chain (a mapping of a set into itself). More precise-
ly, a0 was defined to be the infinite disjunction of all the finite iterations
of the relative product of the domain a with itself (1895, 325). Here
Schroder's aim (1895, 355) was to derive the Principle of Mathematical
Induction in the form found in (Dedekind 1888).

In the same volume Schroder made his most elaborate use of second-
order logic, treating it mainly as a tool in "elimination problems" where
the goal was to solve a logical equation for a given variable. He stated
a second-order proposition
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that (following Peirce) he could have taken to be the definition of iden-
tity, but did not (1895, 511). However, in what he described as "a pro-
cedure that possesses a certain boldness," he considered an infinitary
proposition that had a universal quantifier for uncountably many (in fact,
continuum many) variables (1895, 512). Finally, in order to move an ex-
istential quantifier to the left of a universal quantifier (as would later be
done in first-order logic by Skolem functions), he introduced a universal
quantifier subscripted with relation variables (and so ranging over them),
and then expanded this quantifier into an infinite product of quantifiers,
one for each individual in the given infinite domain (1895, 514). This
general procedure would play a fundamental role in the proof that Lowen-
heim was to give in 1915 of Lowenheim's Theorem (see section 9 below).

5. Hilbert: Early Researches on Foundations

During the winter semester of 1898-99, David Hilbert lectured at Got-
tingen on Euclidean geometry, soon publishing a revised version as a book
(1899). At the beginning of this book, which became the source of the
modern axiomatic method, he briefly stated his purpose:

The following investigation is a new attempt to establish for geometry
a system of axioms that is complete and as simple as possible, and to
deduce from these axioms the most important theorems of geometry
in such a way that the significance of the different groups of axioms
and the scope of the consequences to be drawn from the individual ax-
ioms are brought out as clearly as possible. (Hilbert 1899, 1)

Hilbert did not specify precisely what "complete" meant in this context
until a year later, when he remarked that the axioms for geometry are
complete if all the theorems of Euclidean geometry are deducible from
the axioms (1900a, 181). Presumably his intention was that all known
theorems be so deducible.

On 27 December 1899, Frege initiated a correspondence with Hilbert
about the foundations of geometry. Frege had read Hilbert's book, but
found its approach odd. In particular, Frege insisted on the traditional
view of geometric axioms, whereby axioms were justified by geometric
intuition. Replying on 29 December, Hilbert proposed a more arbitrary
and modern view, whereby an axiom system only determines up to isomor-
phism the objects described by it:
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You write: "I call axioms propositions that are true but are not proved
because our knowledge of them flows from a source very different from
the logical source, a source which might be called spatial intuition. From
the truth of the axioms it follows that they do not contradict each
other." I found it very interesting to read this sentence in your letter,
for as long as I have been thinking, writing, and lecturing on these
things, I have been saying the exact opposite: if the arbitrarily given
axioms do not contradict each other with all their consequences, then
they are true and the things defined by the axioms exist. For me this
is the criterion of truth and existence. (Hilbert in [Frege 1980a}, 39-40)

Hilbert returned to this theme repeatedly over the following decades.
Frege, in a letter of 6 January 1900, objected vigorously to Hilbert's

claim that the consistency of an axiom system implies the existence of a
model of the system. The only way to prove the consistency of an axiom
system, Frege insisted, is to give a model. He argued further that the crux
of Hilbert's "error" was in conflating first-level and second-level con-
cepts.5 For Frege, existence was a second-level concept, and it is precise-
ly here that his system of logic, as found in the Fundamental Laws, dif-
fers from second-order logic as it is now understood.

What is particularly striking about Hilbert's axiomatization of geometry
is an axiom missing from the first edition of his book. There his Axiom
Group V consisted solely of the Archimedean Axiom. He used a certain
quadratic field to establish the consistency of his system, stressing that
this proof required only a denumerable set. When the French translation
of his book appeared in 1902, he added a new axiom that differed fun-
damentally from all his other axioms and that soon led him to try to
establish the consistency of a nondenumerable set, namely the real
numbers:

Let us note that to the five preceding groups of axioms we may still
adjoin the following axiom which is not of a purely geometric nature
and which, from a theoretical point of view, merits particular attention:

Axiom of Completeness

To the system of points, lines, and planes it is impossible to adjoin other
objects in such a way that the system thus generalized forms a new
geometry satisfying all the axioms in groups I-V. (Hilbert 1902, 25)

Hilbert introduced his Axiom of Completeness, which is false in first-
order logic and which belongs either to second-order logic or to the meta-
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mathematics of his axiom system, in order to ensure that every interval
on a line contains a limit point. All the same, he had some initial reserva-
tions, since he added: "In the course of the present work we have not
used this 'Axiom of Completeness' anywhere" (1902, 26). When the sec-
ond German edition of the book appeared a year later (1903), his reserva-
tions had abated, and he designated the Axiom of Completeness as Ax-
iom V2; so it remained in the many editions published during his lifetime.

Hilbert's initial version of the Axiom of Completeness, which referred
to the real numbers rather than to geometry, stated that it is not possible
to extend n to a larger Archimedean ordered field. This version formed
part of his (1900a) axiomatization of the real number system. There he
asserted that his Axiom of Completeness implies the Bolzano-Weierstrass
Theorem and thus that his system characterizes the usual real numbers.

The fact that Hilbert formulated his Axiom of Completeness in his
(1900a), completed in October 1899, lends credence to the suggestion that
he may have done so as a response to J. Sommer's review, written at Got-
tingen in October 1899, of Hilbert's book (1899).6 Sommer criticized
Hilbert for introducing the Archimedean Axiom as an axiom of
continuity—an assumption that was inadequate for such a purpose:

Indeed, the axiom of Archimedes does not relieve us from the neces-
sity of introducing explicitly an axiom of continuity, it merely makes
the introduction of such an axiom possible. Thus, for the whole do-
main of geometry, Professor Hilbert's system of axioms is not suffi-
cient. For instance,.. .it would be impossible to decide geometrically
whether a straight line that has some of its points within and some out-
side a circle will meet the circle. (Sommer 1900, 291)

In effect, Hilbert met this objection with his new Axiom of Completeness.
It is unclear why he formulated this axiom as an assertion about maximal
models rather than in a more mathematically conventional way (such as
the existence of a least upper bound for every bounded set).

That same year Hilbert gave his famous lecture, "Mathematical Prob-
lems," at the International Congress of Mathematicians held at Paris. As
his second problem, he proposed that one prove the consistency of his
axioms for the real numbers. At the same time he emphasized three
assumptions underlying his foundational position: the utility of the ax-
iomatic method, his belief that every well-formulated mathematical prob-
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lem can be solved, and his conviction that the consistency of a set S of
axioms implies the existence of a model for S (1900b, 264-66). When he
gave this address, his view that consistency implies existence was only an
article of faith—albeit one to which Poincare subscribed as well (Poin-
care 1905, 819). Yet in 1930 Godel was to turn this article of faith into
a theorem, indeed, into one version of his Completeness Theorem for first-
order logic.

In 1904, when Hilbert addressed the International Congress of
Mathematicians at Heidelberg, he was still trying to secure the founda-
tions of the real number system. As a first step, he turned to providing
a foundation for the positive integers. While discussing Frege's work, he
considered the paradoxes of logic and set theory for the first time in print.
To Hilbert these paradoxes showed that "the conceptions and research
methods of logic, conceived in the traditional sense, do not measure up
to the rigorous demands that set theory makes" (1905, 175). His remedy
separated him sharply from Frege:

Yet if we observe attentively, we realize that in the traditional treat-
ment of the laws of logic certain fundamental notions from arithmetic
are already used, such as the notion of set and, to some extent, that
of number as well. Thus we find ourselves on the horns of a dilemma,
and so, in order to avoid paradoxes, one must simultaneously develop
both the laws of logic and of arithmetic to some extent. (1905, 176)

This absorption of part of arithmetic into logic remained in Hilbert's later
work.

Hilbert excused himself from giving more than an indication of how
such a simultaneous development would proceed, but for the first time
he used a formal language. Within that language his quantifiers were in
the Peirce-Schroder tradition, although he did not explicitly cite those
authors. Indeed, he regarded "for some x, A(x)" merely as an abbrevia-
tion for the infinitary formula

A(\) o. A(2) o. A(3) o. ... ,

where o. stood for "oder" (or), and analogously for the universal quanti-
fier with respect to "und" (and) (1905, 178). Likewise, he followed Peirce
and Schroder (as well as the geometric tradition) by letting his quantifiers
range over a fixed domain. Hilbert's aim was to show the consistency of
his axioms for the positive integers (the Peano Postulates without the Prin-
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ciple of Mathematical Induction). He did so by finding a combinatorial
property that held for all theorems but did not hold for a contradiction.
This marked the beginning of what, over a decade later, would become
his proof theory.

Thus Hilbert's conception of mathematical logic, circa 1904, embodied
certain elements of first-order logic but not others. Above all, his use
of infinitary formulas and his restriction of quantifiers to a fixed do-
main differed fundamentally from first-order logic as it was eventual-
ly formulated. When in 1918 he began to publish again on logic, his
basic perspective did not change but was supplemented by Principia
Mathematica.

6. Huntington and Veblen: Categoricity

At the turn of the century the concept of the categoricity of an axiom
system was made explicit by Edward Huntington and Oswald Veblen, both
of whom belonged to the group of mathematicians sometimes called the
American Postulate Theorists. Huntington, while stating an essentially
second-order axiomatization for R by means of sequences, introduced the
term "sufficient" to mean that "there is essentially only one such assem-
blage [set] possible" that satisfies a given set of axioms (1902, 264). As
he made clear later in his article, his term meant that any two models are
isomorphic (1902, 277).

In 1904 Veblen, while investigating the foundations of geometry,
discussed Huntington's term. John Dewey had suggested to Veblen the
use of the term "categorical" for an axiom system such that any two of
its models are isomorphic. Veblen mentioned Hilbert's axiomatization of
geometry (with the Axiom of Completeness) as being categorical, and
added that, for such a categorical system, "the validity of any possible
statement in these terms is therefore completely determined by the axioms;
and so any further axiom would have to be considered redundant, even
were it not deducible from the axioms by a finite number of syllogisms"
(Veblen 1904, 346).

After adopting Veblen's term "categorical," Huntington made a fur-
ther observation:

In the case of any categorical set of postulates one is tempted to assert
the theorem that if any proposition can be stated in terms of the fun-
damental concepts, either it is itself deducible from the postulates, or
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else its contradictory is so deducible; it must be admitted, however,
that our mastery of the processes of logical deduction is not yet, and
possibly never can be, sufficiently complete to justify this assertion.
(1905, 210)

Thus Huntington was convinced that any categorical axiom system is
deductively complete: every sentence expressible in the system is either
provable or disprovable. On the other hand, Veblen was aware, however
fleetingly, of the possibility that in a categorical axiom system there might
exist propositions true in the only model of the system but unprovable
in the system itself.7 In 1931 Godel's Incompleteness Theorem would show
that this possibility was realized, in second-order logic, for every categorical
axiom system rich enough to include the arithmetic of the natural numbers.

7. Peano and Russell: Toward Principia Mathematica

In (1888) Guiseppe Peano began his work in logic by describing that
of Boole (1854) and Schroder (1877). Frege, in a letter to Peano probably
written in 1894, described Peano as a follower of Boole, but one what
had gone further than Boole by adding a symbol for generalization.8 Peano
introduced this symbol in (1889), in the form a3x>y,.. .b for "whatever
x, y,... may be, b is deduced from a." Thus he introduced the notion
of universal quantifier (independently of Frege and Peirce), although he
did not separate it from his symbol D for implication (1889, section II).

Peano's work gave no indication of levels of logic. In particular, he
expressed "x is a positive integer" by x e TV and so felt no need to quan-
tify over predicates such as N. On the other hand, his Peano Postulates
were essentially a second-order axiomatization for the positive integers,
since these postulates included the Principle of Mathematical Induction.
Beginning in 1900, Peano's formal language was adopted and extended
by Bertrand Russell, and thereby achieved a longevity denied by Frege's.

When he became an advocate of Peano's logic, Russell entered an en-
tirely new phase of his development. In contrast to his earlier and more
traditional views, Russell now accepted Cantor's transfinite ordinal and
cardinal numbers. Then in May 1901 he discovered what became known
as Russell's Paradox and, after trying sporadically to solve it for a year,
wrote to Frege about it on 16 June 1902. Frege was devastated. Although
his original (1879) system of logic was not threatened, he realized that
the system developed in his Fundamental Laws (1893, 1903a) was in grave
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danger. There he had permitted a set ("the extension of a concept," in
his words) to be the argument of a first-level function; in this way Russell's
Paradox arose in his system.

On 8 August, Russell sent Frege a letter containing the first known ver-
sion of the theory of types—Russell's solution to the paradoxes of logic
and set theory:

The contradiction [Russell's Paradox] could be resolved with the help
of the assumption that ranges [classes] of values are not objects of the
ordinary kind: i.e., thai$(x) needs to be completed (except in special
circumstances) either by an object or by a range of values of objects
[class of objects] or a range of values of ranges of values [class of classes
of objects], etc. This theory is analogous to your theory about func-
tions of the first, second, etc. levels. (Russell in [Frege 1980a], 144)

This passage suggests that the seed of the theory of .types grew directly
from the soil of Frege's Fundamental Laws. Indeed, Philip Jourdain later
asked Frege (in a letter of 15 January 1914) whether Frege's theory was
not the same as Russell's theory of types. In a draft of his reply to Jour-
dain on 28 January, Frege answered a qualified yes:

Unfortunately I do not understand the English language well enough
to be able to say definitely that Russell's theory (Principia Mathematica
I, 54ff) agrees with my theory of functions of the first, second, etc.,
levels. It does seem so.9

In 1903 Russell's Paradox appeared in print, both in the second volume
of Frege's Fundamental Laws (1903a, 253) and in Russell's Principles of
Mathematics. Frege dealt only with Russell's Paradox, whereas Russell
also discussed in detail the paradox of the largest cardinal and the paradox
of the largest ordinal. In an appendix to his book, Russell proposed a
preliminary version of the theory of types as a way to resolve these
paradoxes, but he remained uncertain, as he had when writing to Frege
on 29 September 1902, whether this theory eliminated all paradoxes.10

When Russell completed the Principles, he praised Frege highly. Never-
theless, Russell's book, which had been five years in the writing, retained
an earlier division of logic that was more in the tradition of Boole, Peirce,
and Schroder than in Frege's. There Russell divided logic into three parts:
the propositional calculus, the calculus of classes, and the calculus of
relations.
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In 1907, after several detours through other ways of avoiding the
paradoxes,11 Russell wrote an exposition (1908) of his mature theory of
types, the basis for Principia Mathematica. A type was defined to be the
range of significance of some prepositional function. The first type con-
sisted of the individuals and the second of what he called "first-order prop-
ositions": those propositions whose quantifiers ranged only over the first
type. The third logical type consisted of "second-order prepositions,"
whose quantifiers ranged only over the first or second types (i.e., in-
dividuals or first-order propositions). In this manner, he defined a type
for each finite index n. After introducing an analogous hierarchy of prep-
ositional functions, he avoided classes by using such prepositional func-
tions instead. Like Peirce, he defined the identity of individuals x and y
by the condition that every first-order proposition holding for x also holds
for y (1908, sections IV-VI).

Thus the theory of types, outlined in (Russell 1908) and developed in
detail in Principia Mathematica, included a kind of first-order logic,
second-order logic, and so on. But the first-order logic that it included
differed from first-order logic as it is now understood, among other ways,
in that a proposition about classes of classes could not be treated in his
first-order logic. As we shall see, this privileged position of the member-
ship relation was later attacked by Skolem.

One aspect of the logic found in Principia Mathematica requires fur-
ther comment. For Russell and Whitehead, as for Frege, logic served as
a foundation for all of mathematics. From their perspective it was im-
possible to stand outside of logic and thereby to study it as a system (in
the way that one might, for example, study the real numbers). Given this
state of affairs, it is not surprising that Russell and Whitehead lacked any
conception of a metalanguage. They would surely have rejected such a
conception if it had been proposed to them, for they explicitly denied the
possibility of independence proofs for their axioms (Whitehead and Russell
1910, 95), and they believed it impossible to prove that substitution is
generally applicable in the theory of types (1910, 120). Indeed, they in-
sisted that the Principle of Mathematical Induction cannot be used to prove
theorems about their system of logic (1910,135). Metatheoretical research
about the theory of types had to come from those schooled in a different
tradition. When the consistency of the simple theory of types was even-
tually proved, without the Axiom of Infinity, in (1936), it was done by
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Gerhard Gentzen, a member of Hilbert's school, and not by someone
within the logicist tradition of Frege, Russell, and Whitehead.

Russell and Whitehead held that the theory of types can be viewed in
two ways—as a deductive system (with theorems proved from the axioms)
and as a formal calculus (1910, 91). Concerning the latter, they wrote:

Considered as a formal calculus, mathematical logic has three analogous
branches, namely (1) the calculus of propositions, (2) the calculus of
classes, (3) the calculus of relations. (1910, 92)

Here they preserved the division of logic found in Russell's Principles of
Mathematics and thereby continued in part the tradition of Boole, Peirce,
and Schroder—a tradition that they were much less willing to acknowledge
than those of Peano and Frege.

Russell and Whitehead lacked the notion of model or interpretation.
Instead, they employed the genetic method of constructing, for instance,
the natural numbers, rather than using the axiomatic approach of Peano
or Hilbert. Finally, Russell and Whitehead shared with many other logi-
cians of the time the tendency to conflate syntax and semantics, as when
they stated their first axiom in the form that "anything implied by a true
elementary proposition is true" (1910, 98).

Principia Mathematica provided the logic used by most mathematical
logicians in the 1910s and 1920s. But even some of those who used its
ideas were still influenced by the Peirce-Schroder tradition. This was the
case for A Survey of Symbolic Logic by C. I. Lewis (1918). In that book,
which analyzed the work of Boole, Jevons, Peirce, and Schroder (as well
as that of Russell and Whitehead), the logical notation remained that of
Peirce, as did the definition of the existential quantifier £* and the
universal quantifier Hx in terms of logical expressions that could be in-
finitely long:

We shall let 2*x<j>x represent tyx^ + $x2 + <j>x3 + . . . to as many
terms as there are distinct values of x in (J>. And !!*<}>* will represent
$Xi x $x2 X (f>x3 X . . . to as many terms as there are distinct values
of A: in <f>x.... The fact that there might be an infinite set of values
of A: in <px does not affect the theoretical adequacy of our definitions.
(Lewis 1918, 234-35)

Lewis sought to escape the difficulties that he found in such an infinitary
logic by reducing it to the finite:
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We can assume that any law of the algebra [of logic] which holds
whatever finite number of elements be involved holds for any number
of elements whatever.... This also resolves our difficulty concerning
the possibility that the number of values of x in <J>x might not be even
denumerable.... (1918, 236)

He made no attempt, however, to justify his assertion, which amounted
to a kind of compactness theorem.

A second logician who introduced an infinitary logic in the context of
Principia Mathematica was Frank Ramsey. In 1925 Ramsey presented a
critique of Principia, arguing that the Axiom of Reducibility should be
abandoned and proposing instead the simple theory of types. He enter-
tained the possibility that a truth function may have infinitely many
arguments (1925, 367), and he cited Wittgenstein as having recognized that
such truth functions are legitimate (1925, 343). Further, Ramsey argued
that "owing to our inability to write propositions of infinite length, which
is logically a mere accident, (<{>).<J>a cannot, like p.q, be elementarily ex-
pressed, but must be expressed as the logical product of a set of which
it is also a member" (1925, 368-69). It appears that Ramsey was not con-
cerned with infinitary formulas per se but only with using them in his
heuristic argument for the simple theory of types. Yet his proposal was
sufficiently serious that Godel later cited it when arguing against such in-
finitary formulas (Godel 1944, 144-46).

8. Hilbert: Later Foundational Research

Hilbert did not abandon foundational questions after his 1904 lecture
at the Heidelberg congress, though he published nothing further on them
for more than a decade. Rather, he gave lecture courses at Gottingen on
such questions repeatedly—in 1905, 1908, 1910, and 1913. It was the course
given in the winter semester of 1917-18, "Principles of Mathematics and
Logic," that first exhibited his mature conception of logic.12

That course began shortly after Hilbert delivered a lecture, "Axiomatic
Thinking," at Zurich on 11 September 1917. The Zurich lecture stressed
the role of the axiomatic method in various branches of mathematics and
physics. Returning to an earlier theme, he noted how the consistency of
several axiomatic systems (such as that for geometry) had been reduced
to a more specialized axiom system (such as that for H, reduced in turn
to the axioms for 1M and those for set theory). Hilbert concluded by stating



114 Gregory H. Moore

that the "full-scale undertaking of Russell's to axiomatize logic can be
seen as the crowning achievement of axiomatization" (1918, 412).

The 1917 course treated the axiomatic method as applied to two
disciplines: geometry and mathematical logic. When considering logic,
Hilbert emphasized not only questions of independence and consistency,
as he had in the Zurich lecture, but also "completeness" (which, however,
was handled as in his [1899]). Influenced by Principia Mathematica, he
treated prepositional logic as a distinct level of logic. But he deviated from
Russell and Whitehead by offering a proof for the consistency of prop-
ositional logic. After discussing the calculus of monadic predicates and
the corresponding calculus of classes, he turned to first-order logic, which
he named the "functional calculus." Stating primitive symbols and ax-
ioms for it, he developed it at some length. In conclusion, he noted:

With what we have considered thus far [first-order logic], foundational
discussions about the calculus of logic come to an end—if we have no
other goal than formalizing logical deduction. We, however, are not
content with this application of symbolic logic. We wish not only to
be in a position to develop individual theories from their principles pure-
ly formally but also to make the foundations of mathematical theories
themselves an object of investigation—to examine in what relation they
stand to logic and to what extent they can be obtained from purely
logical operations and concepts. To this end the calculus of logic must
serve as our tool.

Now if we make use of the calculus of logic in this sense, then we will
be compelled to extend in a certain direction the rules governing the
formal operations. In particular, while we previously separated prop-
ositions and [prepositional] functions completely from objects and, ac-
cordingly, distinguished the signs for indefinite propositions and func-
tions rigorously from the variables, which take arguments, now we per-
mit propositions and functions to be taken as logical variables in a way
similar to that for proper objects, and we permit signs for indefinite
propositions and functions to appear as arguments in symbolic expres-
sions. (Hilbert 1917, 188)

Here Hilbert argued, in effect, for a logic at least as strong as second-
order logic. But his views on this matter did not appear in print until his
book Principles of Mathematical Logic, written jointly with Ackermann,
was published in 1928. In that book, which consisted largely of a revision
of Hilbert's 1917 course, he expressed himself even more strongly:
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As soon as the object of investigation becomes the foundation
of. . .mathematical theories, as soon as one wishes to determine in what
relation the theory stands to logic and to what extent it can be obtain-
ed from purely logical operations and concepts, then the extended
calculus [of logic] is essential. (Hilbert and Ackermann 1928, 86)

In the 1917 course (and again in the book), this extended functional
calculus permitted quantification over propositions and included explicitly
such expressions as

(X)(if X, then X or X).

Hilbert cited the Principle of Mathematical Induction as an axiom that,
if fully expressed, requires a quantifier varying over propositions. Likewise,
he defined the identity relation in his extended logic in a manner reminis-
cent of Peirce: two objects x and y are identical if, for every proposition
P, P holds of *if and only if P holds of y (1917, 189-91). Finally, he treated
set-theoretic notions (such as union and power set) by means of quan-
tifiers over propositions.

What, in 1917, was Hilbert's extended calculus of logic? At first glance
it might appear to be second-order logic. Yet he stated his preliminary
version of the extended calculus in a way that permitted a function of prep-
ositional functions to occupy an argument place for individuals in a prop-
ositional function—an act that is illegitimate in second-order logic and
that, as he knew, gave rise to Russell's Paradox. Hilbert used this paradox
to motivate his adoption of the ramified theory of types as the definitive
version of his extended calculus. After indicating how the real numbers
can be constructed via Dedekind cuts by means of the Axiom of Reducibili-
ty, Hilbert concluded his course: "Thus we have shown that introducing
the Axiom of Reducibility is the appropriate means to mold the calculus
of levels [the theory of types] into a system in which the foundations of
higher mathematics can be developed" (1917, 246).

In the 1917 course Hilbert explicitly treated first-order logic (without
any infinitary trappings) as a subsystem of the ramified theory of types:

In this way is founded a new form of the calculus of logic, the "calculus
of levels," which represents an extension of the original functional
calculus [first-order logic], since this is contained in it as a theory of
first order, but which implies an essential restriction as compared with
our previous extension of the functional calculus. (1917, 222-23)

The same statement appeared verbatim in (Hilbert and Ackermann 1928,
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101). Thus in 1917, and still in 1928, Hilbert treated first-order logic as
a subsystem of all of logic (for him, the ramified theory of types), regard-
ing set theory and the Principle of Mathematical Induction as incapable
of adequate treatment in first-order logic (1917, 189, 200; Hilbert and
Ackermann 1928, 83, 92).

On the occasion of his Zurich lecture, Hilbert invited Paul Bernays to
give up his position as Privatdozent at the University of Zurich and come
to Gottingen as Hilbert's assistant on the foundations of arithmetic. Ber-
nays accepted. Thus he became Hilbert's principal collaborator in logic,
serving first as official note-taker for Hilbert's 1917 course.

In 1918 Bernays wrote a Habilitationsschrift in which was proved the
completeness of prepositional logic. This work was influenced by (Schroder
1890), (Frege 1893), and Principia Mathematica. For the first time the
completeness problem for a subsystem of logic was expressed precisely.
Bernays stated and proved that "every provable formula is a valid for-
mula, and conversely" (1918, 6). In addition he established the deductive
completeness of prepositional logic as well as what was later called Post
completeness: no unprovable formula can be added to the axioms of prep-
ositional logic without giving rise to a contradiction (1918, 9).

Hilbert published nothing further on logic until 1922, when he reacted
strongly against the claims of L. E. J. Brouwer and Hermann Weyl that
the foundations of analysis were built on sand. As a countermeasure,
Hilbert introduced his proof theory (Beweistheorie). This theory treated
the axiom systems of mathematics as pure syntax, distinguishing them from
what he called metamathematics, where meaning was permitted. His two
chief aims were to show the consistency of both analysis and set theory
and to establish the decidability of each mathematical question (Ent-
scheidungsproblem)—aims already expressed in his (1900b).

Hilbert began by proving the consistency of a very weak subsystem of
arithmetic, closely related to the one whose consistency he had established
in 1904 (1922, 170). He claimed to have a proof for the consistency of
arithmetic proper, including the Principle of Mathematical Induction. He
considered this principle to be a second-order axiom, as he had previous-
ly and did subsequently.13 Likewise, he introduced not only individual
variables (Grundvariable) but variables for functions and even for func-
tions of functions (1922, 166).

To defend mathematics against the attacks of Brouwer and Weyl,
Hilbert intended to establish the consistency of mathematics from the bot-
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torn up. Having shown that a subsystem of arithmetic was consistent, he
hoped soon to prove the consistency of the whole of arithmetic (including
mathematical induction) and then of the theory of real numbers. Thus
Hilbert was thinking in terms of a sequence of levels to be secured suc-
cessively. In a handwritten appendix to the lecture course he gave during
the winter semester of 1922-23,14 eight of these levels were listed. Analysis
occurred at level four, and higher-order logic was considered in part at
level five.

Already in (1922, 157), Hilbert had spoken of the need to formulate
Zermelo's Axiom of Choice in such a way that it becomes as evident as
2 + 2 = 4. In (1923) Hilbert utilized a form of the Axiom of Choice as
the cornerstone of his proof theory, which was to be "finitary." He did
so as a way of eliminating the direct use of quantifiers, which he regarded
as an essentially infinitary feature of logic: "Now where does there ap-
pear for the first time something going beyond the concretely intuitive
and the finitary? Obviously already in the use of the concepts 'all' and
''thereexists'" (1923, 154). For finite collections, he noted, the universal
and existential quantifiers reduce to finite conjunctions and disjunc-
tions, yielding the Principle of the Excluded Middle in the form that
~ (Vx)A (x) is equivalent to (Bx)~A (x) and that ~ (3.x) A(x) is equivalent
to (Vx)~A(x). "These equivalences," he continued,

are commonly assumed, without further ado, to be valid in mathematics
for infinitely many individuals as well. In this way, however, we aban-
don the ground of the finitary and enter the domain of transfinite in-
ferences. If we were always to use for infinite sets a procedure admissi-
ble for finite sets, we would open the gates to e r ror . . . . In analysis...
the theorems valid for finite sums and products can be translated into
theorems valid for infinite sums and products only if the inference is
secured, in the particular case, by convergence. Likewise, we must not
treat the infinite logical sums and products

,4(1) & A(2) & ,4(3) & . . .

and
A(\) v A(2) v A(3) v ...

in the same way as finite ones. My proof theory . . . provides such a
treatment. (1923, 155)

Hilbert then introduced what he called the Transfinite Axiom, which
he regarded as a form of the Axiom of Choice:
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The intended meaning was that if the proposition A (x) holds when x is
r'A, then A (x) holds for an arbitrary x, say a. He thus defined (Vx)A(x)
as A(rA) and similarly for (3*M(x) (1923, 157).

Soon Hilbert modified the Transfinite Axiom, changing it into the
e-axiom:

where e was a universal choice function acting on properties. The first
sign of this change occurred in handwritten notes that Hilbert prepared
for his lecture course on logic during the winter semester of 1922-23 ;15

the new e-axiom appeared in print in (Ackermann 1925) and (Hilbert 1926).
Hilbert had used the Transfinite Axiom, acting on number-theoretic func-
tions, to quantify over number-theoretic functions and to obtain a proof
of the Axiom of Choice for families of sets of real numbers (1923, 158,
164). Likewise, Ackermann used the e-axiom, acting on number-theoretic
functions, to quantify over such functions while trying to establish the
consistency of number theory (1925, 32).

In 1923 Hilbert stressed not only that his proof theory could give
mathematics a firm foundation by showing the consistency of analysis and
set theory but also that it could settle such classical unsolved problems
of set theory as Cantor's Continuum Problem (1923, 151). In his (1926),
Hilbert attempted to sketch a proof for the Continuum Hypothesis (CH).
Here one of his main tools was the hierarchy of functions that he called
variable-types. The first level of this hierarchy consisted of the functions
from n to M—i.e., the number-theoretic functions. The second level con-
tained functionals—those functions whose argument was a number-
theoretic function and whose value was in 1M. In general, the level « +1
consisted of functions whose arguments was a function of level « and
whose value was in M. He permitted quantification over functions of any
level (1926, 183-84). In (1928, 75) he again discussed his argument for CH,
which he explicitly treated as a second-order proposition. This argument
met with little favor from other mathematicians.

From 1917 to about 1928, Hilbert worked in a variant of the ramified
theory of types, one in which functions increasingly played the principal
role. But by 1928 he had rejected Russell's Axiom of Reducibility as
dubious—a significant change from his support for this axiom in (1917).
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Instead, he asserted that the same purpose was served by his treatment
of function variables (1928, 77). He still insisted, in (Hilbert and Acker-
mann 1928, 114-15), that the theory of types was the appropriate logical
vehicle for studying the theory of real numbers. But, he added, logic could
be founded so as to be free of the difficulties posed by the Axiom of
Reducibility, as he had done in his various papers. Thus Hilbert opted
for a version of the simple theory of types (in effect, o>-order logic).

Hilbert's co-workers in proof theory used essentially the same system
of logic as he did. Von Neumann (1927) gave a proof of the consistency
of a weak form of number theory, working mainly in a first-order sub-
system. However, he discussed Ackermann's work involving both a second-
order e-axiom and quantification over number-theoretic functions (von
Neumann 1927, 41-46). During the same period, Bernays discussed in some
detail "the extended formalism of 'second order'," mentioning Lowen-
heim's (1915) decision procedure for monadic second-order logic and
remarking how questions of first-order validity could be expressed by a
second-order formula (Bernays and Schonfinkel 1928, 347-48).16

In (1929), Hilbert looked back with pride and forward with hope at
what had been accomplished in proof theory. He thought that Ackermann
and von Neumann had established the consistency of the e-axiom restricted
to natural numbers, not realizing that this would soon be an empty vic-
tory. Hilbert posed four problems as important to his program. The first
of these was essentially second-order: to prove the consistency of the
e-axiom acting on number-theoretic functions (1929, 4). The second was
the same problem for higher-order functions, whereas the third and fourth
concerned completeness. The third, noting that the Peano Postulates are
categorical, asked for a proof that if a number-theoretic sentence is shown
consistent with number theory, then its negation cannot be shown consis-
tent with number theory. The fourth was more complex, asking for a
demonstration that, on the one hand, the axioms of number theory are
deductively complete and that, on the other, first-order logic with identi-
ty is complete (1929, 8).

Similarly, in (Hilbert and Ackermann 1928, 69) there was posed the
problem of establishing the completeness of first-order logic (without iden-
tity). The following year Godel solved this problem for first-order logic,
with and without identity (1929). His abstract (1930b) of this result spoke
of the "restricted functional calculus" (first-order logic without identity)
as a subsystem of logic, since no bound function variables were permitted.
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Although the Completeness Theorem for first-order logic solved one
of Hilbert's problems, Go'del soon published a second abstract (1930c)
that threatened to demolish Hilbert's program. This abstract gave the First
Incompleteness Theorem: in the theory of types, the Peano Postulates are
not deductively complete. Furthermore, Godel's Second Incompleteness
Theorem stated that the consistency of the theory of types cannot be proved
in the theory of types, provided that this theory is oj-consistent. This seem-
ed to destroy any hope of proving the consistency of set theory and analysis
with Hilbert's finitary methods.

Probably motivated by Godel's incompleteness results, Hilbert (1931)
introduced a version of theo>-rule, an infinitary rule of inference.17 In
his last statement on proof theory in 1934, Hilbert attempted to limit the
damage done by those results. He wrote of

the final goal of knowing that our customary methods in mathematics
are utterly consistent.Concerning this goal, I would like to stress that
the view temporarily widespread—that certain recent results of Go'del
imply that my proof theory is not feasible—has turned out to be er-
roneous. In fact those results show only that, in order to obtain an ade-
quate proof of consistency, one must use the finitary standpoint in a
sharper way than is necessary in treating the elementary formalism.
(Hilbert in [Hilbert and Bernays 1934], v)

9. Lowenheim: First-Order (Infinitary) Logic as a Subsystem
It was Leopold Lowenheim, aware of Principia Mathematica but firmly

placed in the Peirce-Schroder tradition, who first established significant
metamathematical results about the semantics of logic. His 1915 result,
the earliest version of Lo'wenheim's Theorem (every satisfiable sentence
has a countable model), is now considered to be about first-order logic.
As will become evident, however, in one sense Lowenheim in 1915 was
even further from first-order logic than Hilbert had been in 1904.

In an unpublished autobiographical note, Lowenheim remarked that
shortly after he began teaching at a Gymnasium (about 1900) he "became
acquainted with the calculus of logic through reviews and from Schroder's
books" (Lowenheim in [Thiel 1977], 237). His first published paper (1908)
was devoted to the solvability of certain symmetric equations in Schroder's
calculus of classes, and he soon turned to related questions in Schroder's
calculus of domains (1910, 1913a) and of relations (1913b).
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In 1915 there appeared Lowenheim's most influential article, "On
Possibilities in the Calculus of Relations." His later opinion of this arti-
cle, as expressed in unpublished autobiographical notes, was ambivalent:

I . . . have pointed out new paths for science in the field of the calculus
of logic, which had been founded by Leibniz but which had come to
a deadlock.... On an outing, a somewhat grotesque landscape
stimulated my fantasy, and I had an insight that the thoughts I had
already developed in the calculus of domains might lead me to make
a breakthrough in the calculus of relations. Now I could find no rest
until the idea was completely proved, and this gave me a host of
troubles.... This breakthrough has scarcely been noticed, but some
other breakthroughs which I made in my paper "On Possibilities in
the Calculus of Relations" were noticed all the same. This became the
foundation of the modern calculus of relations. But I did not take much
pride in this paper, since the point had only been to ask the right ques-
tions while the proofs could be found easily without ingenuity or im-
agination. (Lowenheim in [Thiel 1977], 246-47)

Lowenheim's article (1915) continued Schroder's work (1895) on the
logic of relations but made a number of distinctions that Schroder lacked,
the most important being between a Relativausdruck (relational expres-
sion) and a Z'dhlausdruck (individual expression). Lowenheim's defini-
tions of individual expression and relational expression (1915, 447-48)
differed from those for first-order and second-order formula in that,
following Peirce and Schroder, such expressions were allowed to have a
quantifier for each individual of the domain, or for each relation over
the domain, respectively. In effect, Lowenheim's logic permitted infinitely
long strings of quantifiers and Boolean connectives, but these infinitary
formulas occurred only as the expansion of finitary formulas, to which
they were equivalent in his system.

In (1895) Schroder had used a logic that was essentially the same as
Lowenheim's, namely, a logic that was second-order but permitted quan-
tifiers to be expanded as infinitary conjunctions (or disjunctions). After
distinguishing carefully between the (infinitary) first-order part of his logic
and the entire logic, Lowenheim asserted that all important problems of
mathematics can be handled in this (infinitary) second-order logic.

Apparently, his discovery of Lowenheim's Theorem was motivated by
the two ways in which Schroder's calculus of relations could express prop-
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ositions: (1) by means of quantifiers and individual variables and (2) by
means of relations with no individual variables (cf. the combinatory logic
developed by Schonfinkel [1924] and later by Curry). Whereas Schroder
regarded every proposition of form (1) as capable of being "condensed"
(that is, written in form (2)) because he permitted individuals to be inter-
preted as a certain kind of relation, Lowenheim dispensed with this inter-
pretation. He established that not all propositions can be condensed, by
showing that condensable first-order propositions could not express that
there are at least four elements.

After treating condensation, Lowenheim next gave an analogous result
for denumerable domains: For an infinite domain M(possibly denumerable
and possibly of higher cardinality), if a first-order proposition is valid in
every finite domain but not in every domain, then the proposition is not
valid in M. This was his original statement of Lowenheim's Theorem. His
proof used a second-order formula stating that

where / was a function variable, and he regarded this formula (for the
given domain M) as expandable to an infinitary formula with a first-order
existential quantifier for each individual of M (1915, section 2). His next
theorem stated that, since Schroder's logic can express that a domain is
finite or denumerable, then Lowenheim's Theorem cannot be extended
to Schroder's (second-order) logic.

Some historians of mathematics have regarded Lowenheim's argument
for his theorem as odd and unnatural.18 But his argument appears so on-
ly because they have considered it within first-order logic. Although
Lowenheim's Theorem holds for first-order logic (as Skolem was to show),
this was not the logic in which Lowenheim worked.

10. Skolem: First-Order Logic as All of Logic

In 1913, after writing a thesis (1913a) on Schroder's algebra of logic,
Skolem received his undergraduate degree in mathematics. He soon wrote
several papers, beginning with (1913b), on Schroder's calculus of classes.
During the winter of 1915-16, Skolem visited Gottingen, where he discussed
set theory with Felix Bernstein. By that time Skolem was already ac-
quainted with Lowenheim's Theorem and had seen how to extend it to
a countable set of formulas. Furthermore, Skolem had realized that this
extended version of the theorem could be applied to set theory. Thus he



THE EMERGENCE OF FIRST-ORDER LOGIC 123

found what was later called Skolem's Paradox: Zermelo's system of set
theory has a countable model (within first-order logic) even though this
system implies the existence of uncountable sets (Skolem 1923, 232, 219).

Nevertheless, Skolem did not lecture on this result until the Fifth Scan-
danavian Congress of Mathematicians in July 1922. When it appeared in
print the following year, he stated that he had not published it earlier
because he had been occupied with other problems and because

I believed that it was so clear that the axiomatization of set theory would
not be satisfactory as an ultimate foundation for mathematics that, by
and large, mathematicians would not bother themselves with it very
much. To my astonishment I have seen recently that many mathemati-
cians regard these axioms for set theory as the ideal foundation for
mathematics. For this reason it seemed to me that the time had come
to publish a critique. (Skolem 1923, 232)

It was precisely in order to establish the relativity of set-theoretic no-
tions that Skolem proposed that set theory be formulated within first-order
logic. At first glance, given the historical context, this was a strange sug-
gestion. Set theory appeared to require quantifiers not only over indiv-
iduals, as in first-order logic, but also quantifiers over sets of individuals,
over sets of sets of individuals, and so on. Skolem's radical proposal was
that the membership relation e be treated not as a part of logic (as Peano
and Russell had done) but like any other relation on a domain. Such rela-
tions could be given a variety of interpretations in various domains, and
so should e. In this way the membership relation began to lose its privileged
position within logic.

Skolem made Lowenheim's article (1915) the starting point for several
of his papers. This process began when Skolem used the terms Zdhlaus-
druck and Zdhlgleichung in an article (1919), completed in 1917, on
Schroder's calculus of classes. But it was only in (1920) that Skolem began
to discuss Lowenheim's Theorem, a subject to which he returned many
times over the next forty years. Skolem first supplied a new proof for this
theorem (relying on Skolem functions) in order to avoid the occurrence
in the proof of second-order propositions (in the form of subsubscripts
on Lowenheim's relational expressions [Skolem 1920, 1]). Extending this
result, Skolem obtained what became known as the Lowenheim-Skolem
Theorem (a countable and satisfiable set of first-order propositions has
a countable model). Surprisingly, he did not even state the Lowenheim-
Skolem Theorem for first-order logic as a separate theorem but immediate-
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ly proved Lowenheim's Theorem for any countable conjunction of first-
order propositions. His culminating generalization was to show Lowen-
heim's Theorem for a countable conjunction of countable disjunctions
of first-order propositions. Thus, in effect, he established Lowenheim's
Theorem (and hence the Ldwenheim-Skolem Theorem) for what is now
called LW]5(a. »

Nevertheless, when in (1923) Skolem published his application of
Lowenheim's Theorem to set theory, he stated the Lowenheim-Skolem
Theory explicitly for first-order logic and did not mention any of his other
generalizations of Lowenheim's Theorem for an infinitary logic. Never
again did he return to the infinitary logic that he had adopted from
Schroder and Lowenheim. Instead he argued in (1923), as he would for
the rest of his life, that first-order logic is the proper basis for set theory
and, indeed, for all of mathematics.

The reception of the Lowenheim-Skolem Theorem, insofar as it con-
cerned set theory, was mixed. Abraham Fraenkel, when in (1927) he
reviewed Skolem's paper of 1923 in the abstracting journal of the day,
the Jahrbuch uber die Fortschritte der Mathematik, did not mention first-
order logic but instead held Skolem's result to be about Schroder's calculus
of logic. Fraenkel concluded from Skolem's Paradox that the relativity
of the notion of cardinal number is inherent in any axiomatic system. Thus
Fraenkel lacked a clear understanding of the divergent effects of first-order
and second-order logic on the notion of cardinal number.

In 1925, when John von Neumann published his axiomatization for
set theory, he too was unclear about the difference between first-order
and second-order logic. He specified his desire to axiomatize set theory
by using only "a finite number of purely formal operations" (1925, sec-
tion 2), but nowhere did he specify the logic in which his axiomatization
was to be formulated. His concern, rather, was to give a finite characteriza-
tion of Zermelo's notion of "definite property." At the end of his paper,
von Neumann considered the question of categoricity in detail and noted
various steps, such as the elimination of inaccessible cardinals, that had
to be taken to arrive at a categorical axiomatization. After remarking that
the axioms for Euclidean geometry were categorical, he observed that,
because of the Lowenheim-Skolem Theorem,

no categorical axiomatization of set theory seems to exist at all
And since there is no axiom system for mathematics, geometry, and
so forth that does not presupppose set theory, there probably cannot
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be any categorically axiomatized infinite systems at all. This cir-
cumstance seems to me to be an argument for intuitionism. (1925, sec-
tion 5)

Yet von Neumann then claimed that the boundary between the finite and
infinite was also blurred. He exhibited no awareness that these difficulties
did not arise in second-order logic.

The reason for Fraenkel's and von Neumann's confusion was that, circa
1925, the distinction between first-order logic and second-order logic was
still unclear, and it was equally unclear just how widely the Lowenheim-
Skolem Theorem applied. Fraenkel had spoken of "the uncertainty of
general logic" (1922, 101), and Zermelo added, concerning his 1908 ax-
iomatization of set theory, that "a generally recognized 'mathematical
logic', to which I could have referred, did not exist then—any more than
it does today, when every foundational researcher has his own logistical
system" (1929, 340)

What is surprising is that Godel seemed unclear about the question of
categoricity when he proved the Completeness Theorem for first-order
logic in his doctoral dissertation (1929). Indeed, he made certain enigmatic
comments that foreshadow his incompleteness results:

Brouwer, in particular, has emphatically stressed that from the con-
sistency of an axiom system we cannot conclude without further ado
that a model can be constructed. But one might perhaps think that the
existence of the notions introduced through an axiom system is to be
defined outright by the consistency of the axioms and that, therefore,
a proof has to be rejected out of hand. This definition,.. .however,
manifestly presupposes the axiom that every mathematical problem is
solvable. Or, more precisely, it presupposes that we cannot prove the
unsolvability of any problem. For, if the unsolvability of some prob-
lem (say, in the domain of real numbers) were proved, then, from the
definition above, it would follow that there exist two non-isomorphic
realizations of the axiom system for the real numbers, while on the other
hand we can prove that any two realizations are isomorphic. (1929,
section 1)

In his paper Godel wrote of first-order logic, but then he introduced a
notion, categoricity, that belongs essentially to second-order logic. Thus
it appears that the distinction between first-order logic and second-order
logic, insofar as it concerns the range of applicability of the Lowenheim-
Skolem Theorem, remained unclear even to Godel in 1929.
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In (1929) Zermelo responded to the criticisms of his notion of "definite
property" by Fraenkel, Skolem, and von Neumann. Zermelo chose to
define "definite property," in effect, as any second-order prepositional
function built up from = and e—although he did not specify the axioms
or the semantics of his second-order logic. But in (1930) he was well aware
that this logic permitted him to prove that any standard model of Zermelo-
Fraenkel set theory without urelements consists of Va for some level of
Zermelo's cumulative type hierarchy if and only if a is a strongly inac-
cessible ordinal. This result holds in second-order logic, but it fails in first-
order logic—as later shown in (Montague and Vaught 1959).

Zermelo was dismayed by the uncritical acceptance of "Skolemism,
the doctrine that every mathematical theory, and set theory in particular,
is satisfiable in a countable model" (1931, 85). He responded by propos-
ing a powerful infinitary logic. It permitted infinitely long conjunctions
and disjunctions (having any cardinal for their length) and no
quantifiers—what is now called the prepositional part of L^, w. This was
by far the strongest infinitary logic considered up to that time.

Zermelo was also dissatisfied with Godel's Incompleteness Theorem,
and wrote to him for clarification. There followed a spirited exchange of
letters between the old set-theorist and the young logician. Zermelo, like
Skolem and many others, failed to distinguish clearly between syntax and
semantics. On the other hand, Zermelo insisted in these letters on extend-
ing the notion of proof sufficiently that every valid formula would be prov-
able. In his last published paper (1935), he extended the notion of rule
of inference to allow not only thew-rule but well-founded, partially
ordered strings of premises of any cardinality.

Zermelo's proposal about extending logic fell on deaf ears.20 Godel,
though he adopted Zermelo's cumulative type hierarchy, formulated his
own researches on set theory within first-order logic. Indeed, Godel's con-
structible sets were the natural fusion of first-order logic with Zermelo's
cumulative type hierarchy.

In December 1938, at a conference in Zurich on the foundations of
mathematics, Skolem returned again to the existence of countable models
for set theory and to Skolem's Paradox (1941, 37). On this occasion he
emphasized the relativity, not only of set theory, but of mathematics as
a whole. The discussion following Skolem's lecture revealed both interest
in and ambivalence about the Lowenheim-Skolem Theorem, especially
when Bernays commented:
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The axiomatic restriction of the notion of set [to first-order logic] does
not prevent one from obtaining all the usual theorems... of Cantorian
set theory.. . . Nevertheless, one must observe that this way of making
the notion of set (or that of predicate) precise has a consequence of
another kind: the interpretation of the system is no longer necessarily
unique.. . . It is to be observed that the impossibility of characterizing
the finite with respect to the infinite comes from the restrictiveness of
the [first-order] formalism. The impossibility of characterizing the
denumerable with respect to the nondenumerable in a sense that is in
some way unconditional—does this reveal, one might wonder, a cer-
tain inadequacy of the method under discussion here [first-order logic]
for making axiomatizations precise? (Bernays in [Gonseth 1941], 49-50)

Skolem objected vigorously to Bernays's suggestion and insisted that a
first-order axiomatization is surely the most appropriate.

In 1958, at a colloquium held in Paris, Skolem reiterated his views on
the relativity of fundamental mathematical notions and criticized Tarski's
contributions:21

It is self-evident that the dubious character of the notion of set renders
other notions dubious as well. For example, the semantic definition
of mathematical truth proposed by A. Tarski and other logicians presup-
poses the general notion of set. (Skolem 1958, 13)

In the discussion that followed Skolem's lecture, Tarski responded to this
criticism:

[I] object to the desire shown by Mr. Skolem to reduce every theory
to a denumerable model.. . . Because of a well-known generalization
of the Lowenheim-Skolem Theorem, every formal system that has an
infinite model has a model whose power is any transfinite cardinal given
in advance. From this, one can just as well argue for excluding
denumerable models from consideration in favor of nondenumerable
models. (Tarski in [Skolem 1958], 17)

11. Conclusion

As we have seen, the logics considered from 1879 to 1923—such as those
of Frege, Peirce, Schroder, Lowenheim, Skolem, Peano, and Russell—
were generally richer than first-order logic. This richness took one of two
forms: the use of infinitely long expressions (by Peirce, Schroder, Hilbert,
Lowenheim, and Skolem) and the use of a logic at least as rich as second-
order logic (by Frege, Peirce, Schroder, Lowenheim, Peano, Russell, and
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Hilbert). The fact that no system of logic predominated—although the
Peirce-Schroder tradition was strong until about 1920 and Principia
Mathematica exerted a substantial influence during the 1920s and 1930s—
encouraged both variety and richness in logic.

First-order logic emerged as a distinct subsystem of logic in Hilbert's
lectures (1917) and, in print, in (Hilbert and Ackermann 1928). Never-
theless, Hilbert did not at any point regard first-order logic as the proper
basis for mathematics. From 1917 on, he opted for the theory of types—
at first the ramified theory with the Axiom of Reducibility and later a
version of the simple theory of types (a>-order logic). Likewise, it is inac-
curate to regard what Ldwenheim did in (1915) as first-order logic. Not
only did he consider second-order propositions, but even his first-order
subsystem included infinitely long expressions.

It was in Skolem's work on set theory (1923) that first-order logic was
first proposed as all of logic and that set theory was first formulated within
first-order logic. (Beginning in [1928], Herbrand treated the theory of types
as merely a mathematical system with an underlying first-order logic.) Over
the next four decades Skolem attempted to convince the mathematical com-
munity that both of his proposals were correct. The first claim, that first-
order logic is all of logic, was taken up (perhaps independently) by Quine,
who argued that second-order logic is really set theory in disguise (1941,
144-45). This claim fared well for a while.22 After the emergence of a
distinct infinitary logic in the 1950s (thanks in good part to Tarski) and
after the introduction of generalized quantifiers (thanks to Mostowski
[1957]), first-order logic is clearly not all of logic.23 Skolem's second claim,
that set theory should be formulated in first-order logic, was much more
successful, and today this is how almost all set theory is done.

When Godel proved the completeness of first-order logic (1929, 1930a)
and then the incompleteness of both second-order and co-order logic (1931),
he both stimulated first-order logic and inhibited the growth of second-
order logic. On the other hand, his incompleteness results encouraged the
search for an appropriate infinitary logic—by Carnap (1935) and Zermelo
(1935). The acceptance of first-order logic as one basis on which to for-
mulate all of mathematics came about gradually during the 1930s and
1940s, aided by Bernays's and Godel's first-order formulations of set
theory.

Yet Maltsev (1936), through the use of uncountable first-order lan-
guages, and Tarski, through the Upward Lowenheim-Skolem Theorem
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and the definition of truth, rejected the attempt by Skolem to restrict logic
to countable first-order languages. In time, uncountable first-order
languages and uncountable models became a standard part of the reper-
toire of first-order logic. Thus set theory entered logic through the back
door, both syntactically and semantically, though it failed to enter through
the front door of second-order logic.

Notes
1. Peano acknowledged (1891, 93) that his postulates for the natural numbers came from

(Dedekind 1888).
2. Peirce's use of second-order logic was first pointed out by Martin (1965).
3. Van Heijenoort (1967, 3; 1986, 44) seems to imply that Frege did separate, or ought

to have separated, first-order logic from the rest of logic. But for Frege to have done so
would have been contrary to his entire approach to logic. Here van Heijenoort viewed the
matter unhistorically, through the later perspectives of Skolem and Quine.

4. There is a widespread misconception, due largely to Russell (1919, 25n), that Frege's
Begriffsschrift was unknown before Russell publicized it. In fact, Frege's book quickly received
at least six reviews in major mathematical and philosophical journals by researchers such
as Schroder in Germany and John Venn in England. These reviews were largely favorable,
though they criticized various features of Frege's approach. The Begriffsschrift failed to
persuade other logicians to adopt Frege's approach to logic because most of them (Schro'der
and Venn, for example) were already working in the Boolean tradition. (See [Bynum 1972,
209-35] for these reviews, and see [Nidditch 1963] on similar claims by Russell concerning
Frege's work in general.)

5. Frege pointed this out to Hilbert in a letter of 6 January 1900 (Frege 1980a, 46, 91)
and discussed the matter in print in (1903b, 370-71).

6. The suggestion that Sommer may have prompted Hilbert to introduce an axiom of
continuity is due to Jongsma (1975, 5-6).

7. Forder, in a textbook on the foundations of geometry (1927, 6), defined the term "com-
plete" to mean what Veblen called "categorical" and argued that a categorical set of ax-
ioms must be deductively complete. Here Forder presupposed that if a set of axioms is con-
sistent, then it is satisfiable. This, as Gd'del was to establish in (1930a) and (1931), is true
for first-order logic but false for second-order logic. On categoricity, see (Corcoran 1980,
1981).

8. (Frege 1980a, 108). In an 1896 article Frege wrote: "I shall now inquire more closely
into the essential nature of Peano's conceptual notation. It is presented as a descendant of
Boole's logical calculus but, it may be said, as one different from the others . . . . By and
large, I regard the divergences from Boole as improvements" (Frege 1896; translation in
1984, 242). In (1897), Peano introduced a separate symbol for the existential quantifier.

9. (Frege 1980a, 78). Nevertheless, Church (1976, 409) objected to the claim that Frege's
system of 1893 is an anticipation of the simple theory of types. The basis of Church's objec-
tion is that for "Frege a function is not properly an (abstract) object at all, but is a sort
of incompleted abstraction." The weaker claim made in the present paper is that Frege's
system helped lead Russell to the theory of types when he dropped Frege's assumption that
classes are objects of level 0 and allowed them to be objects of arbitrary finite level.

10. Russell in (Frege 1980a, 147; Russell 1903, 528). See (Bell 1984) for a detailed analysis
of the Frege-Russell letters.

11. Three of these approaches are found in (Russell 1906): the zigzag theory, the theory
of limitation of size, and the no-classes theory. In a note appended to this paper in February
1906, he opted for the no-classes theory. Three months later, in another paper read to the
London Mathematical Society, the no-classes theory took a more concrete shape as the
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substitution^ theory. Yet in October 1906, when the Society accepted the paper for publica-
tion, he withdrew it. (It was eventually published as [Russell 1973].) The version of the theory
of types given in the Principles was very close to his later no-classes theory. Indeed, he wrote
that "technically, the theory of types suggested in Appendix B [1903] differs little from the
no-classes theory. The only thing that induced me at that time to retain classes was the technical
difficulty of stating the propositions of elementary arithmetic without them" (1973, 193).

12. Hilbert's courses were as follows: "Logische Prinzipien des mathematischen Denkens"
(summer semester, 1905), "Prinzipien der Mathematik" (summer semester, 1908), "Elemente
und Prinzipienfragen der Mathematik" (summer semester, 1910), "Einige Abschnitte aus
der Vorlesung tiber die Grundlagen der Mathematik und Physik" (summer semester, 1913),
and "Prinzipien der Mathematik und Logik" (winter semester, 1917). A copy of the 1913
lectures can be found in Hilbert's Nachlass in the Handschriftenabteilung of the Nieder-
sachsische Staats- und Universitatsbibliotek in GOttingen: the others are kept in the "Gift-
schrank" at the Mathematische Institut in GOttingen. Likewise, all other lecture courses given
by Hilbert and mentioned in this paper can be found in the "Giftschrank."

13. See (Hilbert 1917, 190) and (Hilbert and Ackermann 1928, 83). The editors of Hilbert's
collected works were careful to distinguish the Principle of Mathematical Induction in (Hilbert
1922) from the first-order axiom schema of mathematical induction; see (Hilbert 1935,176n).
Herbrand also realized that in first-order logic this principle becomes an axiom schema (1929;
1930, chap. 4.8).

14. The course was entitled "Logische Grundlagen der Mathematik."
15. "Logische Grundlagen der Mathematik," a partial copy of which is kept in the univer-

sity archives at GOttingen. On the history of the Axiom of Choice, see (Moore 1982).
16. Bernays also wrote about second-order logic briefly in his (1928).

18. See, for example, (van Heijenoort 1967, 230; Vaught 1974, 156; Wang 1970, 27).
19. The recognition that Skolem in (1920) was primarily working in Lw is due to

Vaught (1974, 166). ''
20. For an analysis of Zermelo's views on logic, see (Moore 1980, 120-36).
21. During the same period Skolem (1961, 218) supported the interpretation of the theory

of types as a many-sorted theory within first-order logic. Such an interpretation was given
by Gilmore (1957), who showed that a many-sorted theory of types in first-order logic has
the same valid sentences as the simple theory of types (whose semantics was to be based
on Henkin's notion of general model rather than on the usual notion of higher-order model).

22. See (Quine 1970, 64-70). For a rebuttal of some of Quine's claims, see (Boolos 1975).
23. For the impressive body of recent research on stronger logics, see (Barwise and Fefer-

man 1985).
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Added in Proof:
In a recent letter to me, Ulrich Majer has argued that Hermann Weyl was the first to

formulate first-order logic, specifically in his book Das Kontinuum (1918). This is too strong
a claim. I have already discussed Weyl's role in print (Moore 1980, 110-111; 1982, 260-61),
but some further comments are called for here.

It is clear that Weyl (1918, 20-21) lets his quantifiers range only over objects (in his
Fregean terminology) rather than concepts, and to this extent what he uses is first-order
logic. But certain reservations must be made. For Weyl (1918, 19) takes the natural numbers
as given, and has in mind something closer to co-logic. Moreover, he rejects the unrestricted
application of the Principle of the Excluded Middle in analysis (1918, 12), and hence he
surely is not proposing classical first-order logic. Finally, one wonders about the interac-
tions between Hilbert and Weyl during the crucial year 1917. What conversations about foun-
dations took place between them in September 1917 when Hilbert lectured at Zurich and
was preparing his 1917 course, while Weyl was finishing Das Kontinuum on a closely related
subject?
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Harold Edwards

Kronecker's Place in History

At a conference on the history and philosophy of mathematics, it seems
especially appropriate to talk about Kronecker's place in history. My ob-
jective is to show that the prevalence of one philosophical viewpoint in
contemporary mathematics has had a distorting influence on the way that
that place—and with it several major issues in the history and philosophy
of mathematics—have been viewed in our time.

Consider the story of Georg Cantor (1845-1918) and Leopold Kronecker
(1823-91) as it is told by present-day writers:

Cantor was the founder of set theory—he even gave it is name. As such,
he was the first to speak the language of modern mathematics and the
first to deal rigorously with the transfinite entities that are the central no-
tions of most of mathematics. His creation took great courage and had
to overcome the prejudices of many generations of mathematicians who
had regarded the notion of a completed infinite as a symptom of unrig-
orous thinking at best and, more likely, of complete nonsense. Chief
among Cantor's opponents was Kronecker, "the uncrowned king of the
German mathematical world" of those days. Kronecker was small in
stature, but large in power. He was a wealthy man who could indulge in
mathematics as a hobby, and he was the sort of difficult and prejudiced
man who could make life unpleasant for those around him. He held ex-
treme views on the foundations of mathematics, insisting that all of
mathematics be based on the natural numbers, a limitation that would
obviously nullify not only a large part of the mathematics of his own time
but also almost all that has been done since. His combativeness and his
fanaticism poisoned his relations with his great contemporary in Berlin,
Karl Weierstrass, and caused Weierstrass great unhappiness in his last
years. But the primary victim of Kronecker's attacks was Cantor, a former
student in Berlin, who, from his outpost in Halle, was trying to win that
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recognition for his theories. Cantor suffered a severe depression in 1884,
verging on a nervous breakdown. One cannot determine a precise cause
for such a breakdown, but he was under the dual strain of trying to solve
the problem of the continuum hypothesis and of trying to withstand the
opposition of Kronecker to his entire work. In the end, Cantor prevailed,
although the effort nearly cost him his sanity. Kronecker died in 1891 and
the torch of mathematics passed to a new generation, headed by David
Hilbert, which recognized the true value of Cantor's theory and brought
about the dawning of the modern age of mathematics, based on Cantor's
firm foundation.

I'm sure you recognize the characters and the story. I would like you
to consider, however, another interpretation of that controversy of a hun-
dred years ago. Even Kronecker's enemies admit he was a superb
mathematician, and he has many impressive friends. In the twentieth cen-
tury, such outstanding mathematicians as Erich Hecke, Carl Ludwig Siegel,
and Andre Weil have studied Kronecker's works intensively and have built
on them in their own work. As far as Kronecker's personality is concern-
ed, I have been able to find little evidence of his alleged hostility and ag-
gressiveness. Although he was clearly a man who had strong opinions,
there is every indication that his manners and his morals were thoroughly
gentlemanly. I would rather accept the genial picture of him given by
Frobenius in his Gedaechtnisrede than the ones given by E. T. Bell and
Constance Reid. In the philosophy of mathematics, Kronecker's ideas have
undeniably been part of a minority view, but it is a view that has con-
tinued to have its proponents, including Henri Poincare, L. E. J. Brouwer,
Hermann Weyl, and Errett Bishop. To have a name for the views that,
roughly speaking, these men had in common I will use Brouwer's term
"intuitionism," meaning the notion that mathematics must ultimately be
based on the irreducible intuition of counting, of the natural numbers as
a potentially infinite sequence.

As I understand it, the majority view rejects the intuitionistic views
primarily on pragmatic grounds. It is thought that intuitionism would
disallow too much of modern mathematics and would make that which
remained too fussy and complicated. Cantor said, "The essence of
mathematics lies in its freedom," and intuitionism is seen as a strait jacket.1

But it is hard to imagine that anyone, even Cantor, believed that the essence
of mathematics lay in its freedom. The essence of mathematics lies, rather,
in its truth, by which I mean its power to convince us of its correctness.
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If the use of transfinite logic diminishes its power to convince, and if,
as the intuitionists maintain, virtually all of classical mathematics can be
given an intuitionist foundation, then the use of transfinite logic in
mathematics is both unwarranted and undesirable.

Kronecker believed that "someday people will succeed in 'arithmetiz-
ing' all of mathematics, that is, in founding it on the single foundation
of the number-concept in its narrowest sense."2 He said that this was his
goal and that if he did not succeed then surely others who came after him
would. This view inevitably put him in opposition not only to Cantor,
whose "sets" could only appear to Kronecker as figments, but also to
his colleague Weierstrass, who likewise had undertaken the "arithmetiza-
tion of analysis." We have seen in our own time in the example of Errett
Bishop how an outstanding mathematician can arrive at views of
mathematics that place him, like it or not, in complete opposition to his
colleagues, however much he might respect them. Quite simply, there is
no way for a Bishop or a Kronecker to say politely, "I'm sorry, but your
proofs do not prove what you think they do, and for you to convince me
that your mathematics is worth my time you have to rethink in a fun-
damental way all you have done and show me that you have understood
and can answer my objections. Meanwhile, I will pursue what seems to
me a much more worthwhile project, that of establishing all of mathematics
on a firm foundation, something I am confident I can do."

