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Foreword to the Second Edition
By Isaac Asimov

Mathematics is a unique aspect of human thought, and its history differs
in essence from all other histories.
As time goes on, nearly every field of human endeavor is marked

by changes which can be considered as correction and/or extension. Thus,
the changes in the evolving history of political and military events are
always chaotic; there is no way to predict the rise of a Genghis Khan,
for example, or the consequences of the short-lived Mongol Empire.
Other changes are a matter of fashion and subjective opinion. The cave-
paintings of 25,000 years ago are generally considered great art, and while
art has continuously—even chaotically—changed in the subsequent
millennia, there are elements of greatness in all the fashions. Similarly,
each society considers its own ways natural and rational, and finds the
ways of other societies to be odd, laughable, or repulsive.
But only among the sciences is there true progress; only there is the

record one of continuous advance toward ever greater heights.
And yet, among most branches of science, the process of progress is

one of both correction and extension. Aristotle, one of the greatest minds
ever to contemplate physical laws, was quite wrong in his views on
falling bodies and had to be corrected by Galileo in the 1590s. Galen, the
greatest of ancient physicians, was not allowed to study human cadavers
and was quite wrong in his anatomical and physiological conclusions.
He had to be corrected by Vesalius in 1543 and Harvey in 1628. Even
Newton, the greatest of all scientists, was wrong in his view of the nature
of light, of the achromaticity of lenses, and missed the existence of

xi



spectral lines. His masterpiece, the laws of motion and the theory of
universal gravitation, had to be modified by Einstein in 1916.
Now we can see what makes mathematics unique. Only in mathe-

matics is there no significant correction—only extension. Once the
Greeks had developed the deductive method, they were correct in what
they did, correct for all time. Euclid was incomplete and his work has
been extended enormously, but it has not had to be corrected. His the-
orems are, every one of them, valid to this day.
Ptolemy may have developed an erroneous picture of the planetary

system, but the system of trigonometry he worked out to help him with
his calculations remains correct forever.
Each great mathematician adds to what came previously, but nothing

needs to be uprooted. Consequently, when we read a book like A History
of Mathematics, we get the picture of a mounting structure, ever taller and
broader and more beautiful and magnificent and with a foundation,
moreover, that is as untainted and as functional now as it was when
Thales worked out the first geometrical theorems nearly 26 centuries ago.
Nothing pertaining to humanity becomes us so well as mathematics.

There, and only there, do we touch the human mind at its peak.
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Preface to the Third Edition

During the two decades since the appearance of the second edition of
this work, there have been substantial changes in the course of mathe-
matics and the treatment of its history. Within mathematics, outstanding
results were achieved by a merging of techniques and concepts from
previously distinct areas of specialization. The history of mathematics
continued to grow quantitatively, as noted in the preface to the second
edition; but here, too, there were substantial studies that overcame the
polemics of “internal” versus “external” history and combined a fresh
approach to the mathematics of the original texts with the appropriate
linguistic, sociological, and economic tools of the historian.
In this third edition I have striven again to adhere to Boyer’s approach

to the history of mathematics. Although the revision this time includes
the entire work, changes have more to do with emphasis than original
content, the obvious exception being the inclusion of new findings since
the appearance of the first edition. For example, the reader will find
greater stress placed on the fact that we deal with such a small number of
sources from antiquity; this is one of the reasons for condensing three
previous chapters dealing with the Hellenic period into one. On the other
hand, the chapter dealing with China and India has been split, as content
demands. There is greater emphasis on the recurring interplay between
pure and applied mathematics as exemplified in chapter 14. Some
reorganization is due to an attempt to underline the impact of institu-
tional and personal transmission of ideas; this has affected most of the
pre-nineteenth-century chapters. The chapters dealing with the nineteenth
century have been altered the least, as I had made substantial changes
for some of this material in the second edition. The twentieth-century
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material has been doubled, and a new final chapter deals with recent
trends, including solutions of some longstanding problems and the effect
of computers on the nature of proofs.
It is always pleasant to acknowledge those known to us for having had

an impact on our work. I am most grateful to Shirley Surrette Duffy for
responding judiciously to numerous requests for stylistic advice, even at
times when there were more immediate priorities. Peggy Aldrich Kid-
well replied with unfailing precision to my inquiry concerning certain
photographs in the National Museum of American History. Jeanne
LaDuke cheerfully and promptly answered my appeals for help, espe-
cially in confirming sources. Judy and Paul Green may not realize that a
casual conversation last year led me to rethink some recent material. I
have derived special pleasure and knowledge from several recent pub-
lications, among them Klopfer 2009 and, in a more leisurely fashion,
Szpiro 2007. Great thanks are due to the editors and production team of
John Wiley & Sons who worked with me to make this edition possible:
Stephen Power, the senior editor, was unfailingly generous and diplo-
matic in his counsel; the editorial assistant, Ellen Wright, facilitated
my progress through the major steps of manuscript creation; the senior
production manager, Marcia Samuels, provided me with clear and
concise instructions, warnings, and examples; senior production editors
Kimberly Monroe-Hill and John Simko and the copyeditor, Patricia
Waldygo, subjected the manuscript to painstakingly meticulous scrutiny.
The professionalism of all concerned provides a special kind of
encouragement in troubled times.
I should like to pay tribute to two scholars whose influence on others

should not be forgotten. The Renaissance historian Marjorie N. Boyer
(Mrs. Carl B. Boyer) graciously and knowledgeably complimented
a young researcher at the beginning of her career on a talk presented at a
Leibniz conference in 1966. The brief conversation with a total stranger
did much to influence me in pondering the choice between mathematics
and its history.
More recently, the late historian of mathematics Wilbur Knorr set a

significant example to a generation of young scholars by refusing to
accept the notion that ancient authors had been studied definitively by
others. Setting aside the “magister dixit,” he showed us the wealth of
knowledge that emerges from seeking out the texts.

—Uta C. Merzbach
March 2010
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Preface to the Second Edition

This edition brings to a new generation and a broader spectrum of
readers a book that became a standard for its subject after its initial
appearance in 1968. The years since then have been years of renewed
interest and vigorous activity in the history of mathematics. This has
been demonstrated by the appearance of numerous new publications
dealing with topics in the field, by an increase in the number of courses
on the history of mathematics, and by a steady growth over the years in
the number of popular books devoted to the subject. Lately, growing
interest in the history of mathematics has been reflected in other bran-
ches of the popular press and in the electronic media. Boyer’s con-
tribution to the history of mathematics has left its mark on all of these
endeavors.
When one of the editors of John Wiley & Sons first approached me

concerning a revision of Boyer’s standard work, we quickly agreed that
textual modifications should be kept to a minimum and that the changes
and additions should be made to conform as much as possible to Boyer’s
original approach. Accordingly, the first twenty-two chapters have been
left virtually unchanged. The chapters dealing with the nineteenth century
have been revised; the last chapter has been expanded and split into two.
Throughout, an attempt has been made to retain a consistent approach
within the volume and to adhere to Boyer’s stated aim of giving stronger
emphasis on historical elements than is customary in similar works.
The references and general bibliography have been substantially

revised. Since this work is aimed at English-speaking readers, many of
whom are unable to utilize Boyer’s foreign-language chapter references,
these have been replaced by recent works in English. Readers are urged to
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consult the General Bibliography as well, however. Immediately fol-
lowing the chapter references at the end of the book, it contains additional
works and further bibliographic references, with less regard to language.
The introduction to that bibliography provides some overall guidance for
further pleasurable reading and for solving problems.
The initial revision, which appeared two years ago, was designed for

classroom use. The exercises found there, and in the original edition,
have been dropped in this edition, which is aimed at readers outside the
lecture room. Users of this book interested in supplementary exercises
are referred to the suggestions in the General Bibliography.
I express my gratitude to Judith V. Grabiner and Albert Lewis for

numerous helpful criticisms and suggestions. I am pleased to acknowl-
edge the fine cooperation and assistance of several members of the
Wiley editorial staff. I owe immeasurable thanks to Virginia Beets for
lending her vision at a critical stage in the preparation of this manuscript.
Finally, thanks are due to numerous colleagues and students who have
shared their thoughts about the first edition with me. I hope they will find
beneficial results in this revision.

—Uta C. Merzbach
Georgetown, Texas

March 1991
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Preface to the First Edition

Numerous histories of mathematics have appeared during this century,
many of them in the English language. Some are very recent, such as
J. F. Scott’s A History of Mathematics1; a new entry in the field,
therefore, should have characteristics not already present in the available
books. Actually, few of the histories at hand are textbooks, at least not in
the American sense of the word, and Scott’s History is not one of them.
It appeared, therefore, that there was room for a new book—one that
would meet more satisfactorily my own preferences and possibly those
of others.
The two-volume History of Mathematics by David Eugene Smith2 was

indeed written “for the purpose of supplying teachers and students with a
usable textbook on the history of elementary mathematics,” but it covers
too wide an area on too low a mathematical level for most modern
college courses, and it is lacking in problems of varied types. Florian

Cajori’s History of Mathematics3 still is a very helpful reference work;
but it is not adapted to classroom use, nor is E. T. Bell’s admirable
The Development of Mathematics.4 The most successful and app-
ropriate textbook today appears to be Howard Eves, An Introduction to
the History of Mathematics,5 which I have used with considerable
satisfaction in at least a dozen classes since it first appeared in 1953.

