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A SIMPLE THEOREM IN THE MARGIN OF A BOOK. p
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Simple, elegant, and utterly impossible to prove, Fermat’s Last f  apTER Y 7, PSR B o N
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ematicians for over three centuries. For some it became a wonderful t
passion. For others it was an obsession that led to deceit, intrigue, or
insanity. In a volume filled with the clues, red herrings, and suspense |
of a mystery novel, Dr. Amir Aczel reveals the previously untold story
of the people, the history, and the cultures that lie behind this scientif-
ic triumph.

From formulas devised for the farmers of ancient Babylonia to the dra-
matic proof of Fermat’s theorem in 1993, this extraordinary work takes
us along on an exhilarating intellectual treasure hunt. Revealing the
hidden mathematical order of the natural world in everything from
stars to sunflowers, Fermat’s Last Theorem brilliantly combines philos-
ophy and hard science with investigative journalism. The result: a real-
life detective story of the intellect, at once intriguing, thought-provok-
ing, and impossible to put down.
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PRAISE FOR AMIR D. ACZEL'S
FERMAT'S LAST THEOREM

“This is a captivating volume. . . . The brilliant backdoor
method used by Mr. Wiles as he reached his solution, along
with the debt he owed to many other contemporary mathema-
ticians, is graspable in Mr. Aczel's lucid prose. Equally impor-
tant is the sense of awe that Mr. Aczel imparts for the hidden,
mystical harmonies of numbers, and for that sense of awe
alone, his slender volume is well worth the effort.”

—The New York Times

“For more than three centuries, Fermat's Last Theorem was the
most famous unsolved problem in mathematics; here's the story
of how it was solved. . . . An excellent short history of mathe-
matics, viewed through the lens of one of its great problems—
and achievements.”

—Kirkus Reviews

“This exciting recreation of a landmark discovery reveals the
great extent to which modern mathematics is a collaborative
enterprise. . . . While avoiding technical details, Aczel maps
the strange, beautiful byways of modern mathematical thought

in ways the layperson can grasp.”
—Publishers Weekly

"Briefly chronicles the history of the famous problem of the
title, which was recently solved by a mathematician named
Andrew Wiles after he had devoted seven years to the task. . . .
Aczel does a superb job of creating in the nonmathematical

reader the illusion of comprehension.”
—The New Yorker
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Preface

In June 1993, my old friend Tom Schulte was visiting me in
Boston from California. We were sitting at a sunny sidewalk
café on Newbury Street, tall, icy drinks in front of us. Tom had
just gotten divorced, and he was ruminative. He half turned
toward me. "By the way" he said, "Fermats Last Theorem has
just been proved.” This must be a new joke, [ thought, as Tom's
attention was back on the sidewalk. Twenty years earlier, Tom
and | were roommates, both of us undergraduate students in
mathematics at the University of California at Berkeley.
Fermat's Last Theorem was something we often talked about.
We also discussed functions, and sets, and number fields, and
topology. None of the math students slept much at night, since
our assignments were so difficult. That's what distinguiched us
from students in most other areas. Sometimes we'd have math
nightmares . . . trying to prove some theorem or another before
it was due in the morning. But Fermat's Last Theorem? No one
ever believed it would be proven in our lifetime. The theorem
was so difficult, and so many people had tried to prove it for
over three hundred years, We were well aware that entire
branches of mathematics had been developed as the result of
attempts to prove the theorem. But the attempts failed, one by
one. Fermat’s Last Theorem had come to symbolize the unat-
tainable. | ance even used the theorem's perceived impossibil-
ity to my advantage. It was a few years later, also at Berkeley,
when | had already graduated in math and was getting my
Master's in operations research. An arrogant graduate student
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FERMAT'S LAST THEOREM

of thinning light hair. Born in Cambridge, his return was a very
special kind of homecoming—it was the realization of a child-
hood dream. In pursuit of this dream, Andrew Wiles had spent
the last seven years of his life a virtual prisoner in his own attic.
But he hoped that scon the sacrifice, the years of struggle and
the long hours of solitude would end. Soon he might be able to
spend more time with his wife and daughters, of whom he had
seen so little for seven years. He had often failed to show up for
lunch with his family, missed afternoon tea, barely made it to
dinner. But now the accolades would be his alone.

The Sir Isaac Newton Institute for Mathematical Sciences at
Cambridge had only recently opened by the time Professor
Wiles arrived to deliver his three hour-long lectures. The Insti-
tute is spacious, set in scenic surroundings at some distance from
the University of Cambridge. Wide areas outside the lecture
halls are furnished with plush, comfortable chairs, designed to
help facilitate the informal exchange of ideas among scholars
and scientists, and to promote learning and knowledge.

Although he knew most of the other mathematicians who
came to the specialized conference from around the world,
Wiles kept to himself. When colleagues became curious about
the length of his scheduled presentation, Wiles would only say
they should come to his lectures and find out for themselves.
Such secretiveness was unusual, even for a mathematician. While
they often work alone trying to prove theorems and are gener-
ally not known to be the worlds most gregarious people, mathe-
maticians usually share research results with each other. Mathe-
matical results are freely circulated by their authors in the form
of research preprints. These preprints bring their authors outside
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Shimura-Tanivama Conjecture. Then suddenly he added one
final line, a restatement of a centuries-old equation, one which
Ken Ribet had proved seven years earlier would be a conse-
quence of the conjecture. "And this proves Fermat's Last Theo-
rem,” he said, almost offhandedly. “I think I'll stop here.”

There was a moment of stunned silence in the room. Then
the audience 'erupted in spontaneous applause. Cameras
flashed as everyone stood up to congratulate a beaming Wiles.
Within minutes, electronic mail flashed and faxes rolled out of
machines around the world. The most celebrated mathemati-
cal problem of all time appeared to have been solved.

"“What was so unexpected was that the next day we were
deluged by the world press,” recalled Professor John Coates,
who organized the conference without having the slightest
idea that it would become the launching ground for one of the
greatest mathematical achievements, Headlines in the world's
newspapers hailed the unexpected breakthrough. "At Last,
Shout of 'Furekal’ In Age-Old Math Mystery” announced the
front page of the New York Times on June 24, 1993. The Wash-
ington Post called Wiles in a major article “The Math Dragon-
Slayer,” and news stories everywhere described the person
who apparently solved the most persistent problem in alt of
mathematics, one that had defied resolution for over 350
years. Overnight, the quiet and very private Andrew Wiles
became a household name.

Pierre de Fermat

Pierre de Fermat was a seventeenth-century French jurist who
was also an amateur mathematician. But while he was technically
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diversion from his hard work, and since he had to limit his social
life, mathematics probably offered a much-needed break. And
the ideas of calculus were far from Fermats only achievement.
Fermat brought us number theory. An important element in
number theory is the concept of a prime number.