Kronecker, unlike Bishop, published nothing on his constructive pro-
gram. He was engrossed in the last years of his life with his work on the
theory of algebraic numbers and algebraic functions, and his intention
to give an intuitionist development of the foundations of mathematics was
never, as far as we know, seriously begun. Nonetheless, his thinking on
foundational questions is evident in much of his work on mathematics
proper, and, in my opinion, it is worthy of the highest respect. Therefore,
I think it would give a truer picture of what happened between him and
Cantor if the story were told in something like the following way.

The Weierstrass school, of which Cantor was a member, found that,
in developing the theory of functions and in following up Cauchy's ef-
forts to put the calculus on a firm foundation, they needed to use
arguments dealing with infinity such as those that had been introduced
by Bolzano earlier in the nineteenth century. Cantor went even further,
completely disregarding the taboo against competed infinities and deal-
ing with infinite collections that he called Menge or sets. Kronecker believed
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that none of these ways of dealing with infinity was acceptable or indeed
necessary. He had a grand conception that all of mathematics would be
based on the intuition of the natural numbers, but he never carried this
conception to fruition. Naturally, Kronecker's denial of the validity of
Weierstrass's arguments deeply wounded Weierstrass, and their relations
went from great friendship in the early years to almost total alienation
in Kronecker's last years, even though Kronecker insisted, perhaps insen-
sitively, that a disagreement over mathematical questions should not af-
fect their personal relations. Cantor's reaction to Kronecker's opposition
was even stronger, in the first place because he was in a much weaker posi-
tion vis-a-vis Kronecker because of his youth and his position at a pro-
vincial university, and in the second place because Cantor's personality
contained a strain of paranoia that deeply disturbed at one time or another
his relations with many contemporaries other than Kronecker, including
such ostensible allies as Weierstrass, H. A. Schwarz, and G. Mittag-Leffler.
Still, Cantor's ideas were taken up by Dedekind (who had in fact an-
ticipated many of them) and Hilbert, and they became the basis of a new
mode of mathematics that proved very fruitful and has dominated
mathematics ever since, with only an occasional Brouwer or Weyl to op-
pose it.

I believe that the pendulum is beginning to swing back Kronecker's way,
not least because of the appearance of computers on the scene, which has
fostered a great upsurge of algorithmic thinking. Mathematicians are more
and more interested in making computational sense of their abstractions.
If I am right in thinking that Kronecker has been undervalued and
caricatured by historians because they have been following the lead of the
philosophers of mathematics and of mathematicians themselves, Kro-
necker's place in history may be about to improve considerably.

I will do what I can to bring this about. Surely one of the principal
reasons Kronecker is so little studied today (except, it seems to me, by
the best mathematicians) is that his works are so very difficult to read.
Jordan very aptly called them in 1870 "1'envie et le desespoir des geome-
tres."3 This shows that the difficulty we experience today in reading
Kronecker's works is not merely the difficulty of reading an old text writ-
ten in an outdated terminology. Kronecker's difficult style was difficult
for his contemporaries, too. I have been working at it for many years,
especially his Kummer Festschrift entitled "Grundzuege einer arith-
metischen Theorie der algebraischen Groessen."4 I feel my efforts have
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been rewarded and that I will soon be able to publish papers that will con-
vey something of what Kronecker was doing and that will, I hope, awaken
the interest of others in studying Kronecker.

Let me conclude by giving a few indications of what it is that I find
so valuable in Kronecker's works and how it relates to the history and
philosophy of mathematics. It is said of Kronecker, as it is of Brouwer,
that he succeeded in his mathematics by ignoring his intuitionist principles,
but I think this allegation is completely untrue in both cases. Kronecker's
principles permeate his mathematics—the problems he studies, the goals
he sets for himself, the way he structures his theories. One of the parts
of his Kummer Festschrift that I have studied most is his theory of what
he calls "divisors," which is a first cousin of Dedekind's theory of
"ideals." Two ways in which Kronecker's theory differs from Dedekind's
show the difference in philosophy between the two men.

First, Dedekind regarded as the principal task of the theory the defini-
tion of "ideals" in such a way that the theorem on unique factorization
into primes, which is false for algebraic numbers, becomes true for ideals.
Kronecker took an altogether different view. He noted that the notion
of "prime" was relative to the field of numbers under consideration and
that if the field was extended things that had been prime might no longer
be. For this reason, the theorem on unique factorization into primes prop-
erly belongs to a later part of the theory, after the basic concepts have
been defined in a way that is independent of the field under considera-
tion. Those of you who have studied algebraic number theory will un-
doubtedly have studied it using Dedekind's ideals and will remember that
when you go from one field to another you have to manipulate the ideals—
intersecting them with the lower field if the new field is smaller and tak-
ing the ideal in the larger field they generate if the new field is larger. In
Kronecker's theory there is none of this. Divisors are defined and handled
in such a way that nothing changes if the field is extended or if it is
contracted.

Second, Kronecker defined his divisors, in essence, by telling how to
compute with them. In Dedekind's terms, this amounts to giving an
algorithm for determining, given a set of generators of an ideal, whether
a given element of the field is or is not in the ideal. Nothing of the kind
enters in Dedekind's theory because for Dedekind the definition was com-
plete and satisfactory once the ideal was defined as a set, albeit an in-
finite set with no criterion for membership. For Kronecker, such a defini-
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tion was by no means unthinkable, but it was certainly undesirable, and
you can be sure he would settle for it only as a last resort. These are just
two ways in which Kronecker's theory was affected—and improved—by
his philosophy.

I have said above that, as far as we know, Kronecker never made a
serious beginning in writing out his proposals for an intuitionist founda-
tion of mathematics. This is not to say, however, that his hope that either
he or a successor of his would do this was mere talk. I believe he had a
unified view of all branches of mathematics and had, in many instances,
fully thought-out ideas on how to base them on intuitionist principles.
Had he devoted more time to this task and, I must add, had he been a
better expositor, intuitionist ideas might not have had to endure a cen-
tury of ostracism. It is my hope that this ostracism is now drawing to a
close and that if not I then one of my successors will open the eyes of
the mathematical world to the wealth of ideas hidden between the covers
of Kronecker's collected works.

Notes
1. G. Cantor, Gesammelte Abhandlugen (Berlin: Lokay, 1932), p. 182.
2. L. Kronecker, Werke, vol. 3 (Leipzig: Teubner, 1899), p. 253.
3. C. Jordan, Introduction to "Traite des substitutions et des equations algebriques,"

Paris, 1870.
4. Kronecker's Werke was published in five volumes by Teubner, Leipzig, between 1895

and 1930. This paper is in vol. 2.
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Felix Klein and

His "Erlanger Programm"

1. Introduction

Felix Klein's "Erlanger Programm" (E.P.), listed in our references as
(Klein 1872), is generally accepted as a major landmark in the mathematics
of the nineteenth century. In his obituary biography Courant (1925) termed
it "perhaps the most influential and widely read paper in the second half
of the nineteenth century." Coolidge (1940, 293) said that it "probably
influenced geometrical thinking more than any other work since the time
of Euclid, with the exception of Gauss and Riemann."

In a thoughtful recent article, Thomas Hawkins (1984) has challenged
these assessments, pointing out that from 1872 to 1890 the E.P. had a
very limited circulation; that it was "Lie, not Klein" who developed the
theory of continuous groups; that "there is no evidence.. .that Poincare
ever studied the Programm;" that Killing's classification of Lie algebras
(later "perfected by Cartan") bears little relation to the E.P.; and that
Study, "the foremost contributor to . . . geometry in the sense of the
Erlanger Programm,.. .had a strained and distant relationship with
Klein."

Our paper should be viewed as a companion piece to the study by
Hawkins. In our view, Klein's E.P. did have a major influence on later
research, including especially his own. Moreover, Klein was the chief heir
of five outstanding Germanic geometers, all of whom died within the
decade preceding the E.P.: Mobius (1790-1868), Steiner (1796-1869), von
Staudt (1798-1867), Plucker (1801-68), and Clebsch (1833-72).

Klein's close friendship with Lie at the time of the E.P. played an im-
portant role in the careers of both men. There is much truth in the fre-
quently expressed idea that Klein's studies of 'discontinuous' groups were
in some sense complementary to Lie's theory of 'continuous' groups
(Coolidge 1940, 304). Less widely recognized is the fact that in the E.P.
and related papers, Klein called attention to basic global aspects of
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geometry, whereas Lie's theorems were purely local. After reviewing these
and other aspects of Klein's relationship to Lie, we will trace the influence
of his ideas on Study, Hilbert, Killing, E. Cartan, and Hermann Weyl.

In discussing these developments, we have tried to follow a roughly
chronological order. We hope that this will bring out the well-known evolu-
tion of Klein's scientific personality, from that of a brilliant, creative young
geometer to that of a farsighted organizer and builder of institutions in
his middle years, and finally to that of a mellow elder statesman or
"doyen" and retrospective historian of ideas.1

2. Klein's Teachers

Klein's E.P. surely owes much to his two major teachers: Pliicker and
Clebsch. Already as a youth of 17, Klein became an assistant in Plticker's
physics laboratory in Bonn. Though primarily a physicist, Pliicker was
also a very original geometer. Forty years earlier, he had written a brilliant
monograph on analytic projective geometry (Analytisch-geometrische Ent-
\vickelungen, 1828, 1832), which established the use of homogeneous coor-
dinates and the full meaning of duality.

Still more original (and more influential for Klein) was Pliicker's
"geometry of lines," first proposed in 1846. Pliicker proposed taking the
self-dual four-dimensional manifold of all lines in R3 as the set of basic
"elements" of geometry. In it, the sets of all "points" and of all "planes"
can be defined as what today would be called three-dimensional algebraic
varieties. Klein's Ph.D. thesis (directed by Pliicker) and several of his early
papers dealt with this idea.

Shortly before Klein finished his thesis when still only 19, Pliicker died.
Clebsch, who had just gone to Gottingen from Giessen, invited Klein to
join him there soon after. Barely 35 himself, Clebsch became Klein's sec-
ond great teacher. After making significant contributions to the mechanics
of continua (his book on elastic bodies was translated into French and
edited by St. Venant), Clebsch had introduced together with his Giessen
colleague Gordan (1831-1912) the invariant theory of the British
mathematicians Boole (1815-64), Cayley (1821-95), and Sylvester (1814-97).

Clebsch assigned to Klein the task of completing and editing the sec-
ond half of Pliicker's work on the geometry of lines (Neue Geometrie des
Raumes gegrundet auf die Betrachtung der geraden Linie als
Raumelemente). As we shall see, Klein also absorbed from Clebsch both
the concept of geometric invariant and Clebsch's interest in the "geometric
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function theory" of Riemann, whose intuitive approach contrasted sharply
with the uncompromising rigor of Weierstrass.

Soon after coming to Gottingen from Giessen, Clebsch founded the
Mathematische Annalen (M.A.) together with Carl Neumann in Leipzig.
The first volume of this journal contained six papers by Clebsch and Gor-
dan, along with others by Beltrami, Bessel, Brill, Cayley, Hankel, Jordan,
Neumann, Sturm, Weber, and Zeuthen. Of these, Jordan's "Commen-
taire sur Galois" (151-60) and his paper on Abelian integrals (583-91) are
especially relevant for the E.P., as forerunners of his 667-page treatise
Traite des substitutions, which appeared a year later. In the preface of
this great classic on the theory of substitution groups, Jordan thanked
Clebsch for explaining how to "attack the geometric problems of Book
III, Chap. Ill, the study of Steiner groups, and the trisection of hyperellip-
tic functions."

In 1869-70, Klein went to Berlin, against the advice of Clebsch.
Although he found its intellectual atmosphere, dominated by Weierstrass
and Kronecker, very uncongenial, it was there that Klein met two fellow
students who deeply influenced his later development.

The first of these was Stolz. In his (EdM, vol. 1, 149), Klein states that
he had been greatly impressed by Cayley's sententious dictum that
"descriptive [i.e., projective] geometry is all geometry." Continuing, Klein
states:

In 1869, I had read Cayley's theory of metric projective geometry in
Salmon's Conies, and heard for the first time about the work of
Lobachewsky-Bolyai through Stolz in the winter of 1869-70. Although
I understood very little of these indications, I immediately had the idea
that there must be a connection between the two. (EdM, vol. 1, 151-52)

Klein then recalls a lecture he gave at Weierstrass's seminar on Cayley's
Massbestimmung in projective geometry. He kept to himself his vaguely
conceived thoughts about the connection of Cayley's work with non-
Euclidean geometry, realizing how quickly the meticulous Weierstrass
would have dismissed their vagueness, and how much he would have dis-
liked their emphasis on the projective approach to geometry.2

Most important, it was during this visit to Berlin that Klein met Lie.
In his own words (GMA, vol. 1, 50):

The most important event of my stay in Berlin was certainly that, toward
the end of October, at a meeting of the Berlin Mathematical Society,

147



148 Garrett Birkhoff and M. K. Bennett

I made the acquaintance of the Norwegian, Sophus Lie. Our work had
led us from different points of view finally to the same questions, or
at least to kindred ones. Thus it came about that we met every day and
kept up an animated exchange of ideas. Our intimacy was all the closer
because, at first, we found very little interest in our geometrical con-
cerns in the immediate neighborhood.

3. Five Dazzling Years
The next five years were ones of incredible achievement for the young

Klein. During this time he wrote 35 papers and supervised seven Ph.D.
theses. It was while carrying on these activities that he wrote his E.P.,
and so it seems appropriate to recall some of his more important contem-
porary contacts.

About his continuing interactions with Stolz, Klein states:

In the summer of 1871,1 was again with Stolz.... He familiarized me
with the work of Lobachewsky and Bolyai, as well as with that of von
Staudt. After endless debates with him, I finally overcame his resistance
to my idea that non-Euclidean geometry was part of projective
geometry, and published a note about it in.. .the Math. Annalen (1871).
(EdM, vol. 1, 152)

After a digression on the significance of Gaussian curvature, Klein next
recalls the background of his second paper on non-Euclidean geometry
(Klein 1873). In it, Klein

investigated the foundations of von Staudt's [geometric] system, and
had a first contact with modern axiomatics.... However, even this ex-
tended presentation did not lead to a general clarification.... Cayley
himself mistrusted my reasoning, believing that a "vicious circle" was
buried in it. (EdM, vol. 1, 153)

The connections of Clebsch with Jordan, whose monumental Traite
des substitutions had just appeared, surely encouraged Klein to study
groups and to go to Paris in 1870, where his new friend Lie rejoined him;
the two even had adjacent rooms. In Paris, the two friends again talked
daily, and also had frequent discussions with Gaston Darboux (1842-1917).
There they extended an old theorem of Chasles, which states that
orientation-preserving rigid transformations of space are, in general, 'screw
motions' of translation along an axis and rotation about it. This theorem
had been previously extended by Olinde Rodrigues (see Gray 1980) and
Jordan (1869). Klein and Lie wrote two joint notes in Paris, the publica-
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don of which in the Comptes Rendus was sponsored by Chasles. They
also published a third note in the Berliner Monatshefte of December 1870;
by this time, however, the Franco-Prussian war had forced Klein to return
to Germany.

The following year, Klein and Lie published two more joint papers in
the Mathematische Annalen (GMA XXV and XXVI), of which the se-
cond (M.A. 4: 54-84) dealt with "systems of plane curves, transformed
into each other by infinitely many permutable linear transformations."
Thus it was around this time that Klein and Lie began to give a new direc-
tion to geometry, by emphasizing the importance for it of continuous
groups, about which very little had been published previously (see §8).

It was also in 1871 that Lie's dissertation, Over en Classe Geometriske
Transformatione, appeared. Originally published in Norwegian, a Ger-
man translation (by Engel) is in (LGA, vol. 1, XI). It refers repeatedly
to Pliicker and cites related publications of Klein (LGA, vol. 1, 106, 127,
145, 149). Although seven years older than Klein, Lie had finished his
dissertation two years later.

The following year (1872) was especially momentus for Klein. Partly
through the influence of Clebsch, he obtained a full professorship at
Erlangen when still only 23! It was for his inauguration to this chair that
Klein wrote the E.P. Before it was finished, Clebsch died of diptheria at
the age of 39, and most of his students moved from Gottingen to Erlangen
to work with Klein. These students included Harnack, who later proved
a famous theorem in potential theory, and Lindemann, who later published
the first proof of the transcendence of TT. Klein immediately gave
Lindemann the task of writing Clebsch's unpublished lecture notes on
geometry, a task that it would take Lindemann fifteen years to complete.

Not only Clebsch and Pliicker, but also Mobius, Steiner, and von Staudt
had died in the five-year period of 1867-72. Thus by accident, Klein had
fallen heir to a great German tradition at age 23. The later sections of
our paper will explain how he met this challenge successfully, in a most
original and decisive way.

4. The "Erlanger Programm"

The E.P. was above all an affirmation of the key role played by groups
in geometry. The most authentic description of its background is contained
in Klein's prefatory notes to the relevant section of his Collected Papers
(GMA, vol. 1, 411-16). There Klein writes:
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In the following third part of the first volume of my Collected
Papers.. .are collected those involving the concept of a continuous
transformation group.
The... first two are joint publications with Lie in the summer of 1870
and the spring of 1871, on "W-curves."3

These were followed by my 1871 article "On Line and Metric
Geometry".... As in Lie's great work "On Line and Sphere Com-
plexes," new examples of continuous transformation groups were
treated in this paper.
In this connection my two papers on non-Euclidean geometry should
be cited.4

The E.P. itself.. .was composed in October, 1872. Two circumstances
are relevant. First, that Lie visited me for two months beginning
September 1. Lie, who on October 1 accompanied me to Erlangen...
had daily discussions with me about his new theory of first-order par-
tial differential equations (edited by me and published in the Gott.
Nachr. of October 30). Second, Lie entered eagerly into my idea of
classifying the different approaches to geometry on a group-theoretic
basis.

The E.P. should not be judged as a research paper; it was a
semitechnical presentation to the Erlangen philosophical faculty of ideas
about geometry that Klein had discussed with Lie; it was primarily the
exposition that was Klein's. The paper was published to fulfill an "obliga-
tion connected with Klein's appointment to the university" (Rowe 1983).
As a new full professor, he was expected to present his colleagues with
a printed exposition of some creative work. (In addition, he gave an oral
Antrittsrede presenting his views on mathematical education; see [Rowe
1985].)

Klein's "Comparative Consideration of Recent Developments in
Geometry," which was also intended to impress Clebsch, fulfilled this
obligation in a most brilliant and original way. Its first section announced
its main theme as follows (E.P., 67): "Given a manifold and a transfor-
mation group acting on it, to investigate those properties of figures
[Gebilde] on that manifold which are invariant under [all] transforma-
tions of that group." In today's language, Klein proposed studying the
concept of a homogeneous manifold: a structure [M,G] consisting of a
manifold M and a group G acting transitively on M. This contrasts sharply
with Riemann's concept of a structure [M;d] consisting of a manifold on
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which a metric d(p,q) is defined by a local distance differential
ds2 = ^gijdxidxj.

Two paragraphs later, Klein restated his proposal in a single terse
sentence: "Given a manifold, and a transformation group acting on it,
to study its invariants.'1'' Thus Klein was also proposing to apply to
geometry the concept of an 'invariant' that Clebsch, Jordan, and their
predecessors had previously applied to algebra, and there only to the full
linear group.

Klein began his essay by identifying each of the continuous groups of
geometric transformations that was associated with some branch of
geometry. Naturally, since the Euclidean group of rigid motions ("con-
gruences") was familiar to his readers, he discussed it first, calling it the
"Hauptgruppe" (chief group). Indeed, the importance of 'free mobility'
had already been stressed by Helmholtz and Riemann. He then moved
on to the larger projective group, the conformal group generated by in-
versions, the group of birational transformations leaving invariant the
singularities of algebraic varieties, which contained all of the preceding
groups, and the (still more general) group of all homeomorphisms leav-
ing the topology of a manifold or space invariant. Curiously, the E.P.
failed to mention the affine group and affine geometry, although Klein
would later (1908) devote the first section of his chapter on geometric
transformations in his Elementarmathematik vom Hoheren Standpunkt
aus to them. His failure to distinguish the group of homeomorphisms from
the groups of bijections and of diffeomorphisms is less surprising, since
Cantor's discovery that all Rn are bijective was still two years away.

Klein's audience surely did not notice these lapses. Indeed, his main
new concepts, those of 'equivalence' and 'invariance' under a given group
of transformations, are still hard to explain to novices today. One dif-
ficulty is that invariance and equivalence assume such a bewildering variety
of forms depending on the group involved. (See H. Weyl, The Classical
Groups, 23-26, and G. Birkhoff and S. Mac Lane, Survey of Modern
Algebra, §9.5, for two more 'modern' attempts to explain these concepts.)

However, the main thrust of the E.P. was very clear. Jordan's Traite
des substitutions had explained how the concept of a group of 'substitu-
tions', properly applied, determines which polynomial equations can be
solved by 'radicals'—i.e., by explicit formulas involving rational opera-
tions and taking of «-th roots. Klein showed similarly how the concept
of a continuous transformation group gives an objective basis for classi-
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fying geometric theories and theorems. His few readers and listeners must
have realized that they were being exposed to new and fundamental
perspectives, even if they barely understood them.

5. Klein and Geometry

In 1872, the E.P. was 20 years ahead of its time; it would take at least
that long for the new perspectives of Klein and Lie to gain general accep-
tance. (However, their ideas would take deep root; in fifty years it would
become commonplace to refer also to "metric," "projective," "affine,"
and "conformal" differential geometry; see §13.)

In the meantime, Klein's rapid rise to leadership in Germanic geometry
was based on his other writings. His preeminence rested on the impres-
sion he made on contemporaries, and not on what he might write for
posterity. The value of his distinction between the familiar Riemann sphere
(often associated with conformal geometry) and the elliptic plane, con-
sisting of the sphere with opposite points identified, was immediately
appreciated.

So was Klein's use of the name "elliptic geometry" for a manifold of
constant positive curvature, as distinguished from a "hyperbolic geometry"
for one having constant negative curvature, and "parabolic geometry"
for Euclidean geometry and its cylindrical and toroidal "space forms"
(Kline 1972, 913). (Not long after, du Bois-Reymond made an analogous
classification of differential equations into those of "elliptic," "hyper-
bolic," and "parabolic" type.)

Klein's observations stimulated the British mathematician W. K. Clif-
ford (1873) to call attention to the philosophical difference between local
and global homogeneity, which had been overlooked by Riemann and
Helmholtz. Clifford also called attention (as did Klein) to the connection
between Pliicker's line geometry and 'screws' (the Theorem of Chasles).
However, he died before he could develop these ideas very far, and Klein
would not return to them until 1890 (see §§7 and 8).

Klein also showed the logical incompleteness of von Staudt's path-
breaking introduction of coordinates into axiomatically defined "projec-
tive geometries," an observation that stimulated Liiroth and others to
clarify the assumptions underlying von Staudt's "algebra of throws."5

Although most mathematicians today would consider the E.P. as
primarily a contribution to the foundations of geometry, Klein did not
regard it as such, perhaps because in 1872 the concept of a continuous



FELIX KLEIN AND HIS "ERLANGER PROGRAMM" 753

group was so novel, and even the theory of invariants still a research fron-
tier. His prefatory remarks in his (GMA) about his contributions to the
foundations of geometry concentrate on the topics that we have discussed
above. By his own reckoning (GMA, vol. 1), Klein published ten papers
on the foundations of geometry, fourteen on line geometry (an interest
he had inherited from Pliicker), and nine on the E.P. (of which the first
was with Lie). He also lists (GMA, vol. 2) sixteen papers on intuitive
(Anschauliche) geometry; in addition, he wrote several books on geometry.
In particular, his Einleitung in die Hohere Geometric of 1893 gave a general
and quite comprehensive picture of the geometry of the day, and the sec-
ond volume of his Elementarmathematik vom Hoheren Standpunkt aus
(1908) was also devoted to geometry. But of all his geometrical contribu-
tions over the years, Klein himself apparently regarded the E.P. as his
"most notable achievement" (Young 1928, v).

6. Klein and Lie

The friendship formed by Klein and Lie in the unwelcoming atmosphere
of Berlin in 1869, renewed in Paris in 1870 and again in Erlangen in 1872,
proved invaluable for both men and for mathematics. We have already
observed that much of the inspiration for the E.P. stemmed from their
discussions during these years, and we shall now describe some of the less
immediate and more worldly benefits derived by Lie from this friendship.6

Whereas Klein had eloquently expressed, within months of conceiving
it, his idea that different branches of geometry were associated with in-
variance under different groups of transformations of underlying geometric
manifolds, Lie's deeper ideas would mature much more slowly. He would
spend the rest of his life in developing the intuitive concept of a 'continuous
group of transformations' into a powerful general theory and in applying
this concept to geometry and to partial differential equations.

Max Noether, in his obituary article (1900), described Lie's and Klein's
1869-70 sojourn in Berlin and the connections between the E.P. and Lie's
later work:

In the E.P. [we find expressed] for the first time the central role of
the [appropriate] transformation group for all geometrical investiga-
tions. . .and that, with invariant properties, there is always associated
such a group. . . . Lie, who had worked with the most varied groups,
but to whom the meaning of classification had remained foreign, found
the idea congenial from then on. (Noether 1900, 23-23)
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Noether called attention in a footnote to alterations made by Lie in several
of his 1872 articles, apparently as a result of Klein's new ideas.

During the decade 1872-82, Lie worked in isolation in Christiania (now
Oslo), encouraged almost exclusively by Klein and Adolf Mayer (1839-
1908). It was then that he published the striking fact that every finite con-
tinuous group ("Lie group" in today's terminology) acting on the line is
locally equivalent (ahnlich) to either the translation group of all functions
x •->• x + b, the affine group of all x •-»• ax + b, or the projective group of all
x»(ax+ b}/(cx + d), ad ^ be (LGA, vol. 5, 1-8; Gott. Nachr. 22 [1874]:
529-42). (For an annotated summary, see [Birkhoff 1973, 299-305]. Ac-
tually, the theorem is only true locally.)

Lie's thoughts at this time are revealed in a letter of 1873 to Mayer,
which states: "I have obtained most interesting results and I expect very
many more. They concern an idea whose origin may be found in my earlier
works with Klein: namely, to apply the concepts of the theory of substitu-
tions to differential equations" (LGA, vol. 5, 584). Four years later, Lie
determined locally (almost) all finite continuous groups acting transitive-
ly on a two-dimensional manifold, the next step toward determining all
the homogeneous manifolds (or "spaces") envisioned in the E.P.7

This was the third in a series of five definitive papers, published in Chris-
tiania in the years 1876-79, in which Lie laid the foundations of his theory
of continuous groups. The introduction to the first of these states in part
(LGA, vol. 5, 9):

I plan to publish a series of articles, of which the present one is the
first, on a new theory that I will call the theory of transformation
groups. The investigations just mentioned have, as the reader will notice,
many points of contact with several mathematical disciplines, especially
with the theory of substitutions,1 with geometry and modern manifold
theory,2 and finally also with the theory of differential equations.3

These points of contact establish connections between these former
separate fields.... I must prepare later articles to present the impor-
tance and scope of the new theory.
^ee Camille Jordan's Traite des substitutions (Paris, 1870). Compare
also Jordan's investigations of groups of motions.
2See various geometric works by Klein and myself, especially Klein's
[E.P.], which hitherto has perhaps not been studied sufficiently by
mathematicians.
3See my investigations on differential equations.
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To reach a wider mathematical audience, Lie summarized his new theory
of transformation groups in an 88 page paper (Lie 1880) published in Ger-
man (LGA, vol. 6,1, III). However, even after this, it took another decade
for Lie's ideas to be digested and their profound implications seen by most
mathematicians. Lie became discouraged, and it seems clear that he owed
much to Klein's continuing encouragement and insightful comments dur-
ing these years (Rowe 1985).

As we shall see in §7, it was thanks largely to Klein's initiative that
Lie obtained the cooperation of Friedrich Engel (1868-1941), the coauthor
of his magnum opus (and of his posthumous collected works). Without
Engel's expository cooperation, the dissemination of Lie's deep new ideas
and methods would probably have been much slower.

Lie's relationship with Klein as well as the value for Lie of the latter's
extensive correspondence with Mayer (much of it reproduced in [LGA])
has been described by Engel (1900). There Mayer is credited with per-
suading Clebsch of the value of Lie's new "integration method" (p. 37),
and Lie's exchange with Mayer is presented as an example of two
mathematicians "making the same discovery independently.. .and almost
simultaneously."

Engel went on to describe Lie's "invariant theory of contact transfor-
mations," which appeared almost immediately after the E.P. as a com-
pletely new theory, entirely due to Lie. On the other hand, like Max
Noether, he described Klein's idea that many domains of mathematics
could be presented as invariant theories of appropriate groups as new and
surprising to Lie.

Killing. Klein was also instrumental in establishing contact between Lie
and Wilhelm Killing (1847-1923), who was a contemporary of Lie and
Klein. As of 1884, Killing was groping toward concepts closely related
to those of Lie. Hawkins (1982, §2) has described Klein's benign interven-
tion as follows:

Shortly after Killing posted a copy of his Programmschrift to Felix Klein
in July of 1884, Klein informed him that its contents seemed to be closely
related to the theory of transformation groups of his friend, Sophus
Lie. . . .
Upon learning about Lie, Killing sent him a copy of his Programm-
schrift. ... Lie apparently did not respond to Killing's overture and
definitely did not reciprocate and send Killing some copies of his own
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work. . . . Lie quickly published a note in the Archiv [1884] in which
he showed how a theorem stated without proof by Killing in [1884] could
be derived from some of his previously published results.

Nevertheless, Killing was not discouraged, and with some help from Engel
(see §7), he persevered in his effort to classify Lie algebras.

7. Leipzig and Lie Groups

Among the first to appreciate Lie's theory of contact transformations
was Adolf Mayer at the University of Leipzig. Mayer had published papers
developing Lie's ideas from 1872 on, first on contact transformations and
then on Lie's methods for integrating differential equations invariant under
a group.

In 1876, Mayer in Leipzig and Klein (then in Munich) had taken over
from Carl Neumann the direction of the Mathematische Annalen, and
in 1882 Klein joined Mayer in Leipzig. In the next year, Engel wrote there
his inaugural dissertation Zur Theorie der Beruhrungstransformationen
(Teubner, 1883); in the following year, Klein and Mayer sent Engel to
Christiania to work with Lie. There Lie could inspire Engel, while Engel
could help the lonely and somewhat disorganized Lie to organize and write
up his profound discoveries in a systematic and readable form. Engel re-
called later that in 1883, apart from his old friends F. Klein and A. Mayer,
almost no one was interested in the group theory of which Lie was rightful-
ly very proud. In 1883, only Picard recognized the significance of groups
explicitly (offentlich) (Engel 1900, 42).8

Still later, Engel published (LGA, foreword to vol. 5) a vivid descrip-
tion of his year in Christiania with Lie, with whom he had "two conver-
sations daily." Engel saw that Lie's seventeen published papers gave only
a "very incomplete picture of the great buildings which he had in mind,"
and was inspired to "work with all his strengths" to bring them "as near
to completion as possible." Future historians of mathematics should find
Engel's careful analysis in this foreword of Lie's publications and Lie's
opinions about them invaluable. A similar remark applies to the introduc-
tion to (Engel and Faber 1932).

Whereas Engel's inaugural dissertation had been merely competent, his
Habilitationsschrift of 1885 (Teubner) showed genuine originality. In its
introduction, Engel wrote:9
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A long stay in Christiania gave me the opportunity, in personal exchange
with Sophus Lie, to study in depth [eingehend] his theory of continuous
transformation groups. Our common goal was to provide a coherent
presentation of this theory, my share of the work being essentially on-
ly expository. In the process, however, I also occupied myself with some
self-contained investigations in this area. My results will be explained
in the course of this article. At present, our intended coherent presen-
tation of the theory is not nearly finished... To understand what
follows would, therefore, require knowing quite a few of Lie's papers
on transformation groups. To minimize this difficulty, a brief sum-
mary will be given next to the principal concepts and theorems of Lie's
theory, insofar as they will be needed below.

One year later, and to the intense displeasure of Weierstrass, Klein ar-
ranged to be replaced by Lie at the University of Leipzig upon his depar-
ture for Gottingen. Lie's move to Leipzig, where he was with both Mayer
and Engel, proved to be most fruitful. It made it practical for Engel to
serve as Lie's disciple, a role that lasted until he finished acting as coeditor
with Paul Heegard of Lie's Collected Works (LGA) in 1924-34.

Indeed, the first volume of Lie-Engel was completed three years later,
and in 1889 Fr. Schur (1856-1932) gave the first rigorous treatment of the
abstract theory of (local) Lie groups. By 1893, all three volumes of Lie-
Engel had appeared, and the (local) theory of Lie groups was firmly
established.

In the meantime, Killing published his book Zur Theorie der Lie'schen
Transformationsgruppen (1886), in which he determined almost all sim-
ple Lie algebras (see Hawkins 1982). Its preface states:

Herr Klein kindly called my attention to the close connection between
my investigations and [earlier papers of Lie on finite continuous
transformation groups, their treatment by integration methods, and
contact transformations].
Now, at the time that my [1884] monograph appeared, I had begun
another work, which occupied me longer than I had initially expected.
After finishing this . . . I immediately began to study Lie's work.
There can be no doubt of Lie's priority [as regards many parts of my
earlier work]. I can only express my joy that the many-sided researches
of Lie have so essentially advanced the general theory [of homogeneous
spaces].
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Unfortunately, Lie was not happy in Leipzig, and there he became ex-
cessively jealous of possible rivals. Thus the introduction of the third
volume of Lie-Engel goes out of its way to assert that Lie was "not Klein's
student," but that "rather, the contrary was the case."10 Likewise, in a
paper reproduced in (LGA, vol. 2, 472-79), he takes pains to identify gaps
in the reasoning of de Tilly, Klein (M.A. 37: 364), Lindemann, Fr. Schur
(who had, on the contrary, actually rigorized Lie's somewhat cavalier dif-
ferentiability assumptions), Helmholtz, and Killing!

A turning point seems to have come when Lie was awarded the first
Lobachewsky Prize in 1893 for solving the Riemann-Helmholtz problem
(a celebrated problem, which, incidentally, Klein had suggested he work
on). Namely, Lie had shown that any ^-dimensional Riemannian manifold
admitting an n(n + l)/2-parameter group of rigid motions (the "free
mobility" condition of Helmholtz) is locally isometric to either Euclidean
«-space, the w-sphere, or the ^-dimensional "hyperbolic" geometry of
Lobachewsky-Bolyai. This classic local result of Lie stands in sharp con-
trast with Klein's continuing concern with the global Clifford-Klein pro-
blem, to which we will return in §8.

Appropriately, Klein was invited to write a suitable appreciation of Lie's
solution for the occasion of the prize presentation, which he did with his
usual imaginative, insightful style. His narrative contained, however, one
complaint: the presence of an unmotivated, and to Klein unnatural,
assumption of differentiability in the foundations of geometry.

Klein's complaint was given a positive interpretation by Hilbert. As
the fifth in his famous list of unsolved problems proposed at the 1900
International Mathematical Congress, Hilbert proposed proving that any
continuous (locally Euclidean) group was in fact an analytical group with
respect to suitable parameters. Whether this problem should be attributed
to Hilbert, Klein, or Lie, its successful solution took another 50 years,
and Klein's E.P. was at least one of its indirect sources (see [Birkhoff and
Bennett, forthcoming]).

8. Klein and Discontinuous Groups
Much as Lie found in invariance under continuous groups of transfor-

mations new ideas for integrating differential equations, Klein found in
discontinuous groups new ideas not only for solving algebraic problems
(as Jordan had before him), but also (later) for clarifying and extending
the 'geometric function theory' originated by Riemann and advanced by
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Clebsch. Indeed, already in 1875, Klein had supervised an Erlangen thesis
by Harnack on elliptic functions and another by Wedekind in the next
year entitled On the Geometric Interpretation of Binary Forms. A sum-
mary of Wedekind's thesis appeared (M.A. 9: 209-17),u immediately
preceded by a paper (pp. 183-208) in which Klein used the Schwarz reflec-
tion principle to construct Riemann surfaces from regular polygons on
the complex sphere. The special case of a rectangle, of course, leads to
the elliptic function sn z, whose Riemann surface is a torus.

On page 193 of this paper, Klein first associated the regular octahedron
with a biquadratic form, and then related the symmetric group of all per-
mutations of five letters to the regular icosahedron as follows: "The 15
planes that pass through the center of the icosahedron and four pairwise
antipodal vertices can be divided into 5 triples of orthogonal planes. The
15 lines in which these triples of planes intersect cut the sphere in 30 'doubly
counted' points."12

Discussions of this paper with Gordan stimulated Klein to write a se-
quel entitled "On the Icosahedron" (M.A. 12 [1877]: 503-60), in which
he "derived the theory of the quintic equation from geometric properties
of the icosahedron." This turned out to have interesting connections with
work of Jordan (see M.A. 11: 18) and Brioschi (M.A. 13: 109-60),13 stem-
ming from "Jacobi's beruhmte Aufsatze in 3ten and 4ten Bande von
Crelle's Journal" (ca. 1830).

Klein followed up these early efforts by a series of papers on elliptic
modular functions and related topics during the years 1877-84 (GMA, vol.
3, 3-316). Klein refers to "the special lectures that, during the years
1877-80,1 gave on number theory, elliptic functions, and algebraic equa-
tions, involving geometric group theory.. . . The audience included
Gierster, Dyck, Bianchi, and Hurwitz" (p. 5). These lecture were given
at the Technische Hochschule (now the Technische Universitat) in Munich,
for which Klein had left Erlangen in 1875. Thus in Munich Klein developed
his ideas about discontinuous groups and geometric function theory "in
a larger and more responsive circle of workers" (Courant 1925, 201).

It seems likely that Klein formed while in Munich the "genial idea"
of becoming, in Courant's words:

the pathfinder for the Mathematics and Mathematical Physics of the
fu ture . . . . In the depths of his soul,.. . he found the intuitive formula-
tion of geometrical connections congenial. Klein was the most painstak-
ing and effective apostle of Riemann's spirit... If mathematics can
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build higher today on Riemann's foundations in tranquil clarity, this
is thanks to Klein's special service. (Courant 1925, 202)

The connection of (periodic) trigonometric functions with the cylinder
and of doubly periodic elliptic functions with the torus is obvious. It was
apparently around 1880 that Klein first recognized analogous connections
between other automorphic functions and the hyperbolic plane. We will
return to this idea, which deserves a much more thorough historical study
than we have had time to make, in the next section.

It was also at about this time that Klein, after taking over the editor-
ship of the Mathematische Annalen with his friend A. Mayer, began to
have assistants, Gierster and Dyck being the first two. Both wrote doc-
toral theses under Klein's guidance in the years 1879-81, as did Hurwitz.
Dyck became coeditor of the M.A. in 1886, soon after becoming a pro-
fessor in Munich, and remained in that position until 1919 when Einstein
replaced him. (Hilbert had become coeditor in 1902). Dyck was also direc-
tor of the Technische Hochschule during 1900-1906 and 1919-25, receiv-
ing the title of von Dyck (the German pre-1918 equivalent of being
knighted) for his leadership.

Hurwitz went on to have an even more distinguished mathematical
career; his collected works are available in two volumes. His early work
shows clearly the influence of Klein's ideas, and his Funktionentheorie
(1929), coauthored by Courant, also reflects Klein's ideas about geometric
function theory, as seen in retrospect.

9. Klein and Poincare

For a decade after writing the E.P., Klein's brilliance seemed unrivaled.
By 1882 he had achieved leadership in geometry, with Gaston Darboux
(1842-1917) as his closest rival. Lie's reputation was not yet comparable.
Indeed, as we have seen, Klein was in 1882 in some sense Lie's patron,
a status that was later to rankle Lie. Klein was also gaining in reputation
as an analyst, through his contributions (and those of his students Hur-
witz and Dyck) to Riemann's 'geometric function theory'. Indeed, in 1882,
Teubner had already published Klein's first monograph on this subject.

Then suddenly, still in his early thirties, Klein became outshone by the
incredibly original and versatile French mathematician Henri Poincare
(1854-1912). Although only five years younger than Klein, Poincare was
nearly ten years his mathematical junior. Poincare had taken time off from
his studies to help his physician-father during the Franco-Prussian war;
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furthermore, it took longer to complete a doctorate in France than in Ger-
many. As a result, Poincare did not receive his Ph.D. from the Universi-
ty of Paris until 1879—ten years after Klein's degree was awarded.

Then, after two years in Caen, Poincare returned to Paris. There he
quickly published a series of notes on what are today called automorphic
functions,14 soon expanding on these notes in 1882-84 in a celebrated series
of papers published in the first five volumes of Acta Mathematica. Mor-
ris Kline, in his informative discussion of automorphic functions (Kline
1972, 726-29), reports that Kronecker had tried to dissuade Mittag-Leffler
from publishing Poincare's first paper for fear that "this immature and
obscure article would kill the journal" (p. 728).

In Poincare's own words, the story of his first major breakthrough was
as follows:

For fifteen days I strove to prove that there could not be any functions
like those I have since called Fuchsian functions.... One evening, con-
trary to my custom, I drank black coffee and could not sleep. Ideas
rose in crowds; I felt them collide until pairs interlocked, so to speak,
making a stable combination. By the next morning I had established
the existence of a class of Fuchsian functions, those which come from
the hypergeometric series: I had only to write out the results, which
took but a few hours. (Poincare 1907-8, 647-48)

Early on, Poincare also published (in M.A. 19: 553-64) a synopsis of
his ideas on the subject as of December 1881. This contains frequent
references to "fuchsian" and "kleinian" functions, and it was followed
by two short notes by Klein (M.A. 19: 565-68; 20: 49-51) on "functions
that reproduce themselves under linear transformations," to which Klein
would give their current name of "automorphic functions" in 1890. Of
special historical interest are Klein's editorial comments (M.A. 19: 564)
on Poincare's synopsis. He questioned the relevance of the work of Fuchs;
Poincare later explained this relevance.

Curiously, Poincare's "kleinian functions" refer to the parabolic case
to which Klein had contributed little; this was a historical accident. Poin-
care had been influenced by Fuchs's papers on solutions of (homogeneous)
linear differential equations in the complex domain before he became
aware of Klein's work, so he referred to "fuchsian functions" for the richer
hyperbolic case to the half-plane. Klein complained of the inap-
propriateness, so Poincare corrected his omission by later giving Klein's
name to a much less novel class of functions.
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It is clear that, at the time, Klein was having serious health problems
and that he suffered a real breakdown. Young (1928, vii-viii) attributes
the breakdown at least partially to "the antagonism he experienced at Leip-
zig" (at the hands of colleagues jealous of his rapid academic promotion).
Young (1928, vii) and Row (1985, 288) both attribute the breakdown to
overwork, aggravating an asthmatic condition. Young also reports that,
while suffering from asthma, Klein proved the theorem that he himself
"prized highest among his mathematical discoveries, known as the 'Grenz-
kreistheorem' in the theory of automorphic functions."

Whatever the cause and nature of his problems, these years marked
a turning point in Klein's career; he never regained the remarkable research
activity of his earlier years. However, his GMA lists sixteen theses writ-
ten at Leipzig under his direction, including those of Hurwitz (1881), Fine
and Fiedler (1885), and his nephew Fricke (1886).

10. Years of Transition

Klein's first major act after recovering from his breakdown was to
publish his famous book Das Ikosaeder (Klein 1884), which explained to
mathematicians at large some of the connections that he had discovered
between algebra, geometry (Euclidean and non-Euclidean), and analysis.
Two years later, he left Leipzig to join H. A. Schwarz (1843-1921) in
Gottingen.

In Gottingen, Klein continued to work on discontinuous groups. Es-
pecially, he constructed various new automorphic functions by multiple
Schwarz reflections in the edges of regular circular polygons ("fundamental
regions") and their images. In collaboration with his nephew Robert Fricke
(1861-1930), he wrote up his ideas in classic treatises on the elliptic modular
function and automorphic functions. The first of these is still studied to-
day because of its applications to algebraic number theory.

By 1890, Lie's profound results on continuous groups and Klein's con-
tinuing applications of discontinuous groups had stimulated Fano to
translate the E.P. into Italian. A French translation (by Fade) and an
English translation by Klein's American student M. Haskell soon follow-
ed. Klein's foreword to the English translation states that his E.P.

had but a limited circulation at f i rs t . . . . But. . . the general develop-
ment of mathematics has taken, in the meanwhile, the direction cor-
responding precisely to these views, and particularly since Lie has begun
the publication.. .of his Theorie der Transformationsgruppen (vol. I,
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1888, vol. II, 1890) it seems proper to give a wider circulation to my
Programme.

Klein's foreword to the German republication of the E.P. (M.A. 43
[1893]: 63-100) goes further, stating his desire "to include the collected
applications of the theory of manifolds... not only to geometry, but also
to mechanics and mathematical physics," and to work in "much mater-
ial. . .which has been added in the intervening 20 years, naturally Lie's
theory of continuous groups in particular, but also geometric connections
that are implicit in the theory of automorphic functions." However, he
concluded that this was simply too big a task.

American Influence. Klein's beneficial influence on American
mathematicians seems to have begun in 1883-85, when F. N. Cole from
Harvard and H. B. Fine from Princeton came to Leipzig (Archibald 1938,
100, 167). "There [Fine] attended lectures and seminars of Klein, Mayer,
Fr. Schur, Carl Neumann, and W. Wundt (philosophy)." He also "wrote
a thesis on a topic approved by Klein but suggested by Study, later one
of Fine's closest friends."15 After his return, Fine went on to lead the
development of Princeton into one of the world's greatest mathematical
centers. As regards Cole, Archibald states:

After two years under Klein at Leipzig, Cole spent the next three years
at Harvard, where his career as an undergraduate had been so brilliant.
Aglow with enthusiasm, he gave courses in modern higher algebra, and
in the theory of functions of a complex variable, geometrically treated,
as in Klein's famous course of lectures at Leipzig in 1881-82. He was
the first to open up modern mathematics to Prof. Osgood as a stu-
dent, who characterized the lectures as "truly inspiring." Another stu-
dent, M. Bocher, as well as nearly all members of the Department,
Profs. J. M. Peirce, B. O. Peirce and W. E. Byerly attended his lec-
tures. He received the doctor's degree from Harvard on a topic sug-
gested by Klei

A professor at Columbia for 31 years, Cole served as secretary to the
American Mathematical Society from 1896 to 1920.16

Before 1892 Klein had attracted a steady stream of American graduate
students to Gottigen. These included M. W. Haskell, M. Bocher, H. S.
White, H. D. Thompson, and E. B. van Vleck, three of whom later became
presidents of the American Mathematical Society. In 1893, Klein was
chosen by the German government to head a delegation sent to the Inter-
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national Congress held in Chicago in conjunction with the World's Fair.
One senses Klein's influence in the choice of those who presented papers.
These included Weber, Hurwitz, Study, Meyer, Netto, Max Noether,
Pringsheim, Fricke, Minkowski, and Hilbert (see Bulletin of the American
Mathematical Society [1893]: 15-20).

Klein was made honorary president of the congress and gave a special
series of lectures after it (Klein 1893b). These give a very readable account
of Klein's views about many of the topics we have been discussing. To
quote from W. F. Osgood's foreword to the 1911 edition: "His instinct
for that which is vital in mathematics is sure, and the light with which
his treatment illumines the problems here considered may well serve as
a guide for the youth who is approaching the study of the problems of
a later day."

11. Klein as a Leader

Meanwhile, in 1892, Schwartz left Gottingen to become the successor
of Weierstrass in Berlin. From then on, Klein's gift for leadership increas-
ingly dominated his activities. As Courant has written:

When Schwarz went to Berlin in 1892, giving Klein a free hand in Got-
tingen, there began a new period of activity, in which his organizational
involvement became more and more prominent.... The word organize
meant for Klein not ruling by power: it was a symbol of deep insight
and understanding. (Courant 1925, 207)

From that time until the outbreak of World War I, Klein was extraor-
dinarily influential.

His influence on American mathematics continued. Two more
Americans (F. S. Woods and V. Snyder) wrote Ph.D. theses under Klein's
at least nominal direction. Fine, Bocher, White, van Vleck, Woods, and
Snyder were all active for many years in the American Mathematical So-
ciety, and Klein's influence on Haskell, Bocher, and van Vleck in par-
ticular was considerable.

In addition, Klein was the key architect and organizer of: (i) a major
expansion in the importance of Gottingen as a center of mathematical ac-
tivity, (ii) the publication of the Enzyklopadie der Mathematischen
Wissenschaften (EMW), and (iii) various 'reforms' in the style, standards,
and substance of German mathematical education.

Klein and Gottingen. During these years, Klein was busy rebuilding Got-
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tingen, the work place of Gauss and Riemann, into a preeminent world
center of mathematics.17 One of his first activities was to organize an in-
ternational commission to fund a monument to Gauss and the physicist
W. Weber, who had collaborated in constructing an early telegraph. (It
was to honor the dedication of this monument that Hilbert, at Klein's
invitation, wrote his famous Grundlagen der Geometric [see §12].)

In 1895 Klein invited Hilbert to Gdttingen, and Hilbert accepted with
alacrity. Although Klein continued to give masterful advanced expository
lectures, Hilbert was soon attracting the lion's share of doctoral candidates
(see §12). Indeed, by 1900 Klein had become primarily a policy-maker and
elder statesman, although barely 50. In this role, Klein obtained govern-
mental and industrial support from an Institute of Applied Mathematics,
with Prandtl and Runge as early faculty members. Sommerfeld, at one
time his assistant and later coauthor with Klein of Die Kreisel ("The Top"),
was another link of Klein with applied mathematics and physics.18

Klein and Education. Already in his Antrittsrede (see §4), Klein had
expressed his concern about separation into humanistic and scientific
education, stating that: "Mathematics and those fields connected with it
are relegated to the natural sciences, and rightly so. . . . On the other hand,
its conceptual content belongs to neither of the two categories" (Rowe
1985, 135). Klein's later involvement with German educational policy-
making is described in (Pyenson 1983); in fact, Klein is the main subject
of two of its chapters.

Klein was a universalist who believed strongly in integrating pure with
applied mathematics, in the importance of both logic and intuition in
geometry, and in the importance of having high-school teachers who
understood and appreciated higher mathematics. Especially widely read
by high-school teachers were his 1895 lectures on Famous Problems in
Elementary Geometry, written for this purpose and translated into English,
French, and Italian. (See R. C. Archibald, American Mathematical Month-
ly 21 [1914]: 247-59, where various slips were carefully corrected.)

In 1908, Klein became the president of the International Mathematical
Teaching Commission. In this capacity he worked closely with the
American David Eugene Smith and the Swiss Henri Fehr to improve
mathematics education throughout the western world. As with other
cooperative enterprises, this one was ended by World War I.
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Klein and the Encyclopedia. One of Klein's most important legacies
to the mathematical world was the BMW, to which we referred above.
We have Young's first-hand description of Klein's rationale for his pro-
ject (Young 1928, xiii):

One day in the '90's the concept of the Enzyklopadie was formulated
by Klein in the presence of the writer: the progress of mathematics,
he said, using a favourite metaphor, was like the erection of a great
tower; sometimes the growth in height is evident, sometimes it remains
apparently stationary; those are the periods of general revision, when
the advance, though invisible from the outside, is still real, consisting
in underpinning and strengthening. And he suggested that such was
the then period. What we want, he concluded, is a general view of the
state of the edifice as it exists at present.

Klein himself edited the volume on mechanics.
Almost 35 years elapsed from the time Klein conceived his plan for an

encyclopedia, to be published in French as well as German, to its comple-
tion in the late 1920s with articles surveying advances of the preceding
two decades. From around 1905 to at least 1935, it truly lived up to its
name. Not surprisingly, Fano wrote for it an article on "Continuous
Groups and Geometry," which summarizes developments stemming from
the E.P. Since the contents of this article cover somewhat the same topics
as our §§1-7, we shall defer its discussion until we take up Elie Cartan's
1912 revision of it in §13 below.

12. Klein and Hilbert

The forty years that Klein spent at Gottingen transformed it into an
almost legendary center of pure and applied mathematical research. One
of the key figures in this transformation was David Hilbert (1862-1943),
a mathematical genius who may have owed more to Klein than he cared
to realize.19 As we have stated, Klein brought Hilbert to Gottingen in 1895
to replace Heinrich Weber. Having studied with Lindemann and Hurwitz,
Hilbert was in some sense Klein's "academic grandson"; moreover, he
had gone to Paris on Klein's advice (in 1886), at that time arguably the
world's greatest center of mathematical research.

Klein's example may also have stimulated Hilbert to broaden his
research interests after coming to Gottingen, Hilbert having previously
devoted his mathematical genius almost exclusively to invariant theory
and algebraic number theory (Weyl 1944, 635). Soon after arriving in Got-
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tingen, he showed in a letter to Klein that the Laguerre-Cayley-Klein pro-
jective metric defined by them in general ellipsoids had an analogue in
arbitrary convex bodies. A few years later, he vindicated the "Dirichlet
Principle" of Riemann, which had been discredited by Weierstrass.

By 1898, Hilbert had largely taken over the supervision of Ph.D. theses
at Gottingen, of which no fewer than 60 were written under his direction
between then and 1916. This was also the year in which Klein's plans for
the Gauss-Weber Denkmal matured, and he invited Hilbert to be one of
the two speakers to celebrate the great occasion. Hilbert chose to speak
on the foundations of Euclidean geometry. His lecture notes of the pre-
vious winter on the subject, hastily polished, became the first edition of
his famous Grundlagen der Geometric. This book, now in its tenth edi-
tion, concluded with a study of 'constructability with ruler and compass'
that is closely related in theme (though not in style) to Klein's beautiful
exposition of the same subject in his "Ausgewahlten Kapiteln..." of 1895.

Hilbert did not refer to this at all, an omission almost amounting to
a discourtesy to a senior colleague. However, since a major stimulus for
Klein's lectures had been the simplifications by Hilbert, Gordan, and Hur-
witz of Lindemann's original (1882) proof of the transcendence of TT, this
was perhaps only fair, although a reference to Klein's brilliant booklet
would have been gracious.

The purely formal approach of Hilbert's Grundlagen contrasts sharp-
ly with Klein's emphasis on the intuitive visualization of geometric ideas,
and it is interesting to recall what Klein had to say about Hilbert's
Grundlagen in his 1908 Elementarmathematik vom Hohere Standpunkt
aus, vol. 2. After a brief review (pp. 130-59) of the E.P. and some of his
later ideas (cf. §5), Klein discusses other approaches to geometry. Among
these, his book takes up last the "modern theory of geometric axioms,"
observing that (p. 185):

In it, we determine what parts of geometry can be set up without using
certain axioms, and whether or not, by assuming the opposite of a given
axiom, we can also secure a system free from contradiction, that is,
a so-called 'pseudo-geometry.'
As the most important work belonging here, I should mention Hilbert's
Grundlagen der Geometrie. Its chief aim, as compared with earlier in-
vestigations, is to establish, in the manner indicated, the significance
of the axioms of continuity.

It does seem curious that finally, near the end of his life, Hilbert should
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have apparently forsaken his extreme formalism and written (with S. Cohn-
Vossen) a book entitled Anschauliche Geometric ("Intuitive Geometry").
(For a fuller account of the Grundlagen der Geometric, its background
and influence, see [Birkhoff and Bennett, forthcoming].)

Hilbert's social and scientific personalities were very different from
those of the dignified and highly intuitive Klein, and there is little doubt
about Hilbert's restiveness as regards Klein's regal manner. Thus in a let-
ter to his future wife, Courant wrote in 1907-8 that "Hilbert now rebels
everywhere against Klein's assumed dictatorship" (Reid 1976, 19).
Likewise, Ostrowski (coeditor of vol. 1 of Klein's GMA) wrote one of
us in 1980: "As to Hilbert I do not think that you will find any reference
to the Erlanger Programm. As a matter of fact, Hilbert did not think very
much of it."

13. Study and Elie Cartan

Three more major mathematicians whose work reflects the influence
of the E.P. are Eduard Study (1862-1930), Elie Cartan (1869-1951), and
Hermann Weyl (1885-1955). Although they had related interests, they had
very different backgrounds and tastes. We shall discuss next the influence
of the E.P. on Study and Cartan, taking up its influence on Weyl in §14.

Eduard Study. As a geometer, Study was more influential than either
Killing or Engel. Blaschke dedicated the first volume (1921) of his famous
Vorlesungen tiber Differentialgeometrie to Study, and Study's Ph.D.
students included not only Fine but also J. L. Coolidge, the author of
several widely read books, whose History of Geometrical Methods
(Coolidge 1940) is a standard reference. From the chapter "Higher Space
Elements" in this treatise, we quote the following passage:

The connecting thread in [this chapter] is the idea of treating directly
as a space element some figure previously treated as a locus. The idea
of doing this was dominant in geometrical circles, especially in the
schools of Klein and Study, at the end of the nineteenth century.. . .
It shades off imperceptibly into the theory of geometrical transforma-
tions. (Coolidge 1940, book 2, chap. 6)

This idea, obviously generalizing Pliicker's "line geometry," can be used
in the spirit of the E.P. to construct many "global" representations of
continuous groups as transformation groups of manifolds.

Study began his career at the University of Munich, where he wrote
his doctoral thesis Ueber die Massbestimmungen Extensiver Grossen in
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1885. It was concerned with metric magnitudes in Grassmannian geometry,
while his Habilitationsschrift dealt with the geometry of the conic section.
Although Klein had been at Munich some years earlier, and Klein's stu-
dent Dyck was to go there a year later, the only reference to Klein in either
paper is the statement: "One sees that the geometric interest of this for-
mulation of the problem has the closest connections with the researches
of Riemann, Helmholtz, and Klein."

More relevant to the E.P. were Study's investigations on the three-
dimensional Euclidean group and its subgroups (M.A. 39 [1891]: 444-566;
60 [1905]: 321-77). Its most general one-parameter subgroup is the group
of helical or "screw" motions, previously studied by Klein and Lie. Stem-
ming from these investigations, and hence indirectly from the Theorem
of Chasles, was Study's major work Geometric derDynamen (1903). Con-
cerned with the connected component of the Euclidean group and its one-
parameter subgroups, this deals with the geometry of the "space" of force
systems and rigid displacements, and its philosophy is akin to that of
Pliicker's "line geometry." It can be regarded as a sequel to Sir Robert
Ball's Geometry of Screws, whose 1871 edition had excited Klein and Clif-
ford, and whose third edition would appear in 1911, but Study's book
says little about any earlier work.20

Study's beautiful researches on the Problem of Apollonius (to construct
the circles tangent to three given circles) were also, according to his first
paper on the subject (M.A. 49 [1897]: 497-542), inspired by Klein's use
of inversions in circles to generate symmetrical patterns. Also related to
the E.P. was Study's original but obscure and rambling Methoden zur
Theorie der Ternaerien Formen (Teubner 1889), dedicated to "my dear
friend Friedrich Engel." In this book, Study applied Lie's concept of an
infinitesimal transformation to invariants and covariants, mentioning (p.
143) the problem of determining "all types of r-parameter subgroups"
of the full linear group. He also distinguished "integral" invariants, and
"algebraic" (as well as "integral algebraic") invariants from general
invariants.

Elie Cartan. Perhaps the greatest geometer of the twentieth century,
Elie Cartan's thesis (1894) was purely algebraic. In it, he determined all
simple complex Lie algebras, thus completing and making precise the
earlier results of Killing. Presumably inspired to undertake this task by
Poincare (cf. §8), Cartan describes his advances over Killing as follows:
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Unfortunately Killing's research lacks rigor, particularly concerning
groups which are not simple; it makes constant use of a theorem which
is not proved in its generality; I show in this work an example where
the theorem is not true, and when the occasion arises, a number of other
errors of lesser importance. (Cartan 1952, partie I, 139)

Cartan's brilliant thesis was only the beginning of an outstanding career,
which reached its climax when he was in his fifties and sixties, between
World War I and World War II. His first major geometric effort was his
translation and extension of Fano's article "Continuous Groups and
Geometry" (ESM, vol. 3, 5; Cartan 1952, vol. 3, 2), which was concerned
with developments stemming from the E.P. Written in 1912, Cartan's ar-
ticle notably amplified Fano's original by including the extension of the
E.P. to space-time suggested by Einstein's then new theory of special
relativity, and by summarizing Study's important but involved
contributions.

Lorentz Group. Much as the E.P. notably extended the invariant theory
of Cayley and Sylvester by pointing out "the possibility of constructing
other than projective invariants," so a celebrated paper by Minkowski
(written at Gottingen) identified the main contribution of Einstein's theory
of special relativity as the replacement of the Galileo-Newton group by
the "Lorentz group," actually first identified as a group by Poincare. As
Klein immediately recognized, this suggested that the E.P. might be ap-
plicable not only to geometry but to physics as well. Following a 1910
paper by Bateman, Cartan would later go further and describe the role
of the conformal group, extended to space-time, in electromagnetic theory
and special relativity.

Eight years later, in the preface to the second volume of his classic Pro-
jective Geometry (Veblen and Young 1917), Veblen would state:

We have in mind two principles for the classification of any theorem
of geometry: (a) the axiomatic basis... from which it can be derived...;
and (b) the group to which it belongs in a given space.
The two principles of classification, (a) and (b), give rise to a double
sequence of geometries, most of which are of consequence in present-
day mathematics.21

Chapter 3 of that volume was devoted to applying Klein's classification
scheme (b).

General Relativity. Unfortunately for the E.P., Einstein's "general
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relativity" theory fits much less neatly into Klein's classification scheme
than his "special theory." See (Bell 1940, chap. 20, esp. 443-49), where
a quotation from Veblen's chapter 3 is contrasted with one made by Veblen
ten years later, and one made in 1939 by J. H. C. Whitehead.22

However, the properties of Einstein's curved space-time are expressed
by local differential invariants, which can be classified as 'conformaP,
'metric', 'affine', 'projective', etc., very much in the spirit of the E.P.

J. A. Schouten (1926) spelled out this connection. Cartan's invited ad-
dress on "Lie Groups and Geometry" at the Oslo congress (1936) and
J. H. C. Whitehead's biography of Cartan ("Obituary Notices of the
Fellows of the Royal Society" 8, 1952) give perhaps the most authoritative
opinions on the subject.

In the 1920s and 1930s, Cartan also showed his consummate and
creative command of old and new mathematics by his major contribu-
tions to the "globalization" of Lie's purely local theory of Lie groups.
The resulting global theory has made both Klein's and Lie's expositions
technically obsolete.

Between 1927 and 1935, Cartan published what Chern and Che valley
call "his most important work in Riemannian geometry.. .the theory of
symmetric spaces" (Bulletin of the American Mathematical Society 58
[1952]: 244). These are Riemannian manifolds in which ds2 is invariant
under reflection in any point. In retrospect, Cartan's tortuous path (via
the parallelism of Levi-Civita) to the recognition of this simple idea seems
amazing.23 Even more amazing is the failure of Klein, after applying reflec-
tions in lines in the hyperbolic plane in so many ways, to identify "sym-
metric Riemann spaces" at all!