1London: Taylor and Francis, 1958.
2Boston: Ginn and Company, 1923�1925.
3New York: Macmillan, 1931, 2nd edition.
4New York: McGraw Hill, 1945, 2nd edition.
5New York: Holt, Rinehart and Winston, 1964, revised edition.
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I have occasionally departed from the arrangement of topics in the book
in striving toward a heightened sense of historicalmindedness and have
supplemented the material by further reference to the contributions
of the eighteenth and nineteenth centuries especially by the use of
D. J. Struik, A Concise History of Mathematics.6

The reader of this book, whether layman, student, or teacher of a
course in the history of mathematics, will find that the level of mathe-
matical background that is presupposed is approximately that of a col-
lege junior or senior, but the material can be perused profitably also by
readers with either stronger or weaker mathematical preparation. Each
chapter ends with a set of exercises that are graded roughly into three
categories. Essay questions that are intended to indicate the reader’s
ability to organize and put into his own words the material discussed in
the chapter are listed first. Then follow relatively easy exercises that
require the proofs of some of the theorems mentioned in the chapter or
their application to varied situations. Finally, there are a few starred
exercises, which are either more difficult or require specialized methods
that may not be familiar to all students or all readers. The exercises do
not in any way form part of the general exposition and can be dis-
regarded by the reader without loss of continuity.
Here and there in the text are references to footnotes, generally bib-

liographical, and following each chapter there is a list of suggested
readings. Included are some references to the vast periodical literature in
the field, for it is not too early for students at this level to be introduced
to the wealth of material available in good libraries. Smaller college
libraries may not be able to provide all of these sources, but it is well for
a student to be aware of the larger realms of scholarship beyond the
confines of his own campus. There are references also to works in for-
eign languages, despite the fact that some students, hopefully not many,
may be unable to read any of these. Besides providing important addi-
tional sources for those who have a reading knowledge of a foreign
language, the inclusion of references in other languages may help to
break down the linguistic provincialism which, ostrichlike, takes refuge
in the mistaken impression that everything worthwhile appeared in, or
has been translated into, the English language.
The present work differs from the most successful presently available

textbook in a stricter adherence to the chronological arrangement and a
stronger emphasis on historical elements. There is always the temptation
in a class in history of mathematics to assume that the fundamental
purpose of the course is to teach mathematics. A departure from math-
ematical standards is then a mortal sin, whereas an error in history is
venial. I have striven to avoid such an attitude, and the purpose of the

6New York: Dover Publications, 1967, 3rd edition.
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book is to present the history of mathematics with fidelity, not only to
mathematical structure and exactitude, but also to historical perspective
and detail. It would be folly, in a book of this scope, to expect that every
date, as well as every decimal point, is correct. It is hoped, however, that
such inadvertencies as may survive beyond the stage of page proof will
not do violence to the sense of history, broadly understood, or to a sound
view of mathematical concepts. It cannot be too strongly emphasized
that this single volume in no way purports to present the history of
mathematics in its entirety. Such an enterprise would call for the con-
certed effort of a team, similar to that which produced the fourth volume
of Cantor’s Vorlesungen iiber Geschichte der Mathematik in 1908 and
brought the story down to 1799. In a work of modest scope the author
must exercise judgment in the selection of the materials to be included,
reluctantly restraining the temptation to cite the work of every produc-
tive mathematician; it will be an exceptional reader who will not note
here what he regards as unconscionable omissions. In particular, the last
chapter attempts merely to point out a few of the salient characteristics
of the twentieth century. In the field of the history of mathematics
perhaps nothing is more to be desired than that there should appear a
latter-day Felix Klein who would complete for our century the type of
project Klein essayed for the nineteenth century, but did not live to
finish.
A published work is to some extent like an iceberg, for what is visible

constitutes only a small fraction of the whole. No book appears until the
author has lavished time on it unstintingly and unless he has received
encouragement and support from others too numerous to be named
individually. Indebtedness in my case begins with the many eager stu-
dents to whom I have taught the history of mathematics, primarily
at Brooklyn College, but also at Yeshiva University, the University
of Michigan, the University of California (Berkeley), and the University of
Kansas. At the University of Michigan, chiefly through the encourage-
ment of Professor Phillip S. Jones, and at Brooklyn College through the
assistance of Dean Walter H. Mais and Professors Samuel Borofsky and
James Singer, I have on occasion enjoyed a reduction in teaching load in
order to work on the manuscript of this book. Friends and colleagues
in the field of the history of mathematics, including Professor Dirk
J. Struik of theMassachusetts Institute ofTechnology, ProfessorKennethO.
May at the University of Toronto, Professor Howard Eves of
the University of Maine, and Professor Morris Kline at New York
University, have made many helpful suggestions in the preparation
of the book, and these have been greatly appreciated. Materials in
the books and articles of others have been expropriated freely, with little
acknowledgment beyond a cold bibliographical reference, and I take this
opportunity to express to these authors my warmest gratitude. Libraries
and publishers have been very helpful in providing information and
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illustrations needed in the text; in particular it has been a pleasure to have
worked with the staff of John Wiley & Sons. The typing of the final copy,
as well as of much of the difficult preliminary manuscript, was done
cheerfully and with painstaking care by Mrs. Hazel Stanley of Lawrence,
Kansas. Finally, I must express deep gratitude to a very understanding
wife. Dr. Marjorie N. Boyer, for her patience in tolerating disruptions
occasioned by the development of yet another book within the family.

—Carl B. Boyer
Brooklyn, New York

January 1968
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1

Traces

Did you bring me a man who cannot number his fingers?

From the Egyptian Book of the Dead

Concepts and Relationships

Contemporary mathematicians formulate statements about abstract con-
cepts that are subject to verification by proof. For centuries, mathematics
was considered to be the science of numbers, magnitudes, and forms. For
that reason, those who seek early examples of mathematical activity will
point to archaeological remnants that reflect human awareness of opera-
tions on numbers, counting, or “geometric” patterns and shapes. Even
when these vestiges reflect mathematical activity, they rarely evidence
much historical significance. Theymay be interestingwhen they show that
peoples in different parts of the world conducted certain actions dealing
with concepts that have been considered mathematical. For such an action
to assume historical significance, however, we look for relationships that
indicate this action was known to another individual or group that engaged
in a related action.Once such a connection has been established, the door is
open to more specifically historical studies, such as those dealing with
transmission, tradition, and conceptual change.
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Mathematical vestiges are often found in the domain of nonliterate
cultures, making the evaluation of their significance even more complex.
Rules of operation may exist as part of an oral tradition, often in musical
or verse form, or they may be clad in the language of magic or ritual.
Sometimes they are found in observations of animal behavior, removing
them even further from the realm of the historian. While studies of
canine arithmetic or avian geometry belong to the zoologist, of the
impact of brain lesions on number sense to the neurologist, and of
numerical healing incantations to the anthropologist, all of these studies
may prove to be useful to the historian of mathematics without being an
overt part of that history.
At first, the notions of number, magnitude, and form may have been

related to contrasts rather than likenesses—the difference between
one wolf and many, the inequality in size of a minnow and a whale, the
unlikeness of the roundness of the moon and the straightness of a pine
tree. Gradually, there may have arisen, out of the welter of chaotic
experiences, the realization that there are samenesses, and from this
awareness of similarities in number and form both science and mathe-
matics were born. The differences themselves seem to point to likenesses,
for the contrast between one wolf and many, between one sheep and a
herd, between one tree and a forest suggests that one wolf, one sheep,
and one tree have something in common—their uniqueness. In the same
way it would be noticed that certain other groups, such as pairs, can be
put into one-to-one correspondence. The hands can be matched against
the feet, the eyes, the ears, or the nostrils. This recognition of an
abstract property that certain groups hold in common, and that we call
“number,” represents a long step toward modern mathematics. It is
unlikely to have been the discovery of any one individual or any single
tribe; it was more probably a gradual awareness that may have devel-
oped as early in man’s cultural development as the use of fire, possibly
some 300,000 years ago.
That the development of the number concept was a long and gradual

process is suggested by the fact that some languages, including Greek,
have preserved in their grammar a tripartite distinction between 1 and 2
and more than 2, whereas most languages today make only the dual
distinction in “number” between singular and plural. Evidently, our very
early ancestors at first counted only to 2, and any set beyond this level
was designated as “many.” Even today, many people still count objects
by arranging them into sets of two each.
The awareness of number ultimately became sufficiently extended