Prime Numbers

The numbers two and three are prime numbers. The number
four is not prime because it is the product of two and two: 2
x 2 = 4. The number five is prime. The number six is not
prime since, like four, it is the product of two numbers:
2 x 3 = 6. Seven is prime, eight is not (2 x 2 x 2=8), nine is not
{3 x3=9), and ten is not (2 x 5=10). But eleven again is a prime
number since there are no integers (other than eleven itself
and one), which can be multiplied together to give us 11. And
we can continue this way: 12 is not prime, 13 is, 14 is not, 15
is not, 16 is not, 17 is prime, and so on. There is no apparent
structure here, such as every fourth number is not a prime, or
even any more complicated pattern. The concept has mysti-
fied human beings since early antiquity. Prime numbers are the
essential elements in number theory, and the lack of easily-
seen structure tends to make number theory seem un-unified as
a field, and its problems isolated, difficult to solve, and without
clear implications to other fields of mathematics. In the words
of Barry Mazur: “Number theory produces, without effort,
innumerable problems which have a sweet, innocent air about
them, tempting flowers; and yet . . . number theory swarms
with bugs, waiting to bite the tempted flower-lovers who,

once bitten, are inspired to excesses of effort!™
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All of Fermat's other theorems were either proved or disproved
by the early 1800s. This seemingly simple statement remained
unsettled, and therefore was given the name "Fermat’s Last The-
orem.” Was it indeed true? Even in our own century, computers
were stymied in attempts to verify that the theorem was true.
Computers could verify the theorem for very large numbers,
but they couldn't help for all numbers. The theorem could be
tried on billions of numbers, and there still would be infinitely
many—and infinitely many exponents—to check. To establish
Fermats Last Theorem, a mathematical proof was required.
Awards were offered in the 1800s by the French and German
scientific academies to anyone who would come up with a
proof, and every year thousands of mathematicians and ama-
teurs, along with cranks, sent “proofs” to mathematical journals
and judging committees—always coming up empty-handed.

July—August, 1993—A Fatal Flaw is Discovered

Mathematicians were cautiously optimistic when Wiles stepped
down from the podium that Wednesday in June. Finally, the
350-year-old mystery seemed to have been solved. Wiles'
lengthy prool, using complicated mathematical notions and
theories which were not known during the time of Fermat or
indeed until the twentieth century, needed to be validated by
independent experts. The proof was sent to a number of lead-
ing mathematicians. Perhaps seven years of working alone in
the seclusion of his attic had finally paid off for Wiles. But the
optimism was short-lived. Within weeks, a hole was discov-
ered in Wiles' logic. He tried to patch it, but the gap would
simply not go away. Princeton mathematician Peter Sarnak, a
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The Pytbagorean Legacy

An important aspect of Pythagorean life, with its dietary rules
and number worship and secret meetings and rituals, was the
pursuit of philosophical and mathematical studies as a moral
basis. It is believed that Pythagoras himself coined the words
philosophy: love of wisdom; and mathematics: that which is
learned. Pythagoras transformed the science of mathematics
into a liberal form of education.

Pythagoras died around 500 B.C. and left no written
records of his work. His center at Crotona was destroyed
when a rival political group, the Sybaritics, surprised the mem-
bers and murdered most of them. The rest dispersed about the
Greek world around the Mediterranean, carrying with them
their philosophy and number mysticism. Among those who
learned the philosophy of mathematics from these refugees
was Philolaos of Tarentum, who studied at the new center the
Pythagoreans established in that city. Philolaos is the first
Greek philosopher to have written down the history and theo-
ries of the Pythagorean order. It is from the book written by
Philolaos that Plato learned of the Pythagorean philosophy of
number, cosmology, and mysticism, about which he later
wrote himself. The special symbol of the Pythagorean order
was the five-pointed star embedded in a pentagon. The diago-
nals which form the five-pointed star intersect in such a way
that they form another, smaller pentagon, in a reversed direc-
tion. If the diagonals inside this smaller pentagon are drawn,
they form vet another pentagon, and so on ad infinitum. This
pentagon and five-pointed star made up of its diagonals have
some fascinating properties, which the Pythagoreans believed

24
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FERMAT'S LAST THEOREM

If the river carried away any portion of a man's lot, the king sent
persons to examine and determine by measurement the exact
extent of the loss. From this practice, [ think, geometry first came

to be known in Egypt, whence it passed into Creece.®

Ceometry is the study of shapes and figures made of circles
and straight lines and arcs and triangles and their intersections
forming various angles. It stands to reason that such science
would be essential for good surveying work. Egyptian geome-
ters were indeed called “rope stretchers,” since ropes were used
for outlining straight lines necessary both in building temples
and pyramids and in realigning boundaries between fields. But
it is possible that the origins of geometry are even more
ancient. Neolithic finds show examples of congruence and
symmetry of design, and these may have been the precursors
of Egyptian geometry, inherited centuries later by the ancient
Greeks. The same concerns that the Babylonians had with
areas of fields, leading to their need to understand square num-
bers and their relations, may have been shared by the ancient
Egyptians, who were faced with the same agrarian quandaries
as well as construction problems with their own pyramids. It is
possible, therefore, that the ancient Egyptians also had a
knowledge of Pythagorean triples. What the Greeks did with
geometry, however, was to establish it as a pure mathematical
endeavor. They postulated and proved theorems.

What is a Theorem?
The Greeks brought us the concept of a theorem. A theorem is a
mathematical statement whose proof is given. The proof of a

28
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AMIR ID. ACZEL

This is the Golden Section. It can also be obtained using a cal-
culator by repeating the operation 1/1 + 1/1 + /. . . . as
described earlier. Recall that the reciprocal {1/x) of the Golden
Section gives the same number, less 1. The Fibonacci sequence
appears everywhere in nature. Leaves on a branch grow at dis-
tances from one another that correspond to the Fibonacci
sequence. The Fibonacci numbers occur in flowers. In most
flowers, the number of petals is one of: 3, 5, 8, 13, 21, 34, 55,
or 89. Lilics have three petals, buttercups five, delphiniums
often eight, marignlds thirteen, asters twenty-one, daisies usu-
ally thirty-four or fifty-five or eighty-nine.