14. Klein and Hermann Weyl

Hermann Weyl began his career in the Gottingen that Klein had built
up, and Hilbert was his thesis advisor. Hence he was in some sense an
academic great-grandson of Klein, whom he must have known. Weyl seems
never to have been overawed by Hilbert; thus his 1908 thesis stated une-
quivocally (M.A. 66 [1909]: 273): "As will be shown below, the applica-
bility of Hilbert's method is by no means limited to the continuous kernels
treated by Hilbert... but also leads to interesting consequences in certain
more general cases." Beginning in 1917, Weyl outdistanced Hilbert (again)
in mathematicizing Einstein's then new general theory of relativity. In
papers and in his famous book Raum. Zeit. Materie (later translated into



772 Garrett Birkhoff and M. K. Bennett

English as Space, Time, Matter), he introduced local generalizations of
affine, projective, and conformal geometry that are related to their global
counterparts as Riemannian geometry is related to Euclidean, as Schouten
(1926) was later to explain. Still under 40, he then attacked Hilbert's "for-
malist" logic of mathematics in the early 1920s supporting the conflict-
ing "intuitionist" logic of L. E. J. Brouwer.

Weyl showed more respect for Klein, to whom he dedicated the first
(1912) edition of his Die Idee der Reimannschen Flache.2* This was
because, as he stated in the preface to its 1955 edition, "Klein had been
the first to develop the freer conception of a Riemann surface,... thereby
he endowed Riemann's basic ideas with their full power."

Then, in the middle 1920s, Weyl was the spark plug of the famous Peter-
Weyl theory of group representations. He used a very concrete theory of
group-invariant measure on compact Lie groups, the existence of which
permits one to extend to compact Lie groups the result of E. H. Moore
'and Maschke: that every group of linear transformations having a finite
group-invariant measure is equivalent to a group of orthogonal transfor-
mations.25 In his Gruppentheorie und Quantenmechanik (translated into
English by H. P. Robertson), Weyl later applied the analogous result for
the orthogonal group to the then new quantum mechanics.26

By an irony of fate, very little of Weyl's deep and influential research
work was done at Gottingen, the source of much of his inspiration. It
was only three years after he finally accepted a professorship there that
Hitler seized power in Germany. In the next year, Weyl emigrated to the
new Institute of Advanced Study in Princeton, where he spent his last twen-
ty years, creative and versatile to the end. His later books, The Classical
Groups (1939) and Symmetry (1952), show his spiritual affinity with Klein,
and it seems fitting to conclude our review with two quotations from the
former. First, Weyl remarks:

This is not the place for repeating the string of elementary definitions
and propositions concerning groups which fill the first pages of every
treatise on group theory. Following Klein's "Erlanger Program" (1872),
we prefer to describe in general terms the significance of groups for
the idea of relativity, in particular in geometry. (1939, 14)

Later, he makes a more specific evaluation:

The dictatorial regime of the projective idea in geometry was first
broken by the German astronomer and geometer Mobius, but the
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classical document of the democratic platform in geometry, establishing
the group of transformations as the ruling principle in any kind of
geometry, and yielding equal rights of independent consideration to
each and every such group, is F. Klein's Erlanger Programm. (1939, 28)

We hope that the great influence of this classical document, through
its extensions and interpretations by Klein himself, by Lie, by Weyl, and
by many other mathematicians, has been clarified by our review.

Notes
1. In discussing this last phase of Klein's career, Rowe (1985, 278) has referred to him

as the "doyen of German mathematics for nearly three decades."
2. Weierstrass himself always viewed geometry metrically.
3. For the significance of W-curves, Klein refers his reader to ##13-20 and #34 of the

article of Scheffers (BMW, vol. 3, D4).
4. In the second of these (Klein 1873), submitted in June 1872, Klein describes briefly

how "the different methods of geometry can be characterized by an associated transforma-
tion group." This paper and the E.P. were the first publications by Klein or Lie that used
the phrase transformation group. The word invariant is conspicuous by its absence, although
invariant theory had been studied in Germany (without explicit mention of the word group)
for at least a decade.

5. See (Birkhoff and Bennett, forthcoming) for references to this work of Klein and Lu'roth,
as well as its influence on later theories.

6. A glance at the index of names in the relevant volumes of Lie's Collected Papers (LGA)
makes Lie's scientific indebtedness to Klein obvious.

7. Lie's local theory (LGA, vol. 5) was finally extended into a rigorous global theory
by G. D. Mostow (Annals of Mathematics 52 [1950]: 606-36). There Mostow showed that
the two-dimensional manifolds are the plane, cylinder, torus, sphere, projective homogeneous
plane, MObius strip, and Klein bottle.

8. Picard had used the simplicity of the (Lie) projective group on two variables to prove
the impossibility of solving u" + p(x)u' + q(x)u = 0 by quadratures—a theorem that Lie
wished he had discovered himself.

9. See also (Hawkins 1982, §3).
10. For a very human account of Lie's jealousy of Klein and their final reconciliation,

which reproduces a moving letter from Frau Klein, see (Young 1928, xviii-xix).
11. Wedekind's summary mentions his use of a result in the E.P.; Klein entitled his paper

"Binary Forms Invariant under Linear Transformations."
12. By this, Klein meant that the subgroup of the group of the icosahedron leaving each

point invariant is of order 2, as contrasted with 5 for the vertices of the icosahedron and
3 for the dodecahedron.

13. As late as 1886, Brioschi (M.A. 26 [1886]: 108) would refer to the "icosahedral"
hyper geometric equation:

x(x- l)v" + (7x-4v ' ) /6 + llv/324252 = 0.

14. See, for example, L. R. Ford, Automorphic Functions (New York: McGraw-Hill,
1929).

15. Another close friend of Fine was Woodrow Wilson, president of Princeton Univer-
sity, and later of the United States. Further information on H. B. Fine can be found in
William Aspray's paper in this volume.

16. "For a quarter of a century no one could think of the American Mathematical Society
apart from the personality of Professor Cole" (Archibald 1938, 101).
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17. Many references to Klein's role in Gottingen may be found in (Reid 1970, 1976);
see also chapter 11 of (Klein 1893b).

18. Klein had shown his belief in the importance of applied mathematics in 1875, by
leaving a full professorship at Erlagen for a position at the Technische Hochschule in Munich
and referring to it as a great advance ("einem grossen Sprung") (Young 1928, vii). There
he held a seminar on pure and applied mathematics with von Linde (Pyenson 1979, 55-61).

19. For Klein's role in suggesting Hilbert's Fifth Problem, see (Birkhoff and Bennett,
forthcoming).

20. See (Ziegler 1985) and (BMW, vol. 3, parts 1, 2).
21. Principle (a) clearly refers to the method used by Hilbert in his Grundlagen der

Geometrie.
22. Actually, Whitehead did not lose interest in the E.P. as quickly as Bell suggests; see

(Annals of Mathematics 33 [1932]: 681-87).
23. For Cartan's mature exposition of the theory of symmetric spaces, see Proceedings,

International Congress of Mathematicians, Zurich, 1932, 152-61.
24. A few years earlier, Paul Koebe (also in Gottingen) had finally solved rigorously

the "uniformization problem" that had eluded both Klein and Poincard. Koebe's
"Primenden," one of his major technical tools, seem related to the ideas of Klein's "Grenz-
kreistheorem" (see §9).

25. The Peter-Weyl theory surely helped to inspire Haar's 1933 theory of invariant
Lebesgue measure on compact topological groups. It was von Neumann's subsequent ap-
plication of Haar measure to solve the Klein-Hilbert Fifth Problem for compact groups,
and Pontrjagin's parallel solution for Abelian groups, that paved the way for its complete
solution.

26. One of us adapted Weyl's title to the chapter on group theory and fluid mechanics
in his Hydrodynamics (Birkhoff, Princeton University Press, 1950). In this the notion of
'self-similar solution' (exploited earlier by Sedov and others) was generalized to arbitrary
groups. The ultimate inspiration for this chapter was Klein's group-theoretic interpretation
of special relativity in his (EdM), as an extension of the E.P.
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Abraham Robinson and Nonstandard

Analysis: History, Philosophy, and

Foundations of Mathematics

Mathematics is the subject in which we don't know* what
we are talking about.

—Bertrand Russell

* Don't care would be more to the point.
—Martin Davis

I never understood why logic should be reliable
everywhere else, but not in mathematics.

—A. Heyting

1. Infinitesimals and the History of Mathematics
Historically, the dual concepts of infinitesimals and infinities have

always been at the center of crises and foundations in mathematics, from
the first "foundational crisis" that some, at least, have associated with
discovery of irrational numbers (more properly speaking, incommensurable
magnitudes) by the pre-socartic Pythagoreans1, to the debates that are cur-
rently waged between intuitionists and formalist—between the descendants
of Kronecker and Brouwer on the one hand, and of Cantor and Hilbert
on the other. Recently, a new "crisis" has been identified by the construc-
tivist Erret Bishop:

There is a crisis in contemporary mathematics, and anybody who has

This paper was first presented as the second of two Harvard Lectures on Robinson and his
work delivered at Yale University on 7 May 1982. In revised versions, it has been presented
to colleagues at the Boston Colloquim for the Philosophy of Science (27 April 1982), the
American Mathematical Society meeting in Chicago (23 March 1985), the Conference on
History and Philosophy of Modern Mathematics held at the University of Minnesota (17-19
May 1985), and, most recently, at the Centre National de Recherche Scientifique in Paris
(4 June 1985) and the Department of Mathematics at the University of Strassbourg (7 June
1985). I am grateful for energetic and constructive discussions with many colleagues whose
comments and suggestions have served to develop and sharpen the arguments presented here.
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not noticed it is being willfully blind. The crisis is due to our neglect
of philosophical issues... .2

Bishop, too, relates his crisis in part to the subject of the infinite and in-
finitesimals. Arguing that formalists mistakenly concentrate on the "truth"
rather than the "meaning" of a mathematical statement, he criticizes
Abraham Robinson's nonstandard analysis as "formal finesse," adding
that "it is difficult to believe that debasement of meaning could be car-
ried so far."3 Not all mathematicians, however, are prepared to agree that
there is a crisis in modern mathematics, or that Robinson's work con-
stitutes any debasement of meaning at all.

Kurt Godel, for example, believed that Robinson more than anyone
else had succeeded in bringing mathematics and logic together, and he
praised Robinson's creation of nonstandard analysis for enlisting the
techniques of modern logic to provide rigorous foundations for the calculus
using actual infinitesimals. The new theory was first given wide publicity
in 1961 when Robinson outlined the basic idea of his "nonstandard"
analysis in a paper presented at a joint meeting of the American
Mathematical Society and the Mathematical Association of America.4

Subsequently, impressive applications of Robinson's approach to infin-
itesimals have confirmed his hopes that nonstandard analysis could enrich
"standard" mathematics in important ways.

As for his success in defining infinitesimals in a rigorously mathematical
way, Robinson saw his work not only in the tradition of others like Leib-
niz and Cauchy before him, but even as vindicating and justifying their
views. The relation of their work, however, to Robinson's own research
is equally significant, as Robinson himself realized, and this for reasons
that are of particular interest to the historian of mathematics. Before
returning to the question of a "new" crisis in mathematics due to Robin-
son's work, it is important to say something, briefly, about the history
of infinitesimals, a history that Robinson took with the utmost seriousness.

This is not the place to rehearse the long history of infinitesimals in
mathematics. There is one historical figure, however, who especially
interested Robinson—namely, Cauchy—and in what follows Cauchy pro-
vides a focus for considering the historiographic significance of Robin-
son's own work. In fact, following Robinson's lead, others like J. P.
Cleave, Charles Edwards, Detlef Laugwitz, and W. A. J. Luxemburg have
used nonstandard analysis to rehabilitate or "vindicate" earlier infin-
itesimalists.5 Leibniz, Euler, and Cauchy are among the more promi-
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nent mathematicians who have been rationally reconstructed—even to the
point of having had, in the views of some commentators, "Robinsonian"
nonstandard infinitesimals in mind from the beginning. The most detailed
and methodically sophisticated of such treatments to date is that provided
by Imre Lakatos; in what follows, it is his analysis of Cauchy that is
emphasized.

2. Lakatos, Robinson, and Nonstandard Interpretations of
Cauchy's Infinitesimal Calculus

In 1966, Lakatos read a paper that provoked considerable discussion
at the International Logic Colloquium meeting that year in Hannover.
The primary aim of Lakatos's paper was made clear in its title: "Cauchy
and the Continuum: The Significance of Non-standard Analysis for the
History and Philosophy of Mathematics."6 Lakatos acknowledged his ex-
changes with Robinson on the subject of nonstandard analysis as he con-
tinued to revise the working draft of his paper. Although Lakatos never
published the article, it enjoyed a rather wide private circulation and even-
tually appeared after Lakatos's death in volume 2 of his Mathematics,
Science and Epistemology.

Lakatos realized that two important things had happened with the ap-
pearance of Robinson's new theory, indebted as it was to the results and
techniques of modern mathematical logic. He took it above all as a sign
that metamathematics was turning away from its original philosophical
beginnings and was growing into an important branch of mathematics.7

This view, now more than twenty years later, seems fully justified.
The second claim that Lakatos made, however, is that nonstandard

analysis revolutionizes the historian's picture of the history of the calculus.
The grounds for this assertion are less clear—and in fact, are subject to
question. Lakatos explained his interpretation of Robinson's achievement
as follows at the beginning of his paper:

Robinson's work . . . offers a rational reconstruction of the discredited
infinitesimal theory which satisfies modern requirements of rigour and
which is no weaker than Weierstrass's theory. This reconstruction makes
infinitesimal theory an almost respectable ancestor of a fully-fledged,
powerful modern theory, lifts it from the status of pre-scientific gib-
berish and renews interest in its partly forgotten, partly falsified history.8

But consider the word almost. Robinson, says Lakatos, only makes
the achievements of earlier infinitesimalists almost respectable. In fact,
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Robinson's work in the twentieth century cannot vindicate Leibniz's work
in the seventeenth century, Euler's in the eighteenth century, or Cauchy's
in the nineteenth century. There is nothing in the language or thought of
Leibniz, Euler, or Cauchy (to whom Lakatos devotes most of his atten-
tion) that would make them early Robinsonians. The difficulties of
Lakatos's rational reconstruction, however, are clearer in some of the
details he offers.

For example, consider Lakatos's interpretation of the famous theorem
from Cauchy's Cours d'analyse of 1821, which purports to prove that the
limit of a sequence of continuous functions sn(x) is continuous. This is

what Lakatos, in the spirit of Robinson's own reading of Cauchy, has
to say:

In fact Cauchy's theorem was true and his proof as correct as an infor-
mal proof can be. Following Robinson . . . Cauchy's argument, if not
interpreted as a proto-Weierstrassian argument but as a genuine Leibniz-
Cauchy one, runs as follows:...
sn (x) should be defined and continuous and converge not only at stan-
dard Weierstrassian points but at every point of the "denser" Cauchy
continuum, and . . . the sequence sn(x) should be defined for infinitely
large indices n and represent continuous functions at such indices.9

In one last sentence, this is all summarized in startling terms as follows:
Cauchy made absolutely no mistake, he only proved a completely dif-
ferent theorem, about transfinite sequences of functions which Cauchy-
converge on the Leibniz continuum.10

But upon reading Cauchy's Cours d'analyse—or either of his later
presentations of the theorem in his Resumes analytiques of 1833 or in the
Comptes Rendues for 1853—one finds no hint of transfinite indices, se-
quences, or Leibnizian continua made "denser" than standard intervals
by the addition of infinitesimals. Cauchy, when referring to infinitely large
numbers n' > n, has "very large"—but finite—numbers in mind, not ac-
tually infinite Cantorian-type transfinite numbers.11

This is unmistakably clear from another work Cauchy published in
1833—Sept lecons dephysique generate—given at Turin in the same year
he again published the continuous sum theorem. In the Sept lecons,
however, Cauchy explicitly denies the existence of infinitely large numbers
for their allegedly contradictory properties.12

Moreover, if Lakatos was mistaken about Cauchy's position concern-
ing the actually infinite, he was also wrong about Cauchy's continuum
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being one of Leibnizian infinitesimals. If, by virtue of such infinitesimals,
Cauchy's original proof had been correct all along, why would he then
have issued a revised version in 1853, explicitly to improve upon the earlier
proofs? Instead, were Lakatos and Robinson correct in their rational
reconstructions, all Cauchy would need to have done was point out the
nonstandard meaning of his infinitesimals—explaining how infinitely large
and infinitely small numbers had given him a correct theorem, as well as
a proof, all along.

Lakatos also draws some rather remarkable conclusions about why the
Leibnizian version of nonstandard analysis failed:

The downfall of Leibnizian theory was then not due to the fact that
it was inconsistent, but that it was capable only of limited growth. It
was the heuristic potential of growth—and explanatory power—of
Weierstrass's theory that brought about the downfall of infinitesimals.13

This rational reconstruction may complement the overall view Lakatos
takes of the importance of research programs in the history of science,
but it does no justice to Leibniz or to the subsequent history of the calculus
in the eighteenth and early nineteenth centuries, which (contrary to
Lakatos) demonstrates that (i) in the eighteenth century the (basically Leib-
nizian) calculus constituted a theory of considerable power in the hands
of the Bernoullis, Euler, and many others; and (ii) the real stumbling block
to infinitesimals was their acknowledged inconsistency.

The first point is easily established by virtue of the remarkable achieve-
ments of eighteenth-century mathematicians who used the calculus because
it was powerful—it produced striking results and was indispensable in ap-
plications.14 But it was also suspect from the beginning, and precisely
because of the question of the contradictory nature of infinitesimals.

This brings us to the second point: despite Lakatos's dismissal of their
inconsistency, infinitesimals were perceived even by Newton and Leibniz,
and certainly by their successors in the eighteenth century, as problematic
precisely because of their contradictory qualities. Newton was specifical-
ly concerned with the fact that infinitesimals did not obey the Archime-
dean axiom and therefore could not be accepted as part of rigorous
mathematics.15 Leibniz was similarly concerned about the logical accept-
ability of infinitesimals. The first public presentation of his differential
calculus in 1684 was severely determined by his attempt to avoid the logical
difficulties connected with the infinitely small. His article in the Acta
Eruditorum on maxima and minima, for example, presented the differen-
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tial as a finite line segment rather than the infinitely small quantity that
was used in practice.16

This confusion between theoretical considerations and practical applica-
tions carried over to Leibniz's metaphysics of the infinite, for he was never
committed to any one view but made conflicting pronouncements.
Philosophically, as Robinson himself has argued, Leibniz had to assume
the reality of the infinite—the infinity of his monads, for example—or
the reality of infinitesimals not as mathematical points but as substance-
or force-points—namely, Leibniz's "monads" themselves.17

That the eighteenth century was concerned not with doubts about the
potential of infinitesimals but primarily with fears about their logical con-
sistency is clear from the proposal Lagrange drew up for a prize to be
awarded by the Berlin Academy for a rigorous theory of infinitesimals.
As the prize proposal put it:

It is well known that higher mathematics continually uses infinitely large
and infinitely small quantities. Nevertheless, geometers, and even the
ancient analysts, have carefully avoided everything which approaches
the infinite; and some great modern analysts hold that the terms of the
expression infinite magnitude contradict one another.
The Academy hopes, therefore, that it can be explained how so many
true theorems have been deduced from a contradictory supposition,
and that a principle can be delineated which is sure, clear—in a word,
truly mathematical—which can appropriately be substituted for the
infinite.18

Lakatos seems to appreciate all this—and even contradicts himself on
the subject of Leibniz's theory and the significance of its perceived in-
consistency. Recalling his earlier assertion that Leibniz's theory was not
overthrown because of its inconsistency, consider the following line, just
a few pages later, where Lakatos asserts that nonstandard analysis raises
the problem of "how to appraise inconsistent theories like Leibniz's
calculus, Frege's logic, and Dirac's delta function."19

Lakatos apparently had not made up his mind as to the significance
of the inconsistency of Leibniz's theory, which raises questions about the
historical value and appropriateness of the extreme sort of rational
reconstruction that he has proposed to "vindicate" the work of earlier
generations. In fact, neither Leibniz nor Euler nor Cauchy succeeded in
giving a satisfactory foundation for an infinitesimal calculus that also
demonstrated its logical consistency. Basically, Cauchy's "epsilontics"
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were a means of avoiding infinites and infinitesimals. Nowhere do Robin-
sonian infinitesimals or justifications appear in Cauchy's explanations of
the rigorous acceptability of his work.20

Wholly apart from what Lakatos and others like Robinson have at-
tempted in reinterpreting earlier results in terms of nonstandard analysis,
it is still important to understand Robinson's own reasons for developing
his historical knowledge in as much detail—and with as much scholar-
ship—as he did. For Robinson, the history of infinitesimals was more than
an antiquarian interest; it was not one that developed with advancing age
or retirement, but was a simultaneous development that began with his
discovery of nonstandard analysis in the early 1960s. Moreover, there seem
to have been serious reasons for Robinson's keen attention to the history
of mathematics as part of his own "research program" concerned with
the future of nonstandard analysis.

3. Nonstandard Analysis and the History of Mathematics

In 1965, in a paper titled "On the Theory of Normal Families," Robin-
son began with a short look at the history of mathematics.21 He noted
that for about one hundred and fifty years after its inception in the seven-
teenth century, mathematical analysis developed vigorously on inadequate
foundations. Despite this inadequacy, the precise, quantitative results pro-
duced by the leading mathematicians of that period have stood the test
of time.

In the first half of the nineteenth century, however, the concept of the
limit, advocated previously by Newton and d'Alembert, gained ascendan-
cy. Cauchy, whose influence was instrumental in bringing about the
change, still based his arguments on the intuitive concept of an infinitely
small number as a variable tending to zero. At the same time, however,
he set the stage for the formally more satisfactory theory of Weierstrass,
and today deltas and epsilons are the everyday language of the calculus,
at least for most mathematicians. It was this precise approach that paved
the way for the formulation of more general and more abstract concepts.
Robinson used this history to explain the importance of compactness as
applied to functions of a complex variable, which had led to the theory
of normal families developed largely by Paul Montel. There followed the
qualitative development of complex variable theory, such as Picard theory,
and, finally, against this background, more quantitative theories like those
developed by Rolf Nevanlinna—to whom Robinson's paper was dedicated
as part of a Festschrift.
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The historical notes to be found at the beginning of Robinson's paper
were echoed again at the end, when he turned to ask whether the results
he had achieved using nonstandard analysis couldn't be achieved just
as well by standard methods. Although he admitted that because of the
transfer principle (developed in his paper of 1961, "Non-Standard Anal-
ysis") this was indeed possible, he added that such translations into stand-
ard terms usually complicated matters considerably. As for nonstandard
analysis and the use of infinitesimals it permitted, his conclusion was
emphatic:

Nevertheless, we venture to suggest that our approach has a certain
natural appeal, as shown by the fact that it was preceded in history
by a long line of attempts to introduce infinitely small and infinitely
large numbers into Analysis.22

And so the reason for the historical digression was its usefulness in serv-
ing a much broader purpose than merely introducing some rather remote
historical connections between Newton, Leibniz, Paul Montel, and Rolf
Nevanlinna. History could serve the mathematician as propaganda. Robin-
son was apparently concerned that many mathematicians were prepared
to adopt a "so what" attitude toward nonstandard analysis because of
the more familiar reduction that was always possible to classical founda-
tions. There were several ways to outflank those who chose to minimize
nonstandard analysis because, theoretically, it could do nothing that wasn't
equally possible in standard analysis. Above all, nonstandard analysis was
often simpler and more intuitive in a very direct, immediate way than
standard approaches. But, as Robinson also began to argue with increas-
ing frequency and in greater detail, historically the concept of infinitesimals
had always seemed natural and intuitively preferable to more convoluted
and less intuitive sorts of rigor. Now that nonstandard analysis showed
why infinitesimals were safe for consumption in mathematics, there was
no reason not to exploit their natural advantages. The paper for Rolf
Nevanlinna was meant to exhibit both the technical applications and, at
least in part through its appeal to history, the naturalness of nonstandard
analysis in developing the theory of normal families.

4. Foundations and Philosophy of Mathematics

If Robinson regarded the history of infinitesimals as an aid to the
justification in a very general way of nonstandard analysis, what contribu-
tion did it make, along with his results in model theory, to the founda-
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tions and philosophy of mathematics? Stephan Korner, who taught a
philosophy of mathematics course with Robinson at Yale in the fall of
1973, shortly before Robinson's death early the following year, was
doubtless closest to Robinson's maturest views on the subject.23 Basical-
ly, Korner sees Robinson as a follower of—or at least working in the same
spirit as—Leibniz and Hilbert. Like Leibniz (and Kant after him), Robin-
son rejected any empirical basis for knowledge about the infinite—whether
in the form of infinitely large or infinitely small quantities, sets, whatever.
Leibniz is famous for his view that infinitesimals are useful fictions—a
position deplored by such critics as Nieuwentijt or the more flamboyant
and popular Bishop Berkeley, whose condemnation of the Newtonian
calculus might equally well have applied to Leibniz.24 Leibniz adopted both
the infinitely large and the infinitely small in mathematics for pragmatic
reasons, as permitting an economy of expression and an intuitive, sug-
gestive, heuristic picture. Ultimately, there was nothing to worry about
since the mathematician could eliminate them from his final result after
having infinitesimals and infinities to provide the machinery and do the
work of a proof.

Leibniz and Robinson shared a similar view of the ontological status
of infinities and infinitesimals. They are not just fictions, but well-found
ones—"fictiones bene fondatae," in the sense that their applications prove
useful in penetrating the complexity of natural phenomena and help to
reveal relationships in nature that purely empirical investigations would
never produce.

As Emil Borel once said of Georg Cantor's transfinite set theory (to
paraphrase not too grossly): although he objected to transfinite numbers
or inductions in the formal presentation of finished results, it was cer-
tainly permissible to use them to discover theorems and create proofs—
again, whatever works.25 It was only necessary to be sure that in the final
version they were eliminated, thus making no official appearance. Robin-
son, however, was interested in more, especially in the reasons why the
mathematics worked as it did, and in particular why infinities and in-
finitesimals were now admissible as rigorous entities despite centuries of
doubts and attempts to eradicate them entirely.

Here Robinson succeeded where Leibniz and his successors failed. Leib-
niz, for example, never demonstrated the consistent foundations of his
calculus, for which his work was sharply criticized by Nieuwentijt, among
others. Throughout the eighteenth century, the troubling foundations (real-
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ly, lack of foundations) of the Leibnizian infinitesmal calculus continued
to bother mathematicians, until the epsilon-delta methods of Cauchy and
the "arithmetic" rigor of Weierstrass reestablished analysis on acceptably
finite terms. Because, as Korner remarks, "Leibniz's approach was con-
sidered irremediably inconsistent, hardly any efforts were made to improve
this delimination."26

Robinson was clearly not convinced of the inconsistency of infini-
tesimals, and in developing the methods of Skolem (who had advanced
the idea of nonstandard arithmetic) he was led to consider the possibility
of nonstandard analysis. At the same time, his work in model theory and
mathematical logic contributed not only to his creation of nonstandard
analysis, but to his views on the foundations of mathematics as well.

5. Robinson and "Formalism 64"

In the 1950s, working under the influence of his teacher Abraham
Fraenkel, Robinson seems to have been satisfied with a fairly straightfor-
ward philosophy of Platonic realism. But by 1964, Robinson's philosoph-
ical views had undergone considerable change. In a paper titled simply
"Formalism 64," Robinson emphasized two factors in rejecting his earlier
Platonism in favor of a formalist position:

(i) Infinite totalities do not exist in any sense of the word (i.e., either
really or ideally). More precisely, any mention, or purported mention,
of infinite totalities is, literally, meaningless.
(ii) Nevertheless, we should continue the business of Mathematics "as
usual," i.e. we should act as //infinite totalities really existed.27

Georg Kreisel once commented that, as he read Robinson's "Formalism
64," it was not clear to him whether Robinson meant 1864 or 7P64! Robin-
son, however, was clearly responding in his views on formalism to research
that had made a startling impression upon mathematicians only in the
previous year—namely, Paul Cohen's important work in 1963 on forcing
and the independence of the continuum hypothesis.

As long as it appeared that the accepted axiomatic systems of set theory
(the Zermelo-Fraenkel axiomatization, for example) were able to cope with
all set theoretical problems that were of interest to the working mathemati-
cian, belief in the existence of a unique "universe of sets" was almost
unanimous. However, this simple view of the situation was severely shaken
in the 1950s and early 1960s by two distinct developments. One of these
was Cohen's proof of the independence of the continuum hypothesis,
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which revealed a great disparity between the scale of transfinite ordinals
and the scale of cardinals—or power sets. As Robinson himself noted in
an article in Dialectica, the relation "is so flexible that it seems to be quite
beyond control, at least for now."28

The second development of concern to Robinson was the emergence
of new and varied axioms of infinity. Although the orthodox Platonist
believes that in the real world such axioms must either be true or false,
Robinson found himself persuaded otherwise. Despite his new approach
to foundations in "Formalism 64," he was not dogmatic, but remained
flexible:

The development of "meaningless" infinitistic theories may at some
future date become so unsatisfactory to me that I shall be willing to
acknowledge the greater intellectual seriousness of some form of con-
structivism. But I cannot imagine that I shall ever return to the creed
of the true platonist, who sees the world of the actual infinite spread
out before him and believes that he can comprehend the incomprehen-
sible.29

6. Erret Bishop: Meaning, Truth, and Nonstandard Analysis
Incomprehensible, however, is what some of Robinson's critics have

said, almost literally, of nonstandard analysis itself. Of all Robinson's
opponents, at least in public, none has been more vocal—or more
vehement—than Erret Bishop.

In the summer of 1974, it was hoped that Robinson and Bishop would
actually have a chance to discuss their views in a forum of mathemati-
cians and historians and philosophers of mathematics who were invited
to a special Workshop on the Evolution of Modern Mathematics held at
the American Academy of Arts and Sciences in Boston. Garrett Birkhoff,
one of the workshop's organizers, had intended to feature Robinson as
the keynote speaker for the section of the Academy's program devoted
to foundations of mathematics, but Robinson's unexpected death in April
of 1974 made this impossible. Instead, Erret Bishop presented the featured
paper for the section on foundations. Birkhoff compared Robinson's ideas
with those of Bishop in the following terms:

During the past twenty years, significant contributions to the founda-
tions of mathematics have been made by two opposing schools. One,
led by Abraham Robinson, claims Leibnizian antecedents for a "non-
standard analysis" stemming from the "model theory" of Tarski. The
other (smaller) school, led by Errett Bishop, attempts to reinterpret
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Brouwer's "intuitionism" in terms of concepts of "constructive
analysis."30

Birkhoff went on to describe briefly (in a written report of the session)
the spirited discussions following Bishop's talk, marked, as he noted, "by
the absence of positive reactions to Bishop's view."31 Even so, Bishop's
paper raised a fundamental question about the philosophy of mathematics,
which he put simply as follows: "As pure mathematicians, we must decide
whether we are playing a game, or whether our theorems describe an ex-
ternal reality."32 If these are the only choices, then one's response is ob-
viously limited. For Robinson, the excluded middle would have to come
into play here—for he viewed mathematics, in particular the striking results
he had achieved in model theory and nonstandard analysis, as constituting
much more than a meaningless game, although he eventually came to
believe that mathematics did not necessarily describe any external reality.
But more of Robinson's own metaphysics in a moment.

Bishop made his concerns over the crisis he saw in contemporary
mathematics quite clear in a dramatic characterization of what he took
to be the pernicious efforts of historians and philosophers alike. Not only
is there a crisis at the foundations of mathematics, according to Bishop,
but a very real danger (as he put it) in the role that historians seemed to
be playing, along with nonstandard analysis itself, in fueling the crisis:

I think that it should be a fundamental concern to the historians that
what they are doing is potentially dangerous. The superficial danger
is that it will be and in fact has been systematically distorted in order
to support the status quo. And there is a deeper danger: it is so easy
to accept the problems that have historically been regarded as signifi-
cant as actually being significant.33

Interestingly, in his own historical writing, Robinson sometimes made
the same point concerning the triumph, as many historians (and math-
ematicians as well) have come to see it, of the success of Cauchy-Weier-
strassian epsilontics over infinitesimals in making the calculus "rigorous"
in the course of the nineteenth century. In fact, one of the most impor-
tant achievements of Robinson's work in nonstandard analysis has been
his conclusive demonstration of the poverty of this kind of historicism—
of the mathematically Whiggish interpretation of increasing rigor over the
mathematically unjustifiable "cholera baccillus" of infinitesimals, to use
Georg Cantor's colorful description.34
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As for nonstandard analysis, Bishop had this to say at the Boston
meeting:

A more recent attempt at mathematics by formal finesse is nonstand-
ard analysis. I gather that it has met with some degree of success,
whether at the expense of giving significantly less meaningful proofs
I do not know. My interest in nonstandard analysis is that attempts
are being made to introduce it into calculus courses. It is difficult to
believe that debasement of meaning could be carried so far.35

Two things deserve comment here. The first is that Bishop (surprising-
ly, in light of some of his later comments about nonstandard analysis)
does not dismiss it as completely meaningless, but only asks whether its
proofs are "significantly less meaningful" than constructivist proofs. Leav-
ing open for the moment what Bishop has in mind here for "meaningless"
in terms of proofs, is seems clear that by one useful indicator to which
Bishop refers, nonstandard analysis is year-by-year showing itself to be
increasingly "meaningful."36

Consider, for example, the pragmatic value of nonstandard analysis
in terms of its application in teaching the calculus. Here it is necessary
to consider the success of Jerome Keisler's textbook Elementary Calculus:
An Approach Using Infinitesimals, which uses nonstandard analysis to
explain in an introductory course the basic ideas of calculus. The issue
of its pedagogic value will also serve to reintroduce, in a moment, the ques-
tion of meaning in a very direct way.

Bishop claims that the use of nonstandard analysis to teach the calculus
is wholly pernicious. He says this explicitly:

The technical complications introduced by Keisler's approach are of
minor importance. The real damage lies in his obfuscation and
devitalization of those wonderful ideas. No invocation of Newton and
Leibniz is going to justify developing calculus using [nonstandard
analysis] on the grounds that the usual definition of a limit is too
complicated!...
Although it seems to be futile, I always tell my calculus students that
mathematics is not esoteric: it is commonsense. (Even the notorious
e, d definition of limit is commonsense, and moreover is central to the
important practical problems of approximation and estimation.) They
do not believe me.37

One reason Bishop's students may not believe him is that what he claims,
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in fact, does not seem to be true. There is another side to this as well,
for one may also ask whether there is any truth to the assertions made
by Robinson (and emphatically by Keisler) that "the whole point of our
infinitesimal approach to calculus is that it is easier to define and explain
limits using infinitesimals."38 Of course, this claim also deserves examina-
tion, in part because Bishop's own attempt to dismiss Keisler's methods
as being equivalent to the axiom "0 = 1" is simply nonsense.39 In fact,
there are concrete indications that despite the allegations made by Bishop
about obfuscation and the nonintuitiveness of basic ideas in nonstandard
terms, exactly the opposite is true.

Not long ago a study was undertaken to assess the validity of the claim
that "from this nonstandard approach, the definitions of the basic con-
cepts [of the calculus] become simpler and the arguments more intuitive."40

Kathleen Sullivan reported the results of her dissertation, written at the
University of Wisconsin and designed to determine the pedagogical
usefulness of nonstandard analysis in teaching calculus, in the American
Mathematical Monthly in 1976. This study, therefore, was presumably
available to Bishop when his review of Keisler's book appeared in 1977,
in which he attacked the pedagogical validity of nonstandard analysis.
What did Sullivan's study reveal? Basically, she set out to answer the
following questions:

Will the students acquire the basic calculus skills? Will they really
understand the fundamental concepts any differently? How difficult
will it be for them to make the transition into standard analysis courses
if they want to study more mathematics? Is the nonstandard approach
only suitable for gifted mathematics students?41

To answer these questions, Sullivan studied classes at five schools in
the Chicago-Milwaukee area during the years 1973-74. Four of them were
small private colleges, the fifth a public high school in a suburb of
Milwaukee. The same instructors who had taught the course previously
agreed to teach one introductory course using Keisler's book (the 1971
edition) as well as another introductory course using a standard approach
(thus serving as a control group) to the calculus. Comparison of SAT scores
showed that both the experimental (nonstandard) group and the standard
(control) group were comparable in ability before the courses began. At
the end of the course, a calculus test was given to both groups. Instruc-
tors teaching the courses were interviewed, and a questionnaire was filled
out by everyone who has used Keisler's book within the last five years.
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The single question that brought out the greatest difference between
the two groups was question 3:

Define f(x) by the rule

Prove using the definition of limit that lim f(x) = 4.

Control Group Experimental Group
(68 students) (68 students)

Did not attempt 22 4

Standard arguments:
Satisfactory proof 2 14
Correct statement, faulty proof 15 14
Incorrect arguments 29 23

Nonstandard arguments:
Satisfactory proof 25
Incorrect arguments 2

The results, as shown in the accompanying tabulation, seem to be strik-
ing; but, as Sullivan cautions:

Seeking to determine whether or not students really do perceive the basic
concepts any differently is not simply a matter of tabulating how many
students can formulate proper mathematical definitions. Most teachers
would probably agree that this would be a very imperfect instrument
for measuring understanding in a college freshman. But further light
on this and other questions can be sought in the comments of the
instructors.42

Here, too, the results are remarkable in their support of the heuristic
value of using nonstandard analysis in the classroom. It would seem that,
contrary to Bishop's views, the traditional approach to the calculus may
be the more pernicious. Instead, the new nonstandard approach was
praised in strong terms by those who actually used it:

The group as a whole responded in a way favorable to the experimen-
tal method on every item: the students learned the basic concepts of
the calculus more easily, proofs were easier to explain and closer to
intuition, and most felt that the students end up with a better under-
standing of the basic concepts of the calculus.43
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As to Bishop's claim that the d,e method is "commonsense,"44 this
too is open to question. As one teacher having successfully used Keisler's
book remarked, "When my most recent classes were presented with the
epsilon-delta definition of limit, they were outraged by its obscurity com-
pared to what they had learned [via nonstandard analysis]."45

But as G. R. Blackley warned Keisler's publishers (Prindle, Weber and
Schmidt) in a letter when he was asked to review the new textbook prior
to its publication:

Such problems as might arise with the book will be political. It is revolu-
tionary. Revolutions are seldom welcomed by the established party,
although revolutionaries often are.46

The point to all of this is simply that, if one take meaning as the stan-
dard, as Bishop urges, rather than truth, then it seems clear that by its
own success nonstandard analysis has indeed proven itself meaningful at
the most elementary level at which it could be introduced—namely, that
at which calculus is taught for the first time. But there is also a deeper
level of meaning at which nonstandard analysis operates—one that also
touches on some of Bishop's criticisms. Here again Bishop's views can
also be questioned and shown to be as unfounded as his objections to
nonstandard analysis pedagogically.

Recall that Bishop began his remarks in Boston at the American
Academy of Arts and Sciences workshop in 1974 by stressing the crisis
in contemporary mathematics that stemmed from what he perceived as
a misplaced emphasis upon formal systems and a lack of distinction be-
tween the ideas of "truth" and "meaning." The choice Bishop gave in
Boston was between mathematics as a meaningless game or as a discipline
describing some objective reality. Leaving aside the question of whether
mathematics actually describes reality, in some objective sense, consider
Robinson's own hopes for nonstandard analysis, those beyond the pure-
ly technical results he expected the theory to produce. In the preface to
his book on the subject, he hoped that "some branches of modern
Theoretical Physics might benefit directly from the application of non-
standard analysis."47

In fact, the practical advantages of using nonstandard analysis as a
branch of applied mathematics have been considerable. Although this is
not the place to go into detail about the increasing number of results aris-
ing from nonstandard analysis in diverse contexts, it suffices here to men-
tion impressive research using nonstandard analysis in physics, especially
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quantum theory and thermodynamics, and in economics, where study of
exchange economies has been particularly amenable to nonstandard in-
terpretation.48

7. Conclusion

There is another purely theoretical context in which Robinson con-
sidered the importance of the history of mathematics that also warrants
consideration. In 1973, Robinson wrote an expository article that drew
its title from a famous monograph written in the nineteenth century by
Richard Dedekind: Was sind und was sollen die Zahlen? This title was
roughly translated—or transformed in Robinson's version—as
"Numbers—What Are They and What Are They Good For?" As Robin-
son put it: "Number systems, like hair styles, go in and out of fashion—
it's what's underneath that counts."49

This might well be taken as the leitmotiv of much of Robinson's
mathematical career, for his surpassing interest since the days of his disser-
tation written at the University of London in the late 1940s was model
theory, and especially the ways in which mathematical logic could not only
illuminate mathematics, but have very real and useful applications within
virtually all of its branches. In discussing number systems, he wanted to
demonstrate, as he put it, that

the collection of all number systems is not a finished totality whose
discovery was complete around 1600, or 1700, or 1800, but that it has
been and still is a growing and changing area, sometimes absorbing
new systems and sometimes discarding old ones, or relegating them to
the attic.50

Robinson, of course, was leading up in his paper to the way in which
nonstandard analysis had again broken the bounds of the traditional
Cantor-Dedekind understanding of the real numbers, especially as they
had been augmented by Cantorian transfinite ordinals and cardinals.

To make his point, Robinson turned momentarily to the nineteenth cen-
tury and noted that Hamilton had been the first to demonstrate that there
was a larger arithmetical system than that of the complex numbers—
namely, that represented by his quaternions. These were soon supplanted
by the system of vectors developed by Josiah Willard Gibbs of Yale and
eventually transformed into a vector calculus. This was a more useful
system, one more advantageous in the sorts of applications for which
quaternions had been invented.
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Somewhat later, another approach to the concept of number was taken
by Georg Cantor, who used the idea of equinumerosity in terms of one-
to-one correspondences to define numbers. In fact, for Cantor a cardinal
number was a symbol assigned to a set, and the same symbol represented
all sets equivalent to the base set. The advantage of this view of the nature
of numbers, of course, was that it could be applied to infinite sets, pro-
ducing transfinite numbers and eventually leading to an entire system of
transfinite arithmetic. Its major disadvantage, however, was that it led
Cantor to reject adamantly any mathematical concept of infinitesimal.51

As Robinson points out, although the eventual fate of Cantor's theory
was a success story, it was not entirely so for its author. Despite the clear
utility of Cantor's ideas, which arose in connection with his work on
trigonometric series (later applied with great success by Lebesgue and
others at the turn of the century), it was highly criticized by a spectrum
of mathematicians, including, among the most prominent, Kronecker,
Frege, and Poincare. In addition to the traditional objection that the in-
finite should not be allowed in rigorous mathematics, Cantor's work was
also questioned because of its abstract character. Ultimately, however,
Cantor's ideas prevailed, despite criticism, and today set theory is a cor-
nerstone, if not the major foundation, upon which much of modern
mathematics rests.52

There was an important lesson to be learned, Robinson believed, in
the eventual acceptance of new ideas of number, despite their novelty or
the controversies they might provoke. Ultimately, utilitarian realities could
not be overlooked or ignored forever. With an eye on the future of non-
standard analysis, Robinson was impressed by the fate of another theory
devised late in the nineteenth century that also attempted, like those of
Hamilton, Cantor, and Robinson, to develop and expand the frontiers
of number.

In the 1890s, Kurt Hensel introduced a whole series of new number
systems, his now familiar p-adic numbers. Hensel realized that he could
use his p-adic numbers to investigate properties of the integers and other
numbers. He also realized, as did others, that the same results could be
obtained in other ways. Consequently, many mathematicians came to
regard Hensel's work as a pleasant game; but, as Robinson himself ob-
served, "Many of Hensel's contemporaries were reluctant to acquire the
techniques involved in handling the new numbers and thought they con-
stituted an unnecessary burden."53

The same might be said of nonstandard analysis, particularly in light
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of the transfer principle that demonstrates that theorems true in *R can
also be proven for R by standard methods. Moreover, many mathemati-
cians are clearly reluctant to master the logical machinery of model theory
with which Robinson developed his original version of nonstandard
analysis. This problem has been resolved by Keisler and Luxemburg,
among others, who have presented nonstandard analysis in ways accessi-
ble to mathematicians without their having to take up the difficulties of
mathematical logic as a prerequisite.54 But for those who see nonstandard
analysis as a fad that may be a currently pleasant game, like Hensel's p-adic
numbers, the later history of Hensel's ideas should give skeptics an ex-
ample to ponder. For today, p-adic numbers are regarded as coequal with
the reals, and they have proven a fertile area of mathematical research.

The same has been demonstrated by nonstandard analysis. Its applica-
tions in areas of analysis, the theory of complex variables, mathematical
physics, economics, and a host of other fields have shown the utility of
Robinson's own extension of the number concept. Like Hensel's p-adic
numbers, nonstandard analysis can be avoided, although to do so may
complicate proofs and render the basic features of an argument less
intuitive.

What pleased Robinson as much about nonstandard analysis as the in-
terest it engendered from the beginning among mathematicians was the
way it demonstrated the indispensability, as well as the power, of technical
logic:

It is interesting that a method which had been given up as untenable
has at last turned out to be workable and that this development in a
concrete branch of mathematics was brought about by the refined tools
made available by modern mathematical logic.55

Robinson had begun his career as a mathematician by studying set
theory and axiomatics with Abraham Fraenkel in Jerusalem, which even-
tually led to his Ph.D. from the University of London in 1949.56 His early
interest in logic was later amply repaid in his applications of logic to the
development of nonstandard analysis. As Simon Kochen once put it in
assessing the significance of Robinson's contributions to mathematical
logic and model theory:

Robinson, via model theory, wedded logic to the mainstreams of
mathematics.... At present, principally because of the work of
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Abraham Robinson, model theory is just that: a fully-fledged theory
with manifold interrelations with the rest of mathematics.57

Kurt Godel valued Robinson's achievement for similar reasons: it suc-
ceeded in uniting mathematics and logic in an essential, fundamental way.
That union has proved to be not only one of considerable mathematical
importance, but of substantial philosophical and historical content as well.

Notes
1. There is a considerable literature on the subject of the supposed crisis in mathematics

associated with the Pythagoreans. See, for example, (Hasse and Scholz 1928). For a recent
survey of this debate, see (Berggren 1984; Dauben 1984; Knorr 1975).

2. (Bishop 1975, 507).
3. (Bishop 1975, 513-14).
4. Robinson first published the idea of nonstandard analysis in a paper submitted to

the Dutch Academy of Sciences (Robinson 1961).
5. (Cleave 1971; Edwards 1979; Laugwitz 1975, 1985; Luxemburg 1975).
6. (Lakatos 1978).
7. (Lakatos 1978, 43).
8. (Lakatos 1978, 44).
9. (Lakatos 1978, 49).
10. (Lakatos 1978, 50). Emphasis in original.
11. Cauchy offers his definitions of infinitely large and small numbers in several works,

first in the Cours d'analyse, subsequently in later versions without substantive changes. See
(Cauchy 1821, 19; 1823, 16; 1829, 265), as well as (Fisher 1978).

12. (Cauchy 1868).
13. (Lakatos 1978, 54).
14. For details of the successful development of the early calculus, see (Boyer 1939;

Grattan-Guinness 1970, 1980; Grabiner 1981; Youshkevitch 1959).
15. (Newton 1727, 39), where he discusses the contrary nature of indivisibles as

demonstrated by Euclid in Book X of the Elements. For additional analysis of Newton's
views on infinitesimals, see (Grabiner 1981, 32).

16. See (Leibniz 1684). For details and a critical analysis of what is involved in Leibniz's
presentation and applications of infinitesimals, see (Bos 1974-75; Engelsman 1984).

17. See (Robinson 1967, 35 [in Robinson 1979, 544]).
18. In (Lagrange 1784, 12-13; Dugac 1980, 12). For details of the Berlin Academy's com-

petition, see (Grabiner 1981, 40-43; Youshkevitch 1971, 149-68).
19. (Lakatos 1978, 59). Emphasis added.
20. See (Grattan-Guinness 1970, 55-56), where he discusses "limit-avoidance" and its

role in making the calculus rigorous.
21. (Robinson 1965b).
22. (Robinson 1965b, 184); also in (Robinson 1979, vol. 2, 87).
23. I am grateful to Stephan Korner and am happy to acknowledge his help in ongoing

discussions we have had of Robinson and his work.
24. For a recent survey of the controversies surrounding the early development of the

calculus, see (Hall 1980).
25. Borel in a letter to Hadamard, in (Borel 1928, 158).
26. (KOrner 1979, xlii). Korner notes, however, that an exception to this generalization

is to be found in Hans Vaihinger's general theory of fictions. Vaihinger tried to justify in-
finitesimals by "a method of opposite mistakes," a solution that was too imprecise, Korner
suggests, to have impressed mathematicians. See (Vaihinger 1913, 51 Iff).
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27. (Robinson 1965a, 230; Robinson 1979, 507). Nearly ten years later, Robinson re-
called the major points of "Formalism 64" as follows: "(i) that mathematical theories which,
allegedly, deal with infinite totalities do not have any detailed meaning, i.e. reference, and
(ii) that this has no bearing on the question whether or not such theories should be developed
and that, indeed, there are good reasons why we should continue to do mathematics in the
classical fashion nevertheless." Robinson added that nothing since 1964 had prompted him
to change these views and that, in fact, "well-known recent developments in set theory repre-
sent evidence favoring these views." See (Robinson 1975, 557).

28. (Robinson 1970, 45-49).
29. (Robinson 1970, 45-49).
30. (Birkhoff 1975, 504).
31. (Birkhoff 1975, 504).
32. (Bishop 1975, 507).
33. (Bishop 1975, 508).
34. For Cantor's views, see his letter to the Italian mathematician Vivanti in (Meschkowski

1965, 505). A general analysis of Cantor's interpretation of infinitesimals may be found
in (Dauben 1979, 128-32, 233-38). On the question of rigor, see (Grabiner 1974).

35. (Bishop 1975, 514).
36. It should also be noted, if only in passing, that Bishop has not bothered himself,

apparently, with a careful study of nonstandard analysis or its implications, for he offhandedly
admits that he only "gathers that it has met with some degree of success" (Bishop 1975,
514; emphasis added).

37. (Bishop 1977, 208).
38. (Keisler 1976, 298), emphasis added; quoted in (Bishop 1977, 207).
39. (Bishop 1976, 207).
40. (Sullivan 1976, 370). Note that Sullivan's study used the experimental version of

Keisler's book, issued in 1971. Bishop reviewed the first edition published five years later
by Prindle, Weber and Schmidt. See (Keisler 1971, 1976).

41. (Sullivan 1976, 371).
42. (Sullivan 1976, 373).
43. (Sullivan 1976, 383-84).
44. (Bishop 1977, 208).
45. (Sullivan 1976, 373).
46. (Sullivan 1976, 375).
47. (Robinson 1966, 5).
48. See especially (Robinson 1972a, 1972b, 1974, 1975), as well as (Dresden 1976) and

(Voros 1973).
49. (Robinson 1973, 14).
50. (Robinson 1973, 14).
51. For details, see (Dauben 1979).
52. See (Dauben 1979).
53. (Robinson 1973, 16).
54. (Luxemburg 1962, 1976; Keisler 1971).
55. (Robinson 1973, 16).
56. Robinson completed his dissertation, The Metamathematics of Algebraic Systems,

at Birkbeck College, University of London, in 1949. It was published two years later; see
(Robinson 1951).

57. (Kochen 1976, 313).
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Richard Askey

How Can Mathematicians

and Mathematical Historians

Help Each Other?

1. Introduction

This paper could have a slightly different title with the word How
dropped, but I could argue both sides of that question. The present title
presumes the optimistic answer, and while we all hope that this is the cor-
rect answer, the present time may not be the right one for this answer.

The history of mathematics is not an easy field, and it takes a rare per-
son to be good at it. Keynes supposedly said it took a rare person to be
a great economist: one must be a second-rate historian, mathematician,
and philosopher. For him second-rate was very good, but not great. The
same is probably true about the history of mathematics, except one may
not have to be a philosopher. Some great mathematicians have made im-
portant contributions to the history of mathematics, but very few have
spent enough time and thought on the history of mathematics to be able
to write a first-rate historical account of part of mathematics. One recent
exception is A. Weil, who has added an excellent historical account of
number theory before Gauss (Weil 1984) to the historical notes he wrote
for the Bourbaki volumes (Bourbaki 1974). His paper from the Helsinki
Congress (Weil 1980) should also be read by anyone interested in the
history of mathematics.

Since my training is in mathematics, and my reading of history has been
almost random, I have found it useful to think about what history is and
how the history of mathematics differs from cultural or political history.
Collingwood starts his book The Idea of History (1956) with the follow-
ing four questions: What is history, what is it about, how does it pro-
ceed, and what is it for? Of the many answers that could be given to these
questions, he gave general ones that others could probably agree with,
although most would think the answers were incomplete. For the first ques-
tion, he wrote that "history is a kind of research or inquiry" (1956, 9).

207
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This is so general that it means little without a more specific statement
about what type of research. He gave this, and I have nothing to add.
Here there is no real difference between the history of mathematics and
other types of history.

Collingwood rephrased the second question to ask: What kind of things
does history find out? His answer: "actions of human beings that have
been done in the past" (1956, 9). Here the answer for the history of
mathematics would be slightly different. Beethoven and Shakespeare did
unique work, and we would not have Fidelio or King Lear if they have
not lived. However, symmetric functions would have been discovered by
others if Newton had not lived. Most mathematicians are Platonists who
believe that we discover mathematics rather than invent or create it. The
American Revolution and the government that came after would have been
significantly different if another group of people had been involved, but
most of us believe that calculus would be essentially the same no matter
when or where it was developed. I am not trying to claim that our way
of thinking of the real numbers would always be the same, for that is clearly
not true, but that the essence of calculus would be the same. The essence
of calculus has not really changed since Euler's time, and many of us would
be happy to teach from his texts if our students were significantly better.
As Rota wrote about Mark Kac (Kac 1985, xi): "He warned them [stu-
dents] that axioms will change with the whims of time, but an application
is forever." The applications of calculus, and the facts in Euler, are the
real essence of calculus.

Skipping the third question, where I have little to add, we are left with
last: What is history for? Collingwood answered that it is " 'for' human
knowledge" (1956, 10). For the history of mathematics this could be
changed to "for mathematical knowledge," except that does not
distinguish the history of mathematics from doing mathematics. As a
substitute, consider the related but different question raised by Weil in
(1980, 227); as he remarked, it is a question that has been discussed by
others in the past. The question is: Who is history for? Weil made a number
of useful comments on this question for the history of mathematics. My
view, which is fairly narrow, is summed up nicely by one of the great
historians of early mathematics, O. Neugebauer (1956). More will be
quoted than is necessary to try to entice the reader to look at his complete
note: "I always felt that its total lack of mathematical competence as well
as its moralizing and anecdotal attitude seriously discredited the history
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of mathematics in the eyes of mathematicians, for whom, after all, the
history of mathematics has to be written."

If the history of mathematics is to be written for mathematicians (ex-
clusively, or even in part), then historians of mathematics need to know
a lot of mathematics. One cannot form an adequate picture of what is
really important on the basis of the current undergraduate curriculum and
first-year graduate courses. In particular, I think there is far too much
emphasis on the emergence of rigor and on the foundations of mathematics
in much of what is published on the history of mathematics. In an in-
teresting article, Jeremy Gray (1985, 18) wrote: "The foundations of
analysis does not emerge as the central topic in mathematics that one might
think it was from the historians of mathematics." He was writing about
the period of one hundred years ago, and his conclusion was that the cen-
tral topics then were the theory of differential equations and a variety of
topics in geometry, including the theory of algebraic curves.

2. How Can Mathematicians Help?

Most mathematicians have little or no training in the ways of thought
that historians have developed, so it is unrealistic to expect many of them
to write papers or books that will satisfy mathematical historians.
However, some mathematicians are tempted to write a paper on the history
of a topic they have studied for years. I was tempted and did this over
ten years ago. I had found a few series identities in papers that had been
forgotten, and in one case an important result usually attributed to
Saalschiitz (1890) had been found by Pfaff (1797b) almost one hundred
years earlier. Actually, I did not find this paper but read about it in (Jacobi
1848). The identity of Pfaff and Saalschutz is

where the shifted factorial (a)n is defined by

There were two reasons I wanted to call attention to Pfaff's paper. One
is historical, and should have been of interest to historians. When n -+co
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in (2.1), the result is

if Re(c-a-£) > 0 and c ^ 0, -1, This result was proved by Gauss in
his published paper on hypergeometric series (1813). Notice the publica-
tion date: Gauss lived in Pfaff s home for a few months in 1797, and this
was the year in which Pfaff published (1797b) and also published a book
(1797a), the middle third of which contains the most comprehensive treat-
ment of hypergeometric functions that appeared before Gauss's work. In
addition to the published paper mentioned above, Gauss wrote a sequel
that was only published posthumously (1866). Felix Klein was aware of
Pfaff's book, and he raised the question of connection between Pfaff's
work and Gauss's later work (Klein 1933). The sum (2.1) is not in Pfaff's
book, so one can also ask if Gauss had seen this paper by Pfaff before
he did not work in (1813). If he had, it is clear he was not then aware
of the importance of hypergeometric functions, for he would have easily
seen that (2.1) implies (2.3), and so not have thought of (2.3) as a new
result. If he saw (2.1) before he appreciated the importance of hyper-
geometric functions, it is very likely he would have forgotten it. We will
probably never know whether Gauss saw this work by Pfaff, but it is worth
pointing out the possible influence, for a mathematical historian may find
an annotated book or offprint and not appreciate the importance unless
told why this influence is interesting.

The second reason interests me but might not interest others. There
is a second sum that seems similar to (2.1) and that is attributed to Dixon
(1903);

A much more general result was given by Rogers (1895, sect. 8), and a
few special cases of (2.4) were found earlier, but the earliest special case
I know appeared in (Dixon 1891). This is almost one hundred years after
Pfaff proved (2.1), but only one year after Saalschtitz rediscovered it
(1890). These two results are often given at the same time. For example,
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Knuth (1968, 70, #31; 73, #62) has both of them as problems. He assigned
20 points to (2.1) and 38 points to (2.4), on a scale of 0 to 50, so it is clear
he knew that (2.4) is deeper than (2.1). This depth is also illustrated by
the approximately one hundred year difference in time when they were
discovered. If the reader thought the time difference was one year (for
the special case) or thirteen years (for the general case), these results would
seem to be of the same depth. It took me a number of years before I ap-
preciated the difference in depth.

I wanted to make one other point in this paper. Many people who write
about (2.1) and (2.4) do not really understand what these identities say.
For example, Knuth did not write either of these identities in the above
form. He used binomial coefficients rather than shifted factorials. To ex-
plain the reason behind this difference, I will have to get technical.

In elementary calculus, the favorite test for convergence of an infinite
series is the ratio test. It is easy to use and works on most power series
that are given to students at this level. For these power series, the ratio
between successive terms is a rational function of the index of the term.
For example, for a power series about x = 0, if

with cn + i /cn a rational function of n. This rational function is usually
factored as

then for f(x) = exp x the ratio is

for f(x) = (\-x)-a the ratio is

and for log(l +x) the ratio is

A generalized hypergeometric series is a series



The special case p = 2, q = 1 is often called the hypergeometric series,
and the analytic continuation of this function is called the hypergeomet-
ric function. It is single valued on the plane cut on [l,oo) and on an ap-
propriate Riemann surface.

Euler, Gauss, Kummer, Riemann, and many other mathematicians
studied the general 2Fi, and facts about this function are important enough
to be collected in many handbooks. Limiting or special cases such as Bessel
functions, which are essentially 0Fi's; confluent hypergeometric functions,
which are i/Vs or linear combinations of two i/Vs; and Legendre func-
tions, which are 2Fi's with one or two parameters specialized in appropri-
ate ways, have also been studied extensively. Facts about them are given
in very large books, such as Watson's book on Bessel functions (1944)
Robin's three volumes on Legendre functions (1957-59), and Hobson's
book on spherical harmonics (1931), as well as the standard handbooks
(Abramowitz and Stegun 1965; Erdelyi 1953-55). Thus one cannot claim
this material is not well known, at least in some circles. However, there
are many other circles where this work is almost completely unknown.
The best example is combinatorics. One of the most important sets of
mathematics books written in the last twenty years in Knuth's The Art
of Computer Programming (1968, 1969, 1973). In this set of books, and
in many others of a combinatorial nature, binomial coefficients occur reg-
ularly. The binomial coefficient \n~\ is given byw

and it counts the number of ways k identical objects can be put in n spots.
Knuth wrote:

There are literally thousands of identities involving binomial coeffi-
cients, and for centuries many people have been pleased to discover
them. However, there are so many relations present that when someone
finds a new identity, there aren't many people who get excited about
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and the series is written as
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it any more, except the discoverer! In order to manipulate the formulas
which arise in the analysis of algorithms, a facility for handling binomial
coefficients is a must (1968, sect. 1.2.6, 52-53)

When a mathematician who is as good as Knuth write nonsense like
the above (except for the last sentence, where he is probably right), then
one must look seriously at what he wrote and try to understand why he
missed the essence of what is really true. There are actually very few iden-
tities of the sort Knuth gave in this section—there just seem to be many
because he does not know how to write them. For example, in (1968, sect.
1.2.61) he gave six sums (21)-(26) and then wrote that (21) is by far the
most important. What he did not point out is that five of these identities,
(21)-(25), are all just disguised versions of

In other words, they are all the same identity. Binomial coefficients are
important, since they count things; but when one has a series of products
of binomial coefficients, the right thing to do is to translate the sum to
the hypergeometric series for (2.6). Translation is almost always easy (there
can be some problems that require limits when division by zero arises),
and it has been known for a long time that this is the right way to handle
sums of products of binomial coefficients. Andrews spelled this out in
detail in (1974, sect. 5), but the realization that hypergeometric series are
just series with term ratio a rational function of n is very old. Horn (1889)
used this as the definition of a hypergeometric series in two variables. R.
Narasimhan told me that he found a definition of "comfortable" series
in one of the late volumes of Euler's collected works. For Euler, a com-
fortable series is a power series whose term ratio is a rational function
of n. When I asked Narasimhan to give me a specific reference, he was
unable to find it again. I will be very pleased to pay $50 U.S. for this
reference, for it would be worth that to know that Euler's insight was also
good here. An even earlier place one might look for this insight would
be in Newton's work. In any case, by the time of Kummer's early work
(1836), some mathematicians started to look at higher hypergeometric
series and write them as

which is (2.6) when/> = 3, q = 2. Clausen (1828) used the same notation
even earlier.
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I wrote a short note (1975) mentioning many of the above facts and
sent it to HistoriaMathematica. It was sent to two referees, who disliked
it because I had not written a history paper. The editor then sent it to
two other referees, who also did not like it. One thought there were the
makings of a reasonable paper if I only did some serious historical research,
whereas the other thought the paper was silly. I had written that this
material was treated badly in books of mathematical history and was not
part of the standard curriculum. His view was essentially the following:
if this work is not part of the curriculum, then it probably is not very
important.

I would like to quote one paragraph from this technical report, chang-
ing it slightly to make it readable without including the earlier text, and
then give the surprising sequel:

The real reason for the obscurity of this material seems to be that it
plays a minor role in most problems. Often this role is essential, but
there is usually some other idea involved in the solution of a problem
which seems to be more central (it usually is) and the explicit sum which
is necessary remains a lemma. These sums are easy enough to derive
so that a mathematician who has been able to come up with other ideas
on how to solve a problem can also rediscover the required sum. But
this has not always been true. For example, Good obtained the sum

Now the positivity for a > J3 is obvious. Recently some very complicated
formulas for hypergeometric series have been used by Gasper (1975)
to obtain some inequalities for integrals which have not been obtained
by any other method. Askey and Gasper (1977) used some other deep
facts about hypergeometric series to extend a result of Szego (1933).
If more complicated problems of this sort are to be solved in other areas
then mathematicians are going to have to realize that even the subject

Then he says "(The sum of the series on the right must be non-negative
if a > J3, an inequality that is not obvious directly.) If |3 = 0,

See Good (1958). What he did not notice is that this series can be
translated into hypergeometric form and summed by a special case of
(2.1). The result is
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of explicit evaluation of sums will have to be looked at in a more
systematic way. It will be interesting to see if the knowledge of these
important results spreads more widely in the next few decades. If one
judges by past history the prospects are poor.