and vivid so that a need was felt to express the property in some way,
presumably at first in sign language only. The fingers on a hand can be
readily used to indicate a set of two or three or four or five objects, the
number 1 generally not being recognized at first as a true “number.” By
the use of the fingers on both hands, collections containing up to ten
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elements could be represented; by combining fingers and toes, one
could count as high as 20. When the human digits were inadequate,
heaps of stones or knotted strings could be used to represent a corre-
spondence with the elements of another set. Where nonliterate peoples
used such a scheme of representation, they often piled the stones in
groups of five, for they had become familiar with quintuples through
observation of the human hand and foot. As Aristotle noted long ago, the
widespread use today of the decimal system is but the result of
the anatomical accident that most of us are born with ten fingers and
ten toes.
Groups of stones are too ephemeral for the preservation of informa-

tion; hence, prehistoric man sometimes made a number record by cutting
notches in a stick or a piece of bone. Few of these records remain today,
but in Moravia a bone from a young wolf was found that is deeply
incised with fifty-five notches. These are arranged in two series, with
twenty-five in the first and thirty in the second: within each series, the
notches are arranged in groups of five. It has been dated as being
approximately 30,000 years old. Two other prehistoric numerical arti-
facts were found in Africa: a baboon fibula having twenty-nine notches,
dated as being circa 35,000 years old, and the Ishango bone, with its
apparent examples of multiplicative entries, initially dated as approxi-
mately 8,000 years old but now estimated to be as much as 30,000 years
old as well. Such archaeological discoveries provide evidence that the
idea of number is far older than previously acknowledged.

Early Number Bases

Historically, finger counting, or the practice of counting by fives and
tens, seems to have come later than counter-casting by twos and threes,
yet the quinary and decimal systems almost invariably displaced the
binary and ternary schemes. A study of several hundred tribes among
the American Indians, for example, showed that almost one-third used
a decimal base, and about another third had adopted a quinary or a
quinary-decimal system; fewer than a third had a binary scheme, and
those using a ternary system constituted less than 1 percent of the group.
The vigesimal system, with the number 20 as a base, occurred in about
10 percent of the tribes.
An interesting example of a vigesimal system is that used by the Maya

of Yucatan and Central America. This was deciphered some time
before the rest of the Maya languages could be translated. In their
representation of time intervals between dates in their calendar, the
Maya used a place value numeration, generally with 20 as the primary
base and with 5 as an auxiliary. (See the following illustration.) Units
were represented by dots and fives by horizontal bars, so that the number
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17, for example, would appear as (that is, as 3(5)1 2). A vertical
positional arrangement was used, with the larger units of time above;
hence, the notation denoted 352 (that is, 17(20)1 12). Because the
system was primarily for counting days within a calendar that had 360
days in a year, the third position usually did not represent multiples of
(20)(20), as in a pure vigesimal system, but (18)(20). Beyond this point,
however, the base 20 again prevailed. Within this positional notation,
the Maya indicated missing positions through the use of a symbol,
which appeared in variant forms, somewhat resembling a half-open eye.

From the Dresden Codex of the Maya, displaying numbers. The second
column on the left, reading down from above, displays the numbers 9, 9,
16, 0, 0, which stand for 9 3 144,0001 9 3 7,2001 16 3 3601 01 0
5 1,366,560. In the third column are the numerals 9, 9, 9, 16, 0, representing
1,364,360. The original appears in black and red. (Taken fromMorley 1915,
p. 266.)
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In their scheme, then, the notation denoted 17(20 � 18 � 20)1
0(18 � 20)1 13(20)1 0.

Number Language and Counting

It is generally believed that the development of language was essential to
the rise of abstract mathematical thinking. Yet words expressing
numerical ideas were slow in arising. Number signs probably preceded
number words, for it is easier to cut notches in a stick than it is to
establish a well-modulated phrase to identify a number. Had the problem
of language not been so difficult, rivals to the decimal system might have
made greater headway. The base 5, for example, was one of the earliest
to leave behind some tangible written evidence, but by the time that
language became formalized, 10 had gained the upper hand. The modern
languages of today are built almost without exception around the base
10, so that the number 13, for example, is not described as 3 and 5 and 5,
but as 3 and 10. The tardiness in the development of language to cover
abstractions such as number is also seen in the fact that primitive
numerical verbal expressions invariably refer to specific concrete col-
lections—such as “two fishes” or “two clubs”—and later some such
phrase would be adopted conventionally to indicate all sets of two
objects. The tendency for language to develop from the concrete to the
abstract is seen in many of our present-day measures of length. The
height of a horse is measured in “hands,” and the words “foot” and “ell”
(or elbow) have similarly been derived from parts of the body.
The thousands of years required for man to separate out the abstract

concepts from repeated concrete situations testify to the difficulties that
must have been experienced in laying even a very primitive basis for
mathematics. Moreover, there are a great many unanswered questions
relating to the origins ofmathematics. It is usually assumed that the subject
arose in answer to practical needs, but anthropological studies suggest the
possibility of an alternative origin. It has been suggested that the art of
counting arose in connection with primitive religious ritual and that the
ordinal aspect preceded the quantitative concept. In ceremonial rites
depicting creation myths, it was necessary to call the participants onto the
scene in a specific order, and perhaps countingwas invented to take care of
this problem. If theories of the ritual origin of counting are correct, the
concept of the ordinal number may have preceded that of the cardinal
number. Moreover, such an origin would tend to point to the possibility
that counting stemmed from a unique origin, spreading subsequently to
other areas of the world. This view, although far from established, would
be in harmonywith the ritual division of the integers into odd and even, the
former being regarded as male, the latter as female. Such distinctions
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were known to civilizations in all corners of the earth, andmyths regarding
the male and female numbers have been remarkably persistent.
The concept of the whole number is one of the oldest in mathematics,

and its origin is shrouded in the mists of prehistoric antiquity. The notion
of a rational fraction, however, developed relatively late and was not in
general closely related to systems for the integers. Among nonliterate
tribes, there seems to have been virtually no need for fractions. For
quantitative needs, the practical person can choose units that are suffi-
ciently small to obviate the necessity of using fractions. Hence, there
was no orderly advance from binary to quinary to decimal fractions, and
the dominance of decimal fractions is essentially the product of the
modern age.

Spatial Relationships

Statements about the origins of mathematics, whether of arithmetic or
geometry, are of necessity hazardous, for the beginnings of the subject
are older than the art of writing. It is only during the last half-dozen
millennia, in a passage that may have spanned thousands of millennia,
that human beings have been able to put their records and thoughts into
written form. For data about the prehistoric age, we must depend on
interpretations based on the few surviving artifacts, on evidence pro-
vided by current anthropology, and on a conjectural backward extra-
polation from surviving documents. Neolithic peoples may have had
little leisure and little need for surveying, yet their drawings and designs
suggest a concern for spatial relationships that paved the way for geo-
metry. Pottery, weaving, and basketry show instances of congruence and
symmetry, which are in essence parts of elementary geometry, and they
appear on every continent. Moreover, simple sequences in design, such
as that in Fig. 1.1, suggest a sort of applied group theory, as well as

FIG. 1.1
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propositions in geometry and arithmetic. The design makes it immedi-
ately obvious that the areas of triangles are to one another as squares on a
side, or, through counting, that the sums of consecutive odd numbers,
beginning from unity, are perfect squares. For the prehistoric period
there are no documents; hence, it is impossible to trace the evolution of
mathematics from a specific design to a familiar theorem. But ideas are
like hardy spores, and sometimes the presumed origin of a concept may
be only the reappearance of a much more ancient idea that had lain
dormant.
The concern of prehistoric humans for spatial designs and relationships

may have stemmed from their aesthetic feeling and the enjoyment of
beauty of form, motives that often actuate the mathematician of today.We
would like to think that at least some of the early geometers pursued their
work for the sheer joy of doing mathematics, rather than as a practical aid
in mensuration, but there are alternative theories. One of these is that
geometry, like counting, had an origin in primitive ritualistic practice. Yet
the theory of the origin of geometry in a secularization of ritualistic
practice is by no means established. The development of geometry may
just aswell have been stimulated by the practical needs of construction and
surveying or by an aesthetic feeling for design and order.
We can make conjectures about what led people of the Stone Age to

count, to measure, and to draw. That the beginnings of mathematics are
older than the oldest civilizations is clear. To go further and categori-
cally identify a specific origin in space or time, however, is to mistake
conjecture for history. It is best to suspend judgment on this matter and
to move on to the safer ground of the history of mathematics as found in
the written documents that have come down to us.
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Ancient Egypt

Sesostris . . . made a division of the soil of Egypt among the

inhabitants. . . . If the river carried away any portion of a man’s lot, . . .

the king sent persons to examine, and determine by measurement the

exact extent of the loss. . . . From this practice, I think, geometry first

came to be known in Egypt, whence it passed into Greece.