The Fibonacci numbers appear in sunflowers too. The little
florets that become seeds in the head of the sunflower are
arranged in two sets of spirals: one winding in a clockwise
direction and the other counter-clockwise. The number of spi-
rals in the clockwise oricntation is often thirty-four and the
counter-clockwise fifty-five. Sometimes the numbers are fifty-
five and eighty-nine, and sometimes even eighty-nine and a
hundred and forty-four. All are consecutive Fibonacci numbers
{whose ratio approaches the golden section). lan Stewart
argues in Natures Numbers that when spirals are developed, the
angles between them are 137.5 degrees, which is 360 degrees
multiplied by one minus the golden ratio, and they also give
rise to two successive Fibonacci numbers for the number of
clockwise and counter-clockwise spirals, as shown below.?
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Tartaglia revealed his method, on the condition that Cardano
keep it a secret from the rest of the world. When Cardano
later learned the same methods from another cossist, Scippi-
one del Ferro {1456-1526), he immediately assumed that
Tartaglia got his system from this person, and felt free to
reveal the secret. Cardano then published the methodology
for solving cubic equations in his 1545 book Ars Magna.
Tartaglia felt betrayed and became furious with Cardano. In
his last years, he spent much of his time vilifying his former
friend, and he succeeded in diminishing Cardano’s reputation.

The cossists were considered mathematicians of a lower
level than the ancient Greeks. Their preoccupation with
applied problems in pursuit of financial success, and their
unconstructive fights among themselves, kept them from look-
ing for beauty in mathematics and the pursuit of knowledge
for its own sake. They did not develop an abstract, general
theory of mathematics. For that, one needed to go back to the
ancient Greeks. That is exactly what happened a century later.

Renaissance Quest for Ancient Knowledge

Thirteen hundred years had passed since Diophantus. The
medieval world gave way to the Renaissance and the begin-
ning of the modern age. Out of the darkness of the Middle
Ages, Europe awoke with a thirst for knowledge. Many people
turned their interest to classical works of the ancients. What-
ever ancient books existed were translated into Latin—the lan-
guage of the educated—in this revival of the search for knowl-
edge and enlightenment. Claude Bachet, a French nobleman,
was a translator with a great interest in mathematics. He
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one would have to do is to find a triple of integers, 4, b, and c,
and a power n, greater than 2, that satisfy the relation a" + b" =
¢". No one has ever found such a set of integers. (However,
assuming that a solution exists was to be a key element in
attempts to prove the theorem later.) And by the 1990s it was
shown that no such integers exist for any # less than four mil-
lion. But that did not mean that such numbers could not be
found some day. The theorem had to be proven for all integers
and all possible powers.

Fermat himself was able to prove his Last Theorem for n=4.
He used an ingenious method he called the method of "infinite
descent.” to prove that no integers a, b, and ¢ exist satisfying a*
+ b* = ¢*. He also recognized that if a solution existed for any
power #, then it would also exist for any multiple of n. One
would therefore only have to consider prime numbers (greater
than 2) as the exponents, that is, numbers that cannot be
divided by any number other than 1 or themselves in integers.
The first few prime numbersare 1,2, 3, 5,7, 11, 13, 17... None
of these numbers can be divided by any number other than 1
or themselves and an integer result. An example of a number
that is not a prime is 6, since 6 divided by 3 gives 2—an inte-
ger. Fermat was also able to prove his theorem for #=3. Leon-
hard Euler proved the case n=3 and #n=4 independently of Fer-
mat, and Peter G. L. Dirichlet in 1828 was able to prove the
case n=5 The same case was proved by Adrien-Marie
Legendre in 1830. Gabriel Lamé, and Henri Lebesgue who
corrected him in 1840, were able to establish the case n=7.
Thus, two hundred years after Fermat wrote his famous note in
the margin of his [Diophantus, his theorem was only proven
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hard’s parents to allow him to pursue mathematics, since he
would become a great mathematician. Leonhard, however,
continued with the theology in addition to mathematics, and
religious feelings and customs would be a part of his entire life.

Mathematicial and scientific research in Europe in those days
did not take place primarily at universities, as it does today, The
universities were more devoted to teaching and did not allow
much time for other activities. Research in the eighteenth cen-
tury was primarily done at royal academies. There, the monarch
would support the leading scientists of the day in their pursuit
of knowledge. Some of the knowledge was applied, and would
help the government improve the standing of the entire nation.
Other research was more “pure,” that is, research for its own
sake—for the advancement of human knowledge The royals
supported such research generously and the scientists working
at the academies were able to lead comfortable lives.

When he finished his studies of mathematics, as well as the-
ology and Hebrew, at the University of Basel, Euler applied for
a professorship. Despite the great achievements he had already
made, he was turned down. In the meantime, his two friends
Daniel and Nicolaus were appointed as research mathemati-
cians at the royal academy in St. Petersburg, Russia. The two
stayed in touch with Leonhard and promised that, somehow,
they would get him there too. One day, the two Bernoullis
wrote an urgent letter to Euler telling him that there was an
opening in the medical section of the St. Petersburg academy.
Euler immediately put himself to work studying physiology
and medicine at Basel. Medicine was not something that inter-
ested him, but he was desperate to have a job and hoped that
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this way he could join his two friends who had such excellent
positions doing nothing but their own research in Russia.

Euler found mathematics in whatever he studied, medicine
included. Studying ear physiology led him to a mathematical
analysis of the propagation of waves. At any rate, soon an invi-
tation came from St. Petersburg, and in 1727 he joined his two
fricnds. However, on the death of Peters wife Catherine, there
was chaos at the academy since she had been the great sup-
porter of research. In the confusion, Leonhard Euler slipped out
of the medical section and somehow got his name listed with
the mathematical section, where he would rightfully belong. For
six years he kept his head low to prevent the detection of his
move, and he avoided all social interactions lest the deception
be discovered. All through this period he worked continuously,
producing volumes of top-rated mathematical work. In 1733 he
was promoted to the leading mathematical position at the acad-
emy. Apparently Euler was a person who could work anywhere,
and as his family was growing, he would often do his mathemat-
ics while holding a baby in one arm.

When Anna lvanova, Peter the Great's niece, became
empress of Russia, a period of terror began and Euler again hid
himself in his work for ten years. During this period he was
working on a difficult problem in astronomy for which a prize
was offered in Paris. A number of mathematicians requested
several months' leave from the academy to work on the prob-
lem. Euler solved it in three days. But the concentrated exer-
tion took its toll and he became blind in his right eye.

Euler moved to Germany to be at the royal academy there,
but did not get along with the Germans, who enjoyed long

47




FERMAT’'S LAST THEOREM

philosophical discussions not to his taste. Catherine the Great
of Russia invited Euler back to the St. Petersburg academy and
he was more than happy to come back. At that time, the
philosopher Denis Diderot, an atheist, was visiting Catherine's
court. The empress asked Euler to argue with Diderot about
the existence of God. Diderot, in the meantime, was told that
the famous mathematician had a proof of CGod's existence,
Euler approached Diderot and said gravely: "Sir, a « bfn = x,
hence God exists; reply!” Diderot, who knew nothing about
mathematics, gave up and immediately returned to France.