This is probably the most prophetic paragraph I have ever written. In
the winter of 1984, L. de Branges reduced the Bieberbach conjecture to
showing that a certain integral of a 2F\ is positive. He had a new idea about
how to use the Loewner machine, and he reduced a generalization of the
Bieberbach conjecture—the Milin conjecture—to the following inequality:

If/is univalent, Bieberbach (1916) showed that \a2\ < 2 and conjectured
that an\ < n. There is equality when/(z) = z(\-z)'2. This had been proved
for n = 3, 4, 5, 6 and for all n for some subclasses of univalent func-
tions, such as those with real coefficients an, but the general case was open
and thought to be very hard. The Milin conjecture is too technical to state
here, but it was known to imply the Bieberbach conjecture, and many
experts on univalent functions thought it was false.

The final step in the proof of these conjectures has been described by
the participants (Askey 1986; de Branges 1986; Gautschi 1986). Briefly,
it is as follows. De Branges asked Walter Gautschi for aid in seeing when
(2.7) holds; Gautschi is a colleague of de Branges's and probably the best
person in the world to approach when asking for numerical results on the
integral in (2.7). De Branges had heard that many experts on univalent
functions thought the Bieberbach conjecture was false for odd values of
n starting at 17 or 19, and Gautschi was skeptical that this approach would
work; so the two of them were very excited when the numbers Gautschi
found seemed to say that (2.7) held for n up to 30. This strongly suggested
that the Milin conjecture and the Bieberbach conjecture were true for these

For the sake of those who do not know these conjectures, the Bieber-
bach conjecture is the following. A function/(z) is univalent if it is one
to one on its domain. Let/(z) by analytic for \z \ < 1 and normalized by



and had shown that this is true for n up to about 20, and thus that the
Milin and Bieberbach conjectures were true for these values of n.

The Bieberbach conjecture was a big problem, there was a nice new
idea, and the final step dealt with hypergeometric functions, as in my
outline quoted above. However, this time the hypergeometric function
work was harder than just one identity. There is a relatively simple proof
of (2.8), but it requires three identities, only one of which was well known.
A second one is contained in the best handbooks. The third one is over
a hundred years old and is contained in a few books, but not in the stan-
dard handbooks. Gautschi eventually called me and asked if I knew how
to prove (2.7). I looked at it that evening, changed it to (2.8), and found
this in the first place I looked (Askey and Gasper 1976). George Gasper
and I had needed this inequality to prove a conjecture I had made, and
Gasper had proved it.

De Branges's paper has now appeared (1985). After a version of de
Branges's proof was available in preprint form, many mathematicians went
through the details of his argument, gave talks on it, and some wrote their
own accounts (Aharonov 1984; Anonymous [Maynooth] 1985; Fitz Gerald
and Pommerenke 1985; Korevaar 1985; Milin 1984). However, only two
of these accounts gave a complete proof of (2.7), and the general consen-
sus was that the proof of (2.7) was magic and that it would be nice to
have a more conceptual, less computational proof. One always wants
simple proofs, but if one is willing to admit that Euler, Gauss, Kummer,
Riemann et al. knew what they were doing when they studied hyper-
geometric functions, then this proof seems very natural. To prove that
something is nonnegative, one tries to write it as a square or the sum of
squares with nonnegative coefficients. The proof Gasper found is just that.
What I am afraid of is that the last part of the quotation above will also
be prophetic and that, even with this striking use of hypergeometric func-
tions, knowledge of them will not spread to the mathematical community
at large as it should.
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n and that it should be relatively easy to obtain error estimates to show
that (2.7) held for those n, and probably a good deal higher. In fact, J.
Hummel (personal communication) had independently done calculation
on the integrated form of (2.7):
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My note was not the only paper written by a mathematician about some
early mathematics of interest today that was turned down by the editors
of Historia Mathematica. Another was written by George Andrews, and
he published it elsewhere (1982). It is also not really a history paper by
the standards of Historia Mathematica, but it deals with historical doc-
uments—in his case, two unpublished letters of L. J. Rogers; it is also
of more interest to quite a few mathematicians than many of the papers
in Historia Mathematica. I suggest it would be useful to publish an occa-
sional article like this. If there were more articles of interest to mathemati-
cians, then more mathematicians would read this journal. A few more
papers by mathematicians would also tell historians what mathematicians
consider important and would suggest topics that should be looked at in
detail by historians. After my experience, the next time I had a topic of
historical interest I wrote my comments for publication elsewhere. This
topic was the orthogonal polynomials that generalize the classical
polynomials of Hermite, Laguerre, and Jacobi. Most of these are older
than is generally known. For example, a set of polynomials that is or-
thogonal on x = 0, 1 , . . . , N with respect to the function [x+ a][NN-xP]
and that are known as Hahn polynomials were really discovered by
Tchebychef (1875); see my comments to (Szego 1968) in the reprinted ver-
sion. There is a need for a historical treatment of orthogonal polynomials.
Szego (1968) wrote an outline, I added further comments, and a historical
resource without equal exists in (Shohat et al. 1940). This bibliography
is not complete, but when it was written it was probably the best bibli-
ography of a part of mathematics, and I do not know of another that
equals it in the coverage of the eighteenth and nineteenth centuries. My
comments appeared in a place where some mathematicians will see them,
but mathematical historians are unlikely to hear about them.

There should be some place where mathematicians can record historical
observations that will be read by mathematical historians. For example,
consider general history books, which mostly contain material copied by
the author from other books or papers. Errors tend to be propagated from
one book to another, some of the errors being historical and others mathe-
matical. More frequently, they are errors of ignorance, where the real point
of the work is not understood. There needs to be a place where these errors
can be corrected so that they will not appear in future books. I will illus-
trate these errors by mentioning some in M. Kline's book (1972). It is used
as an illustration because I agree with the following remark of Rota (1974):
"It is easy to find something to criticize in a treatise 1,200 pages long and
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packed with information. But whatever we say for or against it, we had
better treasure this book on our shelf, for as far as mathematical history
goes, it is the best we have." If the best can have errors like the follow-
ing, then it is clear that mathematical historians need all the help they can
get.

First, a mathematical error. Kline attributed the following formula to
Euler (Kline 1972, 489):

when Re c > Re a > 0.
An example of a historical fact that is wrong is the following:

The problem of solving ordinary differential equations over infinite in-
terval or semi-infinite intervals and of obtaining expansions of arbitrary
functions over such intervals was also tackled by many men during the
second half of the century and such special functions as Hermite func-
tions first introduced by Hermite in 1864 and Nikolai J. Sonine in 1880
serve to solve this problem. (Kline 1972, 714)

These functions were known more than a half century before Hermite.
Laplace studied them in his work in probability theory (Laplace 1812) and
gave as many facts about them as Hermite was to rediscover. The date
of discovery is important, but there is a more important point that Kline
could have illustrated here. The message he put across is that these func-
tions were introduced to solve differential equations. That is not true. They
arose for other reasons, such as their connection with Fourier transforms,
and the differential equation was a minor fact to Laplace. Part of the

He does not say what n is, but by implication he has n a nonnegative
integer, for he does not define what c(c+ 1) . . . (c + n-l) means when n
is anything else. However, when n = 0,1, • • • , the integral diverges. This
integral was copied from (Slater 1966, 3). Euler had a formula like (2.9)
that is correct. It is
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power of mathematics is the surprising way in which mathematical ideas
or results that arose in one area turn out to be useful in other areas. That
is just as true of special functions as it is of other parts of mathematics.

Finally, Kline does not seem to be aware that the 2F\ hypergeometric
function is really the most important of the special functions that arise
as solutions of differential equations that come from separation of
variables. He even said that the Bessel equation is the most important or-
dinary differential equation that results from separation of variables (1972,
710). Historically it probably arose most frequently, but the hypergeo-
metric equation is much more important, and it contains the Bessel equa-
tion and many others as limiting or special cases. Riemann was the first
to give a structural reason why the hypergeometric equation is so impor-
tant. He showed that it is the only linear, homogeneous, second-order
differential equation with regular singularities at z = 0, 1, andoo, with
every other point an ordinary point. The Bessel equation has a regular
singular point at z = 0 and an irregular singular point at z =00. Riemann's
result is well over one hundred year old and should now be in a comprehen-
sive history book such as Kline's. Kline's treatment of Riemann's prob-
lem and related work is considerably better than any other treatment in
a general book on mathematical history—he just did not draw the right
conclusions about the 2F\ and its limits.

Kline mentions Gauss's published paper on the hypergeometric func-
tion twice but does not mention what I consider to be the major insight
in this paper. In his first comment (p. 712), he mentions Gauss's sum (2.3)
and the fact that Gauss recognized that special choices of the parameters
will give many known elementary and higher transcendental functions.
In the second comment (p. 962), he wrote about Gauss's work on con-
vergence. Then he wrote the following, which I do not believe (p. 962):
' 'The unusual rigor discouraged interest in the paper by mathematicians
of the time."

The really new point of view that Gauss introduced in this paper was
to treat

as a function of four variables, a,0 and 7 as well as x. This is very impor-
tant and eventually led to some orthogonal polynomials that have been
used in the quantum theory of angular momentum, in the analysis of pea
growth, in the first proof of the irrationality of £ (3), and in discrete
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analogues of spherical harmonics that are used in coding theory.
Vorsselman de Heer drew upon Gauss's paper and some neglected early
work of Euler for his thesis in (1833), and Kummer read Gauss's paper
very carefully before he wrote (1836). Twenty years is not an exceedingly
long time for a piece of work to be appreciated and extended. The work
that Gasper and I did on positive sums of Jacobi polynomials was not
used for ten years, and no one has extended or used Gasper's deeper work
(1977), or even considered the dual problems. Gauss pushed the field ahead
quite a few ways, and it took time to understand his work well enough
so that the next steps could be made. The most significant extension of
(Gauss 1813) was done by Heine (1845) but that is another story that leads
to the Rogers-Ramanuj an identities in partition theory and eventually to
some beautiful and deep work of Baxter in statistical mechanics (1982,
chap. 14).

3. How Can Mathematical Historians Help Mathematicians?

The answer to this question is easy: they can write papers on the history
of mathematics that mathematicians care about. The American Mathe-
matical Society has periodic special sessions on the history of mathematics,
and these are very well attended. Mathematicians care about mathematics
outside their own field, but they find a lack of good papers that contain
the essence of the subject—namely, the problems that led to the field and
the ideas that were used to attack these problems. This is really mathe-
matical history. Please help us to learn more about mathematics by writing
such papers. Eventually it may be possible to write a book like Kline's
(1972) that will allow us to get a good overview of mathematical devel-
opment. Before it is possible to have a good global view, however, we
must have much better local views than we now have. As an illustration
of a good local treatment of some parts of mathematics, look at some
of the papers in (Dieudonne 1978) and the excellent treatment of the
arithmetic-geometric mean in (Cox 1984). We need more historical work
like these.

I mentioned work on orthogonal polynomials by R.. A. Fisher and a
co-worker of his, F. Allan, in my comments to (Szego 1968), but I did
not say how I found this. There was a cryptic comment in Box's biography
of Fisher (Box 1978) that mentioned the existence of some discrete or-
thogonal polynomials. She did not appreciate the importance of the
representation found by Allan, and there is no reason she should have,
but this representation was very important. If I had not rediscovered it
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a few years earlier, it would have been a good illustration of how a work
on mathematical history could have aided a mathematician. I never would
have come across Fisher's paper in the Journal of Agricultural Science,
and was unlikely to have seen Allan's paper in the Proceedings of the Royal
Society of Edinburgh (in 1930). However, a comment in a biography
alerted me to the existence of these very interesting papers. Mathemati-
cians read mathematical history outside the areas where they work, so this
can be a good way of helping to break down the barriers that we have
created around our work. Historians can help in ways they do not know,
but only if they treat significant mathematics.

4. Conclusion

One of the referees of my note objected that it only contained facts
and that history is much more than just facts. That is clearly true, but
history built on incorrect facts is justly suspect. There needs to be a place
where facts can be recorded, or corrected, and this needs to be a place
that will be read by mathematical historians.

Weil (1980) set very high standards for what one would like to have
in a mathematical historian, and then he demonstrated that he was not
writing about an empty set in this century by living up to his standards.
To be realistic, it is unlikely that there will be many others who match
his description of a great mathematical historian, so we are going to have
to help each other. Together we may able to do some useful history.
Separately, some will be done, but not as much as is needed, and the quality
will often be lower than it should be.
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Lorraine J. Daston

Fitting Numbers to the World:

The Case of Probability Theory

By almost all current philosophical accounts, the success of applied
mathematics is a perpetual miracle. Neither formalist nor logicist nor
Platonist (at least of the latter-day dilute variety) can provide a plausible
explanation of why numbers should fit the world. (Here I use numbers
as a convenient shorthand for all elements of mathematics, since most—
but not all—examples of applied mathematics involve numerical measure-
ments.) Why should the relationships among undefined elements or logic
or purely mental objects describe a multitude of phenomena with tolerable
accuracy? Short of invoking preestablished harmony or a coincidence of
mind-boggling improbability, we are philosophically at a loss to account
for our great—and ever greater—good fortune in applied mathematics.
We believe that pure mathematics is conceptually and for the most part
historically prior to and independent of applied mathematics. Indeed,
the very term applied mathematics tells all: in order to be applied, the
mathematics must already exist in its own right, just as theory is "applied"
to practice.

The situation was quite otherwise in the eighteenth century, which prac-
ticed "mixed" rather than "applied" mathematics. Enlightenment philo-
sophers of mathematics certainly had their share of problems, but they
were not our problems. They pondered, for example, why mathematics
should enjoy greater certainty than various parts of physics and astron-
omy, but the triumphs of mixed mathematics, many of them barely fifty
years old then, did not perplex them. An odd hybrid of Aristotelian, Carte-
sian, and Lockean views about the nature of mathematics had prepared
them for such happy outcomes in astronomy, mechanics, optics, and
acoustics, and they anticipated further mathematical breakthroughs in
areas like pneumatics and what was then known as the art of conjecture,
or the calculus of probabilities.

227
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In this paper, I shall try to do three things: first, to briefly sketch the
eighteenth-century distinction between "abstract" and "mixed" mathe-
matics, and to contrast it with our "pure" versus "applied" distinction;
second, to illustrate the significance of this philosophical distinction for
mathematical practice, using examples drawn from the history of prob-
ability theory during the eighteenth and early nineteenth centuries; and
third, to conclude with some reflections suggested by these examples about
the preconditions for applying mathematics. Throughout, I shall be
primarily concerned with the problem of how a mathematical theory
gains—and sometimes loses—a domain of applications.

1. Mixed Mathematics

In the Metaphysics, Aristotle argues that mathematical entities cannot
be truly separated from sensible things, but only abstracted from them
(M.2.1077a 9-20; b 12-30). With some Lockean and Cartesian elabora-
tions, this view continued to dominate philosophical accounts of mathe-
matics throughout the eighteenth century. The most influential of these
accounts was d'Alembert's Preliminary Discourse (1751) to the great En-
cyclopedic. Following Locke, d'Alembert asserts that all human knowledge
derives from experience; borrowing from Descartes, he assumes analysis
to be the fundamental intellectual operation turned upon the raw materials
of sensation. Property by property, the mind strips away the tangle of
particular features that compose any sensation until it arrives at the barest
skeleton or "phantom" of the object, shaped extension. It is at this rare-
fied level that mathematics studies the objects of experience. Although
these objects have been systematically denuded of all those traits that nor-
mally accompany them in perception, they are not, d'Alembert insists,
thereby denatured. Mathematics may be the "farthest outpost to which
the contemplation of properties can lead us," but it is nonetheless still
anchored in the material universe of experience.

Once the limits of analysis have been reached at magnitude and exten-
sion, the mind reverses its path and begins to reconstitute perception, prop-
erty by property, by the reciprocal operation of synthesis, until it ultimately
arrives at its departure point, the concrete experience itself. The successive
stages along this route demarcate the subject matter of the various sciences.
For example, add impenetrability and motion to the magnitude and ex-
tension of mathematics, and the science of mechanics is created. All
sciences study the same objects but embrace their perceptual complexity
to a greater or lesser extent.1
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That mathematics could describe the external world would thus have
hardly puzzled d'Alembert: mathematics came from the world, and to the
world it must return, for d'Alembert believed that mathematical abstrac-
tions, as he says, "are useful only insofar as we do not limit ourselves
to them." Even the "abstract" mathematics of pure number and exten-
sion (i.e., of arithmetic and geometry) were simply the endpoints of a con-
tinuum along which mathematics was "mixed" with sensible properties
in varying proportions. Of course, this schema brought its own quandaries:
if mathematics was joined to the natural sciences by a continuous intellec-
tual process, why did only mathematical results enjoy certainty, and ex-
actly where did the boundary between mathematics and these sciences lie?
D'Alembert was obliged to resort to Cartesian intuitions of clarity and
simplicity to answer the first question, and he tendentiously drew the
boundary to include rational mechanics within mathematics—even his
devoted admirer Montucla could not follow him in that.2 But d'Alembert's
account of "abstract" and "mixed" mathematics did explain how, for
example, geometric optics or celestial mechanics was possible, and it was
echoed by many other in the next fifty years.

So far, so Aristotelian. We recognize the kinship of Aristotle's bronze
isosceles triangle and d'Alembert's impenetrable moving body: both ex-
amples "mix" physical with abstract properties. But when we turn to
d'Alembert's table depicting the actual contents of mixed mathematics,
we see how much enlarged beyond the Aristotelian canon it had become
by 1750 in the mind of one of Europe's leading mathematicians.3 "Mixed"
or "Physico-Mathematics" dwarfs "Pure Mathematics," even though the
latter category has been swelled by the integral and differential calculus,
and each of the headings of the Aristotelian "mixed" canon—mechanics,
astronomy, optics, harmonics—has greatly expanded its range of subhead-
ings. (Harmonics, for example, now comprises only one part of "Acous-
tics," and optics only one part of a broader division including dioptics,
perspective, and catoptrics.) Moreover, the division of space in d'Alem-
bert's table corresponds roughly to the division of labor among eighteenth-
century mathematicians: Bossut's 1810 survey of mathematics from the
origins of the calculus to the year 1800 devotes 177 pages to work in
abstract mathematics and 319 pages to that in mixed mathematics.4

Not only did mixed mathematics preponderate; in the opinion of
eighteenth-century mathematicians, it bid fair to expand still further. Mon-
tucla, in the 1758 edition of his celebrated Histoire des mathematiques,
reflected on the open-ended nature of mixed mathematics, which grew
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apace as the natural sciences acquired greater stores of observations that
could serve as "principles" of new branches such as pneumatics (the
mathematical study of gases) and the art of conjecture (probability theory).
Indeed, there seemed no more auspicious augury for the future of mixed
mathematics than a calculus of chance, "this kind of Proteus, so difficult
to get firm hold of, [and yet] the mathematician is on the verge of chain-
ing it and of submitting it to his calculations."5 If chance itself could be
tamed, what phenomenon, however irregular, could withstand the for-
ward march of mixed mathematics?

This, then, was the framework within which eighteenth- and early
nineteenth-century probabilists worked. Mathematics about the world was
"mixed" with its subject matter rather than "applied" to it, and pure
or abstract mathematics was thought as likely to be enriched by physical
insights as the other way around—the intimate, two-way links between
the development of the calculus and the study of motion were an object
lesson to eighteenth-century mathematicians. Mixed mathematics was more
than just a fctfon de parler: all attempts to apply mathematics to the
phenomena of experience presume some degree of analogy between the
subject matter and the mathematics employed, but for eighteenth-century
practitioners of mixed mathematics, the requisite degree of analogy bor-
dered on congruence. Mathematical models were conceived not merely
as analogues that shared certain key features with the phenomena they
described, but rather as mathematical "portraits"—highly schematic ones,
to be sure—of the phenomena and/or the underlying mechanisms that
produced them. Moreover, mixed mathematics absorbed the greater part
of mathematicians' energies in the eighteenth century. However, they
revered pure mathematics as the only inexorably progressive part of the
discipline. As Montucla noted, the very hybrid nature of mixed
mathematics, partaking both of the "clarity and evidence" of abstract
mathematics and the "uncertainty and shadows" of physics, put it at risk
of error and (Montucla's term) "retrogression."61 shall now turn to the
calculus of probabilities, which was at once emblematic for the distinc-
tive character of mixed mathematics, of its vast horizon, and, ultimately,
of the retrogression Montucla feared.

2. The Art of Conjecture

Probability theory has been described as simply the sum total of its
applications. Until the late eighteenth century introduction of generating
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functions, it had no techniques of its own; until Kolmogorov's axiomatiza-
tion of 1933, it had no independent standing as a mathematical theory.
Early twentieth century mathematicians like Hilbert and Borel still nar-
rowly identified probability theory with specific applications, and this was
a fortiori true of the eighteenth century art of conjecture, which existed
solely as mixed mathematics, like geometric optics and celestial mechanics.
As such, it stood or fell with its treatment of the problems deemed specific
to it—problems concerning rational belief or action under conditions of
uncertainty—hence the "art of conjecture," after Jakob Bernoulli's 1713
treatise of that title. I shall outline three examples from the eighteenth-
century corpus of probability theory: the St. Petersburg gambling prob-
lem; the probability of judgments; and insurance. I have deliberately
chosen examples that are both familiar (insurance) and, to twentieth-
century eyes, outlandish (the probability of judgments); examples that are
still central to the probabilistic corpus (gambling and expectation) and
others that have migrated to other disciplines (the St. Petersburg paradox
and its solutions now belong properly to economics). Taken together, the
examples illustrate the special constraints placed upon mixed mathematics
to somehow "match" the phenomena, and also how the empire of numbers
could contract as well as expand.

The St. Petersburg Problem

Although most modern expositions derive the concept of expectation
from that of probability, the first published versions of the theory of the
late seventeenth and early eighteenth centuries made expectation rather
than probability fundamental.7 In modern terms, expectation is defined
as the product of the probability of an event m and its outcome value:

E - P(m) • V(m), Where P (m) - probability of outcome m
and V (m) = value of outcome m.

Early probabilists like Huygens and Jakob Bernoulli thought in terms
of expectations rather than probabilities because the problems they posed
were taken from contract law, and were concerned more with equity than
with probabilities per se. Aleatory contracts were a long-recognized sub-
division of Roman and canon law, and included all agreements involving
an element of chance: gambling, annuities, maritime insurance, the prior
purchase of the "cast of a net" from a fisherman—in short, any trade
of here and present goods for future uncertain ones. Lawyers studied con-
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ditions of equal expectations rather than equal probabilities of gain or
loss, and the first two generations of mathematical probabilists followed
suit when they attempted to quantify these legal concerns.

The St. Petersburg paradox, posed by Nicholas Bernoulli in 1713,8

sparked a long debate over the proper definition of the central concept
of probabilistic expectation—a debate that threatened to undermine the
foundations of eighteenth-century probability theory. Two players, A and
B, play a coin-toss game. If the coin turns up heads on the first toss, A
gives B $1; if heads does not turn up until the second toss, B wins $2;
if not until the third toss; $4; and so on. By conventional methods, B's
expectation (and therefore the fair price to play the game) would be:

E = 1/2 ($1) + 1/4 ($2) + 1/8 ($4) + . . . + (1/2") (2«-l) + . . . .

Therefore, B must pay A an infinite amount to play the game. But, as
Nicholas Bernoulli and subsequent commentators were quick to point out,
no reasonable person would pay even a small amount, much less a very
large or infinite sum, for the privilege of playing such a game.

Why was this a paradox? Unlike most mathematical paradoxes, the
contradiction lay not between discrepant mathematical results deduced
from equally valid premises: there is nothing mathematically wrong with
this answer. In order to understand the furor triggered by the St. Petersburg
problem, we must return to eighteenth-century views on mixed mathe-
matics and the peculiar mission of the calculus of probabilities. In essence,
the branches of eighteenth-century mixed mathematics corresponded to
what would now be termed mathematical models. If the mathematical
description diverged significantly from the phenomena, it was incumbent
upon the mixed mathematician to revise this theory. In other words, math-
ematical probability was as "corrigible" as the mathematical theory of
lunar motion. In modern parlance, the mathematical theory had no ex-
istence independent of its applications. Thus the designated field of ap-
plications (the term is anachronistic here) played a critical role in the career
of a branch of mixed mathematics, and such indeed was the case with
mathematical probability. The distinctive field of applications to which
classical probabilists attached their theory was the determination of stan-
dards for rational thought and conduct in civil society, a field pioneered
by Jakob Bernoulli in the unfinished fourth book of the Ars conjectandi
and taken up by his nephews Nicholas and Daniel Bernoulli, Condorcet,
Lambert, Laplace, and others during the eighteenth century. By isolating
and mathematizing the principles that underpinned the beliefs and actions
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of an elite of reasonable men, the probabilists hoped to make social ration-
ality accessible to all. Since probability theory was meant to be a math-
ematical model of reasonableness, when its results clashed with the judg-
ments of hommes eclaires, as in the case of the St. Petersburg problem,
probabilists anxiously reexamined their premises and demonstrations for
inconsistencies. Hence the paradox: the contradiction lay not between
incompatible mathematical tenets, but rather between the unambiguous
mathematical solution and good sense. This is why the St. Petersburg
paradox, trivial in itself, exercised every first-rate probabilist from Daniel
Bernoulli through Poisson.

I have discussed the numerous eighteenth-century solutions to this so-
called paradox at length elsewhere, and I shall not review them here.9 Here,
I shall only point out that although mathematicians reached no consen-
sus about the correct solution to the problem, they all agreed that the
paradox was both real and dangerous to probability theory as a whole,
that the definition of expectation was the nub of the problem, and that
a satisfactory solution must realign the mathematical theory with the opin-
ions of reasonable men. That is, their primary loyalty lay to the field of
phenomena that the calculus of probabilities purported to describe, and
they were willing to sacrifice the most fundamental definition of that
calculus in order to bring about a better match between mathematical
results and phenomena.

The Probability of Judgments

The preceding example of the St. Petersburg paradox and the animated
debate it provoked was meant to show that (1) the eighteenth-century
calculus of probabilities was, as a branch of mixed mathematics, in-
separable from its designated field of applications; and (2) that field of
applications was broadly conceived as rational decision-making under
uncertainty—be it to buy a lottery ticket, sell an annuity, believe a witness,
or accept a scientific hypothesis. For eighteenth- and early nineteenth-
century practitioners, probability theory was, in Laplace's famous phrase,
"nothing more than good sense reduced to a calculus."10 We have seen
how the failure of mathematical results to tally with good sense prompted
a searching reevaluation of even the most fundamental mathematical
premises—squarely in the descriptive tradition of mixed mathematics. My
second example, the probability of judgments, illustrates just how the
calculus of probabilities was made to seem "congruent" to good sense,
and how rapidly shifting conceptions of that "good sense" eventually
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dissolved the bond between the calculus of probabilities and the
phenomena it was originally intended to describe. It gained a measure of
independence thereby, as an autonomous mathematical theory, but it also
lost an entire field of applications.

The probability of judgments emerged in the late eighteenth and early
nineteenth centuries largely through the work of Condorcet, Laplace, and
Poisson.11 The central problem was the optimal design of a jury or tribunal
of judges so that, by adjusting the number of judges and the plurality
required for conviction, one could minimize the probability of an erroneous
decision. The mathematicians adopted both the mathematical format of
the probability of causes based on Bernoulli's and Bayes's theorems, and
the concomitant assumptions concerning the uniformity and independence
of trials in their treatments of the probability of judgments. (Recall that
Bernoulli's and Bayes's theorems are the inverse of one another: roughly
speaking, Bernoulli's theorem tells you how to find the probability that
n drawings from an urn with replacement will closely approximate the
known ratio of black-to-white balls contained in the urn; Bayes's theorem
tells you the probability that the unknown ratio of black-to-white balls
will closely approximate the known results of n drawings with replace-
ment.) In the probability of judgments, each judge or juror was likened
to an urn containing so many balls marked "true," corresponding to a
correct decision, and the rest marked "false," to denote an incorrect deci-
sion. The decisions of the judges were further assumed to be independent
of one another, just as drawings from separate urns would be. Since the
individual "truth" probabilities of the judges could not be ascertained
a priori, the probabilists resorted to inverse probabilities, and, after the
publication of French judicial statistics starting in 1825, to assumptions
that the guilt or innocence of the defendants operated as an unknown cause
of the observed acquittal and conviction rates, and that a certain prior
probability of guilt obtained.

Why did late eighteenth- and early nineteenth-century probabilists ac-
cept the verisimilitude of this probabilistic model for judgment? Later
critics such as the mathematician Louis Poinsot and the philosopher John
Stuart Mill found it all but incomprehensible that thinkers of Laplace's
stature could have compared judges to, in Poinsot's words, "so many dice,
each of which has several sides, some for error, others for truth."12 The
nineteenth-century probabilist Joseph Bertrand objected that decision-
making was intrinsically particular, governed by determinate but flue-
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tuating factors: if a judge erred, it was for a specific reason, not because
he had "put his hand in an urn" and made an unlucky draw.13 Yet for
the classical probabilists, these assumptions did not seem so outrageous.
Condorcet and Laplace admitted that the conditions of independence,
equality, and constancy for individual probabilities were simplifications,
but they argued that all mixed mathematics involved idealizations (witness
Newton's laws of dynamics), and further maintained that such approx-
imations "founded on the data, indicated by good sense" were preferable
to nonmathematical specious reasoning.

The eighteenth- and early nineteenth-century probabilists could be con-
fident in assumptions that their successors found absurd because they
subscribed to psychological theories that described mental operations in
terms congenial to their mathematics. According to Locke, Hartley, Hume,
and others, the sound mind reasoned by the implicit computation and
comparison of probabilities.14 Or as Montucla put it apropos of crack
gamblers:

The gambler's mind ["Pesprit du jeu"], that mind that seems to cap-
ture fortune, is nothing more than an innate or acquired talent for see-
ing at a glance all the chance combinations that could lead to gain or
loss; human prudence is ultimately nothing other than the art of ap-
preciating the probabilities of events, in order to act accordingly.15

The association of ideas in principle mirrored the regularity and frequen-
cy of events culled from experience: in an unbiased mind, associations
of ideas corresponded to real connections between the events and objects
represented by the ideas. The very workings of the human understanding,
when undistorted by strong emotion or uncritical custom, imitated Ber-
noulli's theorem, which Hartley had claimed was "evident to attentive
Persons, in a gross general way, from the Common Methods of Reason-
ing."16 Associationist psychology also emphasized the combinatorial
operations of the mind; indeed, all intellectual novelty owed to the men-
tal combination and recombination of simple ideas by, as Condillac wrote,
"a kind of calculus." Condorcet affirmed Condillac's claim that the best
intellects were those that excelled in "uniting more ideas in memory and
in multiplying these combinations."17 If good minds worked by "a kind
of calculus," then the combinatorial calculus of probabilities could be
viewed as the mathematical expression and extension of the psychological
processes that constituted right reasoning—in particular, the right reason-
ing of judges.
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Eighteenth-century jurisprudence also supplied the probabilists with
suggestive analogies to their mathematical techniques and concepts, there-
by inviting new applications in that field. Continental jurists had devel-
oped an elaborate hierarchy of so-called legal proofs that assigned the
evidence procured from both witnesses and things a fixed fractional value.
These fractional "probabilities" (a usage that antedates the mathematical
term) corresponded to degrees of assent in the mind of the judge and were
summed to obtain the complete or "full" proof required for conviction.18

Classical probabilists like Jakob Bernoulli, Condorcet, and Laplace
adopted the legal interpretation of probability as a "degree of certainty"
apportioned to the probative force of various types of evidence, and they
also attempted to convert the legal "probabilities" into a mathematical
probability of testimony and conjecture.

Hence there would have been no a priori objections to the probability
of judgments, which computed the probability that a tribunal composed
of a given number of members, each with a postulated probability of judg-
ing aright, would arrive at a correct decision by a certain majority, as an
inappropriate application of mathematical probability. Despite the later
criticisms of the probability of judgments as the "scandal of mathema-
tics," classical probabilists viewed the theory as reasonable and indeed
quite useful, given the urgent interest in judicial reform at the time. Their
optimism stemmed in large part from the "congruence" between the phe-
nomena of right reasoning, particularly the weighing of legal evidence,
and the mathematics itself, a congruence prepared by contemporary
psychology and jurisprudence. Geometric optics "fit" the phenomena of
reflection and refraction because light rays were indeed like geometric lines;
the art of conjecture "fit" the phenomena of rational decision-making
because enlightened minds intuitively calculated probabilities. The prob-
abilists' job was to make the tacit principles underlying good sense into
an explicit calculus accessible to all.

Alas for classical probability theory, neither the phenomena of good
sense nor the psychological and legal theories that linked them to math-
ematical probability survived the French Revolution unaltered. Both
psychology and jurisprudence had changed considerably between the
publication of Condorcet's and Poisson's treatises on the probability of
judgments in 1785 and 1837, respectively. Although associationist theories
were still influential, they emphasized the pathologies of reason created
by habit, prejudice, self-interest, and ignorance rather than the smoothly
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functioning mental calculus of eighteenth-century psychologists. Good
sense was no longer so clearly identified with computation and comparison
of probabilities. In jurisprudence, the deliberately anti-formal, anti-analytic
system of "free" proofs had replaced that of legal proofs, substituting
an intuitive appeal to the "intimate conviction" of juror or judge for any
formal reckoning.19 Poinsot's objections to Poisson's work on the prob-
ability of judgments reveal how far the notion of good sense had diverged
from the mental calculus of the associationists, and how completely the
new free system of proofs had severed the older connection between legal
and mathematical probabilities:

It is the application of this calculus [of probabilities] to things of the
moral order which offends the intellect... at the end of such calcula-
tions in which the numbers derive only from such hypotheses, to draw
conclusions, which purport to guide a sensible man in his judgment
of a criminal case.. . this is what seems to me a sort of aberration of
the intellect, a false application of science, which it is only proper to
discredit.20

Thus did probability theory lose, at least temporarily, one of its key
domains of applications. Poinsot's verdict (so to speak) on the probabil-
ity of judgments as an "aberration of the intellect" stuck. However, in
detaching the probability of judgments from the corpus of respectable ap-
plications of mathematical probability, Poinsot was at pains to make clear
that his attack on the probability of judgments in no way touched the cer-
tainty of the theory of mathematical probability, which he deemed to be
as irrefragable as arithmetic. This careful distinction between theory and
applications would have been foreign to mixed mathematics, and it shows
that the opposition of "abstract" to "mixed" mathematics had been
superseded by that of "pure" to "applied" mathematics by the time Poin-
sot took the floor of the Paris Academic des Sciences in 1835 to attack
Poisson's work. The story of the ill-fated probability of judgments might
serve as an object lesson in the need to exercise caution in the choice of
a suitable set of phenomena to mathematize. The "good sense" of rea-
sonable men turned out to be notoriously unstable, as the probabilists bent
on mathematically describing it discovered to their chagrin. Faced with
such a "retrogression," in Montucla's sense, mathematicians and philo-
sophers protected the reputation of mathematics for certainty by sharply
distinguishing untarnished pure mathematics from its sometimes dubious
applications.
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Insurance

My final example, actuarial mathematics, is by way of contrast an un-
disputed success story about applying probability theory to the world—
or at least it became one after almost a century's worth of neglected
mathematical efforts to make it so. The history of how mathematical prob-
ability eventually came to be applied to the insurance trade is an intricate
one that I can barely sketch here.21 My main point in doing so will be
to make the converse point to my claim concerning mixed mathematics
and the probability of judgments. If the probability of judgments enjoyed
a bright if brief career, it was because peculiar circumstances conjoined
first to suggest a striking analogy between legal judgments and mathe-
matical probability, and later to destroy this analogy. Conversely, if eight-
eenth-century insurers were slow to make use of a mathematical techno-
logy that was in many ways tailor-made for them, it was because they
perceived the conditions of their trade as downright disanalogous to those
imposed by the mathematicians.

Why did the practitioners of risk—particularly insurers and sellers of
annuities—fail to take advantage of mathematical techniques and collec-
tions of statistics that were devised for their purposes? There seems to
have been, as the mystery writers put it, both opportunity and motive.
Opportunity, for there existed a well-worked-out theory for pricing an-
nuities and (potentially) life insurance using the new mathematics of prob-
ability and the new data of mortality statistics from circa 1700 on.
Moreover, the mathematicians (De Moivre, Simpson, and others) had ex-
pressly translated this literature into elementary handbooks aimed at the
innumerate clerk, with all algebra converted to verbal form and most
technical material relegated to appendices, plus copious tables to obviate
the need for onerous calculation. Motive, for both the Dutch and especially
the English annuity and insurance markets were large and bustling enough
by the turn of the eighteenth century to offer the mathematically based
company a competitive edge. (This is not to say that such enterprises could
not be profitable without mathematics—indeed, they were too profit-
able—but as the experience of the first mathematically based company
was to show, even the loosest connection between calculation and premium
could cut prices while still preserving a lavish margin of profit.)

Why, then, did the practice of risk taking lag so far behind the theory
of risk taking? I shall argue, in summary form, that mathematically based
insurance could not be sold until insurers and their customers came to
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believe that phenomena like human mortality, shipwrecks, fires, and other
catastrophes were regular enough to make statistical and probabilistic ap-
proaches plausible. To make this point clear, I must briefly describe the
practice of insurance without actuarial mathematics. Certain forms of risk
taking—insurance (chiefly maritime), annuities, and gambling—were wide-
ly and successfully practiced in Europe long before the formulation of
mathematical probability. Although experience no doubt honed the ability
of the underwriter, dealer in annuities, or gambler to estimate odds, their
approach to risk could hardly be described as statistical or probabilistic,
even at an intuitive level. A sixteenth-century insurer might have found
such a statistical approach impractical, for it assumes conditions that are
stable over a long period as well as the homogeneity of categories. In-
surance manuals and legal treatises of the period emphasized that the
premium in any given case depends on a judicious weighting of the par-
ticular circumstances: the cargo, the season of the year, the route taken,
the condition of the ship, the skill of the captain, the latest "good or bad
news" concerning storms, warships, and privateers.22 Moreover, in com-
mercial centers populous enough to support whole markets of insurers,
premium prices also reacted to levels of supply and demand as well as
to the latest news about the Barbary pirates.

Thus, annuity rates and insurance premiums certainly reflected past
experience, but it was a far more nuanced experience than a simple toting
up of mortality and shipwreck statistics. It was an experience sensitive
to myriad individual circumstances and their weighted interrelationships,
not to mention market pressures: it was not simply astatistical, it was anti-
statistical. Given the highly volatile conditions of both sea traffic and health
in centuries notorious for warfare, plagues, and other unpredictable mis-
fortunes, I am not persuaded that this was an unreasonable approach.
In any case, it was the prevailing one—and it evidently turned a profit.

Although mathematicians and statisticians addressed insurance and an-
nuities problems almost from the inception of mathematical probability
in the late seventeenth century—Huygens, DeWitt, Leibniz, the Bernoullis,
Halley, and De Moivre were all interested—and although by 1750 there
existed an extensive literature in Dutch, English, Latin, and French on
the subject, the impact of mathematical probability on practice was ef-
fectively nil prior to the establishment of the Equitable Society for the
Assurance of Lives in 1762 (at the instance of a mathematician, James
Dodson).23 And even then, the dictates of mathematical theory were greatly
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tempered by other considerations. The Royal Exchange and London
Assurance offices (established in 1720), both of which insured lives, charg-
ed a flat rate of 5 percent for every £100 insured, regardless of age.24 The
vast bulk of insurance trade remained maritime, and although premiums
responded to decreases in risk (the disappearance of marauding Turks
made insuring voyages to the Levant, Spain, and Portugal considerably
cheaper), statistics played no role in pricing. Fire insurance was too new
to be burdened with the weight of tradition, and clients were offered
graduated premiums depending on the kind of building (brick versus wood)
and trade housed therein (sugar bakers, for example, paid especially stiff
rates). Yet fire offices apparently never collected statistics on the subject.25

Why was the practice of eighteenth-century insurance and annuities so
resistant to the influence of mathematical theory? For maritime insurance
and annuities, it might be argued that the inertia of an entrenched and
successful practice based on nonmathematical estimates worked against
the application of the new mathematical statistical methods. This is no
doubt part of the answer, but it cannot explain why the new forms of
insurance against fire and death, both inventions of the late seventeenth
and early eighteenth centuries, did not take on a more statistical cast. The
case of life insurance and annuities is particularly baffling because of the
availability of mortality statistics drawn from several locales. The first
mathematically based life insurance company, the Equitable, was founded
by a mathematician, not an insurer, and was twice denied a Royal charter
because, in the words of the Royal Council (1761), the company's proposed
mathematical basis,

Whereby the chance of mortality is attempted to be reduced to a cer-
tain standard... is a mere speculation, never yet tried in practice, and
consequently subject, like all other experiments, to various chances in
the execution....26

And even the Equitable does not seem to have been entirely persuaded
of the reliability of the new mathematical methods, for it was cautious
in every respect: it calculated interest on investments at the lowest rates
(3 percent); used the mortality table that gave the shortest lifespans; took
the further precaution of insuring only healthy lives; added a flat 6 per-
cent to all premiums, and surcharges of up to 22 percent in individual
cases deemed especially risky. Nor could the company be persuaded to
distribute dividends among its members, despite its almost embarrassing
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prosperity and the ever more regular contours of the Equitable's own mor-
tality figures as membership increased. Year after year, William Morgan,
the first mathematically trained actuary, held importunate stockholders
at bay, warning that "extraordinary events or a season of uncommon mor-
tality" might catch the Equitable unawares,27 law of large numbers or
no. Small wonder that the nineteenth-century mathematician Augustus
De Morgan quipped: "We should write upon the door of every mutual
office but one be wary; but upon that one should be written be not too
wary and over it the Equitable Society."2*

Thus, the confidence that the phenomena of human mortality revealed,
in the words of German theologian and demographer Johann Siissmilch,
"a constant, general, great, complete, and beautiful order"29 stable enough
to rest a trade upon was slow in coming. For some phenomena, that faith
came later than for others, and the disparities are hard to explain. As ear-
ly as 1662 some writers were confident enough of the regularities to col-
lect data on mortality, but it is difficult to understand why mortality should
have been assumed to be regular and other phenomena of equal practical
interest like the incidence of fires not, in an age where both were subject
to wild fluctuations: witness the plague and Great Fire of London in
1665-66. Whatever the reasons for such confidence that whole new realms
of phenomena were indeed regular, it was a prerequisite for the transfor-
mation of insurance from an enterprise based on judgments of individual
cases to one based on probability and statistics. In contrast to the case
of the probability of judgments, here a new analogy was forged rather
than an old one sundered.

3. Conclusion

These three examples drawn from the history of the classical theory
of probability illustrate three cardinal points about applying mathematics
to phenomena: (1) whether applications succeed or fail depends on the
standards set, and in this respect eighteenth-century mixed mathematics
differed significantly from nineteenth-century applied mathematics; (2)
mathematical theories can lose as well as gain applications; and (3) the
conditions that make a set of phenomena ripe for quantification—or the
reverse—depend crucially on their perceived stability and degree of analogy
with the mathematical techniques at hand. The mixed mathematics of the
eighteenth century demanded a far closer fit between mathematics and
the phenomena than did the applied mathematics of the nineteenth
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century—for example, the psychological and legal theories underlying the
probability of judgments. As with applied mathematics, the proof of the
pudding was in the eating, i.e. whether or not the mathematical results
tallied with experience, but the consequences of a mismatch were far more
dire for a branch of mixed mathematics: the St. Petersburg paradox was
grave enough evidence against the calculus of probabilities for its practi-
tioners to revise its most fundamental definitions or even to suggest aban-
doning it entirely. These bonds between subject matter and mathematics
loosened by the end of the eighteenth century in large part because many
mathematical techniques originally conceived in a rather restricted applied
context (e.g., partial derivatives and hydrodynamics) had since acquired
so large and varied a repertoire of applications that close analogy no longer
seemed of the essence. This is certainly what occurred in probability theory:
consider the diaspora of the normal distribution from astronomy to
sociology to physics to psychology in the course of the nineteenth century.

As mixed mathematics became applied mathematics, probability theory
shifted its characteristic domain of applications. The St. Petersburg para-
dox, once at the very center of probabilistic research, became a problem
in economic theory that happened to employ probabilistic techniques. The
probability of judgments disappeared altogether, and actuarial mathema-
tics expanded steadily. Although mathematicians and philosophers con-
tinued to wrangle over the proper interpretation of probability, the theory
achieved a measure of independence from both applications and, ultimate-
ly, interpretations. And finally, the configuration of stable phenomena
was transformed: in the eighteenth century, good sense seemed uniform
enough to be quantified, but not the frequency of hailstorms; in the nine-
teenth century, just the reverse. In a curious way, the expanding and con-
tracting domain of applications belonging to probability theory—indeed,
to mathematics in general—charts for us the changing landscape of what
we believe to be the regular, the predictable, and the stable, for only at
these points do we believe that numbers can fit the world.
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Howard Stein

Logos, Logic, and Logistike:

Some Philosophical Remarks on

Nineteenth-Century Transformation

of Mathematics

i
Mathematics underwent, in the nineteenth century, a transformation

so profound that it is not too much to call it a second birth of the subject—
its first birth having occurred among the ancient Greeks, say from the
sixth through the fourth century B.C. In speaking so of the first birth,
I am taking the word mathematics to refer, not merely to a body of
knowledge, or lore, such as existed for example among the Babylonians
many centuries earlier than the time I have mentioned, but rather to a
systematic discipline with clearly defined concepts and with theorems
rigorously demonstrated. It follows that the birth of mathematics can also
be regarded as the discovery of a capacity of the human mind, or of human
thought—hence its tremendous importance for philosophy: it is surely
significant that, in the semilegendary intellectual tradition of the Greeks,
Thales is named both as the earliest of the philosophers and the first prov-
er of geometric theorems.

As to the "second birth," I have to emphasize that it is of the very
same subject. One might maintain with some plausibility that in the time
of Aristotle there was no such science as that we call physics; that Plato
and Aristotle were acquainted with mathematics in our own sense of the
term is beyond serious controversy: a mathematician today, reading the
works of Archimedes, or Eudoxos's theory of ratios in Book V of Euclid,
will feel that he is reading a contemporary. Then in what consists the "sec-
ond birth"? There was, of course, an enormous expansion of the sub-
ject, and that is relevant; but that is not quite it: The expansion was itself
effected by the very same capacity of thought that the Greeks discovered;
but in the process, something new was learned about the nature of that
capacity—what it is, and what it is not. I believe that what has been

238
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learned, when properly understood, constitutes one of the greatest advan-
ces of philosophy—although it, too, like the advance in mathematics itself,
has a close relation to ancient ideas (I intend by the word logos in the
title an allusion to the philosophy of Plato). I also believe that, when
properly understood, this philosophical advance should conduce to a cer-
tain modesty: one of the things we should have learned in the course of
it is how much we do not yet understand about the nature of mathematics.

II

A few decades ago, the reigning cliche in the philosophy of mathematics
was "the three schools": logicism (Frege-Russell-Carnap), formalism
(Hilbert), intuitionism (Brouwer). Many people would now hold that all
three schools have failed: Hilbert's program has not been able to over-
come the obstacle discovered by Godel; logicism was lamed by the para-
doxes of set theory, impaired more critically by Godel's demonstration
of the dilemma: either paradoxes—i.e., inconsistency—or incompleteness,
and (some would add) destroyed by Quine's criticisms of Carnap; intui-
tionism, finally, has limped along, and simply failed to deliver the lucid
and purified new mathematics it had promised. In these negative judg-
ments, there is a large measure of truth (which bears upon the lesson of
modesty I have spoken of); although I shall argue later that none of the
three defeats has been total, or necessarily final. But my chief interest here
in the "three schools" will be to relate their positions to the actual develop-
ments in mathematics in the preceding century. I hope to show that in
some degree the usual view of them has suffered from an excessive preoc-
cupation with quasi-technical "philosophical"—or, perhaps better, ide-
ological—issues and oppositions, in which perspective was lost of the math-
ematical interests these arose from. To this end, I shall be more concerned
with the progenitors or foreshadowers of these schools than with their
later typical exponents; more particularly, with Kronecker rather than
Brouwer, and with Dedekind more than Frege. Hilbert is another matter:
his program was very much his own creation. Yet in a sense, Hilbert
himself, in his mathematical work before the turn of the century, stands
as the precursor of his own later foundational program; and in the same
sense, as we shall see, Dedekind is a very important precursor of Hilbert
as well as of logicism. Since Kronecker and Frege, too, both contributed
essential ingredients to Hilbert's program—Kronecker on the philosoph-
ical, Frege on the technical side—the web is quite intricate.
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III

It is far beyond both the scope of this paper and the competence of
its author to do justice, even in outline, to the complex of interrelated
investigations and mathematical discoveries (or "inventions") by which
mathematics itself was deeply transformed in the nineteenth century; I
am going to consider only a few strands in the vast fabric. A good part
of the interest will center in the theory of numbers—and in more or less
related matters of algebra and analysis—but with a little attention to
geometry too.

Let us begin with a very brief glance at the situation early in the cen-
tury, when the transformation had just commenced. A first faint prefigura-
tion of it can be seen in work of Lagrange in the 1770s on the problems
of the solution of algebraic equations by radicals and of the arithmetical
theory of binary quadratic forms. On both of these problems, Lagrange
brought to bear new methods, involving attention to transformations or
mappings and their invariants, and to classifications induced by equiva-
lence-relations. (That Lagrange was aware of the deep importance of his
methods is apparent from his remark that the behavior of functions of
the roots of an equation under permutations of those roots constitutes
"the true principles, and, so to speak, the metaphysics of the resolution
of equations of the third and fourth degree." Bourbaki1 suggests that one
can see here a first vague intuition of the modern concept of structure.}
This work of Lagrange was continued, on the number-theoretic side, by
Gauss; on the algebraic side, by Gauss, Abel, and Galois; and, despite
the failure of Galois's investigations to attract attention and gain recogni-
tion until nearly fifteen years after his death, the results attained by the
early 1830s were enough to ensure that—borrowing Lagrange's word—
the new "metaphysics" would go on to play a dominant role in algebra
and number-theory. (I should not omit to remark here that a procedure
closely related to that of classification was the introduction of new "ob-
jects" for consideration in general, and for calculation in particular. In
the Disquisitiones Arithmeticae of Gauss, explicit introduction of new ideal
"objects" is avoided in favor of the device of introducing new "quasi-
equalities" [congruences]; Galois, on the other hand, went so far as to
introduce "ideal roots" of polynomial congruences modulo a prime
number, thus initiating the algebraic theory of finite fields.2)

By the same period, the early 1830s, decisive developments had also
taken place in analysis and in geometry: in the former, the creation—
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privately by Gauss, publicly by Cauchy—of the theory of complex-analytic
functions; in the latter, besides the emergence of projective geometry,
above all the discovery of the existence of at least one geometry alternative
to that of Euclid. For although Bolyai-Lobachevskyan geometry made
no great immediate impression on the community of mathematicians,
Gauss—who, again privately, had discovered it for himself—well under-
stood its importance; and Gauss's influence upon several of the main
agents in this story was profound and direct.

IV

As pivotal figures for the history now to be discussed, I would name
Dirichlet, Riemann, and Dedekind—all closely linked personally to one
another, and to Gauss. Among these, Dirichlet is perhaps the poet's
poet—better appreciated by mathematicians, more especially number-
theorists, with a taste for original sources, than by any wide public. It
is not too much to characterize Dirichlet's influence, not only upon those
who had direct contact with him—among those in our story: Riemann
and Dedekind, Kummer and Kronecker—but upon a later generation of
mathematicians, as a spiritual one (the German geistig would do better).
Let me cite, in this connection, Hilbert and Minkowski. In his Gottingen
address of 1905, on the occasion of Dirichlet's centenary, Minkowski, nam-
ing a list of mathematicians who had received from Dirichlet "the strongest
impulse of their scientific aspiration," refers to Riemann: "What math-
ematician could fail to understand that the luminous path of Riemann,
this gigantic meteor in the mathematical heaven, had its starting-point in
the constellation of Dirichlet"; and he then remarks that although the
assumption to which Riemann gave the name "Dirichlet's Principles"—
we may recall that this had just a few years previously been put on a sound
basis by Hilbert—was in fact introduced not by Dirichlet but by the young
William Thomson, still "the modern period in the history of mathematics"
dates from what he calls "the other Dirichlet Principle: to conquer the
problems with a minimum of blind calculation, a maximum of clear-seeing
thoughts."3 Just four years later, in his deeply moving eulogy of Min-
kowski, Hilbert says of his friend: "He strove first of all for simplicity
and clarity of thought—in this Dirichlet and Hermite were his models."4

And for perhaps the strongest formulation of Minkowski's "other Dirich-
let Principle," consider this passage quoted by Otto Blumenthal, in his
biographical sketch of Hilbert, from a letter of Hilbert to Minkowski:
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"In our science it is always and only the reflecting mind der uberlegende
Geist], not the applied force of the formula, that is the condition of a
successful result."5

V

I am going to make a sudden jump here: Why did Dedekind write his
little monograph on continuity and irrational numbers? To be sure, that
work is in no need of an excuse; but I have long been struck by these cir-
cumstances: (1) Dedekind himself tells us in his foreword that when, some
dozen years earlier, he first found himself obliged to teach the elements
of the differential calculus, he "felt more keenly than ever before the lack
of a really scientific foundation of arithmetic." He goes on to express
his dissatisfaction with "recourse to the geometrically evident" for the
principles of the theory of limits.6 (Note that Dedekind speaks of a "foun-
dation of arithmetic" rather than of analysis.) (2) In the foreword to the
first edition of his monograph on the natural number, Dedekind invokes,
as something "self-evident," the principle that every theorem of algebra
and of the higher analysis can be expressed as a theorem about the natural
numbers: "an assertion," he says, "that I have also heard repeatedly from
the mouth of Dirichlet."7 (3) From antiquity (e.g., Aristotle, Euclid)
through the late eighteenth and early nineteenth centuries (e.g., Kant,
Gauss), a prevalent view was that there are two distinct sorts of "quanti-
ty": the discrete and the continuous, represented mathematically by the
theories of number and of continuous magnitude. Gauss, for instance,
excludes from consideration in the Disquisitiones Arithmeticae "fractions
for the most part, surds always."8 But Dirichlet, in 1837, succeeded in
proving that there are infinitely many prime numbers in any arithmetic
progression containing two relatively prime terms, by an argument that
makes essential use of continuous variables and the theory of limits. This
famous investigation was the beginning of analytic number theory; and
Dirichlet himself signalizes the importance of the new methods he has in-
troduced into arithmetic: "The method I employ seems to me above all
to merit attention by the connection it establishes between the infinitesimal
Analysis and the higher Arithmetic [I'Arithmetique transcendante];9

I have been led to investigate a large number of questions concerning
numbers [among them, those related to the number of classes of binary
quadratic forms and to the distribution of primes] from an entirely
new point of view, which attaches itself to the principles of infinitesimal



LOGOS, LOGIC, AND LOGISTIKE 243

analysis and to the remarkable properties of a class of infinite series
and infinite products.10

From all this it seems reasonable—I would even say, inevitable—to con-
clude that a part at least of Dedekind's motive was that of clearing
"arithmetic" in the strict sense, i.e. the theory of the rational integers,
from any taint of reliance upon principles drawn from a questionable
source. In any case, this motive is explicitly stressed by Dedekind's great
rival, Kronecker, in the first lecture of his course of lectures on number
theory (published by Hensel in 1901). He there quotes from Gauss's preface
to the Disquisitiones Arithmeticae: "The investigations contained in this
work belong to that part of mathematics which is concerned with the whole
numbers—fractions excluded for the most part, and surds always." But,
says Kronecker, "the Gaussian dictum... is only then justified, if the
quantities he wishes to exclude are borrowed from geometry or mechan-
ics...." Then—after referring to Gauss's own treatment, in the Disquisi-
tiones, of cyclometry (thus, irrational numbers) and of forms (thus,
"algebra" or Buchstabenrechnung)—he cites elementary examples (Leib-
niz's series for 7r/4; partial fraction expansion of z tan(z)) to support the
claim that analysis has its roots in the theory of the whole numbers (with,
he says, the sole exception of the concept of the limit—as to how this is
to be dealt with, he unfortunately leaves us in the dark); and goes on to
conclude:

Thus arithmetic cannot be demarcated from that analysis which has
freed itself from its original source of geometry, and has been devel-
oped independently on its own ground; all the less so, as Dirichlet has
succeeded in attaining precisely the most beautiful and deep-lying
arithmetical results through the combination of methods of both dis-
ciplines.11

Finally, the epistemological connection is made explicit by Kronecker in
another place—his essay "Uber den Zahlbegriff"—again with a reference
to Gauss:

The difference in principles between geometry and mechanics on the
one hand and the remaining mathematical disciplines, here comprised
under the designation "arithmetic," consists according to Gauss in this,
that the object of the latter, Number, is solely the product of our mind,
whereas Space as well as Time have also a reality, outside our mind,
whose laws we are unable to prescribe completely a priori.12
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VI

It would be tempting to spend much time on Dedekind's theory of
continuity—on its relation to Eudoxos and to geometry, and on the dif-
ficulty his contemporaries had in understanding its point. Let me just refer
to the extracts from Dedekind's correspondence with Rudolf Lipschitz,
given by Emmy Noether in vol. Ill of Dedekind's Gesammelte Mathe-
matische Werke, and particularly to the fact that Lipschitz objected to
Dedekind that the property the latter calls "completeness" or "continu-
ity"—in the terminology now standard, connectedness—is self-evident and
doesn't need to be stated—that no man can conceive of a line without
that property. Dedekind replies that this is incorrect, since he himself can
conceive of all of space and each line in it as entirely discontinuous (add-
ing that Herr Professor Cantor in Halle is evidently another man of the
same sort). He refers to §3 of his monograph, where he had said, "If space
has a real existence at all, it does not have necessarily to be continuous."13

But it is in the foreword to the first edition of the monograph on the natural
numbers that Dedekind returns to this point and indicates the particular
grounds for his claim: namely, the existence (as we would say) of models
of Euclid's geometry in which all ratios of lengths of straight segments
are algebraic numbers. For the latter concept, he refers the reader to
Dirichlet's Vorlesungen tiber Zahlentheorie, §159 of the second, §160 of
the third edition. The second edition of Dirichlet's lectures—of which,
of course, Dedekind was the editor—was published the year before Stetig-
keit und irrationale Zahlen; and the section indicated14 is part of the fa-
mous Supplement written by Dedekind in which the theory of algebraic
number fields and algebraic integers was developed for the first time.

I have the impression that the central importance of that very great
work of Dedekind for the entire subsequent development of mathematics
has not been generally appreciated. It is certainly well known—to those
who know such things—that this Supplement was of the first importance
for algebraic number theory and for what is now called "commutative
algebra." It is perhaps less well known that this is also the place in which
Galois's theory was developed for the first time in its modern form—as
a theory of field extensions and their automorphisms, rather than of
substitutions in formulas and of functions invariant under substitutions.
But that new perspective upon Galois's achievement is itself only one
manifestation of a general principle that permeates the work—one that
could be summed up in Minkowski's phrase expressing the "other Dirichlet
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Principle": "a minimum of blind calculation, a maximum of clear-seeing
thoughts." Here is how Dedekind puts it, in the version of his theory that
he published in French in 1877:

A theory based upon calculation would, as it seems to me, not offer
the highest degree of perfection; it is preferable, as in the modern theory
of functions, to seek to draw the demonstrations, no longer from
calculations, but directly from the characteristic fundamental concepts,
and to construct the theory in such a way that it will, on the contrary,
be in a position to predict the results of the calculation (for example,
the composition of decomposable forms of all degrees). Such is the aim
that I shall pursue in the following Sections of this Memoir.15

The reference to "the modern theory of functions" is, unmistakably,
to Riemann; but the methods by which Dedekind pursues his stated aim
are distinctly his own. They may be summed up, in a word, as structural'.
Emmy Noether, in her notes to the Mathematische Werke, recognizes
plainly and with evident enthusiasm the strong kinship of Dedekind's point
of view with her own (and I hope it may be presumed that the influence
of Noether's point of view upon the mathematics of our century is itself
well known).

VII

Perhaps, however, a distinction should be made: One theme associated
with the name of Emmy Noether is that of the "abstract axiomatic ap-
proach" to algebra; a second is that of attention to entire algebraic struc-
tures and their mappings, rather than to, say, just numerical attributes
of those structures (as a notable example, in topology, attention to homo-
logy groups and their induced mappings, not just to Betti numbers and
torsion coefficients). One might consider that, of these themes, the second
links Noether to Dedekind, the first rather to Hilbert. I want to consider
both themes; but I begin with the second, which certainly is present in
full measure in Dedekind. And I shall here take up this theme in connec-
tion with the monograph Was sind und was sollen die Zahlenl

In the foreword to the first edition of that work, Dedekind speaks of
"the simplest science, namely that part of logic which treats of numbers."16

Arithmetic, then, is a "part of logic"; but what is logic?
The same question can be asked of other philosophers who claim that

mathematics is, or belongs to, logic; the inquiry tends to be frustrating.
For example, Frege says17 that his claim that arithmetical theorems are
analytic can be conclusively established "only by a gap-free chain of in-
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ferences, so that no step occurs that does not conform to one of a small
number of modes of inference recognized as logical"; but he quite fails
to tell us how such recognition occurs—or what its content is. The trou-
ble lies in the reigning presumption that to recognize a proposition as a
"logical truth" is to identify its epistemological basis', and this is a trou-
ble because—if I may be forgiven for pontificating on the point—no cogent
theory of the "epistemological basis" of any kind of knowledge has ever
been formulated.

On the other hand, some things can be said about Dedekind's claim—
and even, I think, some epistemological things. In a general way, we should
remember, "logic" in the period in question was taken to be concerned
with the "laws of thought." I have said in my opening remarks that the
discovery of mathematics was also the discovery of a capacity of the human
mind. Dedekind tells us what, in his opinion, this capacity is. His earliest
published statement dates from 1879 (by coincidence, the year of Frege's
Begriffsschrift) and occurs in §161 of the Eleventh Supplement to
Dirichlet's Zahlentheorie, third edition:18 in the text he introduces the no-
tion of a mapping; in a footnote he remarks, and repeats the statement
in the foreword to the first edition of Was sind und was sollen die Zahlen?19

that the whole science of numbers rests upon this capacity of this mind—
the capacity to envisage mappings—without which no thinking at all is
possible. So the claim that arithmetic belongs to logic is the claim that
the principles of arithmetic are essentially involved in all thought—with-
out anything said about an epistemological basis. Moreover, the principles
involved are indeed those employed explicitly in Dedekind's algebraic-num-
ber-theoretic investigations: the formation of what he calls "systems"—
fields, rings (or "orders"), modules, ideals—and mappings.

But there is another aspect of Dedekind's view that should not be
overlooked. What is his answer to the question posed by the title of his
monograph? But first, what is the question? The version given by the
English translator of the work, The Nature and Meaning of Numbers,
is (setting aside its abandonment of the interrogative form) quite mislead-
ing: the German idiom "Was soil [etwas]?" is much broader than the
English "What does [something] mean?" What it connotes is always, in
some sense, "intention"; but with the full ambiguity of the latter term.
We can, however, see the precise sense of Dedekind's question from the
quite explicit answer he gives:

My general answer [or "principal answer": Hauptantwort] to the ques-
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tion posed in the title of this tract is: numbers are free creations of the
human mind; they serve as a means for more easily and more sharply
conceiving the diversity of things.20

The title, therefore, asks: What are numbers, and what are they for? (What
is their use, their function?)

The answer is not very satisfying. I think Dedekind makes a mistake
by assuming that numbers are "for" some one thing. But it is a venial
mistake that lies really only on the surface of his formulation. It is, in-
deed, part of the great discovery of the nineteenth century that mathe-
matical constructs may have manifold "uses," and uses that lie far from
those envisaged at their "creation." On the other hand, this formulation
of Dedekind's is so general and vague that perhaps it could be stretched
to cover absolutely any application of the concept of number.