Herodotus

The Era and the Sources

About 450 BCE, Herodotus, the inveterate Greek traveler and narrative
historian, visited Egypt. He viewed ancient monuments, interviewed
priests, and observed the majesty of the Nile and the achievements of those
working along its banks. His resulting account would become a cornerstone
for the narrative of Egypt’s ancient history. When it came to mathematics,
he held that geometry had originated in Egypt, for he believed that
the subject had arisen there from the practical need for resurveying after the
annual flooding of the river valley. A century later, the philosopherAristotle
speculated on the same subject and attributed the Egyptians’ pursuit of
geometry to the existence of a priestly leisure class. The debate, extending
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well beyond the confines of Egypt, about whether to credit progress in
mathematics to the practical men (the surveyors, or “rope-stretchers”) or to
the contemplative elements of society (the priests and the philosophers)
has continued to our times. As we shall see, the history of mathematics
displays a constant interplay between these two types of contributors.
In attempting to piece together the history of mathematics in ancient

Egypt, scholars until the nineteenth century encountered two major
obstacles. The first was the inability to read the source materials that
existed. The second was the scarcity of such materials. For more than
thirty-five centuries, inscriptions used hieroglyphic writing, with varia-
tions from purely ideographic to the smoother hieratic and eventually the
still more flowing demotic forms. After the third century CE, when they
were replaced by Coptic and eventually supplanted by Arabic, knowledge
of hieroglyphs faded. The breakthrough that enabled modern scholars
to decipher the ancient texts came early in the nineteenth century when
the French scholar Jean-François Champollion, working with multi-
lingual tablets, was able to slowly translate a number of hieroglyphs. These
studies were supplemented by those of other scholars, including the British
physicist Thomas Young, who were intrigued by the Rosetta Stone, a tri-
lingual basalt slab with inscriptions in hieroglyphic, demotic, and Greek
writings that had been found by members of Napoleon’s Egyptian expe-
dition in 1799. By 1822, Champollion was able to announce a substantive
portion of his translations in a famous letter sent to the Academy of Sci-
ences in Paris, and by the time of his death in 1832, he had published a
grammar textbook and the beginning of a dictionary.
Although these early studies of hieroglyphic texts shed some light on

Egyptian numeration, they still produced no purely mathematical mate-
rials. This situation changed in the second half of the nineteenth century.
In 1858, the Scottish antiquary Henry Rhind purchased a papyrus roll in
Luxor that is about one foot high and some eighteen feet long. Except for a
few fragments in the BrooklynMuseum, this papyrus is now in the British
Museum. It is known as the Rhind or the Ahmes Papyrus, in honor of
the scribe by whose hand it had been copied in about 1650 BCE. The scribe
tells us that the material is derived from a prototype from the Middle
Kingdom of about 2000 to 1800 BCE. Written in the hieratic script,
it became the major source of our knowledge of ancient Egyptian
mathematics. Another important papyrus, known as the Golenishchev or
Moscow Papyrus, was purchased in 1893 and is now in the Pushkin
Museum of Fine Arts in Moscow. It, too, is about eighteen feet long but is
only one-fourth aswide as theAhmes Papyrus. It waswritten less carefully
than the work of Ahmes was, by an unknown scribe of circa. 1890 BCE. It
contains twenty-five examples, mostly from practical life and not differing
greatly from those of Ahmes, except for two that will be discussed further
on. Yet another twelfth-dynasty papyrus, the Kahun, is now in London; a
Berlin papyrus is of the same period. Other, somewhat earlier, materials
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are two wooden tablets from Akhmim of about 2000 BCE and a leather roll
containing a list of fractions.Most of this material was decipheredwithin a
hundred years of Champollion’s death. There is a striking degree of
coincidence between certain aspects of the earliest known inscriptions and
the few mathematical texts of the Middle Kingdom that constitute our
known source material.

Numbers and Fractions

Once Champollion and his contemporaries could decipher inscriptions on
tombs and monuments, Egyptian hieroglyphic numeration was easily dis-
closed. The system, at least as old as the pyramids, dating some 5,000 years
ago, was based on the 10 scale. By the use of a simple iterative scheme and
of distinctive symbols for each of the first half-dozen powers of 10, numbers
greater than a million were carved on stone, wood, and other materials.
A single vertical stroke represented a unit, an inverted wicket was used for
10, a snare somewhat resembling a capital C stood for 100, a lotus flower for
1,000, a bent finger for 10,000, a tadpole for 100,000, and a kneeling figure,
apparently Heh, the god of the Unending, for 1,000,000. Through repetition
of these symbols, the number 12,345, for example, would appear as

Sometimes the smaller digits were placed on the left, and other times the
digits were arranged vertically. The symbols themselves were occasion-
ally reversed in orientation, so that the snare might be convex toward
either the right or the left.
Egyptian inscriptions indicate familiarity with large numbers at an early

date. A museum at Oxford has a royal mace more than 5,000 years old, on
which a record of 120,000 prisoners and 1,422,000 captive goats appears.
These figures may have been exaggerated, but from other considerations it
is clear that the Egyptians were commendably accurate in counting and
measuring. The construction of the Egyptian solar calendar is an out-
standing early example of observation, measurement, and counting. The
pyramids are another famous instance; they exhibit such a high degree of
precision in construction and orientation that ill-founded legends have
grown up around them.
The more cursive hieratic script used by Ahmes was suitably adapted

to the use of pen and ink on prepared papyrus leaves. Numeration
remained decimal, but the tedious repetitive principle of hieroglyphic
numeration was replaced by the introduction of ciphers or special signs
to represent digits and multiples of powers of 10. The number 4, for
example, usually was no longer represented by four vertical strokes but
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by a horizontal bar, and 7 is not written as seven strokes but as a single
cipher resembling a sickle. The hieroglyphic form for the number
28 was ; the hieratic form was simply . Note that the cipher for
the smaller digit 8 (or two 4s) appears on the left, rather than on the right.
The principle of cipherization, introduced by the Egyptians some 4,000
years ago and used in the Ahmes Papyrus, represented an important
contribution to numeration, and it is one of the factors that makes our
own system in use today the effective instrument that it is.
Egyptian hieroglyphic inscriptions have a special notation for unit

fractions—that is, fractions with unit numerators. The reciprocal of any
integer was indicated simply by placing over the notation for the integer
an elongated oval sign. The fraction 1

8 thus appeared as and 1
20 was

written as . In the hieratic notation, appearing in papyri, the elongated
oval is replaced by a dot, which is placed over the cipher for the cor-
responding integer (or over the right-hand cipher in the case of the
reciprocal of a multidigit number). In the Ahmes Papyrus, for example,
the fraction 1

8 appears as , and 1
20 is written as . Such unit fractions were

freely handled in Ahmes’s day, but the general fraction seems to have
been an enigma to the Egyptians. They felt comfortable with the fraction 2

3,
for which they had a special hieratic sign ; occasionally, they used special
signs for fractions of the form n=ðn1 1Þ, the complements of the unit
fractions. To the fraction 2

3, the Egyptians assigned a special role in arith-
metic processes, so that in finding one-third of a number, they first found
two-thirds of it and subsequently took half of the result! They knew and
used the fact that two-thirds of the unit fraction 1=p is the sum of the two
unit fractions 1=2p and 1=6p; they were also aware that double the unit
fraction 1=2p is the unit fraction 1=p. Yet it looks as though, apart from the
fraction 2

3, the Egyptians regarded the general proper rational fraction of the
form m=n not as an elementary “thing” but as part of an uncompleted
process. Where today we think of 3

5 as a single irreducible fraction,
Egyptian scribes thought of it as reducible to the sum of three unit frac-
tions, 1

3 and
1
5 and

1
15.

To facilitate the reduction of “mixed” proper fractions to the sum of
unit fractions, the Ahmes Papyrus opens with a table expressing 2=n as
a sum of unit fractions for all odd values of n from 5 to 101.
The equivalent of 2

5 is given as 1
3 and

1
15,

2
11 is written as 1

6 and
1
66, and

2
15 is

expressed as 1
10 and

1
30. The last item in the table decomposes 2

101 into
1
101 and

1
202 and

1
303 and

1
606. It is not clear why one form of decomposition was

preferred to another of the indefinitely many that are possible. This last
entry certainly exemplifies the Egyptian prepossession for halving and
taking a third; it is not at all clear to us why the decomposition
2=n5 1=n1 1=2n1 1=3n1 1=2U3Un is better than 1=n1 1=n. Perhaps
one of the objects of the 2=n decomposition was to arrive at unit frac-
tions smaller than 1=n. Certain passages indicate that the Egyptians had
some appreciation of general rules and methods above and beyond the
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specific case at hand, and this represents an important step in the
development of mathematics.