During his second stay in Russia, Euler went blind in his
second eye. He continued, however, to do mathematics with
the help of his sons, who did the writing for him. Blindness
increased his mental ability to do complicated calculations in
his head. Euler continued to do mathematics for seventeen
years and died while playing with his grandson in 1783. Much
of the mathematical notation we use today is due to Euler.
This includes the use of the letter i for the basic imaginary
number, the square root of -1. Euler loved one mathematical
formula, which he considered the most beautitul and put it
above the gates of the Academy. The formula is:

€T+ 1 =0

This formula has 1 and 0, basic to our number system; it has
the three mathematical operations: addition, multiplication,
and exponentiation; and it has the two natural numbers pi and
¢, and it has i, the basis for the imaginary numbers. It is also
visually appealing.
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Euler asked whether or not it was possible to cross all seven
bridges without passing twice on any bridge. It is impossible,
Other problems, which were studied in modern times and
were posed because of interest in the seven bridges problem,
are the various map-coloring problems. A cartographer draws
a map of the world. In this map, each country is colored differ-
ently, to distinguish it from its immediate neighbors. Any two
countries or states that are separated completely from each
other may be colored in the same exact color. The question is,
what is the minimum number of colors required so that no two
states that touch each other are in the same color? Of course,
this is a general problem, not bounded by how the map of the
world looks today. The question is really, given all possible
configurations of maps on a plane, what is the minimum num-
ber of colors that can be used? Given boundaries between
states in the former Yugoslavia or in the Middle East, with very
unusual lines between political entities, this general problem
becomes relevant in applications.

Mathematically, this is a topological problem. In October
1852, Francis Guthrie was coloring a map of England. He
wondered what would be the minimum number of colors to be
used for the counties. It occurred to him that the number
should be four. In 1879 a proof was given that the number was
indeed four, but later the proof was found to be false. Almost a
century later, in 1976, two mathematicians, Haken and Appel,
proved what had become known as the Four Color Map prob-
lem. To this day, however, their proof is considered controver-
sial since it made use of computer work, rather than pure
mathematical logic.
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But Gauss would not be tempted. Possibly he knew how
deceptive Fermat's Last Theorem really was. The great genius
in number theory may have been the only mathematician in
Europe to realize just how difficult it would be to prove. Two
weeks later, Gauss wrote to Olbers his opinion of Fermat’s Last
Theorem: “I am very much obliged for your news concerning
the Paris prize. But | confess that Fermat’s Theorem as an iso-
lated proposition has very little interest for me, because |
could easily lay down a multitude of such propositions, which
one could neither prove nor dispose of.” Ironically, Gauss
made great contributions to the branch of mathematics known
as complex analysis—an area incorporating the imaginary
numbers worked on by Euler. Imaginary numbers would have a
decisive role in twentieth-century understanding of the con-
text of Fermat's Last Theorem.

Imaginary Numbers
The complex number field is a field of numbers based on the
usual real numbers, and what are called imaginary numbers,
which were known to Euler. These numbers arose when math-
ematicians were looking to define as a number the solution of
an equation such as x2 + 1 = 0. There is no "real” solution to
this simple equation, because there is no real number which,
when squared, gives -1-—the number that when added to 1
will give the answer zero. But if we could somehow define the
square root of negative one as a number, then—while not a
real number—it would be the solution to the equation.

The number line was therefore extended to include imagi-
nary numbers. These numbers are multiples of the square root
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one to intercede on his behalf with the French General Per-
nety in Hanover.

He wrote his friend, Monsieur Leblanc, to ask if Leblanc
might contact the French General on Gauss’ behalf. When |
Sophie Germain gladly complied, it became clear who she |
was. But Gauss was thrilled, as seen from his letter, and their
correspondence continued and developed further on many
mathematical topics. Unfortunately, the two never met.
Sophie Germain died in Paris in 183, before the University of
Géttingen could award her the honorary doctorate which
Gauss had recommended she receive.

Sophie Germain had many other achievements to her credit
in addition to her contributions to the solution of Fermat's Last
Theorem. She was active in the mathematical theories of
acoustics and elasticity, and other areas in applied and pure
mathematics. In number theory, she also proved theorems on ;
which prime numbers can lead to solvable equations.

The Blazing Comet of 1811

Gauss did much important work in astronomy, determining
the orbits of planets. On August 22, 1811, he first observed a
comet barely visible in the night sky. He was able to predict
the comet’s precise trajectory toward the sun. When the comet -
became clearly visible and blazed across the sky, the supersti-
tious and oppressed peoples of Europe saw in it a sign from
heaven signifying the coming demise of Napoleon. Causs saw
in the comet a realization of the orbit he had predicted for it
to exact numerical accuracy. But the unscientific masses were
also right—the next year Napoleon was defeated and
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These letters to his friends lend support to the theory that he
was framed by the royalists. He wrote that he was challenged
by two of the royalists and that they had put him on his honor
not to tell his republican friends about the duel, “I die the vic-
tim of an infamous coquette. It is in a miserable brawl that my
life is extinguished. Oh, why die for so trivial a thing, why die
for something so despicable!” But most of that last night before
the duel, Galois carefully put down on paper his entire mathe-
matical theory, and sent it to his friend Auguste Chevalier. Al
dawn on May 30, 1832, Calois faced his challenger on a
deserted field. He was shot in the stomach and left lying in
agony alone in the field. No one bothered to call a doctor,
Finally a peasant found him and brought him to the hospital,
where he died the next morning. He was twenty years old. In
1846, the mathematician Joseph Liouville edited and pub-
lished Galois' elegant mathematical theory in a journal. Galois'
theory would supply the crucial step in the method used a cen-
tury and a half later in attacking Fermat's Last Theorem.

Another Victim

Cauchy's carelessness and arrogance ruined the life of at least one
other brilliant mathematician. Niels Henrik Abel (1802—-1829)
was the son of the pastor of the village of Findé in Norway.
When he was sixteen, a teacher encouraged Abel to read
Gauss' famous book, the Disquisitiones. Abel was even successful
in filling in some gaps in the proofs of some of the theorems.
But two years later, his father died and voung Abel had to
postpone his study of mathematics and concentrate his efforts
on supporting the family. [n spite of the great difficulties he
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town as the great master, in Brunswick, Germany. Unlike |
Gauss, however, as a child Dedekind showed no great interest
in or capacity for mathematics. He was more interested in
physics and chemistry, and saw mathematics as a servant to
the sciences. But at the age of seventeen, Dedekind entered
the same school where the great Gauss got his mathematical
training—Caroline College—and there his future changed.
Dedekind became interested in mathematics and he pursued §
that interest in Gottingen, where Gauss was teaching. In 1852,
at the age of 21, Richard Dedekind received his doctorate
from Gauss. The master found his pupils dissertation on the
calculus “completely satisfying.” This was not such a great
compliment, and in fact Dedekind’s genius had not yet begun
to manifest itself.