What I think is more interesting in all this is that it is not what numbers
"are" intrinsically that concerns Dedekind. He is not concerned, like Frege,
to identify numbers as particular "objects" or "entities"; he is quite free
of the preoccupation with "ontology" that so dominated Frege, and has
so fascinated later philosophers. Dedekind's general answer to his first
question, "Numbers are free creations of the human mind," later takes
the following specific form: He defines—or, equivalently, axiomatizes—the
notion of a "simply infinite system"; and then says (in effect: this is my
own free rendering) it does not matter what numbers are; what matters
is that they constitute a simply infinite system. He adds—and here I
translate literally—"In respect of this freeing of the elements from any
further content (abstraction), one can justly call the numbers a free crea-
tion of the human mind."21 Of course it follows from this characteriza-
tion that numbers are "for" any use to which a simply infinite system
can be put; it is because this answer does follow, and because it is the
right one, that I described Dedekind's mistake about this as venial.

It should be noted that a very similar point applies to Dedekind's
analysis of real numbers. Here again the contrast with Frege is instruc-
tive. In the second volume of his Grundgesetze der Arithmetik, Frege
moves slowly toward a definition of the real numbers.22 He does not quite
reach it—that was reserved for the third volume, which never appeared;
but what it would have been is pretty clear. Frege's idea was that real
numbers are "for" representing ratios of measurable magnitudes (as, for
him, whole numbers—Anzahlen—are "for" representing sizes of sets—
in his terminology, sizes of "extensions of concepts"); and he wants the
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real numbers to be "objects" specifically adapted to that function. That
is why he rejects Dedekind's, Cantor's, and Weierstrass's constructions.
But Dedekind says, again, that it does not matter what real numbers "are."
In particular, he does not define them as cuts in the rational line. He says,
rather, "Whenever a cut (Ai,A2) is present that is induced by no rational
number, we create a new, an irrational number a, which we regard as com-
pletely defined by the cut (Ai,A2)."

23 In a letter to his friend and col-
laborator Heinrich Weber,24 he defends this point, together with the related
one concerning the integers, in a rather remarkable passage. Weber has
evidently suggested that the natural numbers be regarded primarily as car-
dinal rather than ordinal numbers, and that they be defined as Russell
later did define them. Dedekind replies:

If one wishes to pursue your way—and I would strongly recommend
that this be carried out in detail—I should still advise that by num-
ber ... there be understood not the class (the system of all mutually
similar finite systems), but rather something new (corresponding to this
class), which the mind creates. We are of divine species [wir sind go'tt-
lichen Geschlechtes] and without doubt possess creative power not mere-
ly in material things (railroads, telegraphs), but quite specially in in-
tellectual things. This is the same question of which you speak at the
end of your letter concerning my theory of irrationals, where you say
that the irrational number is nothing else than the cut itself, whereas
I prefer to create something new (different from the cut), which cor-
responds to the c u t . . . . We have the right to claim such a creative
power, and besides it is much more suitable, for the sake of the homo-
geneity of all numbers, to proceed in this manner.

Dedekind continues with essentially the points made in a well-known paper
of Paul Benacerraf: there are many attributes of cuts that would sound
very odd if one applied them to the corresponding numbers; one will say
many things about the class of similar systems that one would be most
loath to hang—as a burden—upon the number itself. And he concludes
with a reference to algebraic number theory: "On the same grounds I have
always held Kummer's creation of the ideal numbers to be entirely justified,
if only it is carried out rigorously"—a condition that Kummer, in
Dedekind's opinion, had not fully satisfied.

In contrast with this last remark of Dedekind's, no less cultivated a
mathematician than Felix Klein, as late as the 1910s (when his invaluable
lectures on the development of mathematics in the nineteenth century were
delivered), felt it necessary to demystify Kummer's "creation" by insisting
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on the fact that one can—although not in a uniquely distinguished (as
one would now say, "canonical") fashion—identify Kummer's "ideal
divisors" with actual complex algebraic numbers in the ordinary sense.25

There can be no doubt in the mind of anyone acquainted with the later
development of the subject that—at least in point of actual practice (but
I would argue, also in principle)—it was Dedekind in 1888, not Klein thirty
years later, who had this right.

VIII

Dedekind's term "free creation" also deserves some attention. (The
theme has, again, some Dirichletian resonance, since Dirichlet in his work
on trigonometric series played a significant role in legitimating the notion
of an "absolutely arbitrary function," unrestricted by any necessary
reference to a formula or "rule.") It is very characteristic of Dedekind
to wish to open up the possibilities for developing concepts, and to wish
also that alternative, and new, paths be explored. We have just seen him
urging Weber to develop his own views on the natural numbers; he
repeatedly urged Kronecker to make known his way of developing alge-
braic number theory; in the foreword to his fourth (and last) edition of
Dirichlet's Vorlesgunen uber Zahlentheorie, containing his final revision
of the Eleventh Supplement, he expresses the hope that one of Kronecker's
students may prepare a complete and systematic presentation of Kroneck-
er's theory—and also recommends the attempt to simplify the founda-
tions of his own theory to younger mathematicians, who enter the field
without preconceived notions, and to whom therefore such simplification
may be easier than to himself.26 (This was in September 1893. Kronecker
had recently died; Hilbert had just begun to work on algebraic number
theory.)

If this has come to sound too much like a panegyric on Dedekind, I
can only say that that is because he does seem to be a great and true pro-
phet of the subject—a genuine philosopher, of and in mathematics.

IX

In his brief account of Dirichlet, Felix Klein mentions27 as "a particular
characteristic" of Dirichlet's number-theoretic investigations the type of
proof, which he was the first to employ, that establishes the existence of
something without furnishing any method for finding or constructing it.
(One recalls that when, some forty-five years later, Hilbert published
proofs of a similar type in the algebraic theory of invariants, they were
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regarded as unprecedented; and that Paul Gordan is said to have pro-
nounced, "This is not mathematics, it is theology!"28) The nonconstruc-
tive character of Dirichlet's theorem on the arithmetic progression is noted
by Kronecker in his lectures, where he is able to tell his students, with
legitimate pride, that he had himself succeeded in the year 1885 in repair-
ing this defect and that the more complete result is to be presented for
the first time in the course of those lecture.29

What is perhaps most notable about this is the absence, in these pub-
lished lectures of Kronecker's, of any polemical tone in his comments on
constructive vs. nonconstructive methods, and—in the passage I quoted
earlier—his positive emphasis upon the role of irrational numbers and
limiting processes in number theory. It is of course possible that the
restrained tone of these comments, which contrast so markedly with what
is generally reported about Kronecker (and also with the more explosive
reaction of Gordan to Hilbert), is partly conditioned by his reverence for
Dirichlet (it is a rather pleasing fact that the two great number-theoretic
rivals and philosophical opponents, Kronecker and Dedekind, each edited
publications of work of Dirichlet), and partly by the exigencies of the sub-
ject itself (it is clear enough that Kronecker hoped to reduce everything
to a constructive and finite basis, but clear also that he was far from hav-
ing any definite idea of how to do this for the theory of limits).30 It is
possible also, since the work as published was assembled from a variety
of manuscript sources,31 that Hensel in editing this material exercised some
moderating influence. But the foreword by Hensel does provide us with
a more substantive clue to Kronecker's philosophical stand on the non-
constructive in mathematics:32

He believed that one can and must in this domain formulate each defini-
tion in such a way that its applicability to a given quantity can be as-
sessed by means of a finite number of tests. Likewise that an existence
proof for a quantity is to be regarded as entirely rigorous only if it con-
tains a method by which that quantity can really be found. Kronecker
was far from the position of rejecting entirely a definition or proof that
did not meet those highest demands, but he believed that in that case
something remained lacking, and held a completion in this direction
to be an important task, through which our knowledge would be ad-
vanced in an essential point.

No mathematician could quarrel with the statement that a construc-
tive definition or proof adds something to our knowledge beyond what
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is contained in a nonconstructive one. However, Kronecker's public stand
on the work of others was certainly a more repressive one than Hensel's
characterization suggests. I think the issue concerns definitions rather
more crucially than proofs; but let me say, borrowing a usage from Pla-
to, that it concerns the mathematical logos, in the sense both of "dis-
course" generally, and of definition—i.e., the formation of concepts—in
particular.

Kronecker's vehement polemic against the ideas and methods of Can-
tor is more or less notorious. So far as I am aware, that polemic is not
represented in the published writings. The first place I know of in which
Kronecker published strictures against nonconstructive definition is a paper
of 1886, "Uber einige Anwendungen der Modulsysteme auf elementare
algebraische Fragen"; and here it is in the first instance the apparatus of
Dedekind's algebraic number-theory—"jene Dedekind'sche Begriffsbil-
dungen wie 'Modul', 'Ideal', u.s.w"—that comes under attack.33 Unfor-
tunately, this attack of Kronecker's contains no hint that nonconstructive
definitions can be accepted at least provisionally (or as a Platonic "sec-
ond best")—even where, as in the case of analysis, Kronecker has in fact
nothing to offer that meets his "higher" demands. It is possible, therefore,
that Hensel's reading is off on this point: it is possible, and seems to ac-
cord with the fact, that whereas Kronecker was willing to acknowledge
the provisional value of a nonconstructive argument like Dirichlet's, he
meant to exclude more rigidly any introduction of concepts by non-
constructive logoi. (It must be confessed, again, that this seems to leave
analysis, for Kronecker, in limbo.)34

X

On the other hand, Kronecker appears uniformly to exempt "geometry
and mechanics from his stringent requirements.35 Are these still to be con-
sidered parts of mathematics? Kronecker does not seem to want to ex-
clude them; but perhaps he regards them (e.g., on the basis of Gauss's
remarks) as in some measure empirical sciences.

From this a Dedekindian question arises: "Was ist und was soil die
Mathematik?" As in the case of number, I immediately repudiate the idea
of seeking a definite formula to state "what mathematics is for"—it is
"for" whatever it proves to be useful for. Still, what may that be?

Riemann's wonderful habilitation-lecture begins with a characteriza-
tion of an "«-tuply extended magnitude" in terms that it would not be
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unreasonable to describe as belonging to "logic":36 the points of such a
manifold are "modes of determination [or "specification"] of a general
concept"; examples of concepts whose modes of specification constitute
such a manifold are found both in "ordinary life" places in sensible ob-
jects; colors) and within mathematics (e.g., in the theory of analytic func-
tions). In the concluding section of that paper, Riemann considers the ques-
tion of the bearings of his great generalization of geometry upon our
understanding of ordinary physical space; this, he says, is an empirical
question, and must remain open, subject to what developments may oc-
cur in physics itself: "Investigations which, like that conducted here, pro-
ceed from general concepts, can serve only to ensure that this work shall
not be hindered by a narrowness of conceptions, and that progress in the
knowledge of the connections of things shall not be hampered by tradi-
tional prejudices."37

If I may paraphrase: Geometry is not an empirical science, or a part
of physics; it is a part of mathematics. The role of a mathematical theory
is to explore conceptual possibilities—to open up the scientific logos in
general, in the interest of science in general. One might say, in the language
of C. S. Peirce, that mathematics is to serve, according to Riemann, among
other interests (e.g., that of facilitating calculation), the interest of "ab-
duction"—of providing the means of formulating hypotheses or theories
for the empirical sciences.

The requirement of constructiveness is the requirement that all
mathematical notions be effectively computable; that mathematics be fun-
damentally reduced to what the Greeks called logistike: to processes of
calculation. Kronecker's concession to geometry and mechanics of freedom
from this requirement is tacit recognition that there is no reason to assume
a priori that structural relationships in nature are necessarily all of an ef-
fectively computable kind. But then, when one sees, with Riemann, the
usefulness of elaborating in advance, that is, independently of empirical
evidence (and, in this sense, a priori), a theory of structures that need not
but may prove to have empirical application, Kronecker's limitation to
"geometry and mechanics" of the license he offers to those sciences loses
much of its plausibility.

Another aspect of this point: Kant made a distinction between logic,
which, concerned exclusively with rules of discursive thought in abstrac-
tion from all "content," is a "canon" but not an "organon"—not an
instrument for gaining knowledge; and mathematics, which is an organon,
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because it is not purely discursive but has a definite content, given in the
a priori intuition of space and time.38 But the geometry of Riemann is
quite freed from any such specific content: Kant's view that the creative
or productive power of geometry rested upon its concrete "intuitive"
spatial content was simply mistaken, and mathematics is seen to be an
abstract and a priori "organon" of knowledge (whether one chooses to
call it a "logic," or a "dialectic," or whatever). And again, in view of
this its general capacity, there is no more reason to hamper it by restric-
tions to the effectively computable than to hamper it by restrictions to
the "spatially intuitive."

But then—so this dialectic goes—why restrict the license at all (e.g.,
to mathematical disciplines that one thinks might serve the ends of some
empirical science)? Why not complete freedom of conceptual elaboration
in mathematics? Then, within any logos so freely developed, one can pay
appropriate attention to the distinction between what is and what is not
constructive.

XI

This point of view—which is really not very far from the moderate posi-
tion attributed to Kronecker by Hensel—is the one that Hilbert so vigorous-
ly championed. Let me call attention, in briefest outline, to a few salient
points.

Notice of Hilbert's interest in the foundations of geometry dates back
to the earliest days of his work in algebraic number-theory, or even
somewhat before: it was in 1891, according to Otto Blumenthal,39 that
Hilbert, in a mathematical discussion in a Berlin railway waiting room,
made his famous statement that in a proper axiomatization of geometry
"one must always be able to say, instead of 'points, straight lines, planes',
'tables, chairs, beer mugs'." This view—that the basic terms of an ax-
iomatized system must be "meaningless"—is often misconstrued as "for-
malism." But the very same requirement was stated, fifteen years earlier,
by the "logicist" Dedekind, in his letter to Lipschitz already cited: "All
technical expressions [are to be] replaced by arbitrary newly invented
(heretofore nonsensical) words; the edifice must, if it is rightly constructed,
not collapse.'40

Hilbert uses as epigraph to his Grundlagen der Geometrie a well-known
Kantian aphorism:41 "Thus all human knowledge begins with intuitions,
proceeds to concepts, and ends with ideas." For Hilbert, axiomatization,
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with all basic terms replaced by "meaningless" symbols, is the elimina-
tion of the Kantian "intuitive"—the "proceeding to concepts"; hence the
axioms taken together constitute a definition. Of what? Of a species of
structure. Now, by this, we need not mean "a set." It is a point of in-
terest, and a very useful one, that the notion of set proves so serviceable
both as a tool for concept-formulation within a mathematical discipline

(ideals, etc.) and as affording a general framework for many or all
mathematical disciplines; but set theory is a tool, not a foundation. For
Hilbert, it is the axiomatized discourse itself that constitutes the mathe-
matical logos; and the only restriction upon it that he recognizes is that
of formal consistency.

As to "ideas": Kant associates ideas with completeness or totality. For
Hilbert, I believe, this connoted the survey of the general characteristics
of the structures of a species and of related species—more explicitly, in
the geometrical case, the study of the problems of consistency and
categoricity of the axioms, their independence, and the sorts of alternatives
one gets by changing certain axioms; in short, something very much like
model-theory. (Of course, when one now gets down to brass tacks, sets
are pretty much indispensable; and because of the essential incompletability
of set theory, the "absolute completeness or totality" fails: Kantian
"dialectical illusion" has not after all been avoided.)

In the correspondence of Frege and Hilbert,42 it is amusing or ex-
asperating, depending upon one's mood, to see Frege, wondering what
Hilbert can mean by calling his axioms "definitions," come in his pon-
derous but thorough way to the conclusion that //they are definitions,
they must define what he calls a "concept of the second level"—and then
more or less drop this notion as implausible or uninteresting to pursue;
and to see Hilbert, not very interested in Frege's terminology or his point
of view, fail to understand what Frege's undervalued insight really was:
for a Fregean "second-level concept" simply is the concept of a species
of structure. So: a tragically or comically missed chance for a meeting
of minds.

But now, what of Hilbert's "program"? I think it is unfortunate that
Hilbert, in his later foundational period, insisted on the formulation that
ordinary mathematics is "meaningless" and that only finitary mathematics
has "meaning." Hilbert certainly never abandoned the view that math-
ematics is an organon for the sciences: he states this view very strongly
in the last paper reprinted in his Gesammelte Abhandlungen, called
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"Naturerkennen und Logik" (1930);43 and he surely did not think that
physics is meaningless, or its discourse a play with "blind" symbols. His
point is, I think, this rather: that the mathematical logos has no respon-
sibility to any imposed standard of meaning: not to Kantian or Brouwerian
"intuition," not to finite or effective decidability, not to anyone's meta-
physical standards for "ontology"; its sole "formal" or "legal" respon-
sibility is to be consistent (of course, it has also what one might call a
"moral" or "aesthetic" responsibility: to be useful, or interesting, or
beautiful; but to this it cannot be constrained—poetry is not produced
through censorship).

In proceeding to his "program," however, Hilbert set as his goal the
mathematical investigation of the mathematical logos itself, with the prin-
cipal aim of establishing its consistency (or "their" consistency—for he
did not envisage a single canonical axiom-system for all of mathematics).
And here he made essential use both of Frege and of Kronecker. For
Frege's extremely careful and minute regimentation of logical language
or "concept-writing" did not, as Frege himself thought it would, serve
as a guarantee of consistency; but the techniques he used for that regimen-
tation did render the formal languages of mathematical theories, and their
formal rules of derivation, subject to mathematical study in their own right,
regarded as purely "blind" symbolic systems. Moreover, the regimenta-
tion was itself of such a kind that the play with symbols was a species
of calculation—of logistike. Without Frege, proof-theory in Hilbert's sense
would have been impossible.

Of course, the final irony of this story, and the collapse of Hilbert's
dream of establishing the consistency of the logic of the logos by means
restricted to logistike, lies in the discovery by Godel, Post, Church, and
Turing that there is a general theory of logistike, and that this theory
is nonconstructive; in particular, that neither the notion of consistency
nor that of provability is (in general) effective; and further that all suf-
ficiently rich consistent systems fall short of the Kantian "ideal"—are
incomplete.

This leaves us with a mystery—a subject of "wonder," in which, ac-
cording to Aristotle, philosophy begins. He says it ends in the contrary
state; I am inclined to believe, as I think Aristotle's master Plato did, that
philosophy does not "end," but that mysteries become better under-
stood—and deeper. The mysteries we now have about mathematics are
certainly better understood—and deeper—than those that confronted Kant
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or even Gauss. To attempt, however, to survey what they are, even in the
sketchiest way, although enticing, is a task that would require another
paper, and is certainly beyond the scope of this one.44
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clarification of the nature of mathematics by the views of the "three schools" cannot be
regarded as certain. My own opinion is that all three views (if they can really be called "three":
within each "school," there have been quite significant differences) have made useful con-
tributions to our understanding, but also that each will remain as merely partial and not
fully satisfactory. Yet, as I have also remarked (above, n. 34), one cannot exclude the pos-
sibility that a genuine constructivization of mathematics will yet be achieved (although I
consider the arguments of section X above as counting rather strongly against this). In the
same way, it remains possible that a recognizably constructive proof of the consistency of
analysis, or even of (some version of) set theory, will be found; and such an event would
afford great impetus to the revival of (a modified form of) the Hilbert program. As to
"logicism," as it seems to me the vaguest of the three doctrines, I find it hardest to envisage
prospects for it, and am most strongly inclined to see its positive contribution as exhausted
by the insight that mathematics is in some sense "about" conceptual possibilities or con-
ceptual structure—an insight, as I have remarked, already clearly present in Riemann, but
much more fully worked out after the stimulus provided by Dedekind, Frege, Russell, and
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Whitehead. Nevertheless it is (barely, I think) conceivable that progress in understanding
the structure of "knowledge" will succeed in isolating a special kind of knowledge that
reasonably deserves to be considered "logical," thus conferring new interesting content upon
the question whether mathematics does or does not belong to logic.



Michael J. Crowe

Ten Misconceptions about Mathematics

and Its History

For over two decades, one of my major interests has been reading,
teaching, and writing history of mathematics. During those decades, I have
become convinced that ten claims I formerly accepted concerning math-
ematics and its development are both seriously wrong and a hindrance
to the historical study of mathematics. In analyzing these claims, I shall
attempt to establish their initial plausibility by showing that one or more
eminent scholars have endorsed each of them; in fact, all seem to be held
by many persons not fully informed about recent studies in history and
philosophy of mathematics. This paper is in one sense a case study; it has,
however, the peculiar feature that in it I serve both as dissector and frog.
In candidly recounting my changes of view, I hope to help newcomers
to history of mathematics to formulate a satisfactory historiography and
to encourage other practitioners to present their own reflections. My at-
tempt to counter these ten claims should be prefaced by two qualifica-
tions. First, in advocating their abandonment, I am not in most cases urg-
ing their inverses; to deny that all swans are white does not imply that
one believes no swans are white. Second, I realize that the evidence I ad-
vance in opposition to these claims is scarcely adequate; my arguments
are presented primarily to suggest approaches that could be taken in more
fully formulated analyses.

1. The Methodology of Mathematics Is Deduction

In a widely republished 1945 essay, Carl G. Hempel stated that the
method employed in mathematics "is the method of mathematical dem-
onstration, which consists in the logical deduction of the proposition
to be proved from other propositions, previously established." Hempel
added the qualification that mathematical systems rest ultimately on ax-
ioms and postulates, which cannot themselves be secured by deduction.1

Hempel's claim concerning the method of mathematics is widely shared;

260
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I accepted it as a young historian of mathematics, but was uneasy with
two aspects of it. First, it seemed to make mathematicians unnecessary
by implying that a machine programmed with appropriate rules of in-
ference and, say, Euclid's definitions, axioms, and postulates could deduce
all 465 propositions presented in his Elements. Second, it reduced the role
of historians of mathematics to reconstructing the deductive chains at-
tained in the development of mathematics.

I came to realize that Hempel's claim could not be correct by reading
a later publication, also by Hempel; in his Philosophy of Natural Science
(1966), he presented an elementary proof that leads to the conclusion that
deduction cannot be the sole method of mathematics. In particular, he
demonstrated that from even a single true statement, an infinity of other
true statements can be validly deduced. If we take "or" in the nonexclusive
sense and are given a true proposition p, Hempel asserted that we can
deduce an infinity of statements of the form "/? or q" where q is any prop-
osition whatsoever. Note that all these propositions are true because with
the nonexclusive meaning of "or," all propositions of the form "p or
q" are true if p is true. As Hempel stated, this example shows that the
rules of logical inference provide only tests of the validity of arguments,
not methods of discovery.2 Nor, it is important to note, do they provide
guidance as to whether the deduced propositions are in any way signifi-
cant. Thus we see that an entity, be it man or machine, possessing the
deductive rules of inference and a set of axioms from which to start, could
generate an infinite number of true conclusions, none of which would be
significant. We would not call such results mathematics. Consequently,
mathematics as we know it cannot arise solely from deductive methods.
A machine given Euclid's definitions, axioms, and postulates might deduce
thousands of valid propositions without deriving any Euclidean theorems.
Moreover, Hempel's analysis shows that even if definitions, axioms, and
postulates could be produced deductively, still mathematics cannot rely
solely on deduction. Furthermore, we see from this that historians of
mathematics must not confine their efforts to reconstructing deductive
chains from the past of mathematics. This is not to deny that deduction
plays a major role in mathematical methodology; all I have attempted to
show is that it cannot be the sole method of mathematics.

2. Mathematics Provides Certain Knowledge

In the same 1945 essay cited previously, Hempel stated: "The most
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distinctive characteristic which differentiates mathematics from the various
branches of empirical science... is no doubt the peculiar certainty and
necessity of its results." And, he added: "a mathematical theorem, once
proved, is established once and for all.. . . "3 In noting the certainty of
mathematics, Hempel was merely reasserting a view proclaimed for cen-
turies by dozens of authors who frequently cited Euclid's Elements as the
prime exemplification of that certainty. Writing in 1843, Philip Kelland
remarked: "It is certain that from its completeness, uniformity and fault-
lessness,... and from the universal adoption of the completest and best
line of argument, Euclid's 'Elements' stand preeminently at the head of
all human productions."4 A careful reading of Hempel's essay reveals a
striking feature; immediately after noting the certainty of mathematics,
he devoted a section to "The Inadequacy of Euclid's Postulates." Here
in Hilbertian fashion, Hempel showed that Euclid's geometry is marred
by the fact that it does not contain a number of postulates necessary for
proving many of its propositions. Hempel was of course correct; as early
as 1892, C. S. Peirce had dramatically summarized a conclusion reached
by most late-nineteenth-century mathematicians: "The truth is, that ele-
mentary [Euclidean] geometry, instead of being the perfection of human
reasoning, is riddled with fallacies... ."5

What is striking in Hempel's essay is that he seems not to have realized
the tension between his claim for the certainty of mathematics and his
demonstration that perhaps the most famous exemplar of that certainty
contains numerous faulty arguments. Hempel's claim may be construed
as containing the implicit assertion that a mathematical system embodies
certainty only after all defects have been removed from it. What is prob-
lematic is whether we can ever be certain that this has been done. Surely
the fact that the inadequacy of some of Euclid's arguments escaped detec-
tion for over two millennia suggests that certainty is more elusive than
usually assumed. Moreover, in opposition to the belief that certainty can
be secured for formalized mathematical systems, Reuben Hersh has stated:
"It is just not the case that a doubtful proof would become certain by
being formalized. On the contrary, the doubtfulness of the proof would
then be replaced by the doubtfulness of the coding and programming."6

Morris Kline has recently presented a powerful demonstration that the
certainty purportedly present throughout the development of mathematics
is an illusion; I refer to his Mathematics: The Loss of Certainty, in which
he states: "The hope of finding objective, infallible laws and standards
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has faded. The Age of Reason is gone."7 Much in what follows sheds
further light on the purported certainty of mathematics, but let us now
proceed to two related claims.

3. Mathematics Is Cumulative

An elegant formulation of the claim for the cumulative character of
mathematics is due to Hermann Hankel, who wrote: "In most sciences
one generation tears down what another has built and what one has
established another undoes. In Mathematics alone each generation builds
a new story to the old structure."8 Pierre Duhem made a similar claim:
"Physics does not progress as does geometry, which adds new final and
indisputable propositions to the final and indisputable propositions it
already possessed... ."9 The most frequently cited illustration of the
cumulative character of mathematics is non-Euclidean geometry. Consider
William Kingdon Clifford's statement: "What Vesalius was to Galen, what
Copernicus was to Ptolemy, that was Lobatchewsky to Euclid."10 Clif-
ford's claim cannot, however, be quite correct; whereas acceptance of
Vesalius entailed rejection of Galen, whereas adoption of Copernicus led
to abandonment of Ptolemy, Lobachevsky did not refute Euclid; rather
he revealed that another geometry is possible. Although this instance il-
lustrates the remarkable degree to which mathematics is cumulative, other
cases exhibit opposing patterns of development. As I wrote my History
of Vector Analysis,11 I realized that I was also, in effect, writing The
Decline of the Quaternion System. Massive areas of mathematics have,
for all practical purposes, been abandoned. The nineteenth-century
mathematicians who extended two millennia of research on conic section
theory have now been forgotten; invariant theory, so popular in the nine-
teenth century, fell from favor.12 Of the hundreds of proofs of the Py-
thagorean theorem, nearly all are now nothing more than curiosities.13

In short, although many previous areas, proofs, and concepts in mathe-
matics have persisted, others are now abandoned. Scattered over the land-
scape of the past of mathematics are numerous citadels, once proudly
erected, but which, although never attacked, are now left unoccupied by
active mathematicians.

4. Mathematical Statements Are Invariably Correct
The most challenging aspect of the question of the cumulative character

of mathematics concerns whether mathematical assertions are ever refuted.
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The previously cited quotations from Hankel and Duhem typify the
widespread belief that Joseph Fourier expressed in 1822 by stating that
mathematics "is formed slowly, but it preserves every principle it has once
acquired.... "u Although mathematicians may lose interest in a particular
principle, proof, or problem solution, although more elegant ways of for-
mulating them may be found, nonetheless they purportedly remain. In-
fluenced by this belief, I stated in a 1975 paper that "Revolutions never
occur in mathematics."15 In making this claim, I added two important
qualifications: the first of these was the "minimal stipulation that a
necessary characteristic of a revolution is that some previously existing
entity (be it king, constitution, or theory) must be overthrown and ir-
revocably discarded"; second, I stressed the significance of the phrase "in
mathematics," urging that although "revolutions may occur in mathe-
matical nomenclature, symbolism, metamathematics, [and] methodolo-
gy. . . ," they do not occur within mathematics itself.16 In making that
claim concerning revolutions, I was influenced by the widespread belief
that mathematical statements and proofs have invariably been correct.
I was first led to question this belief by reading Imre Lakatos's brilliant
Proofs and Refutations, which contains a history of Euler's claim that
for polyhedra V-E + F = 2, where Kis the number of vertices, E the num-
ber of edges, and F the number of faces.17 Lakatos showed not only that
Euler's claim was repeatedly falsified, but also that published proofs for
it were on many occasions found to be flawed. Lakatos's history also
displayed the rich repertoire of techniques mathematicians possess for
rescuing theorems from refutations.

Whereas Lakatos had focused on a single area, Philip J. Davis took
a broader view when in 1972 he listed an array of errors in mathematics
that he had encountered.18 Philip Kitcher, in his recent Nature of Math-
ematical Knowledge, has also discussed this issue, noting numerous er-
rors, especially from the history of analysis.19 Morris Kline called atten-
tion to many faulty mathematical claims and proofs in his Mathematics:
The Loss of Certainty. For example, he noted that Ampere in 1806 proved
that every function is differentiable at every point where it is continuous,
and that Lacroix, Bertrand, and others also provided proofs until Weier-
strass dramatically demonstrated the existence of functions that are every-
where continuous but nowhere differentiable.20 In studying the history
of complex numbers, Ernest Nagel found that such mathematicians as Car-
dan, Simson, Playfair, and Frend denied their existence.21 Moreover,
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Maurice Lecat in a 1935 book listed nearly 500 errors published by over
300 mathematicians.22 On the other hand, Rene Thorn has asserted: "There
is no case in the history of mathematics where the mistake of one man
has thrown the entire field on the wrong track.. . . Never has a signifi-
cant error slipped into a conclusion without almost immediately being
discovered."23 Even if Thorn's claim is correct, the quotations from Duhem
and Fourier seem difficult to reconcile with the information cited above
concerning cases in which concepts and conjectures, principles and proofs
within mathematics have been rejected.

5. The Structure of Mathematics Accurately Reflects Its History

In recent years, I have been teaching a course for humanities students
that begins with a careful reading of Book I of Euclid's Elements. That
experience has convinced me that the most crucial misconception that
students have about mathematics is that its structure accurately reflects
its history. Almost invariably, the students read this text in light of the
assumption that the deductive progression from its opening definitions,
postulates, and common notions through its forty-eight propositions ac-
curately reflects the development of Euclid's thought. Their conviction in
this regard is reinforced by the fact that most of them have earlier read Aris-
totle's Posterior Analytics, in which that great philosopher specified that
for a valid demonstration "the premises... must b e . . . better known than
and prior to the conclusion.... "24 My own conception is that the develop-
ment of Euclid's thought was drastically different. Isn't it plausible that
in composing Book I of the Elements, Euclid began not with his defini-
tions, postulates, and common notions but rather either with his extremely
powerful 45th proposition, which shows how to reduce areas bounded by
straight lines to a cluster of measurable triangular areas, or with his magnifi-
cent 47th proposition, the Pythagorean theorem, for which he forged a proof
that has been admired for centuries. Were not these two propositions the
ones he knew best and of which he was most deeply convinced? Isn't it
reasonable to assume that it was only after Euclid had decided on these
propositions as the culmination for his first book that he set out to con-
struct the deductive chains that support them? Is it probable that Euclid
began his efforts with his sometimes abstruse and arbitrary definitions—
"a point is that which has no parts"—and somehow arrived forty-seven
propositions later at a result known to the Babylonians fifteen centuries
earlier? An examination of Euclid's 45th and 47th propositions shows that
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they depend upon the proposition that if two coplanar straight lines meet
at a point and make an angle with each other equal to two right angles,
then those lines are collinear. Should it be seen as a remarkable coincidence
that thirty-one propositions earlier Euclid had proved precisely this result,
but had not used it a single time in the intervening propositions? It seems
to me that accepting the claim that the history and deductive structures
of mathematical systems are identical is comparable to believing that Sac-
cheri was surprised when after proving dozens of propositions, he finally
concluded that he had established the parallel postulate.

Is not the axiomatization of a field frequently one of the last stages,
rather than the first, in its development? Recall that it took Whitehead and
Russell 362 pages of their Principia Mathematica to prove that 1 + 1=2.
Calculus texts open with a formulation of the limit concept, which took
two centuries to develop. Geometry books begin with primary notions and
definitions with which Hilbert climaxed two millennia of searching.
Second-grade students encounter sets as well as the associative and com-
mutative laws—all hard-won attainments of the nineteenth century. If
these students are gifted and diligent, they may years later be able to
comprehend some of the esoteric theorems advanced by Archimedes or
Apollonius. When Cauchy established the fundamental theorem of the
calculus, that subject was nearly two centuries old; when Gauss proved
the fundamental theorem of algebra, he climaxed more than two millen-
nia of advancement in that area.25 In teaching complex numbers, we first
justify them in terms of ordered couples of real numbers, a creation of
the 1830s. After they have magically appeared from this process, we
develop them to the point of attaining, say, Demoive's theorem, which
came a century before the Hamilton-Bolyai ordered-couple justification
of them. In presenting a theorem, first we name it and state it precisely
so as to exclude the exceptions it has encountered in the years since its
first formulation; then we prove it; and, finally, we employ it to prove
results that were probably known long before its discovery. In short, we
reverse history. Hamilton created quaternions in 1843 and simultaneous-
ly supplied a formal justification for them, this being the first case in which
a number system was discovered and justified at the same time; half a
century later Gibbs and Heaviside, viewing the quaternion method of space
analysis as unsatisfactory, proposed a simpler system derived from quater-
nions by a process now largely forgotten.

Do not misunderstand: I am not claiming that the structure of math-
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ematics, as a whole or in its parts, is in every case the opposite of its history.
Rather I am suggesting that the view that students frequently have, im-
plicitly or explicitly, that the structure in which they encounter areas of
mathematics is an adequate approximation of its history, is seriously defec-
tive. Mathematics is often compared to a tree, ever attaining new heights.
The latter feature is certainly present, but mathematics also grows in root
and trunk; it develops as a whole. To take another metaphor, the math-
ematical research frontier is frequently found to lie not at some remote
and unexplored region, but in the very midst of the mathematical domain.
Mathematics is often compared to art; yet reflect for a moment. Homer's
Odyssey, Da Vinci's Mona Lisa, and Beethoven's Fifth Symphony are
completed works, which no later artist dare alter. Nonetheless, the latest
expert on analysis works alongside Leibniz and Newton in ordering the
area they created; a new Ph.D. in number theory joins Euclid, Fermat,
and Gauss in perfecting knowledge of the primes. Kelvin called Fourier's
Theorie analytique de la chaleur a "mathematical poem,"26 but many
authors shaped its verses. Why did some mathematicians oppose introduc-
tion of complex or transfinite numbers, charging that they conflicted with
the foundations of mathematics? Part of the reason is that, lacking a
historical sense, they failed to see that foundations are themselves open
to alteration, that not only premises but results dictate what is desirable
in mathematics.

6. Mathematical Proof in Unproblematic
Pierre Duhem in his Aim and Structure of Physical Theory reiterated

the widely held view that there is nothing problematic in mathematical
proof by stating that geometry "grows by the continual contribution of
a new theorem demonstrated once and for all and added to theorems
already demonstrated.... "27 In short, Duhem was claiming that once a
proposition has been demonstrated, it remains true for all time. Various
authors, both before and after Duhem, have taken a less absolutist view
of the nature and conclusiveness of proof. In 1739, David Hume observed:

There is no. . . Mathematician so expert... as to place entire confidence
in any truth immediately upon his discovery of it, or regard it as any
thing, but a mere probability. Every time he runs over his proofs, his
confidence encreases; but still more by the approbation of his friends;
and is rais'd to its utmost perfection by the universal assent and ap-
plauses of the learned world."28
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G. H. Hardy concluded in a 1929 paper entitled "Mathematical Proof"
that "If we were to push it to its extreme, we should be led to rather a
paradoxical conclusion: that there is, strictly, no such thing as mathemati-
cal proof; that we can, in the last analysis, do nothing but point; that proofs
are what Littlewood and I call gas, rhetorical flourishes designed to af-
fect psychology.... "29 E. T. Bell in a number of his writings developed
the point that standards of proof have changed dramatically throughout
history. For example, in his Development of Mathematics (1940), he
challenged the assertion of an unnamed "eminent scholar of Greek math-
ematics" that the Greeks, by their "'unerring logic,' had attained such
perfect mathematical results that 'there has been no need to reconstruct,
still less to reject as unsound, any essential part of their doctrine....'"
Bell responded that among, for example, Euclid's proofs, "many have
been demolished in detail, and it would be easy to destroy more were it
worth the trouble."30 Raymond Wilder, who also discussed the process
of proof in various writings, asserted in 1944 that "we don't possess, and
probably will never possess, any standard of proof that is independent
of the time, the thing to be proved, or the person or school of thought
using it." Over three decades later, he put this point most succinctly:
"'proof in mathematics is a culturally determined, relative matter."31

That research in history and philosophy of mathematics has contributed
far more toward understanding the nature of proof than simply showing
that standards of proof have repeatedly changed can be illustrated by brief-
ly examining the relevant writings of Imre Lakatos. In his Proofs and
Refutations (1963-64), Lakatos, proceeding from his conviction (derived
from Karl Popper) that conjectures play a vital role in the development
of mathematics and his hope (derived from George Polya) that heuristic
methods for mathematics can be formulated, reconstructed the history
of Euler's conjecture concerning polyhedra so as to show that its history
ill accords with the traditional accumulationist historiography of math-
ematics. Whereas some had seen its history as encompassing little more
than Euler's formulation of the conjecture and Poincare's later proof for
it, Lakatos showed that numerous "proofs" had been advanced in the
interim, each being falsified by counterexamples. Fundamental to this es-
say is Lakatos's definition of proof as "a thought-experiment—or 'quasi-
experiment'—which suggests a decomposition of the original conjecture
into subconjectures or lemmas, thus embedding it in a possibly quite dis-
tant body of knowledge."32 On this basis, Lakatos, in opposition to the
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belief that the proof or refutation of a mathematical claim is final, argued
forcefully that on the one hand mathematicians should seek counterex-
amples to proved theorems (pp. 50ff.) and on the other hand be cautious
in abandoning refuted theorems (pp. 13ff.). Moreover, he warned of the
dangers involved in recourse, if counterexamples are found, to the tech-
niques he called "monster-barring," "monster-adjustment," and "excep-
tion-barring" (pp. 14-33). Lakatos also wrote other papers relevant to the
nature of mathematical proof; for example, in his "Infinite Regress and
the Foundations of Mathematics" (1962), he provided insightful critiques
of the "Euclidean programme" as well as of the formalist conception of
mathematical method. In his "A Renaissance of Empiricism in Recent
Philosophy of Mathematics" (1967), he stressed the importance of em-
pirical considerations in mathematical proof, while in his "Cauchy and
the Continuum...," he urged that Abraham Robinson's methods of non-
standard analysis could be used to provide a radically new interpretation
of the role of infinitesimals in the creation of the calculus.33 The some-
times enigmatic character of Lakatos's writings and the fact that his in-
terests shifted in the late 1960s toward the history and philosophy of
science—to which he contributed a "methodology of scientific research
programmes"—left, after his death in 1974, many unanswered questions
about his views on mathematics. Various authors have attempted to sys-
tematize his thought in this regard,34 and Michael Hallett has advanced
and historically illustrated the thesis that "mathematical theories can be
appraised by criteria like those of [Lakatos's] methodology of scientific
research programmes...."35

7. Standards of Rigor Are Unchanging

Writing in 1873, the Oxford mathematician H. J. S. Smith repeated
a conclusion often voiced in earlier centuries; Smith stated: "The methods
of Euclid are, by almost universal consent, unexceptionable in point of
rigour."36 By the beginning of the present century, Smith's claim concern-
ing Euclid's "perfect rigorousness" could no longer be sustained. In his
Value of Science (1905), Henri Poincare asked: "Have we finally attained
absolute rigor? At each stage of the evolution our fathers.. . thought they
had reached it. If they deceived themselves, do we not likewise cheat
ourselves?" Surprisingly, Poincare went on to assert that "in the analysis
of today, when one cares to take the trouble to be rigorous, there can
be nothing but syllogisms or appeals to this intuition of pure number, th
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only intuition which can not deceive us. It may be said that today absolute
rigor is attained."37 More recently, Morris Kline remarked: "No proof
is final. New counterexamples undermine old proofs. The proofs are then
revised and mistakenly considered proven for all time. But history tells
us that this merely means that the time has not yet come for a critical
examination of the proof."38

Not only do standards of rigor intensify, they also change in nature;
whereas in 1700 geometry was viewed as providing the paradigm for such
standards, by the late nineteenth century arithmetic-algebraic considera-
tions had assumed primacy, with these eventually giving way to standards
formulated in terms of set theory. Both these points, as well as a number
of others relating to rigor, have been discussed with unusual sensitivity
by Philip Kitcher. For example, in opposition to the traditional view that
rigor should always be given primacy, Kitcher has suggested in his essay
"Mathematical Rigor—Who Needs It?" the following answer: "Some
mathematicians at some times, but by no means all mathematicians at all
times."39 What has struck me most forcefully about the position Kitcher
developed concerning rigor in that paper and in his Nature of Mathematical
Knowledge are its implications for the historiography of mathematics. I
recall being puzzled some years ago while studying the history of com-
plex numbers by the terms that practitioners of that most rational dis-
cipline, mathematics, used for these numbers. Whereas their inventor
Cardan called them "sophistic," Napier, Girard, Descartes, Huygens, and
Euler respectively branded them "nonsense," "inexplicable," "imagi-
nary," "incomprehensible," and "impossible." Even more mysteriously,
it seemed, most of these mathematicians, despite the invective implied
in thus naming these numbers, did not hesitate to use them. As Ernest
Nagel observed, "for a long time no one could defend the 'imaginary
numbers' with any plausibility, except on the logically inadequate ground
of their mathematical usefulness." He added: "Nonetheless, mathema-
ticians who refused to banish them. . . were not fools. . . as subsequent
events showed."40

What I understand Kitcher to be suggesting is that the apparent irra-
tionality of the disregard for rigor found in the pre-1830 history of both
complex numbers and the calculus is largely a product of unhistorical,
present-centered conceptions of mathematics. In particular, if one
recognizes that need for rigor is a relative value that may be and has at
times been rationally set aside in favor of such other values as usefulness,
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then one will be less ready to describe various periods of mathematics as
ages of unreason and more prone to undertake the properly historical task
of understanding why mathematicians adopted such entities as "impossi-
ble numbers" or infinitesimals. As Kitcher suggests, it may be wise for
historians of mathematics to follow the lead of historians of science who
long ago became suspicious of philosophic and historiographic systems
that entail the reconstruction of scientific controversies in terms of such
categories as irrationality, illogicality, and stubbornness.41

8. The Methodology of Mathematics Is Radically Different from
the Methodology of Science

The quotations previously cited from Duhem's Aim and Structure of
Physical Theory illustrate a subtheme running through that book: that
the methodology of mathematics differs greatly from that of physics. In
other passages, Duhem lamented that physics had not achieved "a growth
as calm and as regular as that of mathematics" (p. 10) and that physics,
unlike mathematics, possesses few ideas that appear "clear, pure, and
simple" (p. 266). Moreover, largely because Duhem believed that "these
two methods reveal themselves to be profoundly different" (p. 265), he
concluded that, whereas history of physics contributes importantly to un-
derstanding physics, "The history of mathematics is, [although] a
legitimate object of curiosity, not essential to the understanding of math-
ematics" (p. 269). The position developed in this and the next section is
that important parallels exist between the methods employed in
mathematics and in physics.

The first author who explicitly described the method that, according
to most contemporary philosophers of science, characterizes physics was
Christiaan Huygens. He prefaced his Treatise on Light by stating that in
presenting his theory of light he had relied upon "demonstrations of those
kinds which do not produce as great a certitude as those of Geometry,
and which even differ much therefrom, since whereas the Geometers prove
their Propositions by fixed and incontestable Principles, here the Prin-
ciples are verified by the conclusions to be drawn from them. . . . "42 What
I wish to suggest is that, to a far greater extent than is commonly real-
ized, mathematicians have employed precisely the same method—the so-
called hypothetico-deductive method. Whereas the pretense is that math-
ematical axioms justify the conclusions drawn from them, the reality is
that to a large extent mathematicians have accepted axiom systems on the
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basis of the ability of those axioms to bring order and intelligibility to
a field and/or to generate interesting and fruitful conclusions. In an im-
portant sense, what legitimized the calculus in the eyes of its creators was
that by means of its methods they attained conclusions that were recognized
as correct and meaningful. Although Hamilton, Grassmann, and Can-
tor, to name but a few, presented the new systems for which they are
now famous in the context of particular philosophies of mathematics (now
largely discarded), what above all justified their new creations, both in
their own eyes and among their contemporaries, were the conclusions
drawn from them. This should not be misunderstood; I am not urging
that only utilitarian criteria have determined the acceptability of math-
matical systems, although usefulness has undoubtedly been important.
Rather I am claiming that characteristics of the results attained—for ex-
ample, their intelligibility—have played a major role in determining the
acceptability of the source from which the results were deduced. To put
it differently, calculus, complex numbers, non-Euclidean geometries, etc.,
were in a sense hypotheses that mathematicians subjected to test in ways
comparable in logical form to those used by physicists.

My claim that mathematicians have repeatedly employed the hypo-
thetico-deductive method is not original; a number of recent authors
have made essentially the same suggestion. Hilary Putnam began a 1975
paper by asking how we would react to finding that Martian mathemati-
cians employ a methodology that, although using full-blown proofs when
possible, also relies upon quasi-empirical tests; for example, his Martians
accept the four-color conjecture because much empirical evidence sup-
ports and none contradicts it. Putnam proceeded to claim that we should
not see this as resulting from some bizarre misunderstanding of the nature
of mathematics; in fact, he asserted that "we have been using quasi-
empirical and even empirical methods in mathematics all along... ,"43

The first example he used to illustrate this claim is Descartes's creation
of analytical geometry, which depends upon the possibility of a one-to-
one correspondence between the real numbers and the points on a line.
The fact that no justification for this correspondence, let alone for the
real numbers, was available in Descartes's day did not deter him or his
contemporaries; they proceeded confidently ahead. As Putnam commented
on his Descartes illustration: "This is as much an example of the use of
hypothetico-deductive methods as anything in physics is" (p. 65). Philip
Kitcher, who has stressed the parallels between the evolution of math-
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ematics and of science, has advocated a similar view. In 1981, he stated

Although we can sometimes present parts of mathematics in axiomatic
form,... the statements taken as axioms usually lack the epistemological
features which [deductivists] attribute to first principles. Our knowledge
of the axioms is frequently less certain than our knowledge of the
statements we derive from them.. . . In fact, our knowledge of the ax-
ioms is sometimes obtained by nondeductive inference from knowledge
of the theorems they are used to systematize.44

Finally, statements urging that mathematical systems are, like scientific
systems, tested by their results occur in the writings of Haskell Curry,
Willard Van Orman Quine, and Kurt Godel.45

9. Mathematical Claims Admit of Decisive Falsification

In the most widely acclaimed section of his Aim and Structure of
Physical Theory, Duhem attacked the view that crucial experiments are
possible in physics. He stated: "Unlike the reduction to absurdity [method]
employed by geometers, experimental contradiction does not have the
power to transform a physical hypothesis into an indisputable truth" (p.
190). The chief reason he cited for this inability is that a supposed crucial
experiment can at most decide "between two sets of theories each of which
has to be taken as a whole, i.e., between two entire systems..." (p. 189).
Because physical theories can be tested only in clusters, the physicist, when
faced with a contradiction, can, according to Duhem, save a particular
theory by modifying one or more elements in the cluster, leaving the par-
ticular theory of most concern (for example, the wave or particle theory)
intact. In effect, Duhem was stating that individual physical theories can
always be rescued from apparent refutations. Having criticized a number
of Duhemian claims, I wish now to pay tribute to him by urging that a
comparable analysis be applied to mathematics. In particular, I suggest
that in history of mathematics one frequently encounters cases in which
a mathematical claim, faced with an apparent logical falsification, has
been rescued by modifying some other aspect of the system. In other words,
mathematical assertions are usually not tested in isolation but in conjunc-
tion with other elements in the system.

Let us consider some examples. Euclid brought his Elements to a con-
clusion with his celebrated theorem that "no other figure, besides [the
five regular solids], can be constructed which is contained by equilateral
and equiangular figures equal to one another." How would Euclid re-



274 Michael J. Crowe

spond if presented with a contradiction to this theorem—for example, with
a hexahedron formed by placing two regular tetrahedra face to face? It
seems indisputable that rather than rejecting his theorem, he would rescue
it by revising his definition of regular solid so as to exclude polyhedra
possessing noncongruent vertices. For centuries, complex numbers were
beset with contradictions; some charged that they were contradicted by
the rules that every number must be less than, greater than, or equal to
zero and that the square of any number be positive. Moreover, others urged
that no geometric interpretation of them is possible.46 Complex numbers
survived such attacks, whereas the cited rules and the traditional defini-
tion of number did not. Many additional cases can be found; in fact,
Lakatos's Proofs and Refutations is rich in examples of refutations that
were themselves rejected. Of course, mathematicians do at times choose
to declare apparent logical contradictions to be actual refutations;
nonetheless, an element of choice seems present in many such cases.

10. In Specifying the Methodology Used in Mathematics, the Choices
Are Empiricism, Formalism, Intuitionism, and Platonism

For decades, mathematicians, philosophers, and historians have de-
scribed the alternative positions concerning the methodology of math-
ematics as empiricism, formalism, intuitionism, and Platonism. This
delineation of the options seems ill-conceived in at least two ways. First,
it tends to blur the distinction between the epistemology and methodology
of mathematics. Although related in a number of complex ways, the two
areas can and should be distinguished. Epistemology of mathematics deals
with how mathematical knowledge is possible, whereas methodology of
mathematics focuses on what methods are used in mathematics. The ap-
propriateness of distinguishing between these two areas is supported by
the fact that the history of the philosophy of mathematics reveals that
different epistemological positions have frequently incorporated many of
the same methodological claims. Second, this fourfold characterization
tends to blur the distinction between normative and descriptive claims.
To ask what methods mathematicians should use is certainly different from
asking what methods they have in fact used. Failure to recognize this
distinction leads not only to the so-called naturalistic fallacy—the prac-
tice of inferring from "is" to "ought"—but also to the unnamed opposite
fallacy of inferring from "ought" to "is" (or to "was").

It has been my experience that both mathematicians and historians of
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mathematics are primarily interested in issues of the methodology rather
than of the epistemology of mathematics. When they turn to writings in
the philosophy of mathematics, they usually find these composed largely
in terms of one or more of the four primarily epistemological positions
mentioned previously. Unfortunately, these categories seem relatively
unilluminating in exploring methodological issues. Reuben Hersh very
effectively discussed this problem in a 1979 paper in which he asked:
"Do we really have to choose between a formalism that is falsified by our
everyday experience, and a Platonism that postulates a mythical fairyland
where the uncountable and the inaccessible lie waiting to be observed... ?"
Hersh proposed a different and more modest program for those of us in-
terested in investigating the nature of mathematics; he suggested that we
attempt "to give an account of mathematical knowledge as it really is—
fallible, corrigible, tentative and evolving.... That is, reflect honestly
on what we do when we use, teach, invent or discover mathematics—by
studying history, by introspection, and by observing ourselves and each
other.. . . "47 If Hersh's proposal is taken seriously, new categories will
probably emerge in the philosophy and historiography of mathematics,
and these categories should prove more interesting and illuminating than
the traditional ones. Moreover, increased study of the descriptive meth-
odology of mathematics should itself shed light on epistemological issues.
This paper not only concludes with an endorsement of Hersh's proposed
program of research, but has been designed to serve as an exemplifica-
tion of it.
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Felix E. Browder

Mathematics and the Sciences

1. Introduction

The principal thrust of this essay is to describe the current state of in-
teraction between mathematics and the sciences and to relate the trends
to the historical development of mathematics as an intellectual discipline
and of the sciences as they have developed since the seventeenth century.
This story is interesting in the context of the history of present-day
mathematics because it represents a shift in the preconceptions and stereo-
types of both mathematicians and scientists since World War II.

The notion that significant mathematical and scientific advances are
closely interwoven is not particularly new. The opposing notion (asso-
ciated, with whatever degree of justice, with the name of Bourbaki) was
never as fashionable, at least among working mathematicians, as in the
two decades immediately after World War II. The situation has changed
significantly during the past decade and had begun turning even earlier.
It turned not only among mathematicians, but even more significantly in
such sciences as physics. The frontier of mathematical advance was seen
again to be in forceful interaction with the basic problems and needs of
scientific advance.

This is an essay on significant trends in mathematical practice. The rela-
tions between the history and philosophy of mathematics as usually con-
ceived and mathematical practice have often been very ambiguous. In part,
this has resulted from the efforts of some historians and philosophers to
impose a framework of preconceptions upon mathematical practice that
had little to do with the latter. In part, however, it resulted from the diver-
sity of mathematical practice, to lags in its perception, and to the com-
plexity of viewpoints embedded in that practice.

Let me preface this account with two statements by great American
mathematicians of an earlier period who put the case in a sharp form.

278
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The first is John von Neumann in a 1945 essay titled "The Mathema-
tician":1

Most people, mathematicians and others, will agree that mathematics
is not an empirical science, or at least that it is practiced in a manner
which differs in several decisive respects from the techniques of the em-
pirical sciences. And, yet, its development is very closely linked with
the natural sciences. One of its main branches, geometry, actually
started as a natural, empirical science. Some of the best inspirations
of modern mathematics (I believe, the best ones) clearly originated in
the natural sciences. The methods of mathematics pervade and dominate
the "theoretical" divisions of the natural sciences. In modern empirical
sciences it has become more and more a major criterion of success
whether they have become accessible to the mathematical method or
to the near-mathematical methods of physics. Indeed, throughout the
natural sciences an unbroken chain of successive pseudomorphoses, all
of them pressing toward mathematics, and almost identified with the
idea of scientific progress, has become more and more evident. Biology
becomes increasingly pervaded by chemistry and physics, chemistry by
experimental and theoretical physics, and physics by very mathematical
forms of theoretical physics.

The second is Norbert Wiener in a 1938 essay titled "The Historical
Background of Harmonic Analysis:"2

While the historical facts in any concrete situation rarely point a clear-
cut moral, it is worth while noting that the recent fertility of harmonic
analysis has followed a refertilization of the field with physical ideas.
It is a falsification of the history of mathematics to represent pure
mathematics as a self-contained science drawing inspiration from itself
alone and morally taking in its own washing. Even the most abstract
ideas of the present time have something of a physical history. It is
quite a tenable point of view to urge this even in such fields as that
of the calculus of assemblages, whose exponents, Cantor and Zermelo,
have been deeply interested in problems of statistical mechanics. Not
even the influence of this theory on the theory of integration, and in-
directly on the theory of Fourier series, is entirely foreign to physics.
The somewhat snobbish point of view of the purely abstract mathemati-
cian would draw but little support from mathematical history. On the
other hand, whenever applied mathematics has been merely a technical
employment of methods already traditional and jejune, it has been very
poor applied mathematics. The desideratum in mathematical as well
as physical work is an attitude which is not indifferent to the extremely
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instructive nature of actual physical situations, yet which is not dom-
inated by these to the dwarfing and paralyzing of its intellectual orig-
inality. Viewed as a whole, the theory of harmonic analysis has a very
fine record of this sort. It is not a young theory, but neither is it yet
in its dotage. There is much more to be learned and much more to be
proved.

2. Mathematics and the Natural Sciences

One of the most striking features of recent developments in the physical
sciences has been the convergence of focal theoretical problems with ma-
jor themes in mathematical research. Mathematical concepts and tools
that had arisen in an autonomous way in relatively recent research have
turned out to be important components in the description of nature. At
the same time, this use of novel mathematical tools in the sciences has
reacted upon the development of mathematical areas having no direct con-
nection with scientific applications to yield new and surprising mathe-
matical consequences. We ask whether this kind of interaction will con-
tinue in a serious way in the foreseeable future, and, if so, what the
consequences will be for the future development of mathematics and the
sciences.

Let us begin our analysis by examining the different ways in which
novel, relatively sophisticated mathematical tools have been applied in re-
cent scientific developments. We may classify them into five relatively
broad modes of attack.

(1) The use of sophisticated mathematical concepts in the formulation
of new, basic physical theories on the most fundamental level. At the pres-
ent moment, this takes the form of the the superstring theory, which has
as its objective the total unification of all the basic physical forces and
interactions—electromagnetic, weak, strong, and gravitational. This new
phase of physical theory, which is the culmination of the earlier develop-
ment of gauge field theories and of theories of supersymmetry, exhibits
the use of a wide variety of relatively new mathematical tools developed
in the past two decades; examples are Kac-Moody algebras and their
representations, the existence of Einstein metrics on compact Kahlerian
manifolds satisfying simple topological restrictions, and representations
of exceptional Lie groups. The body of techniques and mathematical
arguments embodied here includes the theory of Lie groups and algebras,
their generalizations and representation theory; differential geometry in
its modern global form in terms of vector bundles; the study of the ex-
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istence of solutions of manifolds of highly nonlinear partial differential
equations; differential and algebraic topology; and the whole melange of
analysis, algebra, and geometry on manifolds that has been called global
analysis. The implementation of this program may involve still other ma-
jor directions of mathematical research—for example, noncommutative
geometries based on rings of operators.

A similar pattern of use of sophisticated mathematical tools in the
development of fundamental physical theories appeared earlier in the
context of the study of instantons in gauge field theories and the study
of singularities in the equation of general relativity in connection with
black holes. What must be strongly emphasized is that the role assumed
by sophisticated mathematics was not the result of a willful act by ei-
ther physicists or mathematicians, but of the intrinsic necessities of the
development of the physical theory. Physicists, no matter how sophis-
ticated mathematically they may be, are not free ad libitum to choose
the mathematical tools they wish to use. Certainly, the mathematicians
have no power to prescribe such uses to the physicists. We are very far
from the decades after World War II when it was a commonplace among
physicists that all the mathematics they would ever need had been com-
pletely worked out (at least as far as the involvement of research math-
ematicians was concerned) before World War I. It is the radical trans-
formation of fundamental physics in the past decades that has caused
the disappearance of this commonplace, and not any basic transforma-
tion in the sociology of the relations between physicists and mathema-
ticians.

(2) A focal interest in the complex mathematical consequences of sim-
ple physical laws. One sees major examples in the modeling of turbulence
in terms of bifurcation, of the asymptotic properties of differential equa-
tions, and of iteration of simple nonlinear transformations (Hopf bifur-
cation, the Lorenz equation, strange attractors, and Feigenbaum cascades).
Simple causal mechanics can be shown to lead to disorderly regimes
(chaos), but in relatively simple and classifiable forms. A historically earlier
example of an attack on turbulence in the 1930s to 1950s used models in
terms of stochastic processes where disorder was directly injected into the
premises of the theory. Another current example is the use of fractal
models (self-similarity under changes of scale, fractional Hausdorff dimen-
sions) to describe complex phenomena in the study of materials.

(3) Mathematical models of pattern formation and symmetry breaking
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as paradigms for structured systems developing out of apparently unstruc-
tured regimes. We might think of this mode of attack (which goes back
to Turing in 1952) as the converse of (2). Stable structures arise from
mathematical models of differential equations or stochastic games of an
apparently structureless nature in the presence of noise and possible
disorder. The most striking paradigm is the oscillating chemical reaction
of the Belousov-Zhabotinskii type. The objective here is eventually to
model phenomena in such areas as developmental biology and brain
function.

(4) Soliton theories, involving the existence in nonlinear differential
equations of stable structures (solitons) arising from complete integrability.
The now classical paradigm is the Korteweg-De Vries equation of shallow
wave theory, rediscovered by Kruskal and his collaborators in the late 1950s
after an earlier partial rediscovery in computer experiments by Fermi-
Pasta-Ulam. New models of a similar kind have been found and exten-
sively analyzed as a possible way of describing a broad range of physical
and engineering phenomena.

(5) The need to develop a usable and fruitful mathematical theory of
complex systems whose elements might well be simple to an extreme but
whose complexity arises from the interaction of these elements, whether
linear or nonlinear, local or global. It is abundantly clear that every mode
of analysis in science or in practice will eventually get to the stage where
this theme is dominant.

After this summary of major themes in present-day scientific investiga-
tions to which sophisticated mathematical tools are being applied, we may
ask whether this is really a new situation. A careful answer to this ques-
tion demands an analysis with a historical and philosophical focus, which
1 present in the final section of the paper.

3. Mathematics and the Computer

The observant reader is already aware that the description in section
2 of the mathematical component of important themes in contemporary
scientific research omitted explicit mention of the high-speed digital com-
puter, one of the most conspicuous objects of our age. In the context of
the present kind of discussion, this might seem to many like a performance
of Hamlet without the Noble Dane. Yet we must segregate the discussion
of the computer and its interrelation with the development of contem-
porary mathematics, both because of its important and distinctive role
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and because of the prevalence and intensity of myths in this domain that
prevent realistic assessment of the situation.

We are all very conscious of the role of the high-speed digital com-
puter as one of the decisive facts of the present epoch and for the
foreseeable future. We all know of the tremendous impact it has had on
the structure of processes in industrial society that depend on calculation,
communication, and control. In practice, this excludes very few domains
of human existence in modern society, whether technological, economic,
social, political, or military. The sciences and mathematics have not been
immune from this impact. Indeed, the scope and nature of scientific and
mathematical instrumentation and practice in our society have already been
radically changed by the existence of high-speed digital computation and
its continual decrease in cost during recent decades. I have deliberately
used the unusual phrase mathematical instrumentation to point up the
radically new fact that such a phenomenon now exists and is an impor-
tant component of our situation.

At the same time, although we are all conscious of the importance of
the digital computer (sometimes to the point of hysteria), and indeed are
inundated with advertising hyperbole from the most diverse quarters about
all the wonders that supercomputers will accomplish, many are much less
conscious of what is ultimately an even more important fact: the com-
puter is as much a problem as it is a tool. We must understand the nature
and limitations of this most powerful of all human tools. It is important
to know what cannot be computed and the dangers of what can be
miscomputed.

These limitations can be seen most plainly in the context of mathe-
matical and scientific practice. Perhaps the most significant use of the com-
puter in this context is as an experimental tool, sometimes even displac-
ing the laboratory experiment altogether. One translates a scientific or
mathematical problem into a simpler mathematical model and then uses
the computational power of the computer to study particular cases of the
general model. This approach has turned out to be very useful, particularly
when the conditions for experiment in the usual sense or of precise calcula-
tion become impossibly difficult. The mystique of such practices has grown
to such an extent that some speak of replacing Nature, an analog com-
puter, by a newer and better model of a digitalized nature.

The drawbacks and dangers of such practices without a background
of thorough critical analysis are equally clear. We must ask about the ade-
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quacy of the model, about the accuracy (not to say the meaningfulness)
of the computational process, and, last but not least, about the represent-
ative character of the particular cases that one computes. Without serious
cross-checks on these factors, we are left with yet another case of the zeroth
law of the computer: garbage in, garbage out, particularly with serious
scientific and mathematical problems that cannot be solved by computa-
tion as they stand. One replaces them by manageable problems, and the
validity of the replacement is precisely the crucial question. It is the im-
portance of this question that has led to pointed comments about the ad-
jective scientific in the currently fashionable emphasis on programs for
scientific computation on supercomputers.