Arithmetic Operations

The 2/n table in the Ahmes Papyrus is followed by a short n/10 table for
n from 1 to 9, the fractions again being expressed in terms of the
favorites—unit fractions and the fraction 2

3. The fraction 9
10, for example,

is broken into 1
30 and 1

5 and 2
3. Ahmes had begun his work with the

assurance that it would provide a “complete and thorough study of all
things . . . and the knowledge of all secrets,” and therefore the main
portion of the material, following the 2/n and n/10 tables, consists of
eighty-four widely assorted problems. The first six of these require the
division of one or two or six or seven or eight or nine loaves of bread
among ten men, and the scribe makes use of the n/10 table that he has
just given. In the first problem, the scribe goes to considerable trouble to
show that it is correct to give to each of the ten men one tenth of a loaf!
If one man receives 1

10 of a loaf, two men will receive 2
10 or

1
5 and four men

will receive 2
5 of a loaf or 1

3 1
1
15 of a loaf. Hence, eight men will receive

2
3 1

2
15 of a loaf or 2

3 1
1
10 1

1
30 of a loaf, and eight men plus two men

will receive 2
3 1

1
5 1

1
10 1

1
30, or a whole loaf. Ahmes seems to have had

a kind of equivalent to our least common multiple, which enabled him to
complete the proof. In the division of seven loaves among ten men,
the scribe might have chosen 1

2 1
1
5 of a loaf for each, but the predilection

for 2
3 led him instead to 2

3 and
1
30 of a loaf for each.

The fundamental arithmetic operation in Egypt was addition, and our
operations of multiplication and division were performed in Ahmes’s
day through successive doubling, or “duplation.” Our own word “mul-
tiplication,” or manifold, is, in fact, suggestive of the Egyptian process.
A multiplication of, say, 69 by 19 would be performed by adding 69 to
itself to obtain 138, then adding this to itself to reach 276, applying
duplation again to get 552, and once more to obtain 1104, which is, of
course, 16 times 69. Inasmuch as 195 161 21 1, the result of multi-
plying 69 by 19 is 11041 1381 69, that is, 1311. Occasionally, a
multiplication by 10 was also used, for this was a natural concomitant of
the decimal hieroglyphic notation. Multiplication of combinations of
unit fractions was also a part of Egyptian arithmetic. Problem 13 in the
Ahmes Papyrus, for example, asks for the product of 1

16 1
1
112 and

11 1
2 1

1
4; the result is correctly found to be 1

8. For division, the duplation
process is reversed, and the divisor, instead of the multiplicand, is suc-
cessively doubled. That the Egyptians had developed a high degree of
artistry in applying the duplation process and the unit fraction concept is
apparent from the calculations in the problems of Ahmes. Problem 70
calls for the quotient when 100 is divided by 71 1

2 1
1
4 1

1
8; the result,
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121 2
3 1

1
42 1

1
126, is obtained as follows. Doubling the divisor succes-

sively, we first obtain 151 1
2 1

1
4, then 311 1

2, and finally 63, which is 8
times the divisor. Moreover, 2

3 of the divisor is known to be 51 1
4. Hence,

the divisor when multiplied by 81 41 2
3 will total 99

3
4, which is

1
4 short of

the product 100 that is desired. Here a clever adjustment was made.
Inasmuch as 8 times the divisor is 63, it follows that the divisor when
multiplied by 2

63 will produce
1
4. From the 2/n table, one knows that 2

63 is
1
42 1

1
126; hence, the desired quotient is 121 2

3 1
1
42 1

1
126. Incidentally, this

procedure makes use of a commutative principle in multiplication, with
which the Egyptians evidently were familiar.
Many of Ahmes’s problems show knowledge of manipulations of

proportions equivalent to the “rule of three.” Problem 72 calls for the
number of loaves of bread of “strength” 45, which are equivalent to 100
loaves of “strength” 10, and the solution is given as 100 / 103 45, or 450
loaves. In bread and beer problems, the “strength,” or pesu, is the
reciprocal of the grain density, being the quotient of the number of
loaves or units of volume divided by the amount of grain. Bread and beer
problems are numerous in the Ahmes Papyrus. Problem 63, for example,
requires the division of 700 loaves of bread among four recipients if the
amounts they are to receive are in the continued proportion 2

3 :
1
2 :

1
3 :

1
4. The

solution is found by taking the ratio of 700 to the sum of the fractions in
the proportion. In this case, the quotient of 700 divided by 13

4 is found by
multiplying 700 by the reciprocal of the divisor, which is 1

2 1
1
14. The

result is 400; by taking 2
3 and

1
2 and

1
3 and

1
4 of this, the required shares of

bread are found.

‘‘Heap’’ Problems

The Egyptian problems so far described are best classified as arithmetic,
but there are others that fall into a class to which the term “algebraic” is
appropriately applied. These do not concern specific concrete objects,
such as bread and beer, nor do they call for operations on known
numbers. Instead, they require the equivalent of solutions of linear
equations of the form x1 ax5 b or x1 ax1 bx5 c, where a and b and c
are known and x is unknown. The unknown is referred to as “aha,” or
heap. Problem 24, for instance, calls for the value of heap if heap and 1

7 of
heap is 19. The solution given by Ahmes is not that of modern textbooks
but is characteristic of a procedure now known as the “method of false
position,” or the “rule of false.” A specific value, most likely a false one,
is assumed for heap, and the operations indicated on the left-hand side of
the equality sign are performed on this assumed number. The result
of these operations is then compared with the result desired, and by the
use of proportions the correct answer is found. In problem 24, the ten-
tative value of the unknown is taken as 7, so that x1 1

7x is 8, instead of
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the desired answer, which was 19. Inasmuch as 8ð21 1
4 1

1
8Þ5 19, one

must multiply 7 by 21 1
4 1

1
8 to obtain the correct heap; Ahmes found the

answer to be 161 1
2 1

1
8. Ahmes then “checked” his result by showing

that if to 161 1
2 1

1
8 one adds 1

7 of this (which is 21 1
4 1

1
8), one does

indeed obtain 19. Here we see another significant step in the develop-
ment of mathematics, for the check is a simple instance of a proof.
Although the method of false position was generally used by Ahmes,
there is one problem (Problem 30) in which x1 2

3 x1
1
2 x1

1
7 x5 37 is

solved by factoring the left-hand side of the equation and dividing 37 by
11 2

3 1
1
2 1

1
7; the result being 161 1

56 1
1
679 1

1
776:

Many of the “aha” calculations in the Rhind (Ahmes) Papyrus appear
to be practice exercises for young students. Although a large proportion
of them are of a practical nature, in some places the scribe seemed to
have had puzzles or mathematical recreations in mind. Thus, Problem 79
cites only “seven houses, 49 cats, 343 mice, 2401 ears of spelt, 16807
hekats.” It is presumed that the scribe was dealing with a problem,
perhaps quite well known, where in each of seven houses there are seven
cats, each of which eats seven mice, each of which would have eaten
seven ears of grain, each of which would have produced seven measures
of grain. The problem evidently called not for the practical answer,
which would be the number of measures of grain that were saved, but for
the impractical sum of the numbers of houses, cats, mice, ears of spelt,
and measures of grain. This bit of fun in the Ahmes Papyrus seems to be
a forerunner of our familiar nursery rhyme:

As I was going to St. Ives,
I met a man with seven wives;
Every wife had seven sacks,
Every sack had seven cats,
Every cat had seven kits,
Kits, cats, sacks, and wives,
How many were going to St. Ives?