In 1854, Dedekind was appointed a lecturer in Géttingen.
When Causs died in 1855 and Dirichlet moved from Berlin to
take his position, Dedekind attended all of Dirichlet’s lectures at
Gottingen and edited the latter's pioneering treatise on number
theory, adding a supplement based on his own work. This sup-
plement contained an outline of the theory Dedekind devel-
oped for algebraic numbers, which are defined as solutions of
algebraic equations. They contain multiples of square roots of
numbers along with rational numbers. Algebraic number fields
are very important in the study of Fermat’s equation, as they
arise from the solution of various kinds of equations. Dedekind
thus developed a significant area within number theory.

Dedekind's greatest contribution to the modern approach
to Fermats last Theorem was his development of the theory
of ideals, abstractions of Kummer’s ideal numbers. A century
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books on mathematics. These paperbacks, read by people of all
ages, were a common sight in the cafés and the parks of Paris.

Poincaré was born to a family of great achievers. His
cousin, Raymond Poincaré, rose to be the president of France
during the First World War. Other family members held gov-
ernment and public service positions in France as well.

From a young age, Henri displayed a powerful memory. He
could recite from any page of a book he read. His absentmind-
edness, however, was legendary. A Finnish mathematician once
came all the way to Paris to meet with Poincaré and discuss
some mathematical problems. The visitor was kept waiting for
three hours outside Poincarés study while the absentminded
mathematician paced back and forth—as was his habit through-
out his working life. Finally, Poincaré popped his head into the
waiting room and exclaimed: “Sir, you are disturbing me!” upon
which the visitor summarily left, never to be seen in Paris again.

Poincaré's brilliance was recognized when he was in ele-
mentary school. But since he was such a universalist—a renais-
sance man in the making—his special aptitude for mathemat-
ics did not yet manifest itself. He distinguished himself with
his excellence in writing at an early age. A teacher who recog-
nized and encouraged his ability treasured his school papers.
At some point, however, the concerned teacher had to caution
the young genius: "Don't do so well, please...try to be more
ordinary.” The teacher had good reason to make this sugges-
tion. Apparently, French educators had learned something
from the misfortunes of Galois half a century earlier—teachers
found that gifted students often failed at the hands of unin-
spired examiners. His teacher was genuinely worried that
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very far between. So the status of Fermat's Last Theorem in
1983 was the following. The theorem was proven forn up to a
million (and in 1992 the limit was raised to 4 million). In addi-
tion, for larger », if solutions existed at all then they were very
few and decreasing with #.

The Mysterious (reek General with the Funny Name

There are dozens of excellent books on mathematics pub-
lished in France, written in French, with the author listed as
Nicolas Bourbaki. There was a Greck general named Bourbaki
{1816-1897). In 1862 Bourbaki was offered the throne of
Greece, which he declined. The gencral had an important role
in the Franco-Prussian war, and there is a statue of him in the
French city of Nancy. But General Bourbaki knew nothing
about mathematics. And he never wrote a book, about mathe-
matics or anything else. Who wrote the many volumes of
mathematics bearing his name?

The answer lies in the happy days in Paris of between the
two World Wars. Hemingway, Picasso and Matisse were not
the only people who liked to sit in cafés and meet their friends
and see people and be seen. At that time, around the same
‘cafés on the Left Bank by the University of Paris, there flour-
ished a vibrant mathematical community. Professors of mathe-
matics from the university also liked to meet their friends,
drink a café au lait or a pastis in a good brasserie on the Boule-
vard St. Michel by the beautiful Luxembourg Gardens, and
discuss . . . mathematics. Springtime in Paris inspired writers,
artists, and mathematicians. One imagines that on a sunny day
at a pleasant café a rowdy group of mathematicians congre-
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Graduate students today like to play the same games of dou-
ble meaning, and they like to tell the story of beautiful Poly
Nomial who meets the smooth operator Curly Pi (polynomial,
smooth operator, and curly pi are all mathematical terms).

And so the books these mathematicians wrote together
bore the name Nicolas Bourbaki. A Bourbaki Seminar was ini-
tiated, where mathematical ideas and theories were discussed
not infrequently. Membership in the society was supposed to
be anonvmous, and mathematical results were to be credited
to the society in the name of Bourbaki, rather than to individ-
ual members.

But the members of Bourbaki were not the Pythagoreans.
While the author of the textbooks was Nicolas Bourbaki,
research results such as theorems and their proofs—which are
far more prestigious than books—were credited to the individ-
ual mathematicians who achieved the results. One of the first
members of Bourbaki was André Weil (1906- ), who later
moved to the United States and the Institute of Advanced
Study ac Princeton. His name would never be too far away
from the important conjecture leading to the solution of the
Fermat problem.

Another of the founders of Bourbaki was the French mathe-
matician Jean Dieudonné, who like most of the other "French
only” members of the society moved on to greener pastures at
the universities in the United States. Dieudonné, who was the
principal author of many of the books bearing the collective
name of Nicolas Bourbaki, epitomizes the clash between the
Bourbakites' quest for individual anonymity and their individ-
ual egos. Dieudonné once published a paper bearing the name
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Elliptic Curves

Diophantine problems—that is, problems raised by equations -

of the torm given by Diophantus in the third century—began
to be studied more and more in the twentieth century using
mathematical entities called elliptic curves. But elliptic curves
have nothing to do with ellipses. They were originally used
centuries eatlier in connection with elliptic functions, which in
turn were devised to help calculate the perimeter of an ellipse.
As with many innovative ideas in mathematics, the pioneer in
this field was none other than Gauss,

Oddly, elliptic curves are neither ellipses nor elliptic func-
tions—they are cubic polynomials in two variables. They look
like: y2 = ax? + bx? + cx where 4, b, and ¢ are integers or rational
numbers {we are concerned with elliptic curves over the rational
numbers). Examples of such elliptic curves are shown below.!3

YWhen one looks at the rational points on the elliptic
curves—that is, one looks only at points on the curve that are
ratios of two integers {no irrational numbers such as pi or the
square root of two, etc.), these numbers form a group. That
means that they have nice properties. Take any two solutions;
they can be "added’ in a sense to produce a third solution on
the curve. Number theorists have become fascinated with the
elliptic curves since they can answer many questions about
equations and their solutions. Elliptic curves thus became one
of the foremost research tools in number theory. !4