These critical questions do not mean that we should neglect the com-
puter as a tool in science and mathematics. They do point up a sometimes
neglected fact—namely, that the computer is a difficult tool whose use
must be studied and refined. Computers are brute force instruments; their
effective use depends vitally on human insight and ingenuity. I intend here
to emphasize the importance of the intellectual arts and insights that are
or can be connected with the digital computer and its uses. These intellec-
tual arts have a vital relation to the mathematical enterprise. They con-
stitute a specialized and different way of applying classical mathematical
ideas and techniques with radically new purposes in mind. Their vitality,
both intellectual and practical, depends in an essential way upon a con-
tinuing contract with the central body of mathematical activity.

There is an interesting and slightly ironic aspect to the relationship be-
tween computer science and the central body of mathematics. Since the
mid-nineteenth century, mathematicians and physical scientists have tended
to see a dichotomy between mathematics that is applicable to the uses of
physical modeling and calculation and another kind that is not applicable.
The rules for this division have changed in recent years, with an ever-
increasing diversity of mathematical themes and theories falling into the
first category. Even so, the stereotype tends to persist, and some areas
of active mathematical research—like algebraic number theory or math-
ematical logic—tend to be relegated to the second category. Yet it is pre-
cisely these areas, grouped together with various forms of combinatorics
under the general label of discrete mathematics, that have turned out to
be most vital in major areas of advance in computer science. The basic
theoretical framework of computer science and the development of com-
plexity of computation rest upon the foundation of mathematical logic.



MATHEMATICS AND THE SCIENCES 285

The development of algorithms depends essentially upon combinatorics,
number theory, and, most recently, on probabilistic models of a com-
binatorial type. The practical area of coding and cryptology is vitally
dependent upon sharp results in number theory and algebraic number
theory.

We should reject efforts to oppose the natural sciences to the "artificial"
sciences. Human art and artifice are part of all the sciences, as is the con-
frontation with the objective realities beyond human will and control that
we personify under the figure of Nature. Indeed, computer science in its
necessary advance, seen today under such perspectives as parallel process-
ing, artificial intelligence, and expert systems, and the whole family of
problems subsumed under the label of computer systems and structure,
can be seen as part of the general perspective of complexity of organization.

4. The Core of Mathematics

There is a danger in any form of discussion of the role of mathemat-
ics that emphasizes (as I have done) the active participation of new
mathematical concepts and tools in the development of other scientific
disciplines. Despite the strong emphasis on the new, it is far too easy to
use such an approach as a prescription for future mathematicians sim-
ply to facilitate the interactions that I have described. Such a prescrip-
tion would be a recipe for a massive failure, not only for the development
of mathematics itself but also for the sciences. Such prescriptions are
based upon the unconscious principles that creativity and newness in con-
ceptual advance are always a matter of the past. The autonomy of
mathematical research, in the sense of its freedom from any strong
dependence upon the current processes of research in other disciplines
and upon their rhythm of activity, has been one of the principal com-
ponents of its creativity throughout its lengthy history since the Greeks.
There are commonsense reasons why this creativity is important for the
sciences: for example, when the advance of scientific understanding needs
mathematical concepts, theories, or methods of calculation and argument,
it is often essential that they be already available in a reasonably usable
form.

Once mathematical problems are solved in any context, the solutions
can be digested and turned to new uses in other contexts. Yet new
mathematics (concepts, solutions, theorems, algorithms, proofs, calcula-
tions), if it is genuinely new, must be created by someone, and whoever
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does the job is a mathematician by definition. The task of the practitioner
of another scientific discipline with respect to mathematics is to use it to
understand and analyze the subject matter of that discipline, to see through
the mathematics to the structure of the subject matter. From the fact that
mathematics from the latter point of view ought to be transparent, one
cannot draw the false conclusion that mathematics does not exist and needs
no process of development in its own right.

It may seem like a paradox to some that I should introduce this strong
affirmation of the essential autonomy of mathematics into a paper devoted
to the interaction of mathematics and the sciences. This paradox is super-
ficial. Any affirmation of interaction is only significant if the two sides
of the interaction have a full-fledged separate existence and meaning-
fulness. In particular, we must affirm a central autonomous core of mean-
ing in the mathematical enterprise if our thesis of strong interaction is
to have full significance.

What is this core of meaning? I shall give a number of related answers
in the form of programmatic definitions of mathematics. Each of these
definitions points to important characteristics of mathematical practice,
and each program leads to a slightly different perspective on that prac-
tice. It would take me too far afield to describe the interrelation of these
perspectives and the tension between them. Suffice it to say that I am
among those who believe in an essential unity of mathematics, though
rejecting some of the dogmatic and oversimplified programs for achiev-
ing that unity by putting mathematics in a Procrustean bed and cutting
off some of its limbs.

(1) Mathematics is the science of significant forms of order and relation.
(2) Mathematics is the science of the structure of possible worlds.
(3) Mathematics is the science of infinity.
(4) Mathematics is the science of the structure of complex systems.
(5) Mathematics is the study of the modeling of reality in symbolic form.

Each of these definitions taken by itself is a deep truth in the sense
of Niels Bohr: its negation is also a deep truth. Taken jointly, they give
us a reasonable perspective on the broad range of mathematics since the
Renaissance. (Definitions 1 and 2 are due to Descartes and Leibniz, com-
bined under the term mathesis, whereas definition 3, which was originated
by Leibniz, was revived in modern times by Poincare and Weyl.)
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5. Applicable Mathematics

Mathematical research in its various forms is an enterprise of great vital-
ity in the present-day world (although it is invisible to some outsiders).
Despite its fundamental autonomy, the enterprise of advanced mathemat-
ical research has interacted strongly in the last two decades with various
advances in the sciences. For the purposes of the present discussion, I
present two kinds of evidence.

The first consists of taking a conventional breakdown of the principal
active branches of contemporary mathematical research and inquiring in
general terms whether these branches have interactions of the type de-
scribed with the sciences. In the table of organization for the Internation-
al Congress of Mathematicians in Berkeley, California, in the summer
of 1986, we have such a breakdown in the division of the Congress into
nineteen sections. Of these nineteen sections, we may set aside two (his-
tory of mathematics, teaching of mathematics) and ask about the appli-
cability of the seventeen mathematical areas in this classification. Five
(probability and mathematical statistics, mathematical physics, numerical
methods and computing, mathematical aspects of computer science, ap-
plications of mathematics to nonphysical sciences) relate directly to the
sciences and technology. Eight have direct relation in contemporary prac-
tice to theory and practice in the natural sciences (geometry, topology,
algebraic geometry, complex analysis, Lie groups and representations, real
and functional analysis, partial differential equations, ordinary differen-
tial equations and dynamical systems). The remaining four (mathematical
logic and foundations, algebra, number theory, discrete mathematics and
combinatorics) have an equally vital relation to computer science. There
is no residue of mathematics that is fundamentally not applicable on this
list.

The second kind of evidence is illustrated by the study of the soliton
theory of the Korteweg-De Vries equation in the periodic case. The ap-
plications of algebraic geometry and complex analysis to the study of the
Korteweg-De Vries equation under periodic boundary conditions not only
contributed to the understanding of the physical model involved but reacted
upon the disciplines involved. New ideas and methods in both math-
ematical disciplines arose from this interaction, resulting in the solution
of classical problems in algebraic geometry and function theory. In an
even more striking case, the young Oxford mathematician Simon Donald-



288 Felix E. Browder

son observed that if one combined the mathematical techniques developed
for the study of the mathematical theory of gauge fields by Karen Uhlen-
beck with the penetrating geometric attack upon the structure of four
dimensional manifolds of Michael Freedman one could obtain a new and
totally surprising geometric result in four dimensions. The result in ques-
tion asserts that, unlike Euclidean spaces in every other dimension, four-
dimensional Euclidean space possesses two systems of coordinates that
are fundamentally different from one another.

These two cases illustrate a possibility that has turned into a current
reality—that the strong mathematical attack upon mathematical problems
raised in the context of development of scientific research can provide the
occasion and stimulus for major conceptual advances in mathematics itself.

6. Historical Perspectives

To close, let us turn to the question of the future relation of mathe-
matics and the sciences. We may recall another well-known saying of Niels
Bohr: Prediction is difficult, especially of the future. Attempts to predict
the future are hypotheses about the past and present. Let us formulate
a hypothesis that we can check for coherence and accuracy against the
past and present and then try to gauge its consequences for the future.

Our scientific tradition is inherited from the civilization of the ancient
Greeks. It was there that the concept of science as a self-conscious struc-
turing of objective lawful knowledge of the world (or, more strictly, of
the hidden processes of the world) first arose. Although the Greeks in-
vestigated the full range of human experience, their achievement in creating
permanent scientific knowledge was primarily in the mathematical sciences,
in mathematics itself and in such highly mathematical disciplines as math-
ematical planetary astronomy, musical theory, and the mathematical treat-
ment of statics. The Greeks created a highly perfected form of sophis-
ticated mathematical theory treating of whole number, geometry, ratio,
and geometrical measure. In this theory, they also perfected a fully mature
concept of mathematical argument, of logical deduction. On the basis of
these achievements, Plato might argue in his celebrated dialogue Timaeus
for a mathematical myth of the cosmos and its formation on the basis
of geometric elements, and Aristotle could formulate the logical principles
of deduction while rejecting the possibility of mathematical laws for the
phenomena of terrestrial physics.

It is fashionable to talk of scientific revolutions. On the most fundamen-
tal level, there has been only one scientific revolution—that of the seven-
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teenth century, in which modern science was formed. The concept of
science that this century produced gave a description of the cosmos, the
physical universe, in terms of the geometry of space and numerical rela-
tions, a description that applied to both the skies and the earth. It saw
this cosmos as a realm of objective lawful relations, devoid of human agen-
cy or affect. Reality was separated after Descartes into two completely
distinct parts, the physical universe and a separate world of human con-
sciousness and spirit. In this framework, it made total sense for human
consciousness to try to determine the secrets of natural processes not by
passive observation but by transforming nature by experiment.

There was a mathematical counterpart of the new physical science,
which served both as its precursor and principal tool. This was the
mathematics of the new algebra and of the analytic movement of Vieta
and Descartes, a mathematics that substituted calculation and manipula-
tion of symbolic expressions for the deductive sophistication of the Greeks.
It substituted the analysis of complex phenomena into simple elements
for the Greek emphasis on deduction. In the seventeenth century, this new
mathematics had two overwhelming triumphs. The first was the creation
of an analytic geometry through which the geometric structure of space
could be transformed by coordinatization into the subject matter of
algebraic analysis. The second was the invention of the great analytic engine
of the differential and integral calculus, by which the sophisticated and
difficult arguments by exhaustion of Eudoxos and Archimedes for han-
dling infinite processes were replaced by much simpler and more man-
ageable algebraic formulae or calculi. This was the tool with which Newton
built his great mathematical world-machine, the central paradigm for the
scientific world pictures of all succeeding ages.

There are essentially two forms in which objective human knowledge
can be formulated: in words and in mathematical forms. Aristotle opted
for the first and created a systematic description of the world in which
the subject-predicate form of the sentence was transformed into the pat-
tern of the individual object or substance possessing a certain quality. From
the seventeenth century on, modern science has rejected this form of
description and replaced it by descriptions in various mathematical forms.
These forms have altered as the stock of mathematical forms has increased
and become richer and more sophisticated. The original forms were
geometric, in the style of the Greeks. In the Renaissance, a new and more
flexible concept of number, the 'real' number in the present-day sense,
came into being as the common measure of lengths, areas, volumes,
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masses, and so forth, without the precise distinction between these
measures in terms of geometric form to which the Greeks had held. In
the ensuing development of algebra, new kinds of 'numbers' appeared
as the solutions of algebraic equations. Since they were not numbers in
the old sense, some were called 'imaginary', and mixtures of the two types
were called 'complex'. It was not until the end of the eighteenth century
that these 'complex' numbers were fully naturalized as members of the
commonsense mathematical realm by being identified in a simple way with
the points of a Euclidean plane, the complex plane.

Since the seventeenth century, the enterprise of the scientific descrip-
tion of nature has continued to develop within this mathematical medium,
which was dimly foreshadowed by Plato's mathematical world myth. New
scientific disciplines developed, and they entered the same framework of
numerical relationship, geometric form in space, and formulation of basic
principles in mathematically expressed laws. As Kant put it in a well-known
aphorism from his Metaphysical Foundations of Natural Sciences: "In
every special doctrine of nature, only so much science proper can be found
as there is mathematics in it."

In the nearly four centuries that have elapsed since Galileo began the
seventeenth century scientific revolution, the curious relationship of
autonomy and mutual dependence between the natural sciences and
mathematics has taken ever more complex and sophisticated forms. The
mathematical medium in which the various sciences live has continued to
develop and take on new shapes. In the early nineteenth century, the in-
tuitive concept of symmetry that was applied to the study of the roots
of algebraic equations gave rise to the concept of group. The group con-
cept, passing through the medium of its application to geometry and dif-
ferential equations, became in the twentieth century the most essential
building block of the fundamental description of the physical universe.
The concept of space, enriched by the insights of Gauss and Riemann,
gave rise to the richer geometric concepts of Riemannian manifold and
of curvature, through which the theory of general relativity of Einstein
was to describe the cosmos. Through the analysis of integral equations
and differential equations in the early twentieth century, the concept of
an infinite-dimensional vector space was born, and the especially rich con-
cept of a Hilbert space. Hermitian operators on a Hilbert space with their
spectral theory served as the eventual underpinning of the the formal struc-
ture of quantum mechanics. These are three important examples of a very
broad phenomenon.
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New concepts and theories arise in mathematical research through the
pressure of the need to solve problems and create intellectual tools through
which already existing mathematical theories and structures can be ex-
tended and applied. Once the new concepts and theories are established,
they themselves become the focus of intensive investigation. The new is
achieved by mathematical imagination, applied through the medium of
mathematical constructions through which the new concepts and struc-
tures are given definite form. Although the imaginative process is free in
some ultimate sense, its result once produced becomes a new objective
realm of relationship of a determinate character. Classical tools like deduc-
tion and calculation are used to establish its properties, leading to new
technical problems that may eventually demand new concepts and con-
structions for their solution. The jump of insight and imagination that
leads to new mathematical breakthroughs belies the stereotypes of math-
ematical activity as an automatic, machinelike process of mechanical ap-
plication of formal rules.

Mathematical research as a whole balances the radical process of genera-
tion of new concepts and theories with the conservative tendency to main-
tain in existence all those domains, problems, and conceptual themes that
once became established as foci of significant mathematical research. The
balance between these opposing tendencies gives rise to the striking fact
that, at the same moment, one can find active research programs of appar-
ently equal vitality bearing on two themes, one of which is two thousand
years old and the other perhaps only a decade old. Yet the two-thousand-
year-old problem might well be solved with tools and concepts of relatively
recent vintage.

The richer the repertoire of modern mathematical research, the broader
the arsenal of concepts and tools available for the use of the mathe-
maticized sciences. The difficulty lies in the problem of communication,
of the scientific practitioners being able to penetrate through the difficulties
of translation between the languages of different disciplines, of knowing
what is relevant in the concepts and techniques that are available.

As the concerns and principal foci of scientific interest move into do-
mains ever further from the classical ones of theory and experience, the
role of mathematical ideas and techniques inevitably grows because they
often provide the only tools by which one can probe further into the
unknown. This is particularly true for domains involving complexity of
organization or nonlinearity of interaction, the future frontier of the ma-
jor themes of scientific advance. Although they may become the subject
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matter of major scientific disciplines in their own right, I doubt that this
will lead to the disappearance of professional differences between special-
ists in various disciplines in attacking these scientific problems. The dif-
ference between specialties has a positive function as well as negative
consequences. Specialists can rely upon the intellectual traditions and
resources of their scientific specialty, and this applies with the greatest
force to the mathematician. We can ask for a broader and more effective
effort at communication, however, among those concerned with common
problems, and we can cultivate an active interest in and sympathy with
the thematic concerns of other specialties than our own.

Notes
1. In The Works of the Mind, ed. Heywood and Nef (Chicago: University of Chicago

Press, 1945); reprinted in The World of Mathematics, ed. J. Newman, vol. 4 (New York:
Simon and Schuster, 1956), pp. 2053-63.

2. In Semi-Centennial Addresses of the American Mathematical Society, 1938.
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Mathematical Naturalism

Virtually all the discussion of the "philosophy of mathematics" in our
century has been concerned with the enterprise of providing a foundation
for mathematics. There is no doubt that this enterprise has often been
mathematically fruitful. Indeed, the growth of logic as an important field
within mathematics owes much to the pioneering work of scholars who
hoped to exhibit the foundations of mathematics. Yet it should be almost
equally obvious that the major foundational programs have not achieved
their main goals. The mathematical results that they have brought forth
seem more of a piece with the rest of mathematics than first points from
which the entire edifice of mathematics can be built.

Under these circumstances, it is tempting to echo a title question of
Dedekind's and to ask what the philosophy of mathematics is and what
it ought to be. Many practicing mathematicians and historians of math-
ematics will have a brusque reply to the first part of the question: a
subject noted as much for its irrelevance as for its vaunted rigor, carried
out with minute attention to a small number of atypical parts of math-
ematics and with enormous neglect of what most mathematicians spend
most of their time doing. My aim in the present essay is to offer an
answer to the second half of the question, leaving others to quarrel a-
bout the proper response to the first. I shall argue that there are good
reasons to reject the presuppositions of the foundationalist enterprises
and that, by doing so, we obtain a picture of mathematics that raises
different—and, to my mind, more interesting—philosophical problems.
By trying to formulate these problems clearly, I shall try to draw up an
agenda for a naturalistic philosophy of mathematics that will, I hope,
have a more obvious relevance for mathematicians and historians of
mathematics.

293
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1. Epistemological Commitments

Seeking a foundation for a part of mathematics can make exactly the
same sense as looking for a foundation for some problematic piece of scien-
tific theory. At some times in the history of mathematics, practitioners
have self-consciously set themselves the task of clarifying concepts whose
antecedent use skirted paradox or of systematizing results whose connec-
tions were previously only dimly perceived. Weierstrass's efforts with con-
cepts of convergence and Lagrange's explanation of the successes of techni-
ques for solving cubic and quartic equations are prime examples of both
forms of activity. But the grand foundational programs move beyond these
local projects of intellectual slum clearance.1

Foundationalist philosophies of mathematics bear a tacit commitment
to apriorist epistemology. If mathematics were not taken to be a priori,
then the foundational programs would have point only insofar as they
responded to some particular difficulty internal to a field of mathematics.
Subtract the apriorist commitments and there is no motivation for think-
ing that there must be some first mathematics, some special discipline from
which all the rest must be built.

Mathematical apriorism has traditionally been popular, so popular that
there has seemed little reason to articulate and defend it, because it has
been opposed to the most simplistic versions of empiricism. Apriorists
come in two varieties. Conservative apriorists claim that there is no
possibility of obtaining mathematical knowledge without the use of cer-
tain special procedures: one does not know a theorem unless one has
carried out the appropriate procedures for gaining knowledge of the ax-
ioms (enlightenment by Platonic intuition, construction in pure intuition,
stipulative fixing of the meanings of terms, or whatever) and has followed
a gapless chain of inferences leading from axioms to theorem. Frege, at
his most militant, is an example of a conservative apriorist. By contrast,
liberals do not insist on the strict impossibility of knowing a mathematical
truth without appealing to the favored procedures. Their suggestion is that
any knowledge so obtained can ultimately be generated through the use
of a prior procedures and that mathematical knowledge is ultimately im-
proved through the production of genuine proofs.

Empiricists and naturalists2 dissent from both versions of apriorism
by questioning the existence or the power of the alleged special procedures.
Insofar as we can make sense of the procedures to which apriorist epis-
temologies make their dim appeals, those procedures will not generate
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knowledge that is independent of our experience. Platonic or construc-
tivist intuition, stipulative definition, yield knowledge—to the extent that
they function at all—only against the background of a kindly experience
that underwrites their deliverances. From the naturalistic perspective,
apriorists have misjudged the epistemological status of the features they
invoke, supposing that processes that are analogous to the heuristic argu-
ments or Gedankenexperimente of the natural scientist are able to war-
rant belief come what may.

The contrast may be sharpened by considering Zermelo's introduction
of his set-theoretic axioms.3 For the conservative apriorist, there was no
set-theoretic knowledge prior to 1905 and, in consequence, no knowledge
of analysis, arithmetic, or any other part of mathematics before the pure
cumulative hierarchy beamed in on Zermelo's consciousness. Liberals
may relax this harsh judgment about the pre-Zermelian ignoramuses,
but they remain committed to the view that mathematical knowledge
underwent a dramatic transformation when the "merely empirical" justifi-
cations of the Greeks, of Fermat, Newton, Euler, Gauss, Cauchy, and
Weierstrass finally gave way, in the first decade of our century, to genuine
proof.

Mathematical naturalism opposes to both positions a different philo-
sophical picture. Zermelo's knowledge of the axioms that he introduced
was based on his recognition of the possibility of systematizing the prior
corpus of claims about sets, claims that had been tacitly or explicitly
employed in reasoning about real numbers. Zermelo proposed that these
antecedently accepted claims could be derived from the principles he
selected as basic. The justification is exactly analogous to that of a scientist
who introduces a novel collection of theoretical principles on the grounds
that they can explain the results achieved by previous workers in the field.

Strictly speaking, one might accept this picture of Zermelo's knowledge
without subscribing to mathematical naturalism. Perhaps there are some
who believe that Zermelo may have known the axioms of his set theory
by recognizing their ability to systematize previous mathematical work
but that his successors did better. Their consciousnesses have been illu-
minated by the beauties of the cumulative hierarchy. Mathematical natural-
ists take this prospect to be illusory. Not only is Zermelo's knowledge to
be understood in the way that I have suggested but—in a fashion that I
shall describe in more detail below—the same type of justification is in-
herited by those of us who come after him.
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Yet even this much may be conceded without adopting naturalism.
There is a hybrid position, with which Russell and Whitehead seem brief-
ly to have flirted,4 according to which our knowledge of the principles
of set theory is based on our knowledge of arithmetic, even though the
principles of arithmetic are themselves taken to be a priori. Mathematical
intuition, stipulative definition, or whatever, is supposed to give us a priori
knowledge of the Peano postulates and of all the theorems we can deduce
from them; however, we know the axioms of set theory by seeing that
they suffice to systematize the Peano postulates.

Mathematical naturalism embodies a ruthless consistency. Having set
its face against the procedures to which a priori epistemologies for
mathematics have appealed, it will not allow that those procedures operate
by themselves to justify any mathematical beliefs possessed by any math-
ematician, past or present. I have tried elsewhere to give reasons for this
principled objection against the varieties of intuition and apprehension
of meanings on which apriorist accounts have traditionally relied—usually
without much explicit epistemological commentary.5

Here I shall only offer the sketch of a motivating argument. Many
people will have no hesitation in supposing that mathematicians know the
statements they record on blackboards and in books and articles. Perhaps
there are some who think of the practice of inscribing mathematical sym-
bols as a contentless formal game, and who feel squeamish in talking about
mathematical "knowledge." Yet, even for those who adopt this position,
there must be an analog to the epistemic concept of justification. Inscrip-
tional practices can be performed well or badly, usefully or pointlessly,
and our common view is that the mathematical community has some
justification for proceeding in the way that it does.

Now it seems that there can be a mathematical analog of the distinc-
tion between knowledge and conjecture (or ungrounded belief). Sometimes
a professional mathematician begins with a conjecture and concludes with
a piece of knowledge. Sometimes completely uninitiated people guess cor-
rectly. If two friends who know barely enough of number theory to under-
stand some outstanding problems decide to divide up the alternatives, one
claiming that Goldbach's conjecture is true, the other that it is false, and
so forth, then there will not be a sudden advance in mathematical
knowledge. Mathematical knowledge, like knowledge generally, requires
more than believing the truth. (Similar distinctions can be drawn from
the perspective of the approach that takes mathematical statements to be
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contentless. I shall henceforth ignore this approach and leave it to the in-
terested reader to see how the argument would be developed from the
preferred point of view.)

The obvious way to distinguish mathematical knowledge from mere
true belief is to suggest that a person only knows a mathematical state-
ment when that person has evidence for the truth of the statement—
typically, though not invariably, what mathematicians count as a proof.6

But that evidence must begin somewhere, and an epistemology for
mathematics ought to tell us where. If we trace the evidence for the state-
ment back to the acknowledged axioms for some part of mathematics,
then we can ask how the person knows those axioms.

In almost all cases, there will be a straightforward answer to the ques-
tion of how the person learned the axioms. They were displayed on a
blackboard or discovered in a book, endorsed by the appropriate author-
ities, and committed to the learner's memory. But nonnaturalistic epis-
temologies of mathematics deny that the axioms are known because they
were acquired in this way. Apriorists offer us the picture of individuals
throwing away the props that they originally used to obtain their belief
in the axioms and coming to know those axioms in special ways. At this
point we should ask a series of questions. What are these special ways
of knowing? How do they function? Are they able to produce knowledge
that is independent of the processes through which the beliefs were original-
ly acquired? One line of naturalistic argument consists in examining the
possibilities and showing that the questions cannot be answered in ways
that are consistent with apriorism.7

There is a second, simpler way to argue for a naturalistic epistemology
for mathematics. Consider the special cases, the episodes in which a new
axiom or concept is introduced and accepted by the mathematical com-
munity. Naturalists regard such episodes as involving the assembly of
evidence to show that the modification of mathematics through the adop-
tion of the new axiom or concept would bring some advance in math-
ematical knowledge. Often the arguments involved will be complex—in
the way that scientific arguments in behalf of a new theoretical idea are
complex—and the pages in which the innovators argue for the merits of
their proposal will not simply consist in epistemologically superfluous
rhetoric. On the rival picture, the history of mathematics is punctuated
by events in which individuals are illuminated by new insights that bear
no particular relation to the antecedent state of the discipline.
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To appreciate the difference, and the merits of naturalism, consider
Cauchy's introduction of the algebraic concept of limit in the definitions
of the concepts of convergence, continuity, and derivative. If we suppose
that Cauchy's claims were backed by some special a priori insight, then
it is appropriate to ask why this insight was unavailable to his predecessors,
many of whom had considered the possibility of employing the concept
of limit to reconstruct fundamental arguments in the differential calcu-
lus. We seem compelled to develop an analogy with superior powers of
visual discrimination: Cauchy just had better powers of mathematical in-
tuition, so he saw what Lacroix, Lagrange, PHuilier, d'Alembert, Euler,
Maclaurian, Leibniz, and Newton had all missed. This far-fetched story
is not only unnecessary, it also fails to do justice to the argumentative
structure of Cauchy's work on the calculus. The Cours d'Analyse displays
how a thorough use of the algebraic limit concept can be employed to
reformulate problematic reasoning in the calculus and thus to prepare the
way for the resolution of outstanding problems. Cauchy does not invite
his fellow mathematicians to intuit the correctness of his new claims. He
shows, at some length, how they are useful in continuing the practice of
mathematics.8

This second line of argument anticipates a theme that I shall elaborate
in the next section. Mathematical naturalism offers an account of math-
ematical knowledge that does justice to the historical development of
mathematics. Apriorism has seemed attractive because the only available
rival seemed to be the simplistic empiricism of John Stuart Mill.91 claim
that we can transcend a pair of inadequate alternatives by recognizing that
mathematical knowledge is a historical product.

2. A Role for History

Mathematical knowledge is not built from the beginning in each genera-
tion. During the course of their education, young mathematicians absorb
the ideas accepted by the previous generation. If they go on to creative
work in mathematics, they may alter that body of ideas in ways that are
reflected in the training of their successors. Like any other part of science,
mathematics builds new knowledge on what has already been achieved.
For the epistemologist of mathematics, as for the epistemologist of science,
a crucial task is to identify those modifications of the corpus of knowledge
that can yield a new corpus of knowledge.

We can now outline a naturalist account of mathematical knowledge.
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Our present body of mathematical beliefs is justified in virtue of its rela-
tion to a prior body of beliefs; that prior body of beliefs is justified in
virtue of its relation to a yet earlier corpus; and so it goes. Somewhere,
of course, the chain must be grounded. Here, perhaps, we discover a type
of mathematics about which Mill was right, a state of rudimentary math-
ematical knowledge in which people are justified through their percep-
tual experiences in situations where they manipulate their environments
(for example, by shuffling small groups of objects). What naturalism has
to show is that contemporary mathematical knowledge results from this
primitive state through a sequence of rational transitions.10

A preliminary task is to replace the vague talk of "states of mathe-
matical knowledge" with a more precise account of the units of math-
ematical change. The problem is formally parallel to that which confronts
the philosopher concerned with the growth of scientific knowledge, and
the solutions are also analogous. In both cases, I suggest, we should under-
stand the growth of knowledge in terms of changes in a multidimensional
unit, a practice, that consists of several different components.11 Each
generation transmits to its successor its own practice. In each generation,
the practice is modified by the creative workers in the field. If the result
is knowledge, then the new practice emerged from the old by a rational
interpractice transition.

As a first analysis, I propose that a mathematical practice has five com-
ponents: a language employed by the mathematicians whose practice it
is, a set of statements accepted by those mathematicians, a set of ques-
tions that they regard as important and as currently unsolved, a set of
reasonings that they use to justify the statements they accept, and a set
of mathematical views embodying their ideas about how mathematics
should be done, the ordering of mathematical disciplines, and so forth.
I claim that we can regard the history of mathematics as a sequence of
changes in mathematical practices, that most of these change are rational,12

and that contemporary mathematical practice can be connected with the
primitive, empirically grounded practice through a chain of interpractice
transitions, all of which are rational.13

It is probably easier to discern the various components in a mathematical
practice by looking at a community of mathematicians other than our own.
As an illustration of my skeletal account, let us consider the practice of
the British community of mathematicians around 1700, shortly after
Newton's calculus had become publicly available.14 This community
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adopted a language that not only lacks concepts belonging to contemporary
mathematics but also contains concepts we no longer use: Newtonian con-
cepts of fluxion, number, series, and function are, I think, different from
anything that has survived to the present, although are contemporary con-
cepts that are similar to these in certain respects. The British mathemati-
cians of the time accepted a wide variety of claims about the properties
of tangents to curves, areas under curves, motions of bodies, and sums
of infinite series. Many of these statements can be translated into results
that we would now accept, although some of the suggestions about in-
finite series might give us pause. The mathematicians posed for themselves
the problems of achieving analogous claims for a broader class of curves
and motions; they did not endorse (as their Leibnizian contemporaries
did) the general question of finding canonical algebraic representations
for the integrals of arbitrary functions or for the sums of infinite series;
problems in algebra arose out of, and were to be interpreted in terms of,
problems in geometry and kinematics. Members of the community were
prepared to justify some of their claims by offering geometric proofs—
which they took to be strict synthetic demonstrations in the style of tradi-
tional geometry—but, in some cases, they were forced to rely on reason-
ing that appealed to infinitesimals. Because of their background meta-
mathematical views, reasoning of this kind appeared less than ideal. On
the Newtonian conception of mathematics, the fundamental mathematical
disciplines are geometry and kinematics, and there is a serious founda-
tional problem of showing how infinitesimalist justifications can either
be recast as or replaced by reasonings in proper geometric style.

The central part of a naturalistic account of mathematical knowledge
will consist in specifying the conditions under which transitions between
practices preserve justification. As I have tried to show elsewhere,15 the
Newtonian practice just described can be connected with the practice of
the late-nineteenth-century community of analysts by a series of transi-
tions that are recognizably rational. But it is important to acknowledge
that my previous efforts at articulating naturalism with respect to this ex-
ample fall short of providing a full account of rational interpractice tran-
sitions in mathematics. We can appreciate rationality in the growth of
mathematical knowledge by describing episodes in the history of math-
ematics in a way that makes clear their affinity with transitions in science
(and in our everyday modification of our beliefs) that we count as rational.
A theory of rationality in mathematics (or, more precisely, in the growth
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of mathematics) would go further by providing principles that underlie
such intuitive judgments, making clear the fundamental factors on which
the rationality of the various transitions rests.

By emphasizing the connection between transitions in the history of
mathematics and transitions in the history of science that we view as ra-
tional, it is possible to argue for a reduction of the epistemology of
mathematics to the epistemology of science. In both cases it will be im-
portant to distinguish two main types of transition. The first type justifies
some change in some component (or components) of a prior practice on
the basis of the state of that practice alone. I shall call such transitions
internal transitions. The modifications of the second type, the external
transitions, owe their rationality to something outside the prior state of
mathematics, some recent experience on the part of the those who make
the change or some feature of another area of inquiry. It is tempting to
believe that the natural sciences are altered through external transitions,
and through these alone, and that mathematics grows solely through
internal transitions. The temptation should be resisted. Theoretical sciences
are often changed in dramatic ways through attempts to resolve tensions
in the prevailing practice—think of Copernicus's original efforts to resolve
the problem of the planets or the development of population genetics in
the early 1930s. By the same token, the development of mathematics is
sometimes affected by the state of other sciences, or even by ordinary ex-
perience. To cite just one example, the pursuit of analysis in the early nine-
teenth century was profoundly modified through the study of problems
in theoretical physics. I shall consider the importance of external transi-
tions in mathematics in greater detail below.

The insight that underlies the tempting—but oversimple—thesis is that
there is a continuum of cases. Some areas of inquiry develop primarily
through external transitions, others grow mainly through internal transi-
tions. What is usually called "pure" mathematics lies at one end of the
continuum; the applied sciences (for example, metallurgy) lie at the other.
We can appreciate the fact that there are differences of degree without
making the mistake of believing that there are differences in kind.

Because internal transitions are obviously important in mathematics,
it is useful to consider some main patterns of mathematical change, to
consider how they fit into the scheme that I have outlined, and to see how
they are exemplified in the history of mathematics. Unresolved problems
that have emerged as significant frequently provide the spur for the fur-
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ther articulation of a branch of mathematics. New language, new
statements, and new forms of reasoning are introduced to solve them. In
at least some cases, the newly introduced language is initially ill understood,
the workings of the new reasonings may be mysterious, and there may
be legitimate doubts about the truth of the new statements. However, when
things turn out well, the unclarities are ultimately resolved and the collec-
tion of answers is eventually systematized by principles that accord with
prevailing metamathematical criteria. Moreover, we can easily understand
prominent ways in which new questions are generated in mathematics:
as new language is introduced or old problems are resolved, it becomes
rational to pose new, often more general, questions.

Consider many famous examples, each of which counts as an internal
interpractice transition. Descartes's introduction of the concepts of analytic
geometry was motivated by the ability of the new concepts and modes
of reasoning to yield answers to questions about locus problems, answers
that were recognizably correct and recognizably more general than those
attained by his predecessors. Mysterious though the language of the
Leibnizian calculus may have been, its defenders could point out, as the
Marquis de 1'Hospital did, that it enabled them to solve problems that
"previously no one had dared to attempt." Lagrange's use of concepts
that we see as precursors of group-theoretic ideas was justified through
its ability to bring order to the ramshackle collection of methods for solv-
ing cubic and quartic equations that had been assembled by earlier
mathematicians.

In each case, the new extension generated new problems. After Des-
cartes, it was rational to seek techniques for associating recalcitrant curves
with algebraic equations and for computing the "functions" of curves.16

Through their use of infinite series, Newton and Leibniz generated new
families of mathematical questions: What is the series expansion of a given
function? What is the sum of a given infinite series? This process of
question generation illustrates a general pattern that has been repeated
countless times in the history of function theory: given two schemes for
representing functions, one asks how the two are coordinated, typically
by seeking canonical representations in well-established terms for func-
tions that are defined in some novel fashion. Similarly, the combination
of two discoveries in the theory of equations—the proof of the insolubili-
ty of the quintic and Gauss's demonstration that the cyclotomic equation,
x p - 1 = 0, is soluble when p is prime—posed the question Galois
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answered: Under what conditions is an equation soluble in radicals?
All these episodes can be represented within the framework I have

sketched, and when they are so represented we see interpractice transi-
tions that are recognizably rational. So much suffices for the reduction
of the epistemology of mathematics to the epistemology of science. But
it is only the first step toward a complete naturalistic epistemology. Even-
tually our confident judgments of rationality should be subsumed under
principles that explain the rationality of the transitions we applaud. In-
stead of responding to a skeptic by pointing to the details of the episode,
saying "Look! Don't you see that what is going on when Galois poses
this problem or when Leibniz introduces this reasoning is just like what
goes on in any number of scientific situations?", we would strive to iden-
tify the crucial epistemic features of the situation and to incorporate them
within a general theory of rational interpractice transitions, a theory that
would cover both the mathematical and the scientific cases.

When we see the problem, and our current ability to tackle it, in this
way, we should realize that there is presently no prospect of resolving hard
cases. Consider the current situation in the foundations of set theory. (Set
theory deserves to count as a subject for philosophers of mathematics to
explore, even if it is not the only such subject.) There are several different
proposals for extending the standard collection of set-theoretic axioms.
Ideally, a naturalistic epistemology of mathematics would enable us to
adjudicate the situation, to decide which, if any, of the alternatives should
be incorporated into set theory.17 If my naturalistic reduction of the
philosophy of mathematics is correct, then the problem has been proper-
ly defined. But it has not been solved.18

Mathematical naturalism thus identifies a program for philosophical
research. Apriorists will not find the program worth pursuing because they
will suppose that the genuine sources of mathematical knowledge lie
elsewhere. (But, with luck, the naturalistic challenge may prompt them
to be more forthcoming about exactly where.) However, even those who
join me in rejecting apriorism may maintain that naturalism is wrong-
headed. For they may perceive a deep difficulty in understanding the ra-
tionality of mathematics—either because they are skeptical about the ra-
tionality of science or because they think that the conditions that allow
the rationality of science are absent in the mathematical case. The objec-
tor speaks:

Naturalists take the reconstruction of our mathematical knowledge to
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consist in a selective narration of parts of the history of mathematics,
a narration designed to give us comfortable feelings about the innova-
tive ideas of the great mathematicians. But why should we count the
end product as knowledge? What is it about these transitions that
makes us dignify them with the name rational! Even if we had a clear
set of principles that subsumed the patterns of interpractice transition
to which the label is attached, it would still be incumbent on the natu-
ralist to explain why they are to be given a preferred epistemic status.

There is a tangle of problems here, among which is a cousin of Humean
worries about the grounds of methodological principles. In the rest of this
essay, I shall try to confront the problems, showing that they may help
us to clarify the naturalistic picture and that some interesting and unan-
ticipated conclusions emerge.

3. Varieties of Rationality

Those who offer theories of the growth of scientific knowledge must
answer two main problems. The first of these, the problem of progress,
requires us to specify the conditions under which fields of science make
progress. The second, the problem of rationality, requires us to specify
the conditions under which fields of science proceed rationally. Everyone
ought to agree that the two problems are closely connected. For a field
to proceed rationally, the transitions between states of the field at dif-
ferent times must offer those who make the transitions the best available
strategies for making progress. Rationality, as countless philosophers have
remarked, consists in adjustment of means to ends. Our typical judgments
of rationality in discussions about scientific change or the growth of
knowledge tacitly assume that the ends are epistemic. When we attribute
rationality to a past community of scientists, we consider how people in
their position would best act to achieve those ends that direct all inquiry,
and we recognize a fit between what was actually done and our envisaged
ideal.

So I start with a general thesis, one that applies equally to mathematics
and to the sciences. Interpractice transitions count as rational insofar as
they maximize the chances of attaining the ends of inquiry. The notion
of rationality with which I am concerned is an absolute one. I suppose
that there are some goals that dominate the context of inquiry, that are
not goals simply because they would serve as stepping stones to yet fur-
ther ends. The assumption is tricky. What are these goals? Who (or what)



MATHEMATICAL NATURALISM 305

is it that stands a chance of attaining them? In what ways should the
chances be maximized? Finally, are there special mathematical goals, or
does mathematics serve us in our attempts to achieve more general ends?

Following Kant, I take it that there are ends of rational inquiry and
that to be a rational inquirer is to be a being who strives to achieve these
ends.19 The ends I identify as ultimate are the achieving of truth and the
attainment of understanding. If we ask a mathematician why a certain
style of proof has been widely adopted, or why a particular systematiza-
tion of a body of mathematical knowledge has been proposed and ac-
cepted, then we shall expect to be told that the proof-pattern is likely to
issue in the acceptance of true conclusions and that the favored axiomati-
zation yields understanding of the body of mathematical theory that it
systematizes. Similar responses are anticipated if we raise questions about
the value of certain mathematical concepts or the urgency of some
mathematical questions: the former help us to appreciate the interrela-
tionships among mathematical claims, the latter signal gaps in our cur-
rent understanding. But, if we continue by asking why we should be in-
terested in true conclusions or in understanding, we can only answer that
these are the ends of inquiry.

The ends of rational inquiry are not our only ends, and, in consequence,
they do not completely dictate the course of rational development of
mathematics. Our aims also include the goals of providing for the welfare
of present and future members of our species (and perhaps members of
other species as well), of securing free and just social arrangements, and
so forth. The relations between the growth of science and these practical
ends are typically tenuous and indirect, and the connection with math-
ematics is even more attenuated. Nevertheless, if asked to justify the pur-
suit of a particular collection of mathematical problems, we may reply
that these problems arise within the context of a particular scientific in-
quiry. That scientific inquiry, in its turn, may be motivated by the desire
for rational ends of scientific inquiry—greater understanding of some facet
of the universe, say of the structure of matter or of the springs of animal
behavior. Or it may be justified through its contribution to some prac-
tical project, the securing of a steady supply of food for a group of people
or the improvement of transmission of information or resources around
the world. Finally, that practical project, in its turn, may connect directly
with our ultimate practical ends.

My division between ends of rational inquiry and practical ends ob-
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viously relates to the previous distinction between internal and external
rational interpractice transitions. More exactly, an internal interpractice
transition is rational in virtue of its advancement of the ends of rational
inquiry in mathematics. An external interpractice transition is rational in
virtue of its advancement either of the ends of rational inquiry in some
other branch of knowledge or of some practical ends.20

When we consider the rationality of mathematics and science as a prob-
lem about the adjusting of means to ends, then it becomes evident that
judgments of rationality are highly ambiguous. I want to distinguish four
main senses:

(1) Individual epistemic rationality: an individual is epistemically ration-
al when he or she adjusts practice so as to maximize the probabil-
ity that he or she will attain his or her epistemic ends.

(2) Individual overall rationality: an individual is rational overall when
that individual adjusts practice so as to maximize the probability
that he or she will attain his or her total set of ends.

(3) Community epistemic rationality: a community is epistemically ra-
tional when the distribution of practices within it maximizes the prob-
ability that the community will ultimately attain its epistemic ends.

(4) Community overall rationality: a community is rational overall
when the distribution of practices within it maximizes the probability
that the community will ultimately attain its total set of ends.

I claim that these notions of rationality are quite distinct and that it is
important to know which we have in mind before we inquire about the
rationality of mathematics or of some other science.21

To see the difference between the individual and community perspec-
tives, consider the following kind of example. Workers in a scientific field
seek the answer to a certain question, with respect to which various
methods are available. Considering the decision for each individual scien-
tist, we quickly reach the conclusion that, if there is one method that is
recognizably more likely to lead to the solution, then each scientist ought
to elect to pursue that method. However, if all the methods are roughly
comparable, then this is a bad bargain from the point of view of the com-
munity. Each individual ought to prefer that he or she belong to a com-
munity in which the full range of methods is employed. Hence, from the
community perspective, a rational transition from the initial situation
would be one in which the community splits into subgroups, each



MATHEMATICAL NATURALISM 307

homogeneous with respect to the pursuit of method. The intuition is that
the ends of the community can be better advanced if some of the members
act against their own epistemic interests.22

Although the points I have been making may seem to have little to do
with the growth of mathematical knowledge, they enable us to resolve an
important type of disagreement among historians and philosophers of
mathematics. Consider the different research strategies pursued by British
and Continental mathematicians in the years after the priority dispute be-
tween Newton and Leibniz.23 Leibnizians confidently set about using new
algebraic techniques, vastly increased the set of problems in analysis, and
postponed the task of attempting to provide a rigorous account of their
concepts and reasonings. Their attitude is not only made explicit in Leib-
niz's exhortations to his followers to extend the scope of his methods,
without worrying too much about what the more mysterious algebraic
maneuvers might mean, but also in the acceptance of results about in-
finite series sums that their successors would abandon as wrongheaded.24

Insofar as they were concerned to articulate the foundations of the new
mathematics, the Leibnizians seem to have thought that the proper way
to clarify their concepts and reasonings would emerge from the vigorous
pursuit of the new techniques. In retrospect, we can say that their con-
fidence was justified.

By contrast, Newton's successors were deeply worried about the
significance of the symbols that they employed in solving geometric and
kinematic problems. They refused to admit into their mathematical work
questions or modes of reasoning that could not be construed in geometric
terms, and they lavished attention on the problem of giving clear and con-
vincing demonstrations of elementary rules for differentiating and in-
tegrating (to speak somewhat anachronistically). Some of the ideas that
emerged from their work were ultimately made central to analysis in the
reconstruction offered by Cauchy.25

Now, we ask, "Which, if either, of these developments was rational?"
Before we answer the question, it is important to be aware of the dis-
tinctions that I have drawn above. When we demand an individualistic
assessment of the rationality of the rival interpractice transitions, we seem
compelled to engage in a difficult cost-benefit analysis. To a first approx-
imation, we can view both groups of mathematicians as aiming at two
kinds of epistemic ends: proliferation of answers to problems and increased
understanding of those answers, the concepts they contain, and the meth-
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ods by which they are generated. Newtonians emphasize the need for clari-
ty first, holding that secure results in problem solving will be found once
the concepts and reasonings are well understood. Leibnizians suggest that
the means of clarification will emerge once a wide variety of problems
have been tackled. Each tradition is gambling. What are the expected costs
and benefits?

Those who are uneasy, as I am, about attributing rationality to one
tradition and denying it to the other have an obvious first response to the
situation. They may propose that the alternative strategies were initially
so close in terms of their objective merits that it would have been perfect-
ly reasonable to pursue either of them. Hence there can be no condemna-
tion of either the early Newtonians or the early Leibnizians. Neither group
behaved irrationally. Yet this proposal is unsatisfactory as it stands. For
it is hard to extend it to account for the continued pursuit of the New-
tonian tradition once it had become apparent that the Continental ap-
proach stemming from Leibniz and the Bernoullis was achieving vast
numbers of solutions to problems that the Newtonians also viewed as
significant (problems that could readily be interpreted in geometric or
kinematic terms, even though the techniques used to solve them could
not). Moreover, historians who like to emphasize the role of social fac-
tors in the development of science will note, quite correctly, that the na-
tional pride of the British mathematicians and the legacy of the dispute
over priority in the elaboration of the calculus both played an important
role in the continued opposition to Continental mathematics.

I suggest that we can understand why British mathematicians dogged-
ly persisted in offering clumsy and often opaque geometric arguments if
we recognize the broader set of goals that they struggled to attain. Among
these goals was that of establishing the eminence of indigenous British
mathematics, and we can imagine that this end became especially impor-
tant after the Hanoverian succession and after Berkeley's clever challenge
to the credentials of the Newtonian calculus.26 Moreover, before we deplore
the fact that some of Newton's successors in the 1740s and 1750s may
have been moved by such nonepistemic interests as national pride, we
should also appreciate the possibility that the maintenance of a variety
of points of view (which chauvinism may sometimes achieve) can advance
the epistemic ends of the community. The goals of promoting acceptance
of truth and understanding in the total mathematical community were
ultimately achieved (in the nineteenth century) because both traditions were
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kept alive through the eighteenth century. If, as I suspect, one of the tradi-
tions was maintained because some mathematicians were motivated by
nonepistemic interests, then perhaps we should envisage the possibility
that the deviation from individual epistemic rationality signals the presence
of an institution in the community of knowers that promotes community
epistemic rationality. A rational community of knowers will find ways
to exploit individual overall rationality in the interests of maximizing the
chances that the community will attain its epistemic ends.27

Only if we restrict ourselves to the notion of individual epistemic ra-
tionality and seek to find this everywhere in the history of mathematics
(or of science generally) does the search for rationality in that history com-
mit us to a Whiggish enterprise of distributing gold stars and black marks.
The general form of an interpractice transition is more complex than we
might have supposed, and the historiography of mathematics should reflect
the added complexity. We are to imagine that the community of math-
ematicians is initially divided into a number of homogeneous groups that
pursue different practices. In some cases, the claims made by members
of the groups will be incompatible (Newtonians versus Leibnizians,
Kronecker and his disciples against Dedekind and Cantor, militant con-
structivists against classical mathematicians). In other cases, they will just
be different. An interpractice transition may modify the particular prac-
tices, the group structure, or both. Such interpractice transitions may be
viewed from the perspective of considering whether (a) they maximize the
chances that the individuals who participate in them will achieve their in-
dividual epistemic ends, (b) they maximize the chances that those in-
dividuals will attain their total set of ends with some epistemic ends being
sacrificed to nonepistemic ends, (c) they maximize the chances that the
community will attain its epistemic ends, or (d) they maximize the chances
that the community will attain its total set of ends, with epistemic ends
being sacrificed to nonepistemic ends. Moreover, with respect to each case
we may focus on epistemic ends that are internal to mathematics or we
may look to see whether the ends of other areas of inquiry are also in-
volved, and, where (b) and (c) both obtain, we may look for institutions
within the total mathematical community that promote the attainment of
epistemic ends by the community at cost to the individual.

I have been concerned to stress the broad variety of questions that arise
for the history of mathematics once we adopt the naturalistic perspective
I have outlined and once we have extended it by differentiating notions
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of rationality. To the best of my knowledge, these questions remain vir-
tually unanswered for virtually all of the major transitions in the history
of mathematics.

4. The Ends of Inquiry

So far I have remained vague about the epistemic ends at which I take
inquiry to be directed. The vagueness should provoke questions. Are there
epistemic ends intrinsic to mathematics? If so, what are they? In other
words, what counts as mathematical progress? How are the epistemic ends
of mathematics, if there are any, to be balanced against the epistemic ends
of other branches of inquiry or against nonepistemic (practical) ends?
These are important issues for a naturalistic philosophy of mathematics
to address. I shall try to show that they connect with questions that should
concern historians of mathematics and even professional mathematicians.

Compare paradigm cases of internal and external interpractice tran-
sitions. For the former, imagine that a group of mathematicians introduces
new concepts or new axioms for the sole purpose of improving their
understanding of prior mathematical claims. For the latter, suppose that
they decide to lavish great attention on methods for solution to complicated
differential equations with important applications, or to develop broadly
applicable techniques of approximation that allow practical problems to
be solved with assignable error. In either case, we may applaud the tran-
sition for its contribution to some end. Yet the applause is consistent with
a more global criticism. Perhaps the transition may be felt to strike the
wrong balance between our epistemic and practical (or, more precisely,
our extramathematical) ends. The gain in understanding was achieved by
sacrificing opportunities to pursue a more significant goal, or the con-
cern with the practical applications overshadowed a more important
epistemic interest.

The recent history of mathematics has shown that the criticism can run
either way. Critics of post-Weierstrassian analysis (and of the educational
program that it influenced in the Cambridge mathematical Tripos of most
decades of our century) may suggest that the emphasis on solving recon-
dite problems involving special functions (originally introduced into
mathematics because of their significance for certain problems in physics)28

detracted from the achievement of insight into fundamental theorems.
Detractors of contemporary mathematics might concede that the habit
of discerning maximum generality, and the embedding of classical results
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in the broadest possible context, has yielded a collection of sterile investiga-
tions that should be abandoned in favor of projects more closely connected
with the projects of the sciences and with everyday life.

To formulate these issues in a clear way we need a solution to the prob-
lem of mathematical progress. We need to know the epistemic ends at
which mathematics aims. Let us begin with a liberal conception of pro-
gress. According to this conception, we must distinguish between epistemic
and pragmatic appraisal. We make progress so long as we add to the store
of knowledge in any way. Perhaps some additions are more profitable
in advancing us toward the totality of our goals, but that is a purely
pragmatic matter.

The liberal conception suggests that our applause for both our paradigm
cases should not be tempered with criticism. To see if so ecumenical an
attitude can be sustained, we need to consider what theses about the on-
tology of mathematics can be integrated with a naturalistic approach. There
is a variant of ontological Platonism that is compatible with almost all
my claims about mathematical knowledge. According to this variant,
mathematical knowledge begins, in prehistoric times, with the apprehen-
sion of those structures that are instantiated in everyday physical phe-
nomena. On the simplest version, we perceive the properties of small
concrete sets (that is, sets whose members are physical objects).29 Math-
ematics proceeds by systematically investigating the abstract realm, to
which our rudimentary perceptual experiences give us initial access. That
investigation is guided by further perception, by the uses of mathematics
in the physical sciences, and by attempts to explain and to systematize
the body of results that has so far been acquired. Platonists can simply
take over my stories about rational interpractice transitions, regarding
those transitions as issuing in the recognition of further aspects of the realm
of abstract objects.

Mathematical naturalists who are also Platonists can readily draw the
distinction between pragmatic appraisal and epistemic appraisal. The
mathematician's task is to draw a map of Platonic heaven, and the ac-
quisition of any "geographical" information constitutes progress.30 In
some cases (the embedding of classical results in an abstract and highly
general context), we may learn about abstract features of that heaven that
are of little practical value in steering ourselves around the earth. In other
instances (the discovery of techniques for solving very special classes of
differential equations), we may come to know details of considerable utility
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but of little general import. So long as we continue to amass truths, there
is no question about making progress.

Now I think that it is possible to attack this liberal view of progress
even within the Platonistic perspective. Those who see the natural science
as aiming at truth do not have to suppose that any accumulation of truths
constitutes scientific progress: insignificant truth is typically not hard to
come by.31 Thus my point is not that a naturalistic Platonist is compelled
to adopt the liberal conception of progress, but that Platonism is one way
of elaborating the liberal conception. However, I want to press a more
radical challenge. I claim that we should reject the Platonist's view of the
ontology of mathematics, substituting for it a picture that does not allow
for the distinction between pragmatic assessment and epistemic assessment
on which the liberal conception builds.

Many of the reasons for worrying about Platonism are familiar. How
is reference to mathematical objects to be secured? How is it that percep-
tion provides us with knowledge about such objects? Even though these
questions may be blunted by claiming that we initially refer to and know
about concrete sets, it still remains mysterious how we are ultimately able
to refer to and know about abstract sets.32 Other anxieties arise in the
particular context of a naturalistic approach to mathematical knowledge.
Like other theoretical realists, Platonists must explain why our ability to
systematize a body of results provides a basis for belief in the existence
of antecedently unrecognized entities. It is not easy to understand how
Lagrange's insights into the possibilities of leaving certain expressions
invariant through the permutation of roots should constitute recognition
of the existence of hitherto unappreciated mathematical objects—to wit,
groups.

The general problem of understanding the historical transitions that
have occurred in mathematics as revelations of the inhabitants of Platonic
heaven arises with particular force when we consider a particular type of
interpractice transition that is common in mathematics: the resolution of
apparent incompatibility by reinterpreting alternatives. When mathemati-
cians discovered that non-Euclidean geometries were consistent, the tra-
ditional vocabulary of geometry was reconstrued. On the Platonist's ac-
count, new objects—non-Euclidean spaces and their constituents—were
discovered. By contrast, the resolution of incompatibilities in the sciences
often proceeds by dismissing previously countenanced entities. The
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chemical revolution did not conclude by allowing for both Lavoisierian
and non-Lavoisierian combustibles.

Focus on this last example may prompt the conventionalist reaction
that mathematics simply consists in exploring the consequences of arbitrari-
ly selected conventions and that the history of mathematics reveals the
emergence of the conventions that have happened to interest past
mathematicians. This is an overreaction to the pitfalls of Platonism. In-
terpractice transitions typically involve a nonarbitrary modification of
antecedent concepts, reasonings, problems, and statements. Thus our task
is to find an account of the ontology of mathematics that will avoid sup-
posing that practices are altered in accordance with the whim of the mo-
ment, without lapsing into the idea that the alterations issue in the
disclosure of truths about Platonic heaven.

I have suggested elsewhere that the problem can be solved if we treat
mathematics as an idealized science of human operations.33 The ultimate
subject matter of mathematics is the way in which human beings struc-
ture the world, either through performing crude physical manipulations
or through operations of thought. We idealize the science of human
physical and mental operations by considering all the ways in which we
could collect and order the constituents of our world if we were freed from
various limitations of time, energy, and ability. One way to articulate the
content of the science is to conceive of mathematics as a collection of stories
about the performances of an ideal subject to whom we attribute powers
in the hope of illuminating the abilities we have to structure our
environment.

This proposal goes beyond conventionalism in placing restrictions on
the stories we tell when we make progress in mathematics. Some stories,
the stories of elementary mathematics, achieve the epistemic end of directly
systematizing the operations we find ourselves able to perform on physical
objects (and on mental representations of such objects). Others achieve
the epistemic end of answering questions that arise from stories that achieve
an epistemic end, or of systematizing the results obtained within stories
that achieve an epistemic end. Ultimately, there must be a link, however
indirect, to operations on our environment. Nevertheless, it would be
wrong to think of the entire structure of mathematics as an attempt to sys-
tematize and illuminate the elementary operations that are described in
the rudimentary portions of the subject. For, in an important sense,
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mathematics generates its own content. The new forms of mathematical
notation that we introduce not only enable us to systematize and extend
the mathematics that has already been achieved, but also to perform new
operations or to appreciate the possibility that beings released from cer-
tain physical limitations could perform such operations. Such extensions
of our repertoire seem to me to have occurred with the development of
notation for representing morphisms on groups and for constructing sets
of sets. In both cases, the notation is a vehicle for iterating operations
that we would not be able to perform without it.34

This proposal (which I shall call naturalistic constructivism) resolves
the difficulties that beset Platonism. There is no question of securing
reference to or gaining perceptual knowledge of anything other than
unproblematic entities—to wit, operations that we perform and recognize
ourselves as performing. The transitions that occur in the history of
mathematics are taken at face value: they consist in introducing concepts,
statements, problems, and reasonings as parts of stories that help us
understand the operations we are able to perform on our environments;
in some cases, the activity of elaborating these stories itself generates new
kinds of operations for later mathematics to consider. Finally, the in-
stances in which an apparent disagreement is resolved through reinterpreta-
tion are cases in which the illumination of what has so far been achieved is
obtained by embedding what appeared to be a single story within a range
of alternatives.

Naturalistic constructivism collapses the notions of justification and
truth in an interesting way. To say that a mathematical statement is true
is to make a claim about the powers that are properly attributed to the
ideal subject (or, more generally, to make a claim to the effect that the
statement figures in a story that is properly told). What "properly" means
here is that, in the limit of the development of rational mathematical in-
quiry, our mathematical practice contains that statement. Truth is what
rational inquiry will produce, in the long run.

We can now see why naturalistic constructivism undercuts the distinc-
tion between pragmatic and epistemic appraisal. What we mean by "the
limit of the development of rational mathematical inquiry" is the state
to which mathematics will tend if we allow our entire body of investiga-
tions to run their course and to be guided by procedures designed to max-
imize our chances of attaining our ends. Since there is no independent
notion of mathematical truth, the only epistemic end in the case of math-
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ematics is the understanding of the mathematical results so far achieved.
Mathematics proceeds autonomously through attempting to systematize
whatever claims have previously been made about our powers to order
and collect—including those that have been made possible for us through
the activity of mathematics itself—and is inevitably dependent on other
sciences and on practical concerns for the material on which it will work.
Alternatively, we can say that the goal of mathematics is to bring system
and understanding to the physical and mental operations we find it worth
performing on the objects of our world, so that the shape and content
of mathematics are ultimately dictated by our practical interests and the
epistemic goals of other sciences.

If this is correct, then epistemic appraisal in mathematics inevitably
involves pragmatic considerations. It is not only legitimate to reform a
body of mathematics on the grounds that it fails to answer to our pragmatic
needs, but also senseless to defend the mathematics so reformed on the
grounds that it is "useless knowledge." There is room for just one kind
of useless knowledge in mathematics: claims that have in themselves no
practical implications but serve to enhance our understanding of results
that are practically significant. This does not mean that Hardy was wrong
when he gloried in the uselessness of the results of number theory. But,
if he was right, then there must be a chain of mathematical practices
culminating in the refined abstractions of number theory and beginning
with material of genuine practical significance, such that each member
of the chain illuminates its predecessor.

Mathematical progress, in a nutshell, consists in constructing a sys-
tematic and idealized account of the operations that humans find it prof-
itable to perform in organizing their experience. Some of these operations
are the primitive manipulations with which elementary arithmetic and
elementary geometry begin. Others are first performed by us through the
development of mathematical notation that is then employed in the sciences
as a vehicle for the scientific organization of some area of experience. But
there is no independent notion of mathematical truth and mathematical
progress that stands apart from the rational conduct of inquiry and our
pursuit of nonmathematical ends, both epistemic and nonepistemic.

I draw a radical conclusion. Epistemic justification of a body of math-
ematics must show that the corpus we have obtained contributes either
to the aims of science or to our practical goals. If parts can be excised
without loss of understanding or of fruitfulness, then we have no epistemic
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warrant for retaining them. If there is a distinction between mathematics
as art and mathematics as cognitive endeavor, it is here that it must be
drawn.35 Drawing it must wait on the development of a full theory of ra-
tional interpractice transitions, both in mathematics and in the sciences.

5. An Agenda

In The Nature of Mathematical Knowledge, I focused on internal tran-
sitions and on individual epistemic rationality. My project was to show
that there have been important and unrecognized inferences in the history
of mathematics and that similar inferences underlie our knowledge of those
statements philosophers have often taken to be the foundations of our
mathematical knowledge. I now think that the position I took was too
conservative in several different ways.

First, external interpractice transitions need more emphasis. As I have
suggested above, mathematics is dependent on other sciences and on our
practical interests for the concepts that are employed in the spinning of
our mathematical stories. It is shortsighted to think that the systemati-
zation of a branch of mathematics can proceed in neglect of the ways
in which adjacent fields are responding to external demands. Hamilton
thought that generalization of claims about complex numbers would nec-
essarily be a fruitful project. Ultimately, the field in which he labored was
changed decisively through attempts to come to terms with problems in
mathematical physics. Vector algebra and analysis offered a perspective
from which the lengthy derivations of recondite properties of quaternions
look beside the point.36

Second, the history of mathematics, like the history of other areas of
science, needs to be approached from both the individual and the com-
munity perspectives. We should ask not only about the reasons people
have for changing their minds, but also about the fashion in which the
community takes advantage of our idiosyncrasies to guide us toward ends
we might otherwise have missed. As I have already noted, the pursuit of
more than one research program may often advance the community's
epistemic projects—despite the fact that it will require of some members
of the community that they act against their individual epistemic interests.
We can properly ask whether there are enough incentives in mathematics
for the encouragement of diversity.

Third, there are serious questions about the balance between the pur-
suit of epistemic ends and the pursuit of nonepistemic ends. I have been
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arguing that it is difficult to distinguish questions of "science policy" from
questions of epistemology when the science under study is mathematics.
An important part of an epistemology for mathematics ought to be the
consideration of the relative importance of mathematical understanding
and the articulation of methods that will promote our extramathematical
projects (including our practical projects).

These conclusions are not likely to be popular, for they contradict an
image of purity that has dominated much contemporary thinking about
mathematics and much past philosophy of mathematics. I hold them
because I take them to follow from a thoroughly naturalistic approach
to mathematical knowledge, arid because I believe that there is no plausi-
ble alternative to a naturalistic mathematical epistemology. These con-
clusions should be corrected, refined, or discarded by undertaking a pair
of studies.

The first of these studies is the philosophical enterprise of giving a
precise account of rationality and progress in the sciences. The discus-
sions of the last sections need to give way to a detailed account of our
epistemic ends, of the ways in which interpractice transitions contribute
to these ends, and of the kinds of institutions that can play a role in shap-
ing the community pursuit of the ends. If my claims above are correct,
then the problems of epistemology of mathematics reduce to questions
in the philosophy of science, questions that I have tried to formulate in
a preliminary fashion here.