Geometric Problems

It is often said that the ancient Egyptians were familiar with the
Pythagorean theorem, but there is no hint of this in the papyri that have
come down to us. There are nevertheless some geometric problems in
the Ahmes Papyrus. Problem 51 of Ahmes shows that the area of an
isosceles triangle was found by taking half of what we would call the
base and multiplying this by the altitude. Ahmes justified his method of
finding the area by suggesting that the isosceles triangle can be thought
of as two right triangles, one of which can be shifted in position, so that
together the two triangles form a rectangle. The isosceles trapezoid is
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similarly handled in Problem 52, in which the larger base of a trapezoid
is 6, the smaller base is 4, and the distance between them is 20. Taking
1
2 of the sum of the bases, “so as to make a rectangle,” Ahmes multiplied
this by 20 to find the area. In transformations such as these, in which
isosceles triangles and trapezoids are converted into rectangles, we may
see the beginnings of a theory of congruence and the idea of proof in
geometry, but there is no evidence that the Egyptians carried such work
further. Instead, their geometry lacks a clear-cut distinction between
relationships that are exact and those that are only approximations.
A surviving deed from Edfu, dating from a period some 1,500 years

after Ahmes, gives examples of triangles, trapezoids, rectangles, and
more general quadrilaterals. The rule for finding the area of the general
quadrilateral is to take the product of the arithmetic means of the
opposite sides. Inaccurate though the rule is, the author of the deed
deduced from it a corollary—that the area of a triangle is half of the sum
of two sides multiplied by half of the third side. This is a striking
instance of the search for relationships among geometric figures, as well
as an early use of the zero concept as a replacement for a magnitude in
geometry.
The Egyptian rule for finding the area of a circle has long been

regarded as one of the outstanding achievements of the time. In Problem
50, the scribe Ahmes assumed that the area of a circular field with a
diameter of 9 units is the same as the area of a square with a side of 8
units. If we compare this assumption with the modern formula A5πr2,
we find the Egyptian rule to be equivalent to giving π a value of about 3 1

6,
a commendably close approximation, but here again we miss any hint
that Ahmes was aware that the areas of his circle and square were not
exactly equal. It is possible that Problem 48 gives a hint to the way in
which the Egyptians were led to their area of the circle. In this problem,
the scribe formed an octagon from a square having sides of 9 units by
trisecting the sides and cutting off the four corner isosceles triangles,
each having an area of 4 1

2 units. The area of the octagon, which does not
differ greatly from that of a circle inscribed within the square, is 63 units,
which is not far removed from the area of a square with 8 units on a side.
That the number 4(8/9)2 did indeed play a role comparable to our con-
stant π seems to be confirmed by the Egyptian rule for the circumference
of a circle, according to which the ratio of the area of a circle to the
circumference is the same as the ratio of the area of the circumscribed
square to its perimeter. This observation represents a geometric rela-
tionship of far greater precision and mathematical significance than the
relatively good approximation for π.
Degree of accuracy in approximation is not a good measure of either

mathematical or architectural achievement, and we should not over-
emphasize this aspect of Egyptian work. Recognition by the Egyptians
of interrelationships among geometric figures, on the other hand, has too
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often been overlooked, and yet it is here that they came closest in atti-
tude to their successors, the Greeks. No theorem or formal proof is
known in Egyptian mathematics, but some of the geometric comparisons
made in the Nile Valley, such as those on the perimeters and the areas of
circles and squares, are among the first exact statements in history
concerning curvilinear figures.
The value of 22

7 is often used today for π; but we must recall that
Ahmes’s value for π is about 3 1

6, not 3
1
7. That Ahmes’s value was also

used by other Egyptians is confirmed in a papyrus roll from the twelfth
dynasty (the Kahun Papyrus), in which the volume of a cylinder is found
by multiplying the height by the area of the base, the base being
determined according to Ahmes’s rule.

Associated with Problem 14 in the Moscow Papyrus is a figure that
looks like an isosceles trapezoid (see Fig. 2.1), but the calculations
associated with it indicate that a frustum of a square pyramid is intended.
Above and below the figure are signs for 2 and 4, respectively, and
within the figure are the hieratic symbols for 6 and 56. The directions

Reproduction (top) of a portion of the Moscow Papyrus, showing the problem of the
volume of a frustum of a square pyramid, together with hieroglyphic transcription
(below)
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alongside make it clear that the problem calls for the volume of a
frustum of a square pyramid 6 units high if the edges of the upper and
lower bases are 2 and 4 units, respectively. The scribe directs one to
square the numbers 2 and 4 and to add to the sum of these squares the
product of 2 and 4, the result being 28. This result is then multiplied by a
third of 6, and the scribe concludes with the words “See, it is 56; you
have found it correctly.” That is, the volume of the frustum has been
calculated in accordance with the modern formula V5 h(a21 ab1 b2) / 3,
where h is the altitude and a and b are the sides of the square bases.
Nowhere is this formula written out, but in substance it evidently was
known to the Egyptians. If, as in the deed from Edfu, one takes b5 0,
the formula reduces to the familiar formula, one-third the base times the
altitude, for the volume of a pyramid.
How these results were arrived at by the Egyptians is not known. An

empirical origin for the rule on the volume of a pyramid seems to be a
possibility, but not for the volume of the frustum. For the latter, a theo-
retical basis seems more likely, and it has been suggested that the
Egyptians may have proceeded here as they did in the cases of the iso-
sceles triangle and the isosceles trapezoid—they may mentally have
broken the frustum into parallelepipeds, prisms, and pyramids. On
replacing the pyramids and the prisms by equal rectangular blocks, a
plausible grouping of the blocks leads to the Egyptian formula. One could,
for example, have begun with a pyramid having a square base and with the
vertex directly over one of the base vertices. An obvious decomposition of
the frustum would be to break it into four parts as in Fig. 2.2—a rectan-
gular parallelepiped having a volume b2h, two triangular prisms, each
with a volume of b(a2 b)h / 2, and a pyramid of volume (a2 b)2h / 3. The
prisms can be combined into a rectangular parallelepiped with dimensions
b and a2 b and h; and the pyramid can be thought of as a rectangular
parallelepiped with dimensions a2 b and a2 b and h / 3. On cutting up
the tallest parallelepipeds so that all altitudes are h / 3, one can easily
arrange the slabs so as to form three layers, each of altitude h / 3, and
having cross-sectional areas of a2 and ab and b2, respectively.

2

4

6

56

FIG. 2.1
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Problem 10 in the Moscow Papyrus presents a more difficult question
of interpretation than does Problem 14. Here the scribe asks for the surface
area of what looks like a basket with a diameter of 4 1

2. He proceeds as
though he were using the equivalent of a formula S5 ð12 1

9Þ2ð2xÞUx;
where x is 4 1

2, obtaining an answer of 32 units. Inasmuch as ð12 1
9Þ2 is the

Egyptian approximation of π/4, the answer 32 would correspond to the
surface of a hemisphere of diameter 4 1

2, and this was the interpretation
given to the problem in 1930. Such a result, antedating the oldest known
calculation of a hemispherical surface by some 1,500 years, would have
been amazing, and it seems, in fact, to have been too good to be true. Later
analysis indicates that the “basket” may have been a roof—somewhat like
that of a Quonset hut in the shape of a half-cylinder of diameter 4 1

2 and
length 4 1

2. The calculation in this case calls for nothing beyond knowledge
of the length of a semicircle, and the obscurity of the text makes it
admissible to offer still more primitive interpretations, including the
possibility that the calculation is only a rough estimate of the area of a
domelike barn roof. In any case, we seem to have here an early estimation
of a curvilinear surface area.

Slope Problems

In the construction of the pyramids, it had been essential to maintain a
uniform slope for the faces, and it may have been this concern that led
the Egyptians to introduce a concept equivalent to the cotangent of an
angle. In modern technology, it is customary to measure the steepness of
a straight line through the ratio of the “rise” to the “run.” In Egypt, it was

FIG. 2.2
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customary to use the reciprocal of this ratio. There, the word “seqt”
meant the horizontal departure of an oblique line from the vertical
axis for every unit change in the height. The seqt thus corresponded,
except for the units of measurement, to the batter used today by archi-
tects to describe the inward slope of a masonry wall or pier. The vertical
unit of length was the cubit, but in measuring the horizontal distance,
the unit used was the “hand,” of which there were seven in a cubit.
Hence, the seqt of the face of a pyramid was the ratio of run to rise, the
former measured in hands, the latter in cubits.
In Problem 56 of the Ahmes Papyrus, one is asked to find the seqt of a

pyramid that is 250 ells or cubits high and has a square base 360 ells on
a side. The scribe first divided 360 by 2 and then divided the result by
250, obtaining 1

2 1
1
5 1

1
50 in ells. Multiplying the result by 7, he gave the

seqt as 5 1
25 in hands per ell. In other pyramid problems in the Ahmes

Papyrus, the seqt turns out to be 5 1
4, agreeing somewhat better with that

of the great Cheops Pyramid, 440 ells wide and 280 high, the seqt being
5 1

2 hands per ell.

Arithmetic Pragmatism

The knowledge indicated in extant Egyptian papyri is mostly of a
practical nature, and calculation was the chief element in the questions.
Where some theoretical elements appear to enter, the purpose may have
been to facilitate technique. Even the once-vaunted Egyptian geometry
turns out to have been mainly a branch of applied arithmetic. Where
elementary congruence relations enter, the motive seems to be to pro-
vide mensurational devices. The rules of calculation concern specific
concrete cases only. The Ahmes and Moscow papyri, our two chief
sources of information, may have been only manuals intended for stu-
dents, but they nevertheless indicate the direction and tendencies in
Egyptian mathematical instruction. Further evidence provided by
inscriptions on monuments, fragments of other mathematical papyri, and
documents from related scientific fields serves to confirm the general
impression. It is true that our two chief mathematical papyri are from a
relatively early period, a thousand years before the rise of Greek
mathematics, but Egyptian mathematics seems to have remained
remarkably uniform throughout its long history. It was at all stages built
around the operation of addition, a disadvantage that gave to Egyptian
computation a peculiar primitivity, combined with occasionally aston-
ishing complexity.
The fertile Nile Valley has been described as the world’s largest oasis

in the world’s largest desert. Watered by one of the most gentlemanly of
rivers and geographically shielded to a great extent from foreign
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invasion, it was a haven for peace-loving people who pursued, to a large
extent, a calm and unchallenged way of life. Love of the beneficent gods,
respect for tradition, and preoccupation with death and the needs of the
dead all encouraged a high degree of stagnation. Geometry may have been
a gift of the Nile, as Herodotus believed, but the available evidence sug-
gests that Egyptians used the gift but did little to expand it. The mathe-
matics ofAhmeswas that of his ancestors and of his descendants. Formore
progressive mathematical achievements, one must look to the more tur-
bulent river valley known as Mesopotamia.
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3

Mesopotamia

How much is one god beyond the other god?