A Strange Conjecture Is about to be Made

It was known for some time by number theory experts that
some of the elliptic curves they were studying were modular.
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petition among students was fierce: good grades meant good
jobs after graduation. This was especially true for doctoral stu-
dents in pure mathematics, since positions at universities were
scarce even though the pay was low. Yutaka Tanivama was one
such doctoral student in mathematics. He was born on
November 12, 1927, the youngest of eight children in the
family of a country doctor in the town of Kisai, about 30 miles
north of Tokyo. At a young age, Taniyama began to study the
area of mathematics involving complex multiplication of
abelian varieties. Not much was known about this field and
Tanivama had a very difficult time. To make things worse, he
found the advice of older professors at the University of
Tokyo virtually useless. He had to derive every detail on his
own and he used to describe every task in his mathematical
research using four Chinese characters that meant “hard fight-
ing” and "bitter struggle.” Nothing was easy in young Yutaka
Taniyama's life.

Taniyama lived in a one-room apartment of 81 square feet.
There was only one toilet on every floor of the building, shared
by all the residents of the floor. To take a bath, Taniyama had to
go to a public bathhouse some distance away from his building.
The shabby apartment building was named "Villa Tranquil
Mountains,” ironically so since it stood on a busy street and by a
railroad track on which trains thundered by every few minutes.
Possibly so he could concentrate better on his research, young
Yutaka worked mostly at night, often going to bed at 6 am when
the noisy day began. Except in the heat of summer, almost every
day Taniyama wore the same blue-green suit with a metallic
sheen. As he explained to his good friend Goro Shimura, his
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about zeta functions. He seemed to connect Poincarés automor-
phic functions of the complex plane with the zeta function of an
elliptic curve. It was mysterious that an elliptic curve should
somehow be connected with something in the complex plane.

“You Are Saying What.. 7"

The conjecture embodied in the four problems was nebulous.
Taniyama did not formulate the problems in a very meaningful
way, possibly because he wasn't quite sure what the connec-
tion was. But the basic idea was there. It was an intuition, a gut
feeling that the automorphic functions with their many sym-
metries on the complex plane were somehow connected with
the equations of Diophantus. It certainly wasn't obvious. He
was positing a hidden connection between two very different
branches of mathematics.

André Weil wanted to know exactly what Tantyama had in
mind. According to the written record of the conference, the
proceedings published in Japanese, the following exchange
took place between Weil and Taniyama:'6

Weil: Do you think all elliptic functions are uniformized by
modular functions?

Taniyama: Modular functions alone will not be enough. 1 think
other special types of automorphic functions are necessary.

Weil: Of course some of them can probably be handled that way.
But in the general case, they look completely different and

mysterious...

Two things are evident from the conversation. First, Taniyama
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complex half-plane, which was invariant under complicated
transformations of the plane—the ones mentioned earlier:

flz)———>flaz+blcz+d), the coefficients forming a group
with many unexpected symmetries. All of this was very com-
plex, very technical, and—as most mathematicians would
believe for several decades—impossible to prove in the fore-
seeable future.

What Shimura's conjecture was saying was that every elliptic
curve was the part of an iceberg lying above the waterline.
Below the surface lay a whole intricate structure. To prove the
conjecture, one would have to show that every tceberg had an
underwater part. Some special groups of icebergs were known
to have the underwater part, but since there were infinitely
many icebergs, one couldn't just go look under each one of
them. A general proof was necessary to show that an iceberg
couldn't exist without part of it being underwater. The formu-
lation of such a proof was considered exceedingly difficult.

Intrigue and a Betrayal

At a party at the Institute for Advanced Study at Princeton in
the early 1960s, Shimura again met jean-Pierre Serre. According
to Shimura, Serre approached him rather arrogantly. "I don't
think that your results on modular curves are any good,” he said.
"Why, they don't even apply to an arbitrary elliptic curve.” In
response, Shimura stated his conjecture exactly: "Such a curve
should always be uniformized by a modular curve."!” Serre went
to Weil, who was not at the party but was a member of the Insti-
tute and therefore in the immediate area, and told him of his
conversation with Shimura. In response, André Weil came to
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congruence du groupe modulaire; je lui repondis, il me semble,
que je n'y voyais pas d'empéchement, puisque 'un et Fautre
ensemble est dénombrable, mais je ne voyais rien non plus qui

parlat en faveur de cette hypothése.

{"Some years later, at Princeton, Shimura asked me if | found it
plausible that every elliptic curve over (Q was contained in the
jacobian of a curve defined by a congruence subgroup of a
modular group; | responded to him, it seems to me, that [ don't
see anything against it, since one set and the other are denu-
merable, but neither do | see anything that speaks in favor of
this hypothesis.”]

But even then, Weil would write "Shimura asked me” (me
demanda), rather than "Shimura told me,” when referring to the
statement that is Shimura's conjecture. Weil published some
related papers, and while he did not believe Shimura'’s theory,
his own name became associated with it. The error was per-
petuated when mathematicians made references in their
papers to the works of others, and the misquotation is present
to this day when writers ignorant of the history refer to the
Weil-Taniyama conjecture instead of the Shimura-Taniyama
conjecture. Weil seemed to enjoy his association with an
important theory which—while he himself did not believe in
it—most mathematicians thought would be proved some day
in the distant future.

With the passing decades, there was more and more reason
for the connection to exist. If and when the conjecture was
proved, it would be a substantial mathematical theory. Weil
worked around the conjecture, never leaving mathematical
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suspicious. He took it upon himself to find the truth. Lang
immediately wrote to both Weil and Shimura, then to Serre.
Shimura categorically denied that such a conversation ever
took place, and gave ample evidence for this claim. Weil did
not reply right away. And Serre, in his response, criticized
Lang’s attempt to find the truth. In his Bourbaki Seminar in June
1995, Serre still referred to the conjecture as that of “Taniyama-
Weil " leaving out the name of its originator, who trusted him
with his conjecture 30 years earlier. Weil responded after a sec-

ond attempt to contact him by Lang. His letter follows.2°

3 December 1986.
Dear Lang,
[ do not recall when and where your letter of August 9 first
reached me. When it did, | had (and still have) far more sertous
matters to think about.

[ cannot but resent strongly any suggestion that | ever sought
to diminish the credit due to Tanivama and to Shimura. I am glad
to see that you admire them. So do [

Reports of conversations held long ago are open to
misunderstandings. You choose to regard them as “history”; they
are not. At best they are anecdotes. Concerning the controversy
which vou have found fit to raise, Shimura's letters seem to me to
put an end to it, once and for all.