The second project is more historical. As I have already suggested, vir-
tually all the major questions about the growth of mathematical knowledge
remain unanswered for almost every major transition in the history of
mathematics. I want to conclude by mentioning two examples that seem
to me to illustrate some of the historical issues that I am recommending
and that point toward distinctions that have been underemphasized in the
previous discussion.

Philosophers of mathematics routinely concentrate their attention on
the emergence of set theory and of modern logic in the early decades of
our century. That historical episode is important, but, to my mind, it is
far less significant than a contemporaneous development. Part (but only
part) of that development begins in papers by Dedekind (specifically the
supplements to Dirichlet's lectures on number theory), is pursued by Emmy
Noether and her colleagues, and is completed with the publication of van
der Waerden's Moderns Algebra. In the process, the language of math-
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ematics was radically changed and the problems of mathematics were
transformed. If we are to assess the way in which the mathematics of our
century has been driven by internal changes, then there can be no better
model for our study than the evolution in which the lineage begun by
Dedekind is one significant strand.

The example is not only important because it focuses on a transition
in which an entirely new ideal of mathematical understanding was
fashioned—an ideal that sees our ability to identify particular results about
numbers, spaces, functions, and so forth, as special cases of claims about
very abstract structure. Insight into this transition is essential if the nat-
uralistic approach I espouse is to be defended against a commonly heard
objection. "Naturalism," say the critics, "is all very well for pre-twentieth-
century mathematics, but in our own times the subject has come of age
and has been transformed."37 Now I shall assume that the historical
reconstructions that I have given in the case of the emergence of the
abstract group concept and (in far more detail) in the emergence of the
main concepts of nineteenth-century analysis are satisfactory. If that is
so, then it is possible to show how major modifications of mathematical
practice were achieved on the basis of tensions within prior practice—
how such tensions led to the the introduction of new problems, how the
new problems were solved by employing new concepts and methods of
reasoning, how ill-understood reasonings and concepts were finally
systematized with axioms and definitions. There is no obvious reason why
the development of contemporary mathematics should have gone different-
ly, and it is natural to suggest that every successful generation of inquirers
takes itself to have brought the discipline to maturity. Nonetheless, the
critics make a telling point when they emphasize the extent of the dif-
ferences between current investigations and nineteenth-century mathe-
matics, and it is a legitimate challenge to ask whether the transition can
be understood in the same way as the examples of group theory and
classical analysis.

Here is a simple version of a fragment of the story. In the tenth sup-
plement to Dirichlet's lectures, Dedekind undertakes to introduce a new,
general, and perspicuous way of reformulating some of Kummer's results
on "ideal numbers." Part of his strategy is to consider collections of
elements in the number domain and to define an analog of multiplication
when one of the multiplicands is not an element of the domain but a cer-
tain kind of collection. So we might see set-theoretic constructions as ad-
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mitted into mathematics because of their ability to systematize a class of
results that had already been assembled in tackling significant problems
in number theory.

But the simple version is far too simple. As Harold Edwards has ar-
gued, there was a serious debate about whether or not Dedekind's method
offered an explanatory systematization (and extension) of the theory of
ideal numbers.38 Kronecker offered a rival version, bereft of set-theoretic
constructions but also avoiding a detour that Dedekind's reasoning was
forced to undertake.39 So why did Dedekind's proposals win adherents
and, eventually, success? Here we must look at the manifold ways in which
thinking about various types of abstract structures was beginning to prove
useful in late-nineteenth-century mathematics. I conjecture that a more
realistic version of the rational acceptance of the concept of an ideal (or,
more generally, of the idea of defining analogs of operations on elements
on collection of such elements) will need to consider the ways in which
related notions proved useful in a number of quite different mathematical
subdisciplines.40

This is only a conjecture. I offer it merely to turn back the charge that
it is quite incomprehensible how the naturalistic approach that I have used
in understanding the transitions that took place in analysis from Newton
and Leibniz to the end of the nineteenth century could achieve similar
success in understanding the emergence of contemporary mathematics.
Critics who contend that it is impossible that twentieth-century algebra
(for example) could have been the product of a sequence of interpractice
transitions of the kinds I describe are mistaken. Whether any of the se-
quences of rational interpractice transitions that my scheme allows cor-
responds to the actual historical developments is another matter—a matter
for detailed historical research.

Contrast this first example with cases suggested by an obvious ques-
tion. There is little doubt that the practice of some areas of pre-twentieth-
century mathematics was decisively affected by developments in the natural
sciences (particularly in physics). Has this process continued into our own
times? Three obvious possible positive instances come to mind. The first
is the development of catastrophe theory, with its roots in the attempts
to study aspects of biological and social systems. Second is the work of
Traub and his associates on identifying the reliability of error-prone
algorithms. Third, and perhaps most exciting, is the investigation of
periodic equilibria and "chaos," pioneered by Feigenbaum and culminat-
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ing in the identification of new "fundamental constants."41 In each of
these instances, mathematics is being used in novel ways to address prac-
tical and scientific problems. The interesting issue is whether the new work
provides a basis for modifying mathematical practice.

Recall a paradigm from nineteenth-century analysis. Fourier's studies
of the diffusion equation led to problems that could not be resolved within
the framework of the analysis of the time. In Cauchy's treatment, the cen-
tral concepts of analysis were redefined and clarified so as to provide means
of answering the new questions. Conservatives may declare that the con-
temporary applications to which I have alluded are quite different from
the paradigm. All that Thorn, Traub, and Feigenbaum have done is to
call to our attention hitherto unanticipated ways of developing received
ideas. Others may see in these (or in different) contemporary developments
the basis for introducing new concepts that will radically alter mathemat-
ical practice.

Who is right? Again, the question can only be resolved by detailed in-
vestigation. But it is important to see that there is a live issue here, an
issue related to the exchanges in which pessimistic mathematicians engage
over the coffeepot at numerous institutions all over the world. Is the field
going to the dogs because it has lost itself in arid abstractions that serve
no cognitive purpose? Or is it in decline because mathematics is no longer
queen, but very much the servant, of science (or, worse, engineering)?
On my view of mathematical knowledge, these common complaints pose
central—but neglected—problems in the philosophy of mathematics: What
is the right balance between the epistemic end of understanding the
mathematics already achieved and the ends set for us by the sciences and
our practical needs? Does contemporary practice strike that balance? I
have tried to construct a framework within which historians, philosophers,
and mathematicians can collaborate to find answers.

Notes
1. The transition is evident in the work of Frege, who notes in the Introduction to the

Grundlagen (The Foundations of Arithmetic [Oxford: Blackwell, 1959]) that he has "felt
bound to go back rather further into the general logical foundations of our science than
perhaps most mathematicians will consider necessary" (p. x). His stated reason is that, with-
out the successful completion of the project he undertakes, mathematics has no more than
"an empirical certainty" (ibid.). Later, he suggests that the achievements of the nineteenth
century in defining the main concepts of analysis point inexorably to an analogous clarifica-
tion of the concept of natural number. To those who ask why, Frege offers the same
epistemological contrast, pointing out that mathematics prefers "proof, where proof is possi-
ble, to any confirmation by induction" (pp. 1-2). For a more detailed investigation of Frege's
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epistemological motives and of his transformation of the philosophy of mathematics, see
my "Frege's Epistomology," Philosophical Review 88 (1979): 235-62, and "Frege, Dedekind,
and the Philosophy of Mathematics" (to appear in Synthesizing Frege, ed. L. Haaparanta
and J. Hintikka).

2. In The Nature of Mathematical Knowledge (New York: Oxford University Press, 1983),
I developed an anti-apriorist philosophy of mathematics that I called empiricism. However,
that position differs from most approaches that have called themselves empiricism in several
important ways, and I now prefer the name naturalism, both for the view I defended in
the book and the refinement of it presented in this essay. I hope that the change of labels
will help some of my mathematical readers to avoid the provocations of my earlier termi-
nology. I am grateful to Felix Browder for suggesting that the choice of that earlier ter-
minology was "a philosophical fetish."

3. This example was used to similar ends by Hilary Putnam in "What Is Mathematical
Truth?" in his Collected Papers, vol. Mathematics, Matter, and Method (Cambridge: Cam-
bridge University Press, 1976).

4. Principia Mathematica, vol. 1 (Cambridge: Cambridge University Press, 1910), p. x.
5. See Nature of Mathematical Knowledge, chap. 1-4. One important part of my argu-

ment is that the notion of a priori knowledge stands in need of preliminary clarification.
Perhaps the thesis that mathematical knowledge is a priori obtains its total credibility from
the fact that the crucial notion of apriority is usually left so vague that it is possible to mistake
heuristic devices for vehicles of a priori knowledge.

6. Not, of course, what logicians count as a proof. Complete derivations with all steps
made explicit are not available except in the case of extremely elementary parts of mathematics.
Moreover, it is a serious epistemological question to ask what such derivations would do
for us if we had them.

7. Again, see Nature of Mathematical Knowledge, chap. 1-4.1 think that the best reply
for the apriorist is to contend that the conditions I take to be necessary for a priori knowledge
are too stringent, and this reply has been offered by a number of people, most lucidly by
Charles Parsons (review of The Nature of Mathematical Knowledge, in Philosophical Re-
view 95 [1986]: 129-37). As Parsons correctly points out, my arguments against apriorism
depend on a condition to the effect that the procedures that give a priori justificatory func-
tion no matter what our experience. So apriorism could be salvaged by dropping that condi-
tion. But it seems to me that the suggestion is vulnerable in two different ways. First, if
"a priori" procedures could be undermined by recalcitrant experiences, then it would ap-
pear that experience is doing some positive work when the procedures actually function to
justify our beliefs. Thus our "a priori" knowledge would be dependent on our experience.
To overcome this difficulty, it would seem necessary to argue for an asymmetry: recalcitrant
experience can play a negative role, but kindly experience does nothing positive. I do not
at present see how such an asymmetry could be articulated and defended. Second, there
seem to be many procedures in the natural sciences—the thought experiments of Galileo
and Einstein, for example—that also seem to fit the notion of "a priori knowledge" if one
abandons the condition that generates trouble for the apriorist. Hence, I do not think there
is much point in defending "apriorism" by dropping that condition.

8. For an account with much more detail, see chap. 10 of Nature of Mathematical
Knowledge. Other significant features of the episode are presented in Judith Grabiner's The
Origins of Cauchy's Rigorous Calculus (Cambridge, Mass.: MIT Press, 1981).

9. However, Mill was not as muddled as his critics (notably Frege) have often made him
out to be. For a more charitable assessment of his views, see Glenn Kessler's "Frege, Mill,
and the Foundations of Arithmetic," Journal of Philosophy 77 (1980): 65-79; and my paper
"Arithmetic for the Millian," Philosophical Studies 37 (1980): 215-36.

10. Two important points need to be noted here. First, because the chain is so long it
seems misleading to emphasize the empirical character of the foundation. Indeed, it seems
to me to be possible that the roots of primitive mathematical knowledge may lie so deep
in prehistory that our first mathematical knowledge may be coeval with our first preposi-
tional knowledge of any kind. Thus, as we envision the evolution of human thought (or
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of hominid thought, or of primate thought) from a state in which there is no prepositional
knowledge to a state in which some of our ancestors know some propositions, elements of
mathematical knowledge may emerge with the first elements of the system of representa-
tion. Of course, this is extremely speculative, but it should serve as a reminder that the main
thrust of the naturalistic approach to mathematical knowledge is to understand changes in
mathematical knowledge; although a naturalist contends that mathematical knowledge orig-
inated in some kind of responses to the environment, it is eminently reasonable to propose
that there are a number of possibilities and that this aspect of the naturalistic theory of
knowledge is (for the moment, and perhaps permanently) less accessible to elaboration. (I
am indebted to Thomas Kuhn for an illuminating discussion of this point.)

Second, it is not necessary for a naturalist to believe that all the transitions that have
occurred in the history of mathematics were rational. There may be temporary fallacies in
the arguments that mathematicians initially give to introduce new ideas, or the reasons they
present may be inadequate. Such lapses are of no account provided that good reasons are
later supplied, for, in such cases, we may see the change as an episode in which mathematical
practice develops for a while in an unjustified fashion before securing proper justification
that then prepares the way for later transitions. Hence it is possible for the chain of rational
interpractice transitions to diverge from the actual course of events. It seems to me likely
that this occurred in the case of the introduction of complex numbers, where the initial reasons
for extending the language of mathematics were not very strong. However, Euler's demonstra-
tions of the fruitfulness of the new language eventually provided compelling reasons for
the modification, and the "rational reconstruction" favored by the naturalistic epistemological
will depart from the chronology by treating the Eulerian transition as the pertinent link in
the justificatory chain and by ignoring the arguments originally proposed by Bombelli.

11. The same approach is also useful in understanding issues in the growth of scientific
knowledge. I have discussed two particularly important cases in "1953 and All That: A Tale
of Two Sciences," Philosophical Review 93 (1984): 335-73; and "Darwin's Achievement,"
in Reason and Rationality in Science, ed. N. Rescher (Washington, D.C.: University Press
of America, 1985), pp. 127-89.

12. Strictly speaking, it is not necessary to assume the rationality of the majority—or
even of any—of the major interpractice transitions that have actually occurred in the history
of mathematics. All that is needed is to suppose that unjustified leaps are later made good
through the provision of reasons that support the practices that emerged from the leaps.
As a matter of fact, I think that modifications of practice in the history of mathematics
are usually made for good reason, and hence I offer the formulation of the text. However,
because the point has so frequently been misunderstood, it seems worth reemphasizing one
conclusion of note 10: the naturalism I have proposed allows for a distinction between
discovery and justification, and it does not commit the genetic fallacy.

13. One part of this work is done in chap. 10 of Nature of Mathematical Knowledge.
14. For an illuminating account of how Newton's mathematical ideas became available

to his contemporaries, see R. S. Westfall's Never at Rest (Cambridge: Cambridge Universi-
ty Press, 1980).

15. Nature of Mathematical Knowledge, chap. 10.
16. The original notion of function is geometric. The functions of curves are such things

as subtangents, subnormals, radii of curvature, and so forth.
17. It is possible that mathematics should rationally proceed by adopting more than one,

so that there would be alternative set theories as there are alternative geometries.
18. Penelope Maddy has argued that a naturalistic account of mathematical knowledge

ought to enable us to resolve current disputes in the foundations of set theory (review of
Nature of Mathematical Knowledge, in Philosophy of Science 52 [1985]: 312-14). Here, I
think she expects too much. The initial task for naturalistic epistemology, the task under-
taken in Nature of Mathematical Knowledge, is to integrate mathematical knowledge into
the naturalistic framework. A subsequent project is to give a sufficiently detailed account
of scientific methodology to allow for the resolution of hard cases. The latter is the vast
problem of characterizing scientific rationality.
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19. Here I draw on an interpretation of Kant that I have developed in "Kant's Philosophy
of Science," in Self and Nature in Kant's Philosophy, ed. A. Wood (Ithaca, N.Y.: Cornell
University Press, 1984), pp. 185-215; and "Projecting the Order of Nature" (to appear in
Kant's Philosophy of Physical Science, ed. R. E. Butts). I should note that my interpreta-
tion is heretical in cutting away the apriorist strands in Kant's thought.

20. Of course, external transitions may create new branches of mathematics that are then
subject to internal interpractice transitions. If we credit popular anecdotes about Pascal and
Euler, then the fields of probability theory and topology may have originated in this way.

21. A large number of further distinctions may obviously be drawn here, for we may
take very different approaches to the question of how the maximization is to be done. This
is especially clear in cases where our ends admit of degrees, so that we may contrast max-
imizing the expected value with minimizing the risk of failing to obtain a certain value, and
so forth. I ignore such niceties for the purposes of present discussion.

22.1 think that it can often be shown in cases of this type that consideration of the prac-
tical interests of individuals reveals that the community optimum is more likely to result
if the individuals are motivated by nonepistemic factors. In other words, a sine qua non
for community epistemic rationality may be the abandonment by some individuals of in-
dividual epistemic rationality. However, it is possible that those individuals are overall ra-
tional. Something like this has been suggested by Kuhn (see, for example, his "Objectivity,
Value Judgment, and Theory Choice," in The Essential Tension [Chicago: University of
Chicago Press, 1977], pp. 320-39).

23. For a brief account, see chap. 10 of Nature of Mathematical Knowledge, and, for
more detail about the Leibnizians, Ivor Grattan-Guinness, The Development of the Foun-
dations of Analysis from Euler to Riemann (Cambridge, Mass.: MIT Press, 1970).

24. An especially clear example is furnished by the discussion among the Leibnizians
of the "result" that 1-1 + 1 - 1 + . . . = 1/2. See Leibniz's Mathematische Schriften,
ed. Gerhardt, 5 vols. (Halle, 1849-63), vol. 5, pp. 382ff., and vol. 4, p. 388. Euler was ex-
tremely dubious about the conclusions favored by Leibniz and Varignon. Nevertheless, his
own writings are full of inspired attempts to assign sums to divergent series that such later
writers as Abel would find appalling.

25. Important figures in the sequence are Benjamin Robins, Colin Maclaurin, and Simon
1'Huilier. The case of Maclaurin offers a clear contrast with the Continental tradition. When
Treatise on Fluxions is compared with any volume of Euler's works in analysis, one sees
two talented (though not equally talented mathematicians) proceeding by working on very
different problems. Maclaurin turns again and again to the question of finding an explana-
tion of the basic rules of the Newtonian calculus. Euler builds up a wealth of results about
integrals, series, maximization problems, and so forth, and is almost perfunctory about the
basic algorithms for differentiating and integrating.

26. In The Analyst (reprinted in The Works of George Berkeley, vol. 4, A. Luce and
T. Jessop, eds. [London: Nelson, 1950]). Berkeley's challenge provoked a number of
responses, some fairly inept (the essays of James Jurin, for example), others that helped
elucidate some important Newtonian ideas (the work of Maclaurian and, even more, the
papers of Benjamin Robins).

27. Plainly, this is simply part of a long and complicated story. The purpose of telling
it here is to show that a simplistic historiography is not forced on us by thinking about the
rationality of mathematical change. (I am grateful to Lorraine Daston for some penetrat-
ing remarks that raised for me the issue of whether my ascriptions of rationality to past
mathematicians commit me to Whig history. See her review of Nature of Mathematical
Knowledge, in Isis 75 [1984]: 717-21).

28. See Roger Cooke, The Mathematics of Sonya Kovaleskaya (New York: Springer,
1984), for some beautiful examples of the influence of physical problems on late-nineteenth-
century analysis.

29. See Penelope Maddy's "Perception and Mathematical Intuition," Philosophical
Review 89, (1980): 163-96. Related views have been elaborated by Michael Resnik in his
"Mathematics As a Science of Patterns: Ontology," Nous 15 (1981): 529-50.
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30. The geographical analogy stems from Frege; see Grundlagen, p. 108.
31. This is a point that has been emphasized by Karl Popper (see, for example, The Logic

of Scientific Discovery [London: Hutchinson, 1959], pp. 27-145); in the Popperian tradi-
tion, it leads to the notorious problems of constructing measures of verisimilitude (for re-
views, see I. Niiniluoto's "Scientific Progress," Syntheses [1980]: 427-62; and W. Newton-
Smith's The Rationality of Science [London: Routledge and Kegan Paul, 1981], chap. 2
and 8). I believe that the problem can be overcome if we break the spell of the idea that
the search for the significant is always the search for the general, but this is a long story
for another occasion.

32. Thus, for example, the account offered by Maddy in her "Perception and Mathematical
Intuition" seems at best to reveal how we are able to refer and to know about concrete sets.
It is not at all clear how this knowledge is supposed to provide us with a basis for reference
to and knowledge of abstract objects, where we are no longer in causal interaction with the
supposed objects. So even if we grant that our causal relation to an object provides us with
a basis for knowledge about the set whose sole member is that object, it is hard to see how
we obtain a similar basis when the sets under discussion do not have concrete objects as
members.

33. Nature of Mathematical Knowledge, chap. 6. This chapter has often been
misunderstood, and I have been taken to substitute one kind of abstract object (ideal agents)
for another (sets). But, as I took some pains to emphasize, there are no more any ideal agents
than there are such things as ideal gases. In both ideal gas theory and in mathematics, we
tell stories—stories designed to highlight salient features of a messy reality. I hope that my
present stress on storytelling will forestall any further misconceptions on this point.

34. See Nature of Mathematical Knowledge, pp. 128-29. It is crucial to appreciate that
some forms of human constructive activity consist in achieving representations of objects—as
when, paradigmatically, we cluster objects in thought. My claim is that the use of various
kinds of mathematical notation—designed to describe the properties of various con-
structions—makes possible new constructive activity. Thus we have constructive operations
that are iterated, sometimes to quite dizzying complexity, through the use of notation. Math-
ematics does not describe the notation but does provide (idealized) descriptions of the con-
structive acts that we can carry out with the help of the notation.

35. Mathematicians sometimes toy with the idea that mathematics is art—or is like art.
One consequence of my naturalistic epistemology for mathematics is that it enables us to
see what this idea might amount to and how it might apply to various parts of mathematics.

36. Since quaternions are now coming back into fashion, it may appear that the example
does not support my claims. However, what is now being done with quaternions is quite
distinct from what Hamilton did. For Hamilton, quaternions were to be treated in just the
ways that real and complex numbers had previously been treated. So, to cite only one exam-
ple, Hamilton set himself the task of defining the logarithm of a quaternion. So far as I
know, that perspective is a long way from the context of present discussion.

37. This is a common response from mathematicians who have read Nature of
Mathematical Knowledge. As I shall argue below in the text, the complaint seems to me
a very important one, and its justice can only be resolved by combining sophisticated under-
standing of contemporary mathematics with sophisticated understanding of the philosophi-
cal and historical issues. Here, I think, collaboration is clearly required

38. See H. M. Edwards, "The Genesis of Ideal Theory," Archive for the History of
the Exact Sciences 23 (1980): 321-78.

39. For Dedekind's argument, see his essay Sur la theorie des nombres entiers algebriques,
in GesammelteMathematische Werke, vol. 3, ed. E. Noether and O. Ore (Braunschweigh:
Vieweg, 1932). The crucial passage occurs on pp. 268-69.

40. In his presentation in Minneapolis, Garrett Birkhoff stressed the intertwining of threads
in "the tapestry of mathematics." It seems to me that there are numerous occasions in the
history of mathematics in which one area of mathematical practice is modified in response
to the state of others, and that concentration on the development of a mathematical field
can blind one to the ways in which fields emerge, modify one another, and are fused. For
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some stimulating attempts to reveal these processes in concrete cases, see Emily Grosholz's
papers "Descartes' Unification of Algebra and Geometry," in Descartes, Mathematics and
Physics, ed. S. Gaukroger (Hassocks: Harvester Press, 1980); and "The Unification of Logic
and Topology," British Journal for the Philosophy of Science 36 (1985): 147-57.

41. See R. Thorn, Structural Stability and Morphogenesis, trans. D. Fowler (New York:
Benjamin, 1975); J. F. Traub and H. Wozniakowksi, Information and Computation, "Ad-
vances in Computers 23 (1984): 23-92; and M. Feigenbaum, "Universal Behavior in Nonlinear
Systems," Los Alamos Science (Summer 1980), pp. 3-27.
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Judith V Grabiner

Partisans and Critics of a New Science:

The Case of Artificial Intelligence and

Some Historical Parallels

Everywhere in our society—at the supermarket, in the stock market,
in mathematics courses—we see the presence of the computer. We are told
that we are entering a new age, that of the Computer Revolution, and
that the field known as Artificial Intelligence is at the forefront of that
revolution. Its practitioners have proclaimed that they will solve the age-
old problems of the nature of human thought and of using technology
to build a peaceful and prosperous world. These claims have provoked
considerable controversy.

The field known as AI is, of course, vast, but the subject matters that
have fueled the most debate are these: computer systems that exhibit
behaviors that, if exhibited by people, should be called "intelligent"; and
"expert" computer systems that, though not exhibiting a broad range of
such behaviors, can, because of speed and size of memory and built-in
knowledge, outperform humans at specific tasks. The chief implications
of research in these areas, according to its advocates, and the claims most
viewed with alarm by the research's critics are that AI has a new way of
understanding the nature of human beings and their place in the universe
and that the "technology" of task-oriented AI—sometimes called expert
systems, sometimes knowledge engineering—will be able to solve the
outstanding problems facing man and society.

Critics of AI enthusiasts perceive these claims as wrong: as based, first,
on assumptions about the nature of man and society that are inadequate
at best and dangerously misleading at worst; and, second, as overly op-
timistic about the feasibility of finding technical solutions to human prob-
lems. In the first case, the critics say, advocates of AI reify a mechanical
model of man and of society, one that is not only insufficient but that
encourages the treatment of individuals mechanically and as parts of a
larger machine. In the second case, they propose technical solutions to
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what may not be technical problems, and they underestimate the costs
of technical innovations while overestimating the benefits.

Upon listening to a debate like this, a historian might well ask whether
the claims of the partisans of the science—and of their critics—are solely
reactions to the current and probable future state of their science, or
whether they are drawing instead on the rhetoric and ideas of other debates
about somewhat different topics. If the latter, how did those earlier
debates—on which more of the returns are in—actually come out?

In this paper, I hope to provide some historical perspective on the im-
plications of Artificial Intelligence by describing a pattern followed by
similar debates about the implications of scientific breakthroughs earlier
in history. I will present several examples to show the frequency with which
this pattern has been followed. But the purpose of giving these examples
is not only to demonstrate that this pattern has occurred in the past. I
want also to suggest that causes similar to those that operated in the past
are working now; that some of the content of past debates has helped shape
the current one; and, finally, that recognizing the pattern will help clarify
what is really at issue now. In short, I hope to illuminate the present debate
over AI by showing that it shares many characteristics with past debates
between partisans of new scientific approaches and critics of those
approaches.

The pattern followed is roughly this: (1) The new methods solve some
outstanding set of problems despaired over in the past, and these successes
are impressive to outsiders and inspiring to those who have achieved them.
(I call this first stage technical success.) (2) The practitioners extrapolate
their successes to other fields (they have found the language of the book
of nature, or the secret of life); at the very least, they argue that those
who use their methods in other areas will succeed by these new means where
earlier investigators have failed. (I call this second stage extrapolation.)
(3) In reaction, antiscientific currents that always surround the sciences—
currents hostile even to successes of the delimited kind first mentioned—
are intensified by the extreme claims made in the second stage. (4) Finally,
more serious critics enter the fray—critics often from within the scientific
community itself, who perceive unfounded enthusiastic claims, claims
whose consequences—with no apparent scientific warrant—threaten
cherished values.

There are three other striking phenomena. First, the promises of the
first stage—successes in the original area and its nearby neighbors—are
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in fact fulfilled, but the claims of the second stage largely are not; and
there are costs even of the first. Second, the mature science growing out
of the initial success consolidates the earlier gains and continues. Third,
the enthusiasm and inspiration of the second stage seem valuable in con-
solidating the gains of the first stage of initial success, even though their
wide-ranging predictions are not fulfilled.

The debates also make reference to historical analogies taken from
similar debates in the past, and in so doing, they often blur the distinc-
tion between the stage of initial success and the second, more enthusiastic
stage. Critics opposing the second-stage extrapolation are often accused
of opposing the first, and are called Luddites or persecutors of Galileo.
Keeping the distinctions between the four stages clear, even though there
may be some blurring near the boundaries, would improve the current
debates over the support that society should give to fifth-generation AI
research, the human tasks that should be entrusted to computers, and the
information that artificial intelligence might give us about the nature of
man. It is important that these debates not be carried out with arguments
like "They laughed at Fulton" on the one hand and "AI is the new al-
chemy" on the other. Of course, history can help, but one must first un-
derstand that history.

To support these general points, I shall outline a set of examples from
the history of science so that we can then describe recent debates over AI
with this historical perspective. I will in particular discuss the methodo-
logical revolution in seventeenth-century science; the eighteenth-century
"spirit of systems" and the visions of society stemming from it; the In-
dustrial Revolution; and Darwinian evolution and the extrapolations—
social Darwinism, racism, atheistic materialism—from it. Finally, I will
take up the key ideas at the early stages of AI in the work of Alan Tur-
ing; the claims of AI pioneers like Herbert Simon, Alan Newell, John
McCarthy, and Marvin Minsky, and some of their successors; some reac-
tions to the overly enthusiastic claims; and, finally, the judicious, histor-
ically informed criticism of AI by computer scientist Joseph Weizenbaum.

The first example is to be found in the period of the scientific
revolution—in particular, the methodological revolution of seventeenth-
century science. Let us begin by measuring the first stage: its successes
in its own sphere. As recently as the sixteenth century, Michel de Mon-
taigne could speak of the futility of learning and could use the Coper-
nican system and the fact that it had ancient predecessors as an example



332 Judith V, Grabiner

of the way ideas about nature came and went as did other fashions (Defense
of Raymond Sebond, 86-87). According to Montaigne, the sciences had
established no real knowledge. But to Francis Bacon, this lack of past
success called not for despair but for a new approach: "Things which have
never yet been done can be done [only] by methods which have never yet
been tried" (Novum Organum, aphorism vi). And, indeed, the mechanical
philosophy did things that had never been done. Using the Cartesian
method of "analysis"—studying macroscopic phenomena by resolving
them into their component parts of bits of matter in motion—men like
Pascal, Torricelli, and Boyle were able to explain, by mechanical means,
a whole range of phenomena previously requiring notions like the abhor-
rence of a vacuum (Westfall 1971, 44-49). William Harvey, treating the
heart as if it were a pump and the blood as though it were an ordinary
fluid, demonstrated the circulation of the blood. Descartes saw Harvey's
work—though Harvey himself was far from being a mechanist—as a
triumph of the mechanical and analytic methods (Westfall 1971, 93;
Discourse on Method, 47-55). Cartesians saw the method as opening all
of nature to being reduced to Descartes's principles, with Descartes himself
believing that he had exhibited the mechanism of the solar system. Some
of his followers took the mechanical philosophy even further: LaMettrie
in 1747 spoke of man as a machine, and Hobbes (unlike Descartes) saw
even thought as a purely mechanical process (Leviathan', in Burtt 1939,
143-44).

But the outstanding predictive success of the mechanical philosophy
when applied to the vacuum or (with Borrelli) to the mechanical advan-
tage of muscles did not extend to psychology, or even to all of physics.
Descartes's prediction that a science of nature on his principles was almost
with his reach (Discourse on Method, 68) was an example of extrapola-
tion beyond the domain of success. So were the views that man was whol-
ly mechanical, and so were the views that the Cartesian principles suf-
ficed to explain the phenomena of the solar system. As is well known,
reactions even against the initial stage of predictive successes of science
occurred in the seventeenth century, from the fabled few who refused to
look through Galileo's telescope to the poets who grieved that "new
philosophy calls all in doubt" (Donne, "Anatomy of the World"; quoted
by Koyre 1957, 29). But there were other opponents of the new philosophy
who appreciated what the scientists had accomplished but who saw no
reason to believe that it extended as far as the scientists claimed. Blaise
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Pascal made clear that, though scientific reasoning had its place, there
was much in the situation of man in the world, and man's understanding
of himself, that was not amenable to reason. Pascal's esprit de finesse
recognized intuition and tacit ways of knowing as just as valid in their
sphere as mathematical reasoning is in its proper sphere (Pensees 1).

As for Newton and the Newtonians, they found the Cartesian insistence
that causes must be mechanical as the same sort of excess. Perhaps the
cause of gravity was not known; this did not mean that it was reducible
to mechanism, any more than the fact that a clock could be run by a spring
meant that a given clock was not actually moved by a weight. (For this
Turing test for pendulum clocks, see Roger Cotes's Preface to Newton's
Principia [pp. xxvii-xxviii].) Besides, as Newton had shown, Cartesian
mechanism had not been able to account for all the phenomena of the
solar system (notably Kepler's laws), whereas gravity seemed really to exist,
though its cause was unknown, and gravity could explain the motions of
the heavenly bodies, the fall of terrestrial objects, and the interaction be-
tween them in the movement of the tides (Newton's Principia, 547). Thus
the methodological imperialism of the Cartesians had not in fact produced
the promised understanding of the universe, much less of man. That critics
like Pascal and the Newtonians waged part of their battle on behalf of
their views of religion does not invalidate their conclusions about the limit-
ed scope of the successes of the mechanical philosophy.

My second example is found in the "spirit of systems" characteristic
of such thinkers of the Enlightenment as Voltaire, Condorcet, Comte, and
St.-Simon. Buoyed up by the successful application of reason in the realm
of nature, and by the analysis of macroscopic phenomena in terms of sim-
ple statements about the elements, they hoped to achieve in the same way
a science of society capable of remaking the world in a rational way. As
one opponent, A. Thibaudet, put it, they "ventured to create a religion
as one learns at the Ecole [polytechnique] to build a bridge or a road"
(Hayek 1955, 113). They had, however, left out of their calculations the
passions unleashed by, for instance, the French Revolution, and the
tenacious holding power of old institutions and ideas and the powerful
people who wanted those preserved. In particular, Voltaire's faith in the
power of reasonable arguments to persuade anybody who heard them,
based on the success of Newtonian science (Voltaire 1764, article "Sect"),
was not supported by events. The institutions of the past, as Burke pointed
out, and the forces preserving them, as Marx pointed out, had too much
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staying power. The philosophes, to be sure, left a lasting legacy of new
political and social institutions, but things did not work out as they had
predicted and hoped. Representing the scientists of our fourth stage,
A.-L. Cauchy in 1821 said to his colleagues: "Let us enthusiastically cul-
tivate the mathematical sciences, without trying to extend them beyond
their domain; and let us not imagine that one can attack history with for-
mulas, nor give as sanctions to morality theorems of algebra or of integral
calculus" (Cours d'analyse, vii).

Another example is to be found in the Industrial Revolution. Indeed,
the parallel between the Industrial Revolution and the "Information
Revolution" we are now supposedly experiencing is made repeatedly in
the AI community. The Industrial Revolution in Britain, whose history
has been thoroughly written (see, e.g., Deane 1979), was billed as arising
from science (though there was more rationalism of the Cartesian variety
and analysis of systems using the concept of "division of labor" than much
new science, at least before the 1850s). Nineteenth-century partisans of
the Industrial Revolution, drawing on Baconian prophecies of the bene-
volence of applied science and science's ability to improve the lot of all
mankind, theorized far beyond their data. Industrialization was certainly
bringing about new jobs and providing new products and services, which
on balance raised the average standard of living (Deane 1979, 272-95).
But it also altered people's lives, took employment from some workers,
and produced a new type of job and a new relation between employer
and employee. There was incredible urban filth as people were crowded
together without adequate water and sewers (Deane 1979, 260-61), and
the worker worked at the rhythm of the factory, which led to feelings of
alienation. Charles Dickens reflects these widespread feelings in his novel
Hard Times, when the worker Stephen Blackpool, whose trade union ex-
pelled him because he wanted to go his own way and who later died after
falling into an old mineshaft that it had not been cost-effective to make
safe, expressed his view of the inhumanity of the system: It is all a "mud-
dle." And, Adam Smith to the contrary, it will not fix itself: "Nor yet
lettin alone will never do ' t . . . . Rating 'em [workers] as so much Power,
and reg'latin 'em as if they was figures in a soom [sum], or machines,
wi'out loves and likens, wi'out memories and inclinations, wi'out souls
to weary and souls to hope.. . this will never do 't" (pp. 115-16). The
enthusiasts of the Industrial Revolution consistently underestimated these
costs; rather than working to minimize the effect of the costs, they often
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justified them as part of the workings of the system of efficient organiza-
tion of labor, whose ultimate tendency, they thought, was better (at least
statistically) for everyone.

These tendencies continued into the twentieth century, notably with the
work of F. W. Taylor on what is called "scientific management." The
organization of production into separate tasks, each one optimized, is the
key to efficiency, said Taylor in 1911: "In the past the man has been first;
in the future the system must be first" (Pursell 1969, 246). Listen to Taylor
instructing a workman to listen to the scientific manager: "A high-priced
man has to do exactly as he's told from morning till night.... You will
do exactly as this man tells you. . . . When he tells you to pick up a [piece
of pig iron] and walk, you pick it up and you walk, and when he tells
you to sit down and rest, you sit down. . . . And what's more, no back
talk" (Pursell 1969, 246). This is not Dickensian satire.

Even enemies of Taylorism often conceded that, like it or not, it was
"the most efficient means of production" (Keir 1917; in Pursell 1969, 255).
However, the neglect of the human costs of doing a mechanized, though
optimized, set of tasks surely is one of the reasons workers feel alienated,
and many labor historians hold this feeling to be at the root of inefficien-
cies ranging from goldbricking to labor strife. The famous Hawthorne
experiments of the late 1920s, in fact, showed that workers worked better
when management paid more attention to them (Noble 1977, 319). This
research gave rise to a set of new disciplines, like industrial psychology,
and showed that Taylorism, even from the standpoint of maximizing
worker efficiency, was inadequate. Similarly, it has recently been suggested
that cooperative models, as used in Japan, are more efficient than the
manufacturer-initiated, top-down organization characteristic of nineteenth-
century European industry. One more point needs to be made to underline
the applicability of our pattern to this example: it is true that some critics
of industrialism wanted to reverse the whole process, but others, like
George Orwell—who certainly had no love for mechanization (Orwell 1937,
chap. 12, esp. p 160)—stressed that technological advances had now made
it at least possible to raise everyone's standard of living "if we chose to
set our minds to it" (Orwell 1943, 213) and criticized industrialism prin-
cipally for its failure to provide the predicted benefits to all.

My last example is Darwinism. Charles Darwin and Alfred Russel Wal-
lace proposed the idea of evolution by natural selection to explain the
origin of biological species, their geographic and fossil distribution, and
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their adaptation to the conditions of life. Some of their followers used
the removal of God from the creation of species to advocate a materialistic
biology from which all nonmechanical causes were to be banished. T. H.
Huxley went so far as to predict that, just as there was a mechanical
equivalent of heat, so we would find a "mechanical equivalent of con-
sciousness" (Huxley 1870, 191). Others used evolution to argue that the
survivors in economic competition were the "fittest," or to justify the
racial superiority of Caucasians, which, after Darwin, could no longer
be scientifically justified by the special creation of the white race (Stanton
1960; Hofstadter 1955). The religious attacks on evolution were strongly
reinforced because of these extensions—with ominous consequences—of
the doctrine, as the examples of the anti-slavery Bishop Wilberforce and
the populist and anti-imperialist William Jennings Bryan show. The eu-
genics movement in the United States provides another example of the
unwarranted extension of evolutionary ideas. During the debate in Con-
gress over immigration restriction in 1924, the eugenicists made the selec-
tive restriction against southern and eastern European immigration "seem
like a biological imperative" (Ludmerer 1972, 113).

Critical responses from within the scientific community to these ex-
trapolations of evolution ultimately were to prevail. Thus Asa Gray in
the nineteenth century (Dupree 1959, 375-77) showed that an evolutionist
could be a Christian and not a reductionist, saying that what "science
removes from the supernatural to the natural [is not therefore] lost to
theism." Similarly, Kirtley Mather in the twentieth century, testifying at
the Scopes trial as a geologist and a prominent Baptist layman, showed
by example as well as precept that one could be a professing Christian
as well as an evolutionist (Ginger 1969). Again, the geneticist Herbert
Spencer Jennings (the only scientist to testify against immigration restric-
tion before Congress in 1924) and the anthropologist Arthur Kroeber
argued in the 1920s that the eugenicists' arguments went far beyond
anything justified by genetic science (Ludmerer 1972, 113; Cravens 1978,
105). By the 1930s, most American geneticists had repudiated eugenics,
attributing to it, in the words of geneticist Edward M. East, "too great
a tendency to push ahead of the facts" (Ludmerer 1972, 123).

The examples I have cited could be multiplied many times, from the
Pythagorean idea that all of nature could be reduced to simple mathematics
to the Skinnerian idea of learning by reinforcement and the resulting
predictions of the imminent successful introduction of teaching machines.
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(See also Lorraine Daston's paper on the probability of judgments in the
present volume.) The specific examples I have chosen to discuss are chosen
not only for their importance, but because they have a direct bearing on
the current debates over AI. Not only is the structure of the debates similar,
but the same themes—rationality and mechanism as a complete picture
of reality, technological development as the solution to social prob-
lems—have been revived and redeveloped in the present debates. Let us
now look at the recent history of Artificial Intelligence: at some successes,
at some claims made, and at the types of critical responses that have been
produced.

Borrowing the idea of a completely mechanized thought process with
no room for free will from the mechanical world views of the seventeenth
and eighteenth centuries, and drawing also on logic and on his own for-
mal analysis of computability, Alan Turing saw no reason to conclude
that a machine could not think, if by think one meant to imitate a think-
ing human being to the point where the machine could fool a human con-
versational partner into believing it to be another human (the Turing test;
Turing 1956). The mathematical abstraction he had created, the Turing
machine, enables one to prove many results about what can and cannot
be computed.

Given the initial state of the machine and the input signals, it is always
possible to predict all future states. This is reminiscent of Laplace's
view that from the complete state of the universe at one moment of
time.. . it should be possible to predict all future states. The predic-
tion we are considering is, however, rather nearer to practicability than
that considered by Laplace. (Turing 1956, 2105)

Turing suggested that a computer with 109 memory locations would in
about 1990 have a 70 percent chance of passing the Turing test (2107) and
thus a 70 percent chance of being able to think. Responding to the pos-
sible objection that thinking requires a soul, Turing said that "we should
not be irreverently [usurping] God's power of creating souls, any more
than we are in the procreation of children; rather we are, in either case,
instruments of His will providing mansions for the souls that he creates"
(2108). But this is all beside the point: "I am not very impressed with
theological arguments whatever they may be used to support," he says,
dismissing them all with a reference to the case of Galileo.

The mind, then, seems for Turing to be a Turing machine. The adult
mind might be hard to imitate, Turing continues, since the processes that
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have brought it to the "state that it is in" include "the initial state of
the mind, say at birth," education, and other experiences. Education and
experience are not provided in the most efficient possible manner; this
could be done more rationally if we started with the initial state:
"Presumably the child-brain [has] so little mechanism that something like
it can be easily programmed" (2119).

Turing's views on computability and thought as both being formally
describable, rule-based processes appeared to some philosophers, notably
J. R. Lucas, to be similar to the old mechanistic ideas, though in a new
dress. Even if these new mechanists do not assert that minds come out
of matter, said Lucas, they do claim that minds "operate according to
'mechanical principles'"—that is, think that the whole is just the sum of
the operations of the separate parts and that the operation of each part
is determined by previous states or by random choices between states
(Lucas 1961, 126). I have discussed this controversy elsewhere (Grabiner
1984, 1986). For our present purposes, the key point is that Lucas's op-
position to Turing's ideas came from Lucas's desire to refute both "tradi-
tional materialism and its modern mechanist version" (Lucas 1968, 156),
a "mechanism" that is not implied by, but extrapolated from, Turing's
research in computability theory.

Beginning in 1956 with the Dartmouth conference that launched AI
as an organized discipline in the United States many more arguments
characteristic of the "extrapolation" stage began to appear. The original
proposal to the Rockefeller Foundation for the conference said: "The study
is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely des-
cribed that a machine can be made to simulate it" (McCorduck 1979, 93).
The key ideas used to "precisely describe" intelligence are that the human
mind is a system, either like a machine or like Laplace's world-system,
hierarchically organized and programmed by its environment; thought
takes place by the rule-generated manipulation of formal symbols. The
mind's organization, like the Tables of Discovery of Francis Bacon (Nov-
um Organum, aphorism cii), provides for empty slots into which pieces
of information from the world (disentangled from their context) can be
placed. For instance, John McCarthy: "One of the basic entities in our
theory is the situation. Intuitively, a situation is the complete state of af-
fairs at some instant in time. The laws of motion of a system determine
all future situations from a given situation" (McCorduck 1979, 213).
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Similarly, Simon and Newell state, "The free behavior of a reasonably
intelligent human can be understood as the product of a complex but finite
and determinate set of laws" (quoted by Dreyfus 1979, 170). And, in an
often-quoted passage: "A man, viewed as a behaving system, is quite sim-
ple. The apparent complexity of his behavior over time is largely a reflec-
tion of the complexity of the environment in which he finds himself.. . .
I myself believe that the hypothesis holds even for the whole man" (Simon
1981, 65; my emphasis).

We should acknowledge the initial success of early AI programs in im-
itating some aspects of human thought: solving mathematical and logical
problems; "memorizing" nonsense syllables in ways similar to those
psychologists find in human subjects; conducting dialogues about limited
worlds; answering questions about brief, formula-based stories; and play-
ing checkers and chess. All this was accompanied by enthusiastic predic-
tions. Herbert Simon in 1960 proclaimed that in ten years a computer
would be world chess champion, discover and prove an important new
mathematical theorem, and translate natural languages, and also that
most psychological theories would be embodied in computer models (quot-
ed by Dreyfus 1979, 81-82). Marvin Minsky proposed that computers
would write good music and draw significant pictures as soon as aesthetic
analysts do something about "the traditionally disgraceful state of analytic
criticism in the arts" (Minsky 1968, 12; quoted by Weizenbaum 1976, 157).
In words deliberately (and only too successfully) provocative, John McCar-
thy asked, "What do judges know that we cannot eventually tell a com-
puter?" (McCorduck 1979, 324), and Minsky called the brain "a meat
machine" (McCorduck 1979, 170).

Let us now turn to some of the prominent critics. An attack was made
on the entire AI program by Hubert Dreyfus, who claimed that the "suc-
cesses" were trivial and that predictions about uses in the future would
never be fulfilled. His weapons were chiefly Wittgensteinian language
theory and a phenomenological view of the world. John Searle attacked
AI enthusiasts on other grounds: he argued that even the successful pass-
ing of the Turing test by a formal system—that is, a formal system capa-
ble of making people believe it was thinking—would not mean that the
machine really understood anything. He asks us to imagine a human be-
ing "simulating" natural-language understanding by simply matching sym-
bols according to a book of rules, without ever knowing what the sym-
bols mean. The person would still not understand. This rejection of
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behavioral equivalence on Searle's part is not an attack on the actual ac-
complishments of AI research, but on the interpretation the researchers
place on that work (Searle 1980; Grabiner 1984, 474-76).

The work of MIT computer scientist Joseph Weizenbaum itself pro-
duced a capsule version of our pattern, Weizenbaum in 1966 had published
a paper on a program called ELIZA that illustrates its ability to match
patterns in English sentences by mimicking the "mirroring of statements"
of a therapist of the school of Carl Rogers (Weizenbaum 1966). Others,
not Weizenbaum, did the enthusiastic extrapolation of his work: that it
had passed the Turing test, that it meant that automated psychiatry was
just around the corner (Grabiner 1984, 1986; Weizenbaum 1976, 180).
Weizenbaum was appalled. He has since devoted much of his professional
life to warning against extrapolating what he calls the "computer meta-
phor" to areas of human life to which, he argued, it does not pertain.
Objecting to the contention that the mind is just a computer operating
on formal symbols, Weizenbaum argued instead that humans use language
always in context—notably "in a context of experiences like love and trust
that machines cannot share" (Weizenbaum 1976, 208-9). And Weizen-
baum, being himself involved in the field, made a criticism of the basis
for AI's extrapolations that the philosophers cited earlier had been unable
to make: the most successful AI programs, he said, lacked strong theory-
based models of human intelligence, being instead largely collections of
ad hoc programming tricks (Weizenbaum 1976, 232); therefore, such pro-
grams, however well they seemed to imitate certain human behaviors, did
not in any sense "explain" the nature of human thought. I will return
to Weizenbaum's critique of AI later on.

As AI has developed, what some people have characterized as a para-
digm change has come about (Duda and Shortliffe 1983). There has, in
particular, been a realization that building programs that can learn the way
a child does and that can proceed with common sense in everyday situa-
tions is very hard indeed. However, programs embodying human exper-
tise in specific areas, with the knowledge organized according to Al-based
theories of knowledge representation and using the AI techniques of heur-
istic search, have been developed that perform impressively. DENDRAL
in chemical structure, MYCIN in diagnosing bacterial infections, and
PROSPECTOR in mineral exploration are well-known examples (Duda
and Shortliffe 1983; Hayes-Roth et al. 1983; Feigenbaum and McCorduck
1983). These examples of applied AI, which are called expert systems or
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knowledge engineering, somewhat resemble the way the manufacturers
of the Industrial Revolution applied some physical principles and the idea
of systems; but the amount of science involved here is considerably great-
er. Many people working in expert systems have drawn back from the
claims made earlier for AI and have conceded that whether computers
can imitate the full range of human intelligent behavior is "unknown and
perhaps... forever unknowable" (Albus 1981, 299; cf. Hayes-Roth et al.
1983, 3).

But this modesty of theoretical goals has not precluded another set of
enthusiastic predictions, this time reminding us of the prophets of the In-
dustrial Revolution: that expert systems provide an "unprecedented op-
portunity" (the subtitle of the recent book Intelligent Systems (1983) by
J. E. Hayes and Donald Michie) to solve the world's problems. Thus in-
telligent computers will revolutionize education (Papert 1980; Schanck
1984), will solve world problems like terrorism as they read and analyze
news stories (Schanck 1984, 220). Edward Feigenbaum and Pamela
McCorduck say that, like Adam Smith, they "also write inspired by a
machine . . . . An intelligent machine [is] the engine that will produce the
new wealth of nations" (1983, 17). The Japanese futurist Yoneji Masuda
predicts that technical advances in computing mean that "as the 21st cen-
tury approaches... the possibilities of a universally opulent society being
realized have appeared in the sense that Smith envisioned i t . . . a society
that actually moves toward a universal society of plenty" (Masuda 1985,
625). Thus the claims about what computer technology will make possi-
ble are expanded past the actual capabilities of today's computers, and
the nontechnological difficulties that will certainly arise are minimized.
In an odd use of history, potential ill effects are dealt with by detaching
them from computers. Thus it is claimed that there has already been con-
siderable unemployment and dehumanization without computers (e.g.,
Schanck 1984, 235), so there is no reason to fear that computers will make
things worse, and they might help. This follows the same pattern that we
saw in the Industrial Revolution, in the Enlightenment's desire to build
a commonwealth based on reason, and in Francis Bacon's view that the
fruits of science could only help, not hurt mankind (Novum Organum
aphorism cxxix). It is hard, after Auschwitz and Hiroshima, to accept this
kind of optimism in exactly this form; there are, at the very least, costs
that will need to be considered in assessing the proposed benefits.

The sociologist Sherry Turkic has characterized the "extrapolation"
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stage of AI research in words that equally describe the mechanical philo-
sophers of the seventeenth century, the social theorists of the age of the
French Revolution and of Taylorism, and the apostles of social Darwinism
and eugenics—in terms of the concept of a colonizing discipline. "Being
in a colonizing discipline," she writes, "first demands and then encourages
an attitude [of] intellectual hubr is . . . , intellectual principles . . . univer-
sal enough to give you the feeling that you have something to say about
everything . . . [and] confidence that your knowledge makes the 'traditional
wisdom' unworthy of serious consideration." This "so fundamentally
changes the rules of every game in the social and behavioral sciences that
everything that came before is relegated to a period of intellectual imma-
turity." And "you have to feel that nothing is beyond your intellectual
reach if you are smart enough" (Turkic 1984, 251-52; cf. Descartes's
Discourse on Method, 68).

Joseph Weizenbaum, as his continuing critique of AI and expert systems
shows, is aware of the historical pattern I have been discussing. The in-
troduction of computers into our society, says Weizenbaum, "merely rein-
forced and amplified those antecedent pressures that have driven man to
an ever more highly rationalistic view of his society and an ever more
mechanistic image of himself" (1976, 11). And this matters because of
the way these views lead people to treat their fellows and to view themselves
as programmed and thus not responsible for their actions (1976, chap. 10).

Responding to the methodological universalism of AI, Weizenbaum
argues that what AI has done so far "is build a machine that performs
certain specific tasks, just as, say, 17th-century artisans built machines
that kept time," fired cannon balls, etc. They would have been mistaken,
he continues, had they concluded that "because their machines worked,
they had validated the idea that the laws of the universe are formalizable"
in the same terms. But AI people, he concludes, advance "exactly these
mistaken ideas about the machines [they have] succeeded in building"
(1976, 196).

Weizenbaum would doubtless agree with Pascal with the esprit geome-
trique has its proper realm: "Nothing is wrong with viewing man as an
information processor," writes Weizenbaum, "providing, however, that
we never act as though any single perspective can comprehend the whole
man" (1976, 140). "Physicists, mathematicians, and philosophers" all ac-
cept that "there are limits to how far the world can be comprehended"
in what he calls Leibnizian terms, where knowing the initial conditions
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lets us fully predict the future (1976, 221). But, as Aldous Huxley warned,
"The popular Weltanschauung of our times contains a large element of
what may be called 'nothing-but' thinking. Human beings . . . are nothing
but bodies, animals, even machines.... Mental happenings are nothing
but epiphenomena" (quoted by Weizenbaum 1976, 129). Max Horkheimer
sums this all up to Weizenbaum's satisfaction: too many people believe
that there is just one authority, namely science, and, furthermore, a science
conceived merely as "the classification of facts and the calculation of prob-
abilities" (Horkheimer 1947; quoted by Weizenbaum 1976, 252). Weizen-
baum summarizes his own position: "The computer is a powerful new
metaphor for helping us to understand many aspects of the world, but . . . it
enslaves the mind that has no other metaphors and few other resources
to call on." The computer scientist "must teach the limitations of his tools
as well as their power" (1976, 277).

Before ending our discussion of Weizenbaum's ideas, let me remind
the reader that there is nothing inevitable about the timing in the pattern
I have described. In particular, the fourth-stage critics may be rare, and
they do not necessarily win. As H. S. Jennings was unsuccessful in his
lone opposition to immigration restriction in 1924, so Weizenbaum now
is almost alone in the computer science community.

What, then, are we to conclude from the pattern common to all these
examples from the seventeenth-century mechanists to AI? It is possible,
as Max Weber has said, that scientific research must be a vocation and
that the researcher must be passionately committed to the belief that the
outcome of his next piece of research is the most important thing in the
world. But as the rest of us try to understand the implications of artificial
intelligence for our view of ourselves and for the future of our complex
world, we should remember that, though the sciences have over time greatly
enlarged the domain in which they can successfully predict and explain
phenomena, the enthusiastic predictions about extending methods suc-
cessful in one area to solve society's problems and to understand the world
have generally not come to pass.

References
Albus, James. 1981. Brains, Behavior, and Robotics. Peterborough, N.H.: Byte Books.
Bacon, Francis. 1620. Novum Organum. Reprinted in (Burtt 1939).
Burtt, E., ed. 1939. The English Philosophers from Bacon to Mill. New York: Modern

Library.
Cauchy, A.-L. 1821. Cours d'analyse de I'ecole roy ale poly technique. Part 1. Analyse al-

gebrique. In Oeuvres completes. Paris: Gauthier-Villars, ser. 2, vol. 3, 1897.



344 Judith V. Grabiner

Cravens, H. 1978. The Triumph of Evolution. Philadelphia: University of Pennsylvania Press.
Deane, Phyllis. 1979. The First Industrial Revolution, 2d ed. Cambridge: Cambridge Univer-

sity Press.
Descartes, Rene. [1637] 1956. A Discourse on Method. Reprinted (with page numbers from

Adam-Tannery edition) New York: Bobbs-Merrill.
Dickens, Charles. [1854] 1966. Hard Times. Reprinted New York: W. W. Norton.
Dreyfus, H. 1979. What Computers Can't Do: A Critique of Artificial Reason, 2d ed. New

York: Harper and Row.
Duda, R., and Shortliffe, E. 1983. Expert Systems Research. Science 220: 261-68.
Dupree, A. Hunter. 1959. Asa Gray. New York: Atheneum.
Feigenbaum, E., and McCorduck, P. 1983. The Fifth Generation: Artificial Intelligence and

Japan's Computer Challenge to the World. Reading, Mass.: Addison-Wesley.
Forester, Tom, ed. 1985. The Information Technology Revolution. Cambridge, Mass.: MIT

Press.
Ginger, Ray. 1969. Six Days or Forever. New York: New American Library.
Grabiner, Judith. 1984. Artificial Intelligence: Debates about Its Use and Abuse. Historia

Mathematica 11: 471-80.
. 1986. Computers and the Nature of Man: A Historian's Perspective on Controver-

sies about Artificial Intelligence. Bulletin of the American Mathematical Society 15:113-26.
Hayek, F. 1955. The Source of the Scientistic Hubris: 1'Ecole Polytechnique. In The Counter-

Revolution of Science: Studies on the Abuse of Reason. Glencoe, 111.: Free Press.
Hayes, J. E., and Michie, D. 1983. Intelligent Systems: The Unprecedented Opportunity.

Chichester, England: Ellis Horwood.
Hayes-Roth, F., Waterman, D., and Lenat, D. B. eds. 1983. Building Expert Systems.

Reading, Mass.: Addison-Wesley.
Hobbes, Thomas. 1651. Leviathan, or the Matter, Form, and Power of a Commonwealth

Ecclesiastical and Civil. Reprinted in (Burtt 1939).
Hofstadter, Richard. 1955. Social Darwinism in American Thought. Boston: Beacon Press.
Horkheimer, M. 1947. Eclipse of Reason. Oxford: Oxford University Press. Reprinted New

York: Seabury, 1974. Cited in (Weizenbaum 1976), p. 252.
Huxley, Thomas Henry. 1870. On Descartes' "Discourse Touching the Method of Using

One's Reason Rightly and of Seeking Scientific Truth." Reprinted in (Huxley 1898), pp.
166-98.

. 1874. On the Hypothesis That Animals Are Automata, and Its History. Reprinted
in (Huxley 1898), pp. 199-250.

. 1898. Method and Results. New York: Appleton.
Keir, M. 1917. Scientific Management and Socialism. Scientific Monthly 5: 359-67. Reprinted

in (Pursell 1969), pp. 248-55.
Koyrd, Alexandre. 1957. From the Closed World to the Infinite Universe. Baltimore: Johns

Hopkins.
Lucas, J. R. 1961. Minds, machines, and GOdel. Philosophy 36: 112-27.

. 1968. Human and Machine Logic: A Rejoinder. British Journal for the Philosophy
of Science 19: 155-56.

Ludmerer, Kenneth M. 1972. Genetics and American Society: A Historical Appraisal.
Baltimore: Johns Hopkins.

Masuda, Y. 1985. Computopia. In (Forester 1985), pp. 620-34.
McCorduck, Pamela. 1979. Machines Who Think. A Personal Inquiry Into the History and

Prospects of Artificial Intelligence. San Francisco: Freeman.
Minsky, Marvin, ed. 1968. Semantic Information Processing. Cambridge, Mass.: MIT Press.
Montaigne, Michel de. [1580] 1959. The Futility of Learning. In In Defense of Raymond

Sebond, chap 3. Trans. A. H. Beattie. New York: F. Ungar.
Newton, Isaac. [1713] 1934. Mathematical Principles of Natural Philosophy, 2d ed. Trans.

F. Cajori. Reprinted Berkeley: University of California Press.
Noble, David. 1977. America by Design: Science, Technology, and the Rise of Corporate

Capitalism. Oxford: Oxford University Press.



PARTISANS AND CRITICS OF A NEW SCIENCE: AI 345

Orwell, George, 1937. The Road to Wigan Pier. Reprinted New York: Berkley, 1961.
. 1943. Looking Back on the Spanish War. Reprinted in A Collection of Essays. Garden

City, N.Y.: Doubleday, 1957, pp. 193-214.
Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. New York:

Basic Books.
Pascal, Blaise. [ca. 1660] 1958. Pensees. Reprinted New York: F. Button. (Numbering follows

the L. Brunschvicg edition).
Pursell, Carroll W., Jr., ed. 1969. Readings in Technology and American Life. New York:

Oxford University Press.
Schanck, Roger C. 1984. The Cognitive Computer: On Language, Learning, and Artificial

Intelligence. Reading, Mass.: Addison-Wesley.
Searle, John. 1980. Minds, Brains, and Programs; Author's Response. Behavioral and Brain

Sciences 3: 417-24, 450-57.
Simon, Herbert A. 1981. The Psychology of Thinking: Embedding Artifice in Nature. In

The Sciences of the Artificial, 2d ed. Cambridge, Mass.: MIT Press.
Stanton, William. 1960. The Leopard's Spots. Chicago: University of Chicago Press.
Taylor, F. W. 1911. Scientific Management. New York: Harper. Excerpts from pp. 5-7,

15-16, 38-47, and 116-19 in (Pursell 1969), pp. 240-48.
Turing, Alan. 1956. Can a Machine Think? Reprinted from Mind (1950) in The World of

Mathematics, vol. 4, ed. J. R. Newman. New York: Simon and Schuster, pp. 2099-2123.
Turkic, Sherry. 1984. The Second Self: Computers and the Human Spirit. New York: Simon

and Schuster.
Voltaire. 1764. Sect. Dictionnairephilosophique. Reprinted in Portable Voltaire. New York:

Viking Press, 1949, pp. 195-99.
Weizenbaum, Joseph. 1966. ELIZA—A Computer Program for the Study of Natural

Language Communication between Man and Machine. Communications of the ACM
9: 36-45.

. 1976. Computer Power and Human Reason: From Judgment to Calculation. San
Francisco: Freeman.

Westfall, Richard S. 1971. The Construction of Modem Science: Mechanisms and Mechanics.
New York: Wiley.



William Aspray

The Emergence of Princeton as a

World Center for

Mathematical Research, 1896-1939

1. Introduction

In 1896 the College of New Jersey changed its name to Princeton
University, reflecting its ambitions for graduate education and research.
At the time, Princeton, like other American universities, was primarily
a teaching institution that made few significant contributions to math-
ematics. Just four decades later, by the mid-1930s, Princeton had become
a world center for mathematical research and advanced education.1 This
paper reviews some social and institutional factors significant in this rapid
rise to excellence.2

The decade of the 1930s was a critical period for American research
mathematics generally, and for Princeton in particular. The charter of
the Institute for Advanced Study in 1930 and the completion of a univer-
sity mathematics building (Fine Hall) in 1931 frame the opening of the
period in Princeton; the completion of separate quarters (Fuld Hall) for
the institute mathematicians in 1939 and the entrance of the United States
into World War II effectively close it. During this decade, Princeton had
the unique atmosphere of an exclusive and highly productive mathematical
club. This social environment changed after the war with the increase in
university personnel and the move of the institute to separate quarters,
and the uniqueness was challenged by the improvement of mathematical
research and advanced education at other American institutions.

I appreciate the useful comments and corrections of Richard Askey, Saunders MacLane,
and V. Frederick Rickey to the conference presentation and of Garrett Birkhoff and Albert
W. Tucker to later drafts of the manuscript. The writing of this paper was stimulated by
my participation in the Princeton Mathematical Community in the 1930s Oral History Proj-
ect, which resulted from the efforts of Charles Gillespie, Frederik Nebeker, and especially
Albert Tucker and from the financial support of the Alfred P. Sloan Foundation.
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2. A Fine Start

Efforts to establish a research program in mathematics at Princeton
University began in the first decade of the twentieth century at the hands
of Henry Burchard Fine. Fine had completed an undergraduate major in
classics at Princeton in 1880 and remained until 1884, first as a fellow
in experimental physics and then as a tutor in mathematics. The latter
position brought him into contact with George Bruce Halsted, a math-
ematics instructor fresh from his dissertation work under J. J. Sylvester
at Johns Hopkins University.3 Fine wrote of their relationship in a
testimonial:

I am glad of this opportunity of acknowledging my obligations to Dr.
Halsted. Though all my early prejudices and previous training had been
in favor of classical study, through his influence I was turned from the
Classics to Mathematics, and under his instruction or direction almost
all of my mathematical training had been acquired. (Eisenhart 1950,
31-32)

On Halsted's advice, Fine traveled to Leipzig in the spring of 1884 to
study with Felix Klein. Halsted's ability to inspire proved greater than his
ability to teach Fine mathematics, for Klein found Fine to know no Ger-
man and little mathematics. Nevertheless, Fine was encouraged to attend
lectures. He progressed quickly and was awarded the Ph.D. after only
a year for his solution to a problem in algebraic geometry. In the summer
of 1885, and again in 1891, Fine visited Berlin to study with Leopold
Kronecker. Fine's first book and several of his papers are testimony to
the profound influence of Kronecker (Fine 1891, 1892, 1914).