An Old Babylonian astronomical text

The Era and the Sources

The fourth millennium before our era was a period of remarkable cultural
development, bringing with it the use of writing, the wheel, and metals. As in
Egypt during the first dynasty, which began toward the end of this extra-
ordinary millennium, so also in the Mesopotamian Valley there was at the
time a high order of civilization. There the Sumerians had built homes and
temples decorated with artistic pottery and mosaics in geometric patterns.
Powerful rulers united the local principalities into an empire that completed
vast public works, such as a system of canals to irrigate the land and control
flooding between the Tigris and Euphrates rivers, where the overflow of
the rivers was not predictable, as was the inundation of the Nile Valley. The
cuneiform pattern of writing that the Sumerians had developed during
the fourth millennium probably antedates the Egyptian hieroglyphic system.
The Mesopotamian civilizations of antiquity are often referred to as

Babylonian, although such a designation is not strictly correct. The city of
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Babylon was not at first, nor was it always at later periods, the center
of the culture associated with the two rivers, but convention has sanctioned
the informal use of the name “Babylonian” for the region during the interval
from about 2000 to roughly 600 BCE.When in 538 BCE Babylon fell to Cyrus
of Persia, the city was spared, but the Babylonian Empire had come to an
end. “Babylonian” mathematics, however, continued through the Seleucid
period in Syria almost to the dawn of Christianity.
Then, as today, the Land of the Two Rivers was open to invasions from

many directions, making the Fertile Crescent a battlefield with frequently
changinghegemony.One of themost significant of the invasionswas that by
the Semitic Akkadians under Sargon I (ca. 2276 2221 BCE), or Sargon the
Great. He established an empire that extended from the Persian Gulf in
the south to the Black Sea in the north, and from the steppes of Persia
in the east to theMediterranean Sea in the west. Under Sargon, the invaders
began a gradual absorption of the indigenous Sumerian culture, including
the cuneiform script. Later invasions and revolts brought various racial
strains—Ammorites, Kassites, Elamites, Hittites, Assyrians, Medes,
Persians, and others—to political power at one time or another in the valley,
but there remained in the area a sufficiently high degree of cultural unity to
justify referring to the civilization simply as Mesopotamian. In particular,
the use of cuneiform script formed a strong bond.
Laws, tax accounts, stories, school lessons, personal letters—these and

manyother recordswere impressedon soft clay tabletswith styluses, and the
tablets were then baked in the hot sun or in ovens. Such written documents
were far less vulnerable to the ravages of time than were Egyptian papyri;
hence, a much larger body of evidence aboutMesopotamianmathematics is
available today thanexists about theNilotic system.Fromone locality alone,
the site of ancient Nippur, we have some 50,000 tablets. The university
libraries at Columbia, Pennsylvania, and Yale, among others, have large
collections of ancient tablets from Mesopotamia, some of them mathema-
tical. Despite the availability of documents, however, it was the Egyptian
hieroglyphic, rather than the Babylonian cuneiform, that was first deci-
phered inmodern times. The German philologist F.W.Grotefend hadmade
some progress in the reading of Babylonian script early in the nineteenth
century, but only during the second quarter of the twentieth century did
substantial accounts of Mesopotamian mathematics begin to appear in
histories of antiquity.

CuneiformWriting

The early use of writing in Mesopotamia is attested to by hundreds of
clay tablets found in Uruk and dating from about 5,000 years ago. By
this time, picture writing had reached the point where conventionalized
stylized forms were used for many things: for water, for eye, and
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combinations of these to indicate weeping. Gradually, the number of
signs became smaller, so that of some 2,000 Sumerian signs originally
used, only a third remained by the time of the Akkadian conquest. Pri-
mitive drawings gave way to combinations of wedges: water became
and eye . At first, the scribe wrote from top to bottom in columns
from right to left; later, for convenience, the table was rotated coun-
terclockwise through 90�, and the scribe wrote from left to right in
horizontal rows from top to bottom. The stylus, which formerly had been
a triangular prism, was replaced by a right circular cylinder—or, rather,
two cylinders of unequal radius. During the earlier days of the Sumerian
civilization, the end of the stylus was pressed into the clay vertically to
represent 10 units and obliquely to represent a unit, using the smaller
stylus; similarly, an oblique impression with the larger stylus indicated
60 units and a vertical impression indicated 3,600 units. Combinations of
these were used to represent intermediate numbers.

Numbers and Fractions: Sexagesimals

As the Akkadians adopted the Sumerian form of writing, lexicons were
compiled giving equivalents in the two tongues, and forms of words and
numerals became less varied. Thousands of tablets from about the time of
the Hammurabi dynasty (ca. 1800 1600 BCE) illustrate a number system
that had become well established. The decimal system, common to most
civilizations, both ancient and modern, had been submerged in Mesopota-
mia under a notation that made fundamental the base 60. Much has been
written about the motives behind this change; it has been suggested that
astronomical considerations may have been instrumental or that the sex-
agesimal scheme might have been the natural combination of two earlier
schemes, one decimal and the other using the base 6. It appears more
likely, however, that the base 60 was consciously adopted and legalized
in the interests of metrology, for a magnitude of 60 units can be sub-
divided easily into halves, thirds, fourths, fifths, sixths, tenths, twelfths,
fifteenths, twentieths, and thirtieths, thus affording ten possible sub-
divisions. Whatever the origin, the sexagesimal system of numeration
has enjoyed a remarkably long life, for remnants survive, unfortunately
for consistency, even to this day in units of time and angle measure,
despite the fundamentally decimal form of mathematics in our society.

Positional Numeration

Babylonian cuneiform numeration, for smaller whole numbers, pro-
ceeded along the same lines as did the Egyptian hieroglyphic, with
repetitions of the symbols for units and tens. Where the Egyptian
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architect, carving on stone, might write 59 as , the Mesopotamian
scribe could similarly represent the same number on a clay tablet
through fourteen wedge-shaped marks—five broad sideways wedges or
“angle-brackets,” each representing 10 units, and nine thin vertical
wedges, each standing for a unit, all juxtaposed in a neat group as .
Beyond the number 59, however, the Egyptian and Babylonian systems
differed markedly. Perhaps it was the inflexibility of the Mesopotamian
writing materials, possibly it was a flash of imaginative insight that
made the Babylonians realize that their two symbols for units and tens
sufficed for the representation of any integer, however large, without
excessive repetitiveness. This was made possible through their invention,
some 4,000 years ago, of the positional notation—the same principle
that accounts for the effectiveness of our present numeral forms. That
is, the ancient Babylonians saw that their symbols could be assigned
values that depend on their relative positions in the representation of a
number. Our number 222 makes use of the same cipher three times, but
with a different meaning each time. Once it represents two units, the
second time it means two 10s, and finally it stands for two 100s (that is,
twice the square of the base 10). In a precisely analogous way, the
Babylonians made multiple use of such a symbol as . When they wrote

, clearly separating the three groups of two wedges each, they
understood the right-hand group to mean two units, the next group to
mean twice their base, 60, and the left-hand group to signify twice the
square of their base. This numeral, therefore, denoted 2(60)21 2(60)1 2
(or 7,322 in our notation).
A wealth of primary material exists concerning Mesopotamian

mathematics, but, oddly enough, most of it comes from two periods
widely separated in time. There is an abundance of tablets from the first
few hundred years of the second millennium BCE (the Old Babylonian
age), and many tablets have also been found dating from the last few
centuries of the first millennium BCE (the Seleucid period). Most of the
important contributions to mathematics will be found to go back to
the earlier period, but one contribution is not in evidence until almost
300 BCE. The Babylonians seem at first to have had no clear way in
which to indicate an “empty” position—that is, they did not have a zero
symbol, although they sometimes left a space where a zero was intended.
This meant that their forms for the numbers 122 and 7,202 looked very
much alike, for might mean either 2(60)1 2 or 2(60)21 2. Context
in many cases could be relied on to relieve some of the ambiguity, but
the lack of a zero symbol, such as enables us to distinguish at a glance
between 22 and 202, must have been quite inconvenient.
By about the time of the conquest by Alexander the Great, however, a

special sign, consisting of two small wedges placed obliquely, was
invented to serve as a placeholder where a numeral was missing. From
that time on, as long as cuneiform was used, the number , or
2(60)21 0(60)1 2, was readily distinguishable from , or 2(60)1 2.
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The Babylonian zero symbol apparently did not end all ambiguity, for
the sign seems to have been used for intermediate empty positions only.
There are no extant tablets in which the zero sign appears in a terminal
position. This means that the Babylonians in antiquity never achieved an
absolute positional system. Position was only relative; hence, the symbol

could represent 2(60)1 2 or 2(60)21 2(60) or 2(60)31 2(60)2 or any
one of indefinitely many other numbers in which two successive posi-
tions are involved.