As to attaching names to concepts, theorems, or {2)
conjectures, | have often said: {a) that, when a proper name gets
attached to (say) a concept, this should never be taken as a sign
that the author in question had anything to do with the concept;
more often than not, the opposite is true. Pythagoras had

08


















FERMAT'S LAST THEOREM

proof. The logic was: A implies B; therefore, if B is not true,
then A can not be true either. However, the Frey statement

was, itself, a conjecture. It was a conjecture which said that if
another conjecture (Shimura-Tanivama) was true, then Fer-
mat’s Last Theorem would be established. The pair of subse-
quent conjectures in Serre’s letter to Mestre further allowed q
Ken Ribet to think about the Frey conjecture in clear terms.

Ken Ribet had never before been interested in Fermar's Last
Theorem. He had started out as a chemistry major at Brown
University. Under the influence and tutelage of Kenneth F Ire-
land, Ribet was steered to mathematics and got interested in
zeta functions, exponential sums, and number theory. He had
dismissed Fermats Last Theorem as “one of those problems
about which nothing further of real importance could be said.”
This was a view held by many mathematicians, because prob-
lemns in number theory tend to be isolated, with no unifying
scheme or underlying general principle behind them. What is
interesting about Fermat's Last Theorem, however, is that it
spans mathematical history from the dawn of civilization to
our own time. And the theorem'’s ultimate solution also spans
the breadth of mathematics, involving fields other than num-
ber theory: algebra, analysis, geometry, and topology—virtu-
ally all of mathematics.

Ribet went on to pursue a Ph.D. in mathematics at Harvard
University. There, first indirectly and toward his graduation
more directly, he fell under the influence of the great number
theorist and geometer Barry Mazur, whose vision inspired
every mathematician involved even in the smallest way in
efforts to prove Fermat's Last Theorem. Mazur’s paper on the
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child could understand it. In Wiles' own words: “It said that
you will never find numbers, x, y, and z, so that x* + y3 = 23,
No matter how hard you tried, you will never, ever find such
numbers. And it said that the same was true for x* + y* = z%,
and for x> + y° = z°, and so on... It seemed so simple. And it
said that nobody has ever found a proof of this for over three
hundred years. [ wanted 1o prove it..."

In the 1970s, Andrew Wiles went to the university. When he
finished his degree he was admitted as a research student in
mathematics to Cambridge. His adviser was Professor John
Coates. Wiles had to drop his childhood dream of proving Fer-
mats Last Theorem. Research on the problem would have
turned into such a waste of time that no graduate student could
afford it. Besides, what doctoral adviser would have accepted a
student working on such an ancient puzzle, one that had kept
the world’s brightest minds from a solution for three centuries?
In the 1970s, Fermat was not in fashion. What was “in” at the
time, the real hot topic for research in number theory, was
elliptic curves. So Andrew Wiles spent his time doing research
on elliptic curves and in an area called Iwasawa theory. He
completed his doctoral dissertation, and when he was awarded
his Ph.D_, he got a position in mathematics at Princeton Uni-
versity and meved to the United States. There, he continued
doing research on elliptic curves and Iwasawa theory.

An Old Flame Rekindled

It was a warm summer evening, and Andrew Wiles was sipping
iced tea at a friend’s house. Suddenly, in the middle of the con-
versation, his friend said: "By the way, did you hear that Ken
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Ribet just proved the Epsilon Conjecture?” The Epsilon Con-
jecture is what number theorists were informally calling Frey's
conjecture, as modified by Serre, about the connection
between Fermat’s last Theorem and the Shimura-Taniyama
Conjecture. Wiles was electrified. At that moment, he knew
that his life was changing. The childhood dream he had of
proving Fermats Last Theorem—a dream he had had to give
up to undertake more feasible research—came alive again with
incredible torce. He went home and started thinking about
how he would prove the Shimura- Taniyama conjecture,

“For the first few years,” he later confided, "I knew 1 had no
competition, since | knew that nobody—me included—had
any idea where to start” He decided o work in complete
secrecy, and in isolation. “Too many spectators would spoil the
concentration, and | discovered early on that just a mention of
Fermat immediately generates too much interest.” Of course,
gifted, able mathematicians abound, especially at a place like
Princeton, and the danger of someone completing your work
for you—and even doing it better—is very real.

Whatever the reason, Wiles locked himself up in his attic
office and went to work. He abandoned all other research pro-
jects to devote his time completely to Fermat. Wiles would use
all the power of the modern machinery of algebra, geometry,
analysis, and the other areas of mathematics. He would also
make use of the important mathematical results of his contempo-
raries, and of his historical predecessors. He would make use of
Ribets clever methods of proof, and his results; he would use the
theories of Barry Mazur, and the ideas of Shimura, Frey, Serre,
André Weil, and those of many, many other mathematicians.

118






FERMAT'S LAST THEQREM

give you another elliptic curve {we say an elliptic curve over
the rationals). Since there are infinitely many such numbers—
a and b can be any of the infinitely many numbers 1,2,3,4..., to
infinity, there are infinitely many elliptic curves. So counting
as we know it wouldn't work.

Breaking Down a Big Problem into Smaller Ones
Wiles thought he might trv to work on smaller problems, one
at a time. Maybe he could look at sets of elliptic functions and
see what he could do about them. This was a good approach
since it broke down the task so that, step by step, he could
understand each set. First of all, some elliptic curves were
already known to be modular. These were very important
results, developed by many other number theorists. But soon
Andrew Wiles realized that looking only at elliptic curves and
trying to count them off against modular forms might not be a
good approach—he was dealing with two infinite sets. In fact,
he was no closer to a solution than was the skeptical André
Weil when he said: "l see no reason against the conjecture
since one and the other of the two sets are denumerable [infi-
nite but of the order of infinity of the integers and rational
numbers, not the higher order of infinity of the irrational num-
bers and the continuum], but | don't see any reason for it,
either...” After two years of getting nowhere, Wiles tried a new
approach. He thought he might transform the elliptic curves
into Galois representations, and then count these Galois rep-
resentations against the modular forms.

The idea was an excellent one, although it was not original.
The principle behind this move is interesting. Number theorists
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groundbreaking discoveries in number theory—results that had
inspired many of the experts in the field, including Ribet and
Frey, whose work paved the way for Wiles' effort. Mazur's paper
that Wiles was now rereading was an extension of the theory of
ideals, starting with Kummer and Dedekind, and continuing
with vet a third nineteenth century mathematician—Ferdinand
Gotthold Fisenstein {1823-1852). Although he died young,
Eisenstein made great strides in number theory. Gauss, in fact, is
quoted as having said: “There have been only three epoch-mak-
ing mathematicians, Archimedes, Newton, and Eisenstein.”