Fine returned to Princeton in the fall of 1885 as an assistant professor
of mathematics with an admiration for the German system, which pro-
vided opportunities for young mathematicians to work closely with estab-
lished researchers. He progressed steadily through the ranks. In 1889 he
was promoted to professor and in 1898 to Dod Professor; by 1900, he
was the senior member of the department. During Woodrow Wilson's
tenure as university president, from 1903 to 1911, Fine's career and his
influence on Princeton mathematics advanced most rapidly.4 Fine was ap-
pointed chairman of mathematics (1904-28), dean of the faculty (1903-12),
and dean of the science departments (1909-28). When Wilson resigned to
run for governor of New Jersey in 1911, Fine served as acting president
of the university until John Grier Hibben was appointed president.

Fine published several research papers in geometry and numerical
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analysis, but he was most prominent as a textbook writer (Fine 1905,1927;
Fine and Thompson 1909) and an institution builder. In the latter capac-
ity, he was one of two professors of mathematics to support Thomas
Fiske's 1888 plan to found the New York Mathematical Society, which
became the American Mathematical Society (AMS) after an international
meeting at the time of the Chicago World's Fair in 1893. In 1911 and 1912,
Fine served as president of the society.

When Wilson was called to the Princeton presidency in 1903, his first
priority was to match the quality of the educational program to the up-
graded status of a university. At Wilson's instigation, the preceptorial
system was introduced in 1905 to provide smaller classes and more per-
sonalized instruction. Fine was a strong proponent of the system, and he
recognized the opportunity to strengthen the mathematics program through
the new appointments the preceptorial system required.5

At the time of Wilson's appointment, the mathematics department
numbered eight members—none more distinguished a researcher than Fine.
Undergraduate teaching loads were heavy, salaries low, and opportunities
for research limited. The department had an office in the library (East
Pyne Hall), but most individual faculty members had to work at home.

Fine planned to build a strong research program in mathematics slow-
ly through appointments to young mathematicians with research promise.
In 1905 he appointed the young American mathematicians Gilbert Bliss,
Luther Eisenhart, Oswald Veblen, and John Wesley Young to preceptor-
ships. In a move that was uncharacteristic of American mathematical in-
stitutions, Fine also sought to hire English-speaking European mathemati-
cians.6 That same year he hired James Jeans to a professorship in applied
mathematics and offered a senior position to Jeans's fellow Englishman,
Arthur Eddington, who declined it in favor of a post at the Greenwich
Observatory. When Bliss left for Chicago and Young for Illinois in 1908,7

Fine replaced them with the promising American mathematician G. D.
Birkhoff and the young Scottish algebraist J. H. M. Wedderburn. Birkhoff
left for Harvard in 1912 and was replaced in 1913 by the Parisian Pierre
Boutroux. Fine added the Swede Thomas Gronwall in 1913, Princeton-
born and -educated James Alexander in 1915, another young Swede, Einar
Hille, in 1922, and Paris-trained Solomon Lefschetz in 1924. Thus, be-
tween 1905 and 1925 many of the young mathematicians who were to
become leaders in American mathematics were members of the Princeton
faculty.8 Princeton was beginning to collect mathematical talent that ri-
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valed that of the established world centers: Gottingen, Berlin, Paris, Cam-
bridge, Harvard, and Chicago.

3. The 1920s

Although individual members of the mathematics faculty carried on
intensive research activities, Princeton remained principally a teaching in-
stitution in the 1920s. As at most American universities during those years,
the Princeton faculty was saddled with heavy undergraduate teaching loads
and had little money to improve facilities or research opportunities. The
European mathematicians who came to Princeton recognized this clear-
ly. As Einar Hille remembers his first year there, in 1922-23: "Princeton
was somewhat of a disappointment. There were in power old under-
graduate teachers Gillespie, Mclnnes, Thompson. I think that during my
first term there I had two divisions of trigonometry with endless
homework" (Hille 1962). Solomon Lefschetz confirmed this situation:

When I came in 1924 there were only seven men there engaged in
mathematical research.9 These were Fine, Eisenhart, Veblen, Wedder-
burn, Alexander, Einar Hille and myself. In the beginning we had no
quarters. Everyone worked at home. Two rooms in Palmer [Laboratory
of Physics] had been assigned to us. One was used as a library, and
the other for everything else! Only three members of the department
had offices. Fine and Eisenhart [as administrators] had offices in Nassau
Hall, and Veblen had an office in Palmer. (Bienen 1970, 18-19)

The situation began to change around 1924 when an effort was made
to raise funds to support mathematical research. With the turnover in the
preceptorial rank and the disinterest of Wedderburn and others in institu-
tional matters, the responsibility for building the Princeton research pro-
gram devolved to Fine, Eisenhart, and Veblen. The first step was taken
by Veblen during his term in 1923-24 as president of the American Math-
ematical Society.10 In an effort to improve American mathematics national-
ly, he arranged for mathematicians to be included in the National Research
Council fellowship program already established for physicists and chemists.
He also established an endowment fund for the AMS and raised funds
to subsidize its publications.

Within Princeton, the move to improve the research environment was
spearheaded by Fine with the assistance of Eisenhart and Veblen. As dean
of the sciences, Fine assumed responsibility for helping Princeton Presi-
dent Hibben to raise and allocate funds for research in the sciences. In
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a fund-raising document of 1926, Fine outlined the "means to the full
realization for the purposes of the Mathematics Department":

(1) Endowment for Research Professorships.
(2) Improvement and increase of personnel with schedules compati-

ble with better teaching and more research.
(3) A departmental research fund to meet changing conditions.
(4) A visiting professorship which might well bear the name of

Boutroux [in memorium].
(5) A group of offices and other rooms for mathematical work,

both undergraduate and advanced.
(6) Continued financial support for the Annals of Mathematics.
(7) A number of graduate scholarships. (Fine 1926)

It is instructive to compare this list of objectives outlined by Fine to
a plan for an Institute for Mathematical Research proposed by Veblen
in the period of 1924-26 to both the National Research Council and the
General Education Board of the Rockefeller Foundation. Veblen's plan
not only amplifies on the reasoning behind Fine's list, but also illustrates
the greater vision of Veblen—realized in the 1930s with the founding of
the Institute for Advanced Study.

Veblen's argument began with the premise that "the surest way of pro-
moting such research [in pure science] is to provide the opportunities for
competent men to devote themselves to it" (letter to H. J. Thorkelson,
21 October 1925, Veblen Papers). According to the American system,
Veblen noted, this is a "by-product of teaching. The consequence has been
that although our country has produced a great many men of high abili-
ties, very few of them have an output which corresponds to their native
gifts." Playing to the desire of funding organizations to build strong Amer-
ican research institutions, Veblen added that "men of considerably less
ability have been able to do greater things in the European environ-
ment . . . [because] their time and energy have been free for the prosecu-
tion of their research." Elaborating this argument elsewhere, Veblen noted
that his American colleagues taught nine to fifteen hours a week as com-
pared with three hours by a mathematician in the College de France;11

and that the American mathematician's primary task was the teaching of
elementary subjects to freshmen and sophomores. These subjects were
taught in the lycees and Gymnasia of Europe, and university research
mathematicians there could concentrate on the teaching of more advanced
subjects (letter to Vernon Kellogg, 10 June 1924, Veblen Papers).
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The simplest solution, to Veblen's mind, was to provide research posi-
tions for mathematicians in which teaching duties would be limited or not
required. But how was this to be accomplished? Veblen rejected the idea
of "distinguished service professorships," which he was skeptical in general
"would be held by men of high distinction, but who often would have
passed the most active stage of research" ("Institute for Mathematical
Research at Princeton"; undated, unsigned proposal, Veblen Papers).

Instead, he proposed an institute consisting of "a balanced group of
first rank productive mathematicians who have opportunities for math-
ematical research comparable with opportunities ordinarily given those
who conduct research, and train research workers, in the laboratory
sciences" (document labeled "C. Mathematical Research," probably pre-
pared for the Princeton Scientific Fund proposal to the General Educa-
tion Board; undated, unsigned, Veblen Papers).

The institute he envisioned would consist of four or five senior math-
ematicians and an equal number of junior colleagues. The senior men
would devote themselves "entirely to research and to the guidance of the
research of younger men," though all institute members should "be free
to offer occasional courses for advanced students" (letter to Vernon
Kellogg, 10 June 1924, Veblen Papers). Beyond salaries, professorial needs
were not very great: a library, a few offices, lecture rooms, a few com-
puting machines, and money for stenographers and (human) computers.
The institute could operate successfully, he maintained, either in conjunc-
tion with a university or independently.

Veblen's preference for an institute over individual research professor-
ships was based on his and Eisenhart's assessment of the success of Got-
tingen over other German universities as a mathematical research center.

In those cases where a good scientific tradition has been established
and has subsequently broken down, it will be found that the organiza-
tion was such as to depend on a single leader. The break in the tradi-
tion came when the leader died. But if instead of having a single out-
standing figure, you have a group of men of different ages who are
working together so that the replacements which take place are gradual,
then if you have made a good start, the conservative forces inherent
in such a group tend to maintain it. A good illustration of this is to
be found in the mathematical tradition of Gottingen. While there have
often been men of the first magnitude at Gottingen, there has always
been a large group gathered together which has maintained itself so
well that the prestige of the Mathematical Institute at Gottingen is, if
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possible, greater now than it ever has been. During the same period
of time the other German universities, which have depended for their
eminence on particular individuals, have had vicissitudes of all kinds.
The preeminence of Gottingen is due to the laws of statistics and the
power of tradition. (Letter to H. J. Thorkelson, 21 October 1925,
Veblen Papers)

As a further incentive for funding, Veblen sought to dedicate the in-
stitute to applied mathematics, a discipline he regarded as underrepresented
in the United States. He pointed out that through the work of Eisenhart,
Veblen, and Tracy Thomas in topology and differential geometry,
Princeton had already initiated "a very definite programme" in this direc-
tion. 'This programme embraces studies in the geometry of paths and
analysis situs which are becoming more and more clearly the foundations
of dynamics and the quantum theory" ("Institute for Mathematical
Research at Princeton"; undated, unsigned proposal, Veblen Papers).

For whatever reasons, Veblen's plan for an institute was not realized
at this time. No record of the National Research Council's response has
been found. His proposal to the General Education Board was included
as part of Princeton's general campaign to raise money to support fun-
damental work in the sciences, a campaign that Fine directed for Presi-
dent Hibben. This proposal did call for support for, among projects in
astronomy, physics, chemistry, and biology, a mathematical institute with
focus on applied mathematics; and it specifically referred to Veblen's
earlier contacts with the board ("Memorandum for Dr. Wickliffe
Rose... for Endowment of Research in the Fundamental Sciences";
undated, Veblen Papers). Although this grant was made, the money was
not used to form the institute Veblen desired. One reason may have
been the board's concern about the long-term productivity of research
mathematicians:

(1) that one cannot be absolutely sure that a man who is appointed to
a research position will continue for the rest of his life to do research
of a high grade, and (2) that supposing your first appointments to be
of the right quality, it is not certain that this quality will be maintained
through the long future. (As repeated by Veblen in letter to H. J.
Thorkelson, 21 October 1925, Veblen Papers)

Although the institute was not funded, the umbrella grant for fun-
damental scientific research was. The board awarded Princeton $1 million
on the condition that it raise twice that amount. By 1928 the university
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had raised the $2 million through alumni gifts, and one-fifth of the to-
tal amount ($600,000) was made available to the mathematics depart-
ment. It was used to buy library materials, support the journal Annals
of Mathematics,12 reduce teaching loads, and pay salaries of visiting
mathematicians.13

Most of the other objectives on Fine's list were also met. Soon after
Fine became involved with the Fund Campaign Committee in 1926, he
approached Thomas Jones, an old friend and former Princeton classmate
who had made a fortune through a Chicago law practice and his presidency
of the Mineral Point Zinc Company. Jones endowed the Fine Professor-
ship, the most distinguished chair in American mathematics at the time.
Together with his niece Gwenthalyn, Jones also provided $500,000 to the
research fund and endowed three chairs, including the Jones Chair in
Mathematical Physics, which was first held by Hermann Weyl in 1928-29.

Princeton was able to provide good financial support for doctoral and
postdoctoral mathematicians in the late 1920s and the 1930s. It attracted
more National Research Council fellows than any other U.S. university.14

British and French students were supported by the Commonwealth and
Procter Fellowship programs and American graduate students by univer-
sity funds.

Of the items on Fine's list, an endowment for research professorships,
a departmental research fund, a visiting professorship, support for An-
nals of Mathematics, and graduate scholarships were all met. Only two
items caused difficulty: increase in personnel and housing. Both needs were
met in the early 1930s.

4. Fine Hall

In the late 1920s, the University of Chicago began construction of
Eckart Hall for its mathematics department.15 Veblen, a Chicago Ph.D.
with continuing ties to his alma mater, kept closely informed about the
new mathematics building.16 He recognized its potential value in nurtur-
ing a mathematics community and "so he worked on Dean Fine to have
this as a goal in connection with the Scientific Research Fund" (private
communication from A. W. Tucker, 1985). Although Fine understood
the need for adequate space (item 6 on his list), he resisted Veblen's ex-
hortations because he knew that money was not available for similar
buildings for the other sciences. Psychology, in particular, Fine regarded
as having a greater space need than mathematics.
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Curiously, Fine's accidental death in 1928 made possible the realiza-
tion of Veblen's plan. Within a few weeks after Fine's death, the Jones
family offered funds for the construction and maintenance of a
mathematics building in memory of Dean Fine. Veblen and Wedderburn
were given responsibility for designing the new building. Veblen took
charge and designed a building that, as Jones said, "any mathematician
would be loath to leave" (Princeton University Alumni Weekly 1931,113).
The building was constructed of red brick and limestone in the "college
Gothic" style of the universities of Paris and Oxford that Veblen so ad-
mired.17 Fine Hall was situated adjacent to the Palmer Laboratory of
Physics, with a connecting corridor to enable the physicists easy access
to the library and Common Room.

Veblen attended to every last detail in the design and finishing of the
building. He worked closely with a high-quality decorating firm from New
York on the furnishings and insisted on extensive sound testing of the
classrooms. All design features were carefully chosen to promote a research
environment and communal interaction. As Veblen observed:

The modern American university is a complicated organism devoted
to a variety of purposes among which creative scholarship is sometimes
overlooked. Those universities which do recognize it as one of their
purposes are beginning to feel the necessity of providing centers about
which people of like intellectual interests can group themselves for
mutual encouragement and support, and where the young recruit and
the old campaigner can have those informal and easy contacts that are
so important to each of them. (Princeton University Alumni Weekly
1931, 112)

The top floor housed the library for mathematics and physics. An open
central court provided natural lighting and quiet space with carrels for
each graduate student and postdoctoral visitor. Conversation rooms with
blackboards were available in each corner. Eisenhart convinced the univer-
sity administration to transfer there from the main library all books of
research value to mathematicians and physicists, and all researchers had
24-hour access to the collection. Subscriptions of Annals of Mathematics
were traded to other institutions in order to build up a complete collec-
tion of research journals, including all of the major foreign journals.

On the second floor the faculty members had "studies"—not offices—
some of which were large rooms lavishly appointed with fireplaces, carved
oak paneling, leather sofas, oriental rugs, concealed blackboards and coat



THE EMERGENCE OF PRINCETON, 1896-1939 355

closets, and leaded windows with mathematical designs. To promote con-
tinued close ties with physics, the mathematical physicists were also as-
signed studies there.18

The second floor also housed a Common Room and a Professor's
Lounge, following a tradition Veblen had admired at Oxford. Princeton
faculty proved to be less interested than their Oxford colleagues in hav-
ing a place to retire from their students, and the rather formal Professor's
Lounge was seldom used. However, at most any time of day or night one
could find graduate students, faculty members, or visitors in the Com-
mon Room discussing mathematics, playing Kriegspiel, Go, or chess, or
sleeping. The social and perhaps intellectual zenith was attained each week-
day afternoon when the mathematics and physics communities would
gather for tea. Here twenty or thirty would meet to socialize and discuss
their craft.

The first floor housed additional studies, the chairman's (Eisenhart's)
office, and various classrooms sized to accommodate seminars or lectures,
all with ample blackboard space, good acoustics, and carefully determined
dimensions. Completing the club atmosphere was a locker room with
showers to facilitate short breaks by faculty (especially Alexander) on the
nearby tennis or squash courts.

Fine Hall succeeded in promoting a community atmosphere for the
mathematical researchers. Because of the Depression and the rule against
marriage for graduate students, many of these poor, single, male students
rented small furnished rooms in town and ate meals in restaurants. The
Common Room was their main living space. The many foreign faculty
members, students, and visitors also congregated in Fine Hall, which they
found to be a place of congeniality.19 Faculty members regularly used their
studies, which contributed to the close ties between students and staff.
Between 1933 and 1939, when Fuld Hall was completed for the institute,
Fine Hall also accommodated the institute's faculty and many visitors.

Today, many departments have facilities similar to, if more modest
than, Fine Hall. But this environment, unusual for its time, promoted a
sense of community that was impossible to foster at many universities,
like Harvard, where the faculty was scattered across the campus without
a common meeting place.20 Albert Tucker, a graduate student and later
a faculty member at Princeton in the 1930s, describes the importance of
Fine Hall to his career:21

It was the amenities of Fine Hall that certainly caused me to come back
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to Princeton in 1933, after the year that I had my National Research
Council Fellowship. I could have had a second year as a Fellow, just
for the asking; but if I had, I would be supposed to spend it somewhere
else than Fine Hall because that was where I had gotten my doctor's
degree. The experiences that I had had at Cambridge, England, but
particularly at Harvard and Chicago, made me long for the comforts,
the social atmosphere, the library convenience of Fine Hall. Of course
there were other things, Lefschetz, Eisenhart, and so on. But at the
time, [when] Marston Morse told me I was a fool not to take the in-
structorship at Harvard... it was the opportunity to be in the Fine Hall
community [that mattered]. (Oral history, 11 April 1984; The Princeton
Mathematical Community in the 1930s Oral History Project, Princeton
University Archives)

Between the time of the Jones gift in 1928 and the completion of Fine
Hall in the fall of 1931, mathematics buildings opened at Chicago, Paris,
Gottingen, and Jena. Yet, as one of the earliest and certainly the most
successful building for this purpose, Fine Hall served frequently as an ar-
chitectural model.22 For example, Dartmouth, Wisconsin, Arizona State,
and Western Australia modeled their mathematics buildings after Fine
Hall.

5. The Institute for Advanced Study

By the time the department moved into Fine Hall in 1931, the condi-
tions were favorable for research. Of Fine's original list of objectives on-
ly item 2, improvement and increase of personnel with schedules com-
patible with better teaching and more research, was unfulfilled. This was
soon to be met by the founding of the Institute for Advanced Study.

The story of the institute is well known and need not be told in detail
here.23 Money from the Bamberger and Fuld family fortunes was donated
in 1930 to endow an institute for advanced research to be situated in the
state of New Jersey or a contiguous area. Abraham Flexner, retired from
the General Education Board and the original proponent of this advanced
research institute, was appointed as director. Flexner chose Princeton as
the site because he believed its rural environment was suitable to pure
scholarly endeavor and because the university possessed a good research
library. He decided to focus the institute's activities initially in a single
area, and he chose mathematics as that area for three reasons:

(1) It was fundamental.
(2) It required the least investment in plant or books.
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(3) It had become obvious to me [Flexner] that I could secure greater
agreement upon personnel in the field of mathematics than in any
other subject. (Flexner 1940, 235)

Between 1930 and 1932, Flexner toured Europe and North America
discussing his plans with leading scholars. Veblen impressed Flexner with
his counsel,24 and, once mathematics was chosen in 1932 as the institute's
first mission, Veblen was given the first faculty appointment. On an earlier
trip to Europe, Flexner had discussed with Albert Einstein and Hermann
Weyl the prospect of their joining the institute faculty. Veblen assumed
responsibility for selecting the other original faculty members of the in-
stitute's School of Mathematics. James Alexander, John von Neumann,
Einstein, and Weyl joined the institute in 1933 and Marston Morse in 1935.

Flexner and Veblen assembled an impressive international group of
research mathematicians. Alexander was a distinguished topologist. Ein-
stein was already world-renowned for his contributions to theoretical
physics. Morse was an accomplished Harvard mathematician known for
his research in "analysis in the large." Veblen was the senior American
geometer. Von Neumann was a brilliant young mathematician who had
already made major contributions to logic, quantum mechanics, and
analysis. Weyl, who was regarded as having the widest range of math-
ematical knowledge since PoincarS, was Hilbert's successor in the math-
ematics chair at Gottingen. The institute had many visitors each year and
a few research associates (known as "permanent members") like Kurt
Godel, but these six constituted the regular faculty of the School of Math-
ematics for about ten years.25

Although the research environment was undoubtedly an attraction,
social factors also contributed to their decisions to accept appointments.
Alexander, whose family wealth freed him from the need to work, was
relieved at the release from teaching responsibility that the institute posi-
tion offered. The Nazis drove Einstein, von Neumann, and Weyl from
Europe: von Neumann lost his position at Berlin for being Jewish,26 and
Weyl feared for his Jewish wife and found the Nazi interference in the
affairs of the mathematics institute at Gottingen intolerable. Morse had
a better opportunity at the institute to forward his research program
through the availability of funds for visiting postdoctoral researchers, and
it must also have been some comfort to escape from the Harvard environ-
ment where his wife had recently divorced him to marry another of the
Harvard mathematicians.
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During the 1932-33 academic year, Veblen rented office space for the
institute in a commercial building near the Princeton campus while re-
taining his research study in Fine Hall. President Hibben was sympathetic
to the institute's goals and offered a five-year lease on space in Fine Hall,
which had been built with expansion of the department in mind and
therefore exceeded current space needs. The offer was gratefully accepted
and the institute settled into Fine Hall the following year.

In the early years, it was uncertain what direction the institute might
take. The charter provided for it to become an educational institution and
grant doctoral degrees—in competition with the university. Others may
have envisioned it as an "Ivory Tower" where distinguished mathemati-
cians could pursue their research without distraction. Veblen steered a third
course, however, emphasizing both postdoctoral education and research.
The institute's School of Mathematics realized the plans for an Institute
for Mathematical Research that Veblen had outlined in 1925, with the ex-
ception that applied mathematics was only the principal, not the exclusive,
subject of research.

Veblen envisioned a place where promising young Ph.D.s and estab-
lished research mathematicians could interact and pursue common math-
ematical research interests without interruption by undergraduate teaching
or other routine faculty duties. To that end, he arranged for adequate
funds for visitors, including funds for many young Ph.D.s to work as
research assistants of the permanent institute faculty.

There was free interchange between institute and university personnel.
Following Veblen's example, institute faculty members offered advanced
seminars open to both institute and university faculty members, visitors,
and students. For example, when Godel presented his famous institute
lectures on incompleteness in 1934, graduate students Stephen Kleene and
J. Barkley Rosser prepared the course notes for distribution. Institute
members were commonly employed as informal advisors of doctoral disser-
tations, and during this period, when both university and institute math-
ematicians had offices in Fine Hall, it was difficult to determine the offi-
cial affiliation of visitors.

6. Growth of the Department
The founding of the institute could have seriously weakened the univer-

sity's mathematics program. With Veblen, Alexander, and von Neumann
accepting positions at the institute and Hille leaving for a professorship
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at Yale in 1933, representing over a third of the faculty and a greater
percentage of those productive in research, the university's strength in
mathematics was seriously threatened.27 Both the institute and the univer-
sity recognized the advantages of cooperation. Both gained from having
a larger community of permanent and visiting mathematicians. The univer-
sity retained the services of Alexander, Veblen, and von Neumann at least
to the degree that they were available to consult, help direct theses, referee
articles for Annals of Mathematics, and present advanced seminars.28 The
institute gained in return a good research library and excellent physical
facilities.

Nonetheless, the department confronted a major rebuilding project.
The able leadership of Eisenhart and Lefschetz carried the department
through this tumultuous period. As department chairman and dean of the
faculty, Eisenhart was in a position to facilitate close ties with the institute,
which he supported as favorable to the university. When a new dean of
the faculty was appointed, the position of dean of the graduate school
was assigned to Eisenhart.29 Although his greatest interest had always been
in the undergraduate mathematics program, he devoted himself to his new
duties and was able to use his position within the university to secure ade-
quate resources for the graduate program in mathematics.

Lefschetz was appointed to the Fine Research Professorship vacated
by Veblen. Although this position did not require teaching, Lefschetz
followed Veblen's example and taught a research seminar every semester,
which was well attended by the graduate students. Lefschetz was also
departmental representative to the Committee on the Graduate School,
which enabled him to further protect the interests of the graduate mathe-
matics program. It also stimulated him to take a personal interest in the
graduate students: he meticulously inspected graduate applications to select
the ten to twenty percent that he believed could handle the demanding but
unstructured graduate program. He went to great lengths to meet each
graduate student and monitor his progress, and he was adept at identifying
dissertation problems of appropriate content and difficulty. He directed
many dissertations, including those of Hugh Dowker, William Flexner,
Ralph Fox, Paul Smith, Norman Steenrod, Albert Tucker, John Tukey,
Robert Walker, and Henry Wallman in the period 1925-39. While Eisen-
hart administered the department and the relations with the rest of the
university, Lefschetz built up the research and graduate programs.

After considering senior appointments to outsiders, the decision was
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made to continue the Fine approach and replace the departing senior
mathematicians with promising junior researchers.

It is the desire of this department to maintain its distinction by giving
constant attention to the question of its personnel. Because we publish
the Annals of Mathematics, we know rather well who the good men
of the country are. Furthermore, because of the presence here of the
Institute for Advanced Study, we have an additional means of keeping
in contact with this situation.

Salomon Bochner, H. F. Bohnenblust, E. J. McShane, Albert Tucker,
and Samuel Wilks were given junior appointments in 1933, as were Nor-
man Steenrod, Walter Strodt, E. W. Titt, and C. B. Tompkins later in
the decade.

The department continued to concentrate in a few select fields and did
not try to provide uniform coverage of all areas of mathematics. Research
in geometry and topology was carried out by Eisenhart, Lefschetz, Tracy
Thomas, Morris Knebelman, Tucker, and Steenrod in the university and
by Veblen and Alexander in the institute; mathematical physics by Eugene
Wigner and H. P. Robertson in the university and by Weyl, von Neumann,
and Einstein in the institute; mathematical logic by Church in the univer-
sity and Godel in the institute; and analysis by Bohnenblust, Bochner,
and McShane in the university and by von Neumann and Weyl in the in-
stitute. A new area of research was initiated with the hiring of S. S. Wilks,
one of the pioneers in mathematical statistics.

Measured by number or productivity of postgraduate mathematicians,
the Princeton mathematical community excelled in the 1930s. Between 1930
and 1939 the university produced 39 mathematics Ph.D.s, including (with
others already mentioned) Carl Allendoerfer, John Bardeen, J. L. Barnes,
A. L. Foster, Wallace Givens, Robert Greenwood, Israel Halperin, Banesh
Hoffmann, Nathan Jacobson, Malcolm Robertson, Ernst Snapper,
Abraham Taub, Alan Turing, J. L. Vanderslice, J. H. C. Whitehead, and
Shaun Wylie. Between 1923 and 1941, the years of the NRC Fellowship
program in mathematics, 59 mathematicians visited Princeton, including
(among others already mentioned) A. A. Albert, Gustav Hedlund, Der-
rick Lehmer, Neal McCoy, Deane Montgomery, Charles Morrey, Hassler
Whitney, and Leo Zippin. One hundred eighty-nine mathematicians were
visitors to the institute between 1933 and 1939, notably Reinhold Baer,
Valentine Bargmann, Paul Bernays, Garrett Birkhoff, Eduard Cech, A.
H. Clifford, P. A. M. Dirac, Witold Hurewicz, Deane Montgomery, Mar-
shall Stone, Stanislaw Ulam, Andre Weil, and Oscar Zariski.
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7. Conclusion

Institutional factors clearly helped to shape the development of the
mathematics programs in Princeton in the 1930s. Careful planning by Fine,
Eisenhart, and Veblen over the preceding quarter-century placed Princeton
in a position to establish a world-class center of mathematics once funds
started to become available in the late 1920s.

Funding for these purposes was fairly easily acquired. It may have been
fortunate that the Fuld and Bamberger families were willing to endow the
Institute in 1930, but it was no accident that Veblen was ready with a strong
plan to build it in Princeton and to devote it to mathematical research.
It is clear that the trend in the 1920s of the great foundations to support
American scholarship benefited Princeton mathematics. However, it must
be remembered that the bulk of the money for the university's program
in mathematics came through alumni gifts. The ease at raising these match-
ing funds is perhaps indicative of the general wealth of the United States
in the late 1920s.

The existing strength of the department and a workable plan for the
future were undoubtedly strong factors in attracting financial support.
Several principles were consistently applied by Fine, Veblen, and others
over the first forty years of the century to build excellence in the depart-
ment and later in the institute. Foremost was the emphasis on research,
as demonstrated in appointments and promotions, training offered to
graduate students, teaching loads, and many other ways. This ran counter
to the well-established tradition of American colleges as undergraduate
teaching institutions. Second was the attempt to build a community of
mathematical researchers so that the "old campaigner" and the "young
recruit" could exchange ideas. Third was the concentration on a few areas
(topology, differential geometry, mathematical physics, and logic), instead
of attempting to provide uniform coverage across all of mathematics.
Fourth was the adoption of an international perspective. More than any
other American university in the period 1905-40, Princeton sought out
students, visitors, and faculty from around the world. When the Nazi peril
disrupted European mathematics, Veblen and Weyl led the way in plac-
ing emigre mathematicians in American institutions, including some in
Princeton (Reingold 1981). Fifth was the decision to build up a research
community through the cultivation of young mathematical talent. Al-
though the institute took great advantage of the Nazi situation in attrac-
ting Einstein, von Neumann, and Weyl to its faculty, most of the Princeton
staff was hired at the junior level and promoted from within.
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Finally, great attention was given to environmental factors that would
affect the research community. Prominent among these was Fine Hall.
It is hard to overemphasize the importance Princeton mathematicians of
the 1930s attached to their physical quarters. Soon universities through-
out the world came to recognize the value of a place where their mathe-
maticians could gather to discuss mathematics, with excellent support
facilities. Another factor was the editing of professional journals (Annals
of Mathematics and Studies, Journal of Symbolic Logic, and Annals of
Mathematical Statistics) at Princeton. They provided the faculty and their
students with an outlet for research and gave the faculty some control
over the direction of American research. These journals also provided ex-
tensive contacts with the wider mathematical community and a vehicle
for scouting new talent for appointments. Financial support for graduate
students and visitors and for reduced teaching loads of staff also promoted
the growth of a large community focused on mathematical research.

The success in Princeton is even more remarkable when it is considered
that it occurred at the same time as the Great Depression and the growth
of Nazism. General economic circumstances severely depressed academic
salaries, limited funds for graduate and postdoctoral support, and
restricted job placement for Princeton Ph.D.s and junior faculty. The
political disruption of European academics resulted in an influx of Euro-
pean mathematicians into the United States, further straining the appoint-
ment and promotion of American-bred and -trained mathematicians.

Notes
1. Others were even more lavish in their praise of Princeton: R. C. Archibald wrote of

Princeton as "the greatest center of mathematical activity in this country" (Archibald 1938,
169); the Danish mathematician Harald Bohr referred to Princeton as "the mathematical
center of the world" when addressing an international scientific audience in 1936 (Chaplin
1958).

2. This paper about Princeton tells part of a larger story of the emergence of mathematics
research in U.S. institutions in the period 1875-1940. The full story involves the rise of
mathematics at Brown, Chicago, Clark, Johns Hopkins, Harvard, and Yale universities in
the first half of this period and at Berkeley, MIT, Michigan, Stanford, and Wisconsin near
the end. Harvard and Chicago, in particular, have many parallels with Princeton. Some
information on this topic can be found in (Archibald 1938; Birkhoff 1977; Bocher et al.
1911; Lewis 1976; Reid 1976). Dr. Uta Merzbach of the Smithsonian Institution is prepar-
ing a history of American mathematics and mathematical institutions.

In this paper, I have focused on social and institutional issues. I am planning additional
papers on the contributions in the 1930s of Princeton mathematicians to topology and logic.

3. Halsted was widely influential in the early development of American mathematics,
e.g. inspiring Leonard Dickson and R. L. Moore as well as Fine (Birkhoff 1976; Lewis 1976).

4. Fine and Wilson were lifelong friends, having first become acquainted while working
on the editorial board of the student newspaper, the Princetonian.
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5. Harvard adopted the preceptorial system in 1910, using it to finance graduate students
and train them to teach, rather than hiring additional junior faculty members.

6. Other distinguished European research mathematicians that came to the United States
in its formative period include J. J. Sylvester at Johns Hopkins, R. Perrault at Johns Hopkins
and Clark, and Oskar Bolza and Heinrich Maschke at Clark and Chicago. The number of
foreign mathematicians willing to accept appointments in the United States was small. Many
of the senior American mathematicians in this period were not distinguished researchers.
Thus, Fine's appointment strategy appears sound.

7. Bliss became a leading figure in the Chicago department and in American mathematics
generally. After two years at the University of Illinois and a year as mathematics depart-
ment chairman at the University of Kansas, Young devoted many years to building up the
mathematics program at Dartmouth.

8. Note the interesting, but perhaps coincidental, pattern of junior appointments at the
university: 1905-10, American, trained elsewhere; 1910-25, mostly European; 1925-40, mostly
American, several having been trained at Princeton. Princeton was not the first experience
with U.S. institutions for some of these young European mathematicians. For example, Wed-
derburn first spent a year at Chicago and Hille a year at Harvard.

9. By the standards of the major European centers of the time, or of major American
universities when Lefschetz made this comment in 1970, seven was not a large number of
research mathematicians for an institution. But few other American universities, if any, had
that large a number in 1924.

10. Veblen's interest in fund-raising dates from after World War I, perhaps stemming
from his wartime administrative experience at Aberdeen Proving Grounds in Maryland.

11. At most American universities in the 1920s, mathematicians taught twelve or more
hours per week. According to Garrett Birkhoff, it was considered a great coup at Harvard
in 1928 when the weekly load for a mathematician was reduced to 4'/2 hours of lectures,
1 Vi hours of theoretical tutoring, and 3 hours of graduate student supervision (private cor-
respondence, 4 October 1985).

12. Princeton had assumed editorial responsibility for Annals of Mathematics in 1911.
Previously it was edited at Harvard, and before that at the University of Virginia.

13. Long-term visitors to the department in the late 1920s and 1930s included: Paul Alex-
androff and Heinz Hopf (1927-28); G. H. Hardy (1928-29); Thornton Fry, John von
Neumann, and Eugene Wigner (1929-30, the last two returning in subsequent years); J. H.
Roberts and J. H. van Vleck (1937-38); and C. Chevalley (1939-40).

14. Veblen was one of three members of the NRC Fellowship selection committee for
mathematics and was thus positioned to assist Princeton mathematics. This arrangement
is characteristic of the organization of American mathematics in the 1920s and 1930s, where
the power was concentrated in a small number of individuals, including G. D. Birkhoff of
Harvard, G. A. Bliss of Chicago, R. G. D. Richardson of Brown, Veblen, and perhaps a
few others.

15. Increased wealth in the United States in the latter 1920s redounded on the univer-
sities. Chicago's ability to construct Eckart Hall, Harvard's reduction of the teaching load,
and Princeton's ease at matching the Rockefeller grant through alumni contributions all
indicate this improved economic condition.

16. Veblen was at the University of Chicago from 1900 to 1905, receiving his Ph.D. in
1903 under the direction of E. H. Moore. Veblen's drive to build up American mathematics
may have been stimulated by his experience at the University of Chicago, where Moore had
built a strong program that produced many prominent research mathematicians, including
L. E. Dickson, G. A. Bliss, G. D. Birkhoff, and Veblen, as well as supplying several major
midwestern universities with their mathematics chairmen.

17. Veblen drew many ideas for Fine Hall from a visit to Oxford in 1928-29. As Savilian
Professor, G. H. Hardy was expected to lecture occasionally on geometry. To avoid this
responsibility, he exchanged positions that year with Veblen, whose principal mathematical
interest was geometry.

18. Physics and mathematics had shared quarters earlier in Palmer Laboratory. Pro-
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fessor Condon of physics was a supporter and advisor on the planning of Fine Hall; there
are many references to Condon's role in the Oswald Veblen Papers.

19. Weyl reported to his former colleagues in Go'ttingen that German was spoken as much
as English in the institute, then located in Fine Hall (Reid 1976, 157). Garrett Birkhoff reports
that in the latter 1930s the official language of the institute was jokingly said to be "broken
English" (private communication, 24 October 1985).

20. Harvard did have a common room, Room O, in Widener Library, but it did not
have the facilities or receive the use that Fine Hall did.

21. Although Tucker may attach more significance to the environment of Fine Hall than
others might care to, more than twenty mathematicians commented on the amenities of Fine
Hall in the Princeton Mathematics Community of the 1930s Oral History Project.

22. The Conference Board of the Mathematical Sciences used Fine Hall as a model in
a book on mathematical facilities (Frame 1963).

23. The most accessible account is in (Flexner 1940, chap. 27 and 28).
24. Flexner and Veblen held similar views about education and research. Both were

enamored with the European university systems (see Flexner 1930), and both felt a need
"to emphasize scholarship and the capacity for severe intellectual efforts" (Flexner 1927,
10). Both saw a need for an environment where the research faculty would be free from
"routine duties ... —from administrative burdens, from secondary instruction, from distract-
ing tasks undertaken to piece out a livelihood" (Flexner 1930, 10-11). Both saw the research
institute as a "specialized and advanced university laboratory" (Flexner 1930, 35). However,
they disagreed on the addition of schools of study to the institute, support of European
mathematicians, a new institute building off the university campus, administrative respon-
sibilities for institute faculty, and other matters (see Reingold and Reingold 1982, chap. 13).

25. There is little firm evidence of who else was considered or offered an original ap-
pointment at the institute. An offer to G. D. Birkhoff was declined. Harvard countered
the offer by making Birkhoff a Cabot Fellow. The address pages of Veblen's 1932 diary
list five groupings of names that may have been candidates for institute positions or people
whose advice Veblen sought about candidates during a 1932 tour of Europe and North
America. The names (separated by semicolons the way Veblen grouped them) are as follows:
Dirac, Artin, Lefschetz, Morse; Alexandroff, Wiener, Kolmogorov, von Neumann; Albert,
R. Brauer, GOdel, Douglas; Bernays, Peterson, Kloosterman, Heyting, Chapin; Deuring,
McShane, Whitney, Mahler.

26. Von Neumann was teaching half-time at Berlin and half-time at Princeton. After
wavering for a considerable time, the university offered him a full-time position. He chose
the appointment at the institute instead.

27. The 1933-34 directory of members of the mathematics department lists professors
L. P. Eisenhart, W. Gillespie, S. Lefschetz, J. H. M. Wedderburn, and E. P. Wigner; associate
professors H. P. Robertson and T. Y. Thomas (on leave); assistant professors H. F.
Bohnenblust, A. Church, and M. S. Knebelman; and instructors E. G. McShane, J. Singer,
A. W. Tucker, and S. S. Wilks. There were others listed as part-time instructors, research
assistants, and advanced fellows.

28. Additional information about mathematics journals edited at Princeton in the 1930s
and their contributions to the research community can be found in an oral history I con-
ducted with Albert Tucker on 13 April 1984 (Princeton Mathematical Community in the
1930s, Oral History PMC 34).

29. In 1932-33, Eisenhart headed the Princeton administration as dean of the faculty—
between the death of President Hibben and the appointment of President Dodds. Dodds
appointed Eisenhart to replace the physicist Augustus Trowbridge as dean of the Graduate
School and made Robert Root the new dean of the faculty.
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290; Munich, 160; at Princeton, 357,
360, 361; special relativity, 170

Einstein metrics, 280
Eisenhart, Luther P., 348-62 passim,

364nn.27, 29
Elementarmathematik vom HOheren

Standpunkt aus (Klein), 151, 153, 167
Elementary Calculus: An Approach Using

Infinitesimals (Keisler), 189
Elements (Euclid), 261, 262, 265, 273
ELIZA, 340
Elliptic plane, 152
Empiricism: Carnap, 82; Frege, 5, 8;

Lakatos, 269; mathematical
methodology, 43, 274; J. S. Mill, 298;
Quine, 10, 12; simplistic, 294

Encyclopedic (d'Alembert), 222
Encyklopadie der mathematischen

Wissenschaften, 21, 164, 166
End, epistemic, 316, 317, 320

Engel, Friedrich, 149, 155-57, 169
Enlightenment, 40, 221, 333, 341
Epistemic ends, 304-17
Epistemology: apriorist, 294, 296; Frege,

4; vs. methodology, 274, 275;
modifications, 298; Quine, 10; of
science, 301, 303; twentieth-century,
16, 17
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Epsilon-delta methods, 186
Equitable Assurances, 234, 235
Equitable Society for the Assurance of

Lives, 233
Erlanger Programm, 25, 36, 145-76
Euclid: Elements, 238, 261, 262, 265,

273; geometry, 241, 244, 263; primes,
267; proofs, 268; quantity, 242; rigor,
269

Euclidean group, 151, 169
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Eudoxos, 238, 244, 289
Eugenics, 336, 342
Euler, Leonhard: calculus, 182, 202;

"comfortable" series, 207; complex
numbers, 270; Heer, Vorsselman de,
214; hypergeometric functions, 206,
210; intuition, 298; Kline, 212;
polyhedra, 264, 268; proof, 295;
reconstructed, 178, 180

Euler-Cauchy conjecture, 18
Eves, Howard, 21
Excluded middle, law of, 7, 117
Existence: and consistency, 65, 125; of

model, 105, 107; nonconstructive
proof, 249-52; "there exists," 117

Existence proof, 249-50
Expectation, 225, 226, 227
Experience, 222, 228, 236, 315
Expert systems, 285, 329
Explanation, 17, 18

Factual content, 10
Falsification, 273
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Geometry (Klein), 165
Fano, G., 162, 166, 170
Fee, E., 24
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Feigenbaum, Edward, 319, 320, 341
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Fiedler, Otto Wilhelm, 162
Field, H., 14, 15, 16
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Fine, Henry Burchard: and F. Klein,
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347-62, 362nn.3, 4, 363n.6

Fine Hall, 47, 346, 353-56, 358-62
passim, 363n.l7, 364nn.l8, 19, 20, 21,
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Finite fields, 240
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First-order logic, 95-135
Fisher, R. A., 214, 215
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Flexner, Abraham, 356, 357, 364n.24
Flexner, William, 359
Formalism: Carnap, 83, 87; first-order,

34; Hilbert, 16, 65, 89, 172, 177, 239;
mathematical methodology, 269,
274-75; vs. neo-Fregeanism, 12;
Robinson, 186; truth vs. meaning,
178, 253

"Formalism 64" (Robinson), 186
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Foster, A. L., 360
Foundations of Arithmetic (Frege), 101
Fourier, Joseph, 264, 265, 267, 320
Fourier series, 279
Fourier transforms, 212
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Fraenkel, Abraham, 124-26, 186, 195,

257n.33
Franco-Prussian war, 149
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Frege, Gottlob: apriorism, 44, 294; Can-

tor, 194; consistency, 182, 255;
Dedekind, 42; first- vs. second-order
logic, 101-29, 129n.7, 254; founda-
tions of mathematics, 320n.l; Hilbert,
239; logicism, 48, 49, 82-94, 245; on-
tology, 247, 248; Poincar6, 63-69;
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Frend, P., 264
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Fundamental Laws of Arithmetic (Frege),

101, 102, 109, 110
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Fuschsian function, 161

Galen, 263
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Galois's theory, 244
Gambling, 225, 233
Gasper, George, 208, 210, 214
Gauss, K. F.: algebra, 266; complex-

analytic functions, 241; cyclotomic
equation, 302; Disquisitiones
Arithmeticae, 243; Gauss's sum, 204,
213; Heer, Vorsselman de, 214;
hypergeometric function, 206, 210;
Kronecker, 251; Lagrange, 240;
primes, 267; proof, 295; quantity,
242; space 290

Gautschi, Walter, 209, 210
General relativity, 170, 171, 290
Gentzen, Gerhard, 112
Geometric function theory, 147, 158, 159,

160
Geometrie der Dynamen (Study), 169
Geometry: analytic, 302; continuity, 244;

elliptic, 152; Euclidean, 11; Grass-
mannian, 169; Hilbert, 106, 107, 108,
113, 114, 253; hyperbolic, 152, 158; of
lines, 146, 153, 168, 169; Newtonian,
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146-48, 152, 170, 172; proofs, 300;
rigor, 270
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Hilbert, 239, 255; incompleteness, 96,
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GOdel theorems, 33
Goldfarb, Warren, 31-33, 48-50
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Go'ttingen University: Clebsch, 147; Klein,

\51-12passim; Minkowski, 241;
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364n.l9
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Group: continuous, 149-54 passim, 158,
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dean, 169; homology, 245; Lagrange,
312; Lie, 172; projective, 152, 154;
theory, 302, 318
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165, 167, 253
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(Weyl), 172
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Hallett, Michael, 269
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Halperin, Israel, 360
Halsted, George Bruce, 347, 362n.3
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272, 316
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tion, 266
Hankel, Hermann, 147, 263, 264
Hardy, G. H., 268, 315, 363n.l7
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Harnack, Alex, 149, 159

Hartley, David, 229
Harvard University, 22, 348-62 passim,

362n.2, 363nn.5, 8, 11, 12, 14, 15,
364nn.20, 25

Harvey, William, 332
Haskell, M. W., 162, 163, 164
Hausdorff, fractional dimensions, 281
Hawkins, Thomas: Erlanger Programm,

25, 36, 145, 155; history of science
programs, 22; journal articles, 26

Hawthorne effect, 335
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Hecke, Erich, 140
Hedlund, Gustav, 360
Heegard, Paul, 157
Heine, Heinrich Eduard, 4, 214
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Hermite functions, 212
Hermitian operators, 290
Hersh, Reuben, 262, 275
Heyting, Arendt, 364n.25
Hibben, John Cries, 347, 349, 352, 358,

364n.29
Hilbert, David: Archimedean axiom, 105,

106; Cantor, 140, 142; Carnap, 83-90
passim; completeness, 105, 106; con-
servativeness, 90; consistency, 65, 90;
Euclidean geometry, 104; first-order
logic, 96-128 passim; foundations, 7,
33, 42, 48, 61, 62, 69; ideal
statements, 16; Klein, 146-72 passim;
logicism, 8, 9; nineteenth-century
mathematics, 239-55 passim; probabil-
ity theory, 225; Robinson, 177, 185;
Schroder, 34; transfinite axiom, 117;
Weyl, 357

Hilbert space, 290
Hille, Einar, 348, 349, 358, 363n.8
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223
Historia mathematica, 26, 208, 211
"Historical Background of Harmonic
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contemporary mathematics, 39; errors,
49; of interpractice transition, 309;
methodological principles, 18; new
categories, 275; past events measured,
24, 270; social factors, 23, 50; tradi-
tional, 42, 43

History and Philosophy of Logic, 26
History of Geometrical Methods

(Coolidge), 168
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Hobson, E. W., 206
Hoffmann, Banesh, 360
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Hopf, Heinz, 363n.l3
Hopf bifurcation, 281
Horkheimer, Max, 343
Horn, Jakob, 207
Hume, David, 229, 267
Hummel, J., 210
Huntington, Edward, 108, 109
Hurewicz, Witold, 360
Hurwitz, Adolf, 159-67 passim
Huxley, Aldous, 343
Huxley, T. H., 336
Huygens, Christiaan, 225, 233, 270, 271
Hypergeometric function, 203, 204, 206,

210, 213
Hypergeometric series, 204, 207, 208
Hypothetico-deductive method, 271, 272,
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(Weyl), 172
Identity, 100, 103, 104, 115, 119
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Imaginary numbers, 270, 290
Impredicativity, 62, 73, 75-77
Incompleteness, 128
Incompleteness Theorem (GOdel): Car-

nap, 87, 90, 93; first-order logic, 96,
109, 120, 126

Industrial psychology, 335
Industrial Revolution, 45, 331, 334, 341
Infinitary logic: first order, 96, 120-22;

Lewis, 112, LOwenheim, 124; Ramsey,
113; Tarski, 128; Zermelo, 126

Infinite processes, 289
"Infinite Regress and the Foundations of

Mathematics" (Lakatos), 269
Infinitesimal analysis, 242
Infinitesimalism, 37
Infinitesimals: justification through, 300;

Lakatos, 269; Robinson, 177-85, 188,
190, 194

Infinity, 142
Information Revolution, 334
Institute for Advanced Study, 47, 172,

346-60 passim
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351, 352, 358
Institute Mittag-Leffler, 25
Insurance, 225, 232, 233, 234
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Oslo, 171; Paris, 63, 64, 106
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Intuition: Brouwer, 7, 8, 255; Cartesian,
223; Cauchy, 298; Frege, 4, 5, 105;
Go'del, 12; in jurisprudence, 231;
Kant, 253, 254, 255; Klein, 165;
Pascal, 333; Peano, 296; Platonic,
294; PoincarS, 63, 64, 66, 270; ra-
tional principles underlying, 301;
Robinson, 37; Russell, 14; St.
Petersburg paradox, 40; spatial, 105;
symmetry, 290

Intuitionism: Brouwer, 140, 143, 172,
177, 188, 239; Carnap, 86; founda-
tion, 141; Frege, 12; Kronecker, 144,
177; logic, 91; philosophical options,
92, 274; von Neumann, 125
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Invariant theory, 146-73 passim, 173n.4,

263
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Jacobi, Carl Gustav Jacob, 159, 211
Jacobi polynomials, 214
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Mathematik, 124
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363n.6
Jones, Gwenthalyn, 353
Jones, Thomas, 353
Jordan, Camille, 142-59 passim
Journal of Agricultural Science, 215
Journal of Symbolic Logic Studies, 362
Justification: epistemic, 314, 315; founda-

tionalist, 4, 6, 8; nondeductive
arguments, 18

Kac, Mark, 202
Kac-Moody algebras, 280
Kansas, University of, 363n.7
Kant, Immanuel: apriorism, 323n.l9;

Carnap, 82; ends of rational inquiry,
305; foundations, 7; Frege, 12, 84, 86;
geometry, 253; intuition, 254, 255;
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point of view, 4; Poincar6, 63; quanti-
ty, 242; Robinson, 185; science and
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Karpinski, Louis, 21
Kastner, Abraham G., 20
Keisler, H. Jerome, 189, 190, 192, 195
Kelland, Philip, 262
Keller, E. F., 24
Kellogg, Vernon, 350, 351
Kelvin, Lord (William Thompson), 267
Kepler, Johannes, laws of motion, 333
Kessler, Glenn, 321n.9
Killing, Wilhelm, 145-70 passim
Kinematics, 300, 307, 308
Kitcher, Philip: foundations, 19, 49, 50;

historiography, 50, 271; institutions,
48; "Mathematical Naturalism,", 44;
methodology, 19; "naturalism,"
321n.2; rationality, 48; Whig history,
47

Kleene, Stephen, 358
Klein, Felix: Dedekind, 249; Encyklopadie

der mathematische Wissenschaften,
21; Erlanger Programm, 36, 145-76;
Fine, 347; Kummer, 248; Pfaff and
Gauss, 204; Weyl, 172

Klein bottle, 173n.7
Kleinian function, 161
Kline, Morris: automorphic functions,

161; certainty, 262; faulty
mathematical claims cited by him,
264; mistaken, 211-14; praised, 27;
proof, 270

Knebelman, Morris S., 360, 364n.27
Knowledge engineering, 329, 341
Knuth, D., 205, 206, 207
Koblitz, Ann Hibner, 25
Kochen, Simon, 195
Kochina, P. Y., 25
Kolmogorov, A., 225, 364n.25
KOrner, Stephan, 185, 186
Korteweg-De Vries equation, 282, 287
Kovalesvsky, Sophie, 25
Kreisel, Georg, 186
Kroeber, Arthur, 336
Kronecker, Leopold: Brouwer, 239; Can-

tor, 194; constructivity, 42; Dedekind,
249; Dirichlet, 241, 250; divisors, 143;
Fine, 347; geometry and mechanics,
252; Hilbert, 253; ideal numbers, 319;
intuitionism, 177; Klein, 147; misun-
derstood, 48; number theory, 35-36,
39, 243; place in history, 139-44;
Poincar6, 161; repressive, 251

Kummer, Ernst Eduard: Dirichlet, 241;
hypergeometric function, 206, 207,
210, 214; ideal numbers, 248, 249, 318

L-rules, 86, 87
Lacroix, Sylvestre-Francjois, 264, 298
Lagrange, Joseph-Louis, 182, 248, 294,

298, 302, 312
Laguerre, Edmond, 211
Lakatos, Imre: Cauchy's infinitesimal

calculus, 179-83; continuum, 37; foun-
dations, 50, 51; historiography, 43;
methodology of mathematics, 17, 18,
19; proof, 269; Proofs and Refuta-
tions, 264, 268, 274

Lambert, Johann Heinrich, 226
LaMettrie, Julien Offray de, 332
Laplace, Pierre-Simon de, 212, 226-30

passim, 337
Laugwitz, Detlef, 178
Lebesgue, Henri, 194
Lecat, Maurice, 265
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(Schroder), 103

Lefschetz, Solomon, 349, 356, 359, 360,
363n.9, 364nn.25, 27

Legendre functions, 206
Lehmer, Derrick, 360
Leibniz, Baron Gottfried Wilhelm von:

analysis, 267, 319; analytic approach
to calculus, 23; calculus, 302; Cauchy,
298; Frege, 101; insurance, 233;
Kronecker, 243; Lowenheim, 121;
Newtonians, 307, 308; Peirce, 100;
Robinson, 178-87 passim; universal
language, 102
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LePage, J., 24
Levi-Civita, Tullio, 171
1'Hospital, Guillaume, F. A., 302
Lie, Sophus, 145-71 passim
Lie algebra, 145, 157, 169, 280
Lie group, 154, 157, 171, 172, 280, 287
Limit: Bishop, 189, 190, 192; Cauchy,

298; Dedekind, 242, 243; intuitive
concept, 183; Kronecker, 250

Limitation of size, theory of, 71
Lindemann, Ferdinand, 149, 158, 166,

167
Lingua characteristica (universal

language), 69, 101, 102
Lipschitz, Rudolf, 244, 253
Lobachewsky, Nikolai Ivanovich, 148, 263
Lobachewsky Prize, 158
Locke, John, 221, 222, 229
Loewner machine, 209
Logic: emergence of modern, 317; first-

order, 95-135; Klein, 165; vs. Logos
and Logistikt, 238-59; prepositional,
97; second-order, 96-129 passim;
transfinite, 141

Logical constants, 90, 91
Logical positivism, 9
Logical Syntax of Language (Carnap), 32
Logical truth, 90, 91, 93
Logicism: applied mathematics, 221; Car-

nap, 33, 82-94 passim; Dedekind, 253;
Frege, 5, 9, 49, 89, 91, 234; neo-
Fregeanism, 12; Poincare", 31, 32, 48,
61-81; refuting Kant, 61; Russell, 8,
91, 239; Whitehead, 8

Logistike, 238-59

Logos, 238-59
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London Assurance, 234
Lorenz equation, 281
Lowenheim, Leopold, 34, 35, 99, 119-28
LOwenheim's Theorem, 104, 120-24
Lowenheim-Skolem Theorem, 12, 95,

123-28
Lucas, J. R., 338
Luxemburg, W. A. J., 178, 195

Maclauran, Colin, 298
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Maltsev, A. I., 128
Manifold, homogeneous, 150, 154
Marx, Karl, 334
Maschke, Heinrich, 172, 363n.6
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339, 362n.2
Massbestimmung (Cayley), 147
Masuda, Yoneji, 341
Materialism, 338
Materialistic biology, 336
Mathematical Analysis of Logic, The

(Boole, George), 96
Mathematical Association of America,

178
Mathematical induction, 62
Mathematical Induction, Principle of,

103-16 passim
Mathematical instrumentation, 283
Mathematical Intelligencier, 26
Mathematical logic: computer science,

284, 287; Robinson, 179-95 passim
Mathematical physics, 287
"Mathematical Problems" (Hilbert), 106
"Mathematical Proof" (Hardy), 268
"Mathematical Rigor—Who Needs It?"

(Kitcher), 270
Mathematical statistics, 287
"Mathematician, The" (von Newmann),

279
Mathematics, Science and Epistemology

(Lakatos), 179
Mathematics: The Loss of Certainty

(Kline), 264
Mathematische Annalen, 147, 149, 160
Mather, Kirtley, 336
May, Kenneth, 26
Mayer, Adolf, 154-63 passim
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McShane, E. J., 360, 364nn.25, 27
Meaning: formalism, 178, 186, 187, 253;

Frege, 9; Hilbert, 254; intuition of,
296; metamathematics, 116; nonstan-
dard analysis, 188, 189, 192; physics,
255; Quine, 10, 37; stipulative fixing,
294; truth-in-virtue-of-meaning, 90, 91

Meaningfulness, 10, 37, 85
Mechanical philosophy, 332
Mechanics, 243, 251
Mechanism, 338
Merton, Robert, 22
Merzbach, Uta, 22, 362n.2
Metalanguage: Carnap, 83, 89, 92, 93;

Frege, 34; Russell and Whitehead,
111; Wittgenstein, 85

Metamathematics: Hilbert, 65, 69, 116;
Lakatos, 179; LOwenheim, 120; New-
tonian, 300

Metaphysical Foundations of Natural
Sciences (Kant), 290

Metaphysics, 16, 17, 188, 240
Metaphysics (Aristotle), 222
Metatheory, 65, 69
Methoden zur Theorie der Ternaerien

Formen (Study), 169
Methodology of mathematics, 271, 274,

275
Metric, Laguerre-Cayley-Klein projective,

166
Meyer, W. F., 164
Michigan, University of, 21, 362n.2
Milin conjecture, 209
Mill, John Stuart, 4, 12, 228, 298, 321n.9
Minkowski, Hermann, 164, 170, 241,

242, 244
Minnesota, University of, 26
Minsky, Marvin, 331, 339
Mittag-Leffler, G., 142, 161
Mixed mathematics, 39, 40, 221-36
Mobius, Augustus Ferdinand, 145,149, 172
Modal logic, 13, 15
Model theory, 36, 187, 254
Moderne Algebra (van der Waerder), 317
Montague, R., 126
Montaigne, Michel de, 331, 332

Montel, Paul, 183, 184
Montgomery, Deane, 360
Montucla, Jean-Etienne, 223, 224, 229, 231
Moore, E. H., 172, 363n.l6
Moore, Gregory, 25-51 passim
Moore, R. L., 362n.3
Morgan, William, 235
Morrey, Charles B., 360
Morse, Marston, 356, 357, 364n.25
Mostowski, A., 128

Nagel, Ernest, 264, 270
Napier, John, 270
Narasimhan, R., 207
National Research Council, 349-62

passim, 363n.l4
Natural science: belief, 295; mathematics

and, 280-82; mixed mathematics, 224;
philosophy of, 17, 18; von Neumann,
279

Naturalism, 32, 44, 70, 293-325
Naturalistic fallacy, 274
Nature of Mathematical Knowledge, The

(Kitcher), 264, 270, 316
"Naturerkennen und Logik" (Hilbert),

254
Neo-Fregeanism, 16
Netto, Eugen E., 164
Neue Geometric des Raumes (Pllicker),

146
Neugebauer, O., 202
Neumann, Carl, 147, 156, 163
Nevanlinna, Rolf, 183, 184
Newell, Alan, 46, 331, 339
Newton, Sir Isaac: analysis, 267, 319;

calculus, 289, 299; clarity, 308;
hypergeometric series, 207; infinite
series, 302; infinitesimals, 181, 184;
intuition, 298; laws of dynamics, 229;
Leibniz, 307; limit, 183; mechanical
cause, 333; proof, 295; transitions
from, 300; world-machine, 289

Neyman, J., 29
Nieuwentijt, Bernard, 185
Noether, Emmy, 244, 245, 317
Noether, Max, 153, 154, 155, 164
Nominalism, 11-16 passim
Non-Euclidean geometry, 147, 148, 150,

263, 312
Nonstandard analysis, 177-200, 269
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Number, 243
Number systems, 194
Number theory: and computer science,

285, 287; epistemic appraisal of, 315;
foundation, 62; nineteenth-century
transformation, 240-53 passim; and set
theory, 319

Numerical methods, 287

Omega-axiom, 118
Omega-order logic, 96, 102, 119, 128
Omega-rule, 120, 126
On the Geometric Interpretation of

Binary Forms (Dedekind), 159
Ontology: Frege, 12, 247; Hilbert, 255;

Parsons, 16; Platonism, 13, 311-13
Orwell, George, 335
Osgood, W. F., 163
Ostrowski, O., 168
Over en Classe Geometriske Transforma-

tion (Lie), 149
Oxford University, 26, 354, 363n.l7

P-adic numbers, 194, 195
P-rules, 88
Fade, H., 162
Paradox: largest cardinal, 110; largest or-

dinal, 110; Richard, 71, 72, 77;
Russell, 6, 34, 109, 110, 115; set-
theoretic, 6, 7, 25, 103; Skolem, 123,
124, 126

Parallel postulate, 11
Parallel processing, 285
Paris, University of, 349, 354, 356
Paris Academic des Sciences, 231
Parsons, Charles D., 16, 68, 321n.7
Pascal, Blaise, 332, 333, 342
Pasta, John, 282
Peacock, George, 97
Peano, Guiseppe: Frege, 129n.8; length

of formulas, 100; linear language,
101; membership relation, 123; natural
numbers, 95; Peirce-Schroder tradi-
tion, 34; Poincard, 61, 65; Russell and
Whitehead, 112; second-order logic,
127; universal quantifier, 109

Peano Postulates: and first-order logic,
95, 108, 109, 119, 120; set theory, 296

Peirce, B. O., 163

Peirce, Charles Sanders: abduction, 252;
division of logic, 110; Euclidean
geometry, 262; Grand Logic, 100;
identity, 104, 111, 115; length of ex-
pressions, 127; LOwenheim, 34, 120,
121, 128; quantifier, 97-102, 103, 107,
109; Russell, 112

Peirce, J. M., 163
Perception, 222, 312
Perceptual knowledge, 314
Perrault, R., 363n.6
Peter-Weyl theory, 172
Pfaff, Johann Friedrich, 203, 204
Pfaff-Saalschiitz sum, 203
Philosophy of language, 17
Philosophy of Natural Science (Hempel),

261
Philosophy of science, 317
Physics, 221, 301, 310, 316, 319
Picard, Charles Emile, 156, 183
Plato, 238, 239, 255, 288, 290
Platonism: difficulties, 314; explanation,

221; Frege, 11; intuition, 294, 295;
mathematicians, 202; methodology,
274-75; ontological, 12, 13, 311;
philosophical option, 43; Platonic
realism, 186; progress, 312; truth, 45,
187

Playfair, John, 264
Plucker, Julius, 145-69 passim
Poincard, Henri: Cantor, 194; definition

of mathematics, 286; Erlanger Pro-
gramm, 145, 169, 170; existence, 107;
Klein, 160, 161; Kronecker, 140;
logicism, 31, 48, 49, 61-81; philosophy
of mathematics, 6; polyhedra, 268;
range of knowledge, 357

Poinsot, Louis, 228, 231
Poisson, Simeon-Denis, 227, 228, 230,

231
P61ya, George, 18, 268
Popper, Karl, 17, 18, 268
Positivism, 11, 13
"Possibilities in the Calculus of Rela-

tions, On" (LOwenheim), 121
Post, Emil Leon, 255
Post completeness, 116
Post-Weierstrassian analysis, 310
Posterior Analytics (Aristotle), 265
Prandtl, Ludwig, 165
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