Sexagesimal Fractions

Had Mesopotamian mathematics, like that of the Nile Valley, been based
on the addition of integers and unit fractions, the invention of the
positional notation would not have been greatly significant at the time. It
is not much more difficult to write 98,765 in hieroglyphic notation than
in cuneiform, and the latter is definitely more difficult to write than the
same number in hieratic script. The secret of the superiority of Baby-
lonian mathematics over that of the Egyptians lies in the fact that those
who lived “between the two rivers” took the most felicitous step of
extending the principle of position to cover fractions as well as whole
numbers. That is, the notation was used not only for 2(60)1 2, but
also for 21 2(60) 1 or for 2(60) 11 2(60) 2 or for other fractional forms
involving two successive positions. This meant that the Babylonians had
at their command the computational power that the modern decimal
fractional notation affords us today. For the Babylonian scholar, as for
the modern engineer, the addition or the multiplication of 23.45 and
9.876 was essentially no more difficult than was the addition or the
multiplication of the whole numbers 2,345 and 9,876, and the Meso-
potamians were quick to exploit this important discovery.

Approximations

An Old Babylonian tablet from the Yale Collection (No. 7289) includes
the calculation of the square root of 2 to three sexagesimal places, the
answer being written . In modern characters, this number can
be appropriately written as 1;24,51,10, where a semicolon is used to
separate the integral and fractional parts, and a comma is used as a
separatrix for the sexagesimal positions. This form will generally be used
throughout this chapter to designate numbers in sexagesimal notation.
Translating this notation into decimal form, we have 11 24(60) 11 51
(60) 21 10(60) 3. This Babylonian value for 2

p
is equal to approximately

1.414222, differing by about 0.000008 from the true value. Accuracy in
approximations was relatively easy for the Babylonians to achieve with
their fractional notation, which was rarely equaled until the time of the
Renaissance.
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The effectiveness of Babylonian computation did not result from their
system of numeration alone. Mesopotamian mathematicians were skillful
in developing algorithmic procedures, among which was a square-root
process often ascribed to later men. It is sometimes attributed to the Greek
scholar Archytas (428 365 BCE) or to Heron of Alexandria (ca. 100 CE);
occasionally, one finds it called Newton’s algorithm. This Babylonian
procedure is as simple as it is effective. Let x5 a

p
be the root desired,

and let a1 be a first approximation to this root; let a second approximation
be found from the equation b15 a / a1. If a1 is too small, then b1 is too
large, and vice versa. Hence, the arithmetic mean a2 5

1
2ða1 1 b1Þ is a

plausible next approximation. Inasmuch as a2 is always too large, the next
approximation, b25 a / a2, will be too small, and one takes the arithmetic
mean a3 5

1
2ða2 1 b2Þ to obtain a still better result; the procedure can be

continued indefinitely. The value of 2
p

on Yale Tablet 7289 will be found
to be that of a3, where a15 1;30. In the Babylonian square-root algorithm,
one finds an iterative procedure that could have put the mathematicians of
the time in touch with infinite processes, but scholars of that era did not
pursue the implications of such problems.
The algorithm just described is equivalent to a two-term approxima-

tion to the binomial series, a case with which the Babylonians were
familiar. If a2 1 b

p
is desired, the approximation a15 a leads to

b15 (a21 b) / a and a25 (a11 b1) / 25 a1 b / (2a), which is in agree-
ment with the first two terms in the expansion of (a21 b)1 /2 and provides
an approximation found in Old Babylonian texts.

Tables

A substantial proportion of the cuneiform tablets that have been unearthed
are “table texts,” including multiplication tables, tables of reciprocals, and
tables of squares and cubes and of square and cube roots written, of
course, in cuneiform sexagesimals. One of these, for example, carries the
equivalents of the entries shown in the following table:

2 30

3 20

4 15

5 12

6 10

8 7; 30
9 6; 40
10 6

12 5

The product of elements in the same line is in all cases 60, the Baby-
lonian number base, and the table apparently was thought of as a table
of reciprocals. The sixth line, for example, denotes that the reciprocal of
8 is 7 / 601 30 / (60)2. It will be noted that the reciprocals of 7 and 11 are
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missing from the table, because the reciprocals of such “irregular”
numbers are nonterminating sexagesimals, just as in our decimal system
the reciprocals of 3, 6, 7, and 9 are infinite when expanded decimally.
Again, the Babylonians were faced with the problem of infinity, but they
did not consider it systematically. At one point, however, a Mesopota-
mian scribe seems to give upper and lower bounds for the reciprocal of
the irregular number 7, placing it between 0;8,34,16,59 and 0;8,34,18.
It is clear that the fundamental arithmetic operations were handled by

the Babylonians in a manner not unlike that which would be employed
today, and with comparable facility. Division was not carried out by the
clumsy duplication method of the Egyptians, but through an easy mul-
tiplication of the dividend by the reciprocal of the divisor, using the
appropriate items in the table texts. Just as today the quotient of 34
divided by 5 is easily found by multiplying 34 by 2 and shifting the
decimal point, so in antiquity the same division problem was carried out
by finding the product of 34 by 12 and shifting one sexagesimal place to
obtain 648

60. Tables of reciprocals in general furnished reciprocals only of
“regular” integers—that is, those that can be written as products of twos,
threes, and fives—although there are a few exceptions. One table text
includes the approximations 1

59 5 ;1,1,1 and 1
61 5 ;0,59,0,59. Here we have

sexagesimal analogues of our decimal expressions 1
9 5 :111 and

1
11 5 :0909, unit fractions in which the denominator is one more or one
less than the base, but it appears again that the Babylonians did not
notice, or at least did not regard as significant, the infinite periodic
expansions in this connection.
One finds among the Old Babylonian tablets some table texts con-

taining successive powers of a given number, analogous to our modern
tables of logarithms or, more properly speaking, of antilogarithms.
Exponential (or logarithmic) tables have been found in which the first
ten powers are listed for the bases 9 and 16 and 1,40 and 3,45 (all perfect
squares). The question raised in a problem text asking to what power a
certain number must be raised in order to yield a given number is
equivalent to our question “What is the logarithm of the given number in
a system with a certain number as base?” The chief differences between
the ancient tables and our own, apart from matters of language and
notation, are that no single number was systematically used as a base in
various connections and that the gaps between entries in the ancient
tables are far larger than in our tables. Then, too, their “logarithm tables”
were not used for general purposes of calculation, but rather to solve
certain very specific questions.
Despite the large gaps in their exponential tables, Babylonian math-

ematicians did not hesitate to interpolate by proportional parts to
approximate intermediate values. Linear interpolation seems to have
been a commonplace procedure in ancient Mesopotamia, and the posi-
tional notation lent itself conveniently to the rule of three. A clear
instance of the practical use of interpolation within exponential tables is
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seen in a problem text that asks how long it will take money to double at
20 percent annually; the answer given is 3;47,13,20. It seems to be quite
clear that the scribe used linear interpolation between the values for
(1;12)3 and (1;12)4, following the compound interest formula a5
P(11 r)n, where r is 20 percent, or 12

60, and reading values from an
exponential table with powers of 1;12.

Equations

One table for which the Babylonians found considerable use is a tabu-
lation of the values of n31 n2 for integral values of n, a table essential in
Babylonian algebra; this subject reached a considerably higher level
in Mesopotamia than in Egypt. Many problem texts from the Old Baby-
lonian period show that the solution of the complete three-term quadratic
equation afforded the Babylonians no serious difficulty, for flexible
algebraic operations had been developed. They could transpose terms
in an equation by adding equals to equals, and they could multiply
both sides by like quantities to remove fractions or to eliminate fac-
tors. By adding 4ab to (a2 b)2 they could obtain (a1 b)2, for they
were familiar with many simple forms of factoring. They did not use
letters for unknown quantities, for the alphabet had not yet been
invented, but words such as “length,” “breadth,” “area,” and “volume”
served effectively in this capacity. That these words may well have
been used in a very abstract sense is