Mazur's paper on the Eisenstein Ideal had one line in it that
now caught Wiles' attention. Mazur was saying that it was pos-
sible to switch from one set of elliptic curves to another. The
switch had to do with prime numbers. What Mazur was saying
was that if one was dealing with elliptic curves that were based
on the prime number three, it was possible to transform them
so that one could study them using the prime number five
instead. This 3-to-5 switch was exactly what Wiles would need.
He was stuck with not being able to prove that certain classes
of elliptic curves based on the prime number three were modu-
lar. And here Mazur was saying that he could switch them to
curves based on the prime number five. But these curves based
on five Wiles had already proved were modular. So the 3-to-5
switch was the final trick. It took the difficult elliptic curves
based on three, transformed them into base five and these were
known to be modular. Once again, some other mathematician's
brilliant idea helped Wiles overcome a seemingly insurmount-
able hurdle. Andrew Wiles was finally done.

His timing was perfect, too. In the next month, June, his
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But Andrew Wiles chose a different approach. Instead of
submitting his proof to a professional mathematics journal—as
almost anyone else would have done—he presented it at a
conference. The reason was probably twofold. Throughout
the vears of work on the proof, Wiles was obsessed with
secrecy. If he submitted the proof to a journal, the proef would
have been sent to a number of referees chosen by the journal
and one of them, or the editors, might have said something to
the world at large. Wiles probably was also worried that some-
one who read the proposed proof might somehow steal it and
send it out under his or her own name. This, unfortunately,
does happen in academia. The other reason, linked with the
first, was that Wiles wanted to maintain the buildup of sus-
pense as he presented his proof at Cambridge.

But even so, having presented the results at a conference, the
work would still have to be refereed. The steps would still have
to be peer-reviewed, that is, other experts in number theory
would have to go through Wiles' proof, line by line, to ascer-
tain that he had indeed established what he set out to prove.

The Deep Guif Materializes

Wiles' 200-page paper was sent to a number of leading experts
in number theory, Some of them quickly expressed concerns,
but generally mathematicians thought the proof was probably
correct, They would wait to hear the experts’ verdict, how-
ever. “Oh yes!” said Ken Ribet when I asked him if he believed
Wiles' proof. “I was unable to see what some people were say-
ing soon after they read the proof—namely that there was no
Euler System here.”
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By the time Katz found the error, other mathematicians
throughout the world were aware of the exact same problem
with Wiles' proof. There simply was no Euler System here, and
there was nothing doing. And without the Euler System-—sup-
posedly a generalization of the earlier work of Flach and Kely-
vagin—there was no Class Number Formula. Without the
Class Number Formula it was impossible to "count” the Galois
representations of the elliptic curves against the modular forms,
and Shimura-Taniyama was not established. And without the
Shimura-Tanivama conjecture proved as correct, there was no
proof of Fermat's Last Theorem. In short, the hole in the Euler
System made everything collapse like a house of cards.

The Agony
Andrew Wiles returned to Princeton in the fall of 1993, He
was embarrassed, he was upset, he was angry, frustrated,
humiliated. He had promised the world a proof of Fermats
Last Theorem—but he couldn't deliver. In mathematics, as in
almost any other field, there are no real "second prizes” or "also
ran” awards. The crestfallen Wiles was back in his attic trying
to fix the proof. "At this point, he was hiding a secret from the
world,” recalled Nick Katz, "and [ think he must have felt
pretty uncomfortable about it." Other colleagues had tried to
help Wiles, including his former student Richard Taylor who
was teaching at Cambridge but joined Wiles at Princeton to
help him try to fix the proof.

"The first seven years, working all alone, | enjoyed every
minute of it,” Wiles recalled, “no matter how hard or seem-
ingly impossible a hurdle | faced. But now, doing mathematics
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Wiles now used the conventional approach to the presentation
of mathematical results. Instead of doing what he had done in
Cambridge a vear and a half earlier, he sent the papers to a
professional journal, the Anwals of Mathematics, where they
could be peer-reviewed by other mathematicians. The review
process took a few months, but no flaws were found this time.
The May, 1995, issue of the journal contained Wiles' original
Cambridge paper and the correction by Taylor and Wiles. Fer-
mat's Last Theorem was finally laid to rest.

Did Fermat Possess the Proof?

Andrew Wiles described his proof as “a twentieth century
proof.”" [ndeed, Wiles used the work of many twentieth-cen-
tury mathematicians. He also used the work of earlier mathe-
maticians. All the myriad elements of Wiles' constructions
came from the work of others, many others. So the proof of
Fermat’s Last Theorem was really the achievement of a large
number of mathematicians living in the twentieth century—
and all the preceding ones to the time of Fermat himself.
According to Wiles, Fermat could not possibly have had this
proof in mind when his wrote his famous note in the margin.
This much is true, of course, because the Shimura-Taniyama
conjecture did not exist until the twentieth century. But could
Fermat have had another proof in mind?

The answer is probably not. But this is not a certainty. We
will never know. On the other hand, Fermat lived another 28
years after he wrote his theorem in the margin. And he never
said anything more about it. Possibly he knew he couldn't
prove the theorem. Or he may have erroneously thought that
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his method of infinite descent used in proving the simple case
=3 could apply to a general solution. Or maybe he simply
forgot about the theorem and went on to do other things.
Proving the theorem the way it was finally done in the 1990s
required a lot more mathematics than Fermat himself could
have known. The profound nature of the theorem is that not
only does its history span the length of human civilization, but
the final solution of the problem came about by harnessing—
and in a sense unifying—the entire breadth of mathematics. It
was this unification of seemingly disparate areas of mathemat-
ics that finally nailed the theorem. And despite the fact that
Andrew Wiles was the person who did the important final work
on the theorem by proving a form of the Shimura-Taniyama
conjecture needed to prove Fermat's theorem, the entire enter-
prise was the work of many people. And it is all their contribu-
tions, taken together, which brought about the final solution.
Without the work of Ernst Kummer there would have been no
theory of ideals, and without ideals the work of Barry Mazur
would not have existed. Without Mazur there would have been
no conjecture by Frey, and without the cructal conjecture and
its synthesis by Serre there would not have been the proof by
Ribet that the Shimura-Taniyvama conjecture would establish
Fermat’s Last Theorem. And it seems that no proof of Fermat's
Last Theorem would be possible without that conjecture put
forward by Yutaka Taniyama at Tokyo-Nikko in 1955 and then
refined and made specific by Goro Shimura. Or would it?
Fermat, of course, could not have formulated such an over-
arching conjecture that would unify two very different
branches of mathematics. Or could he have done so? Nothing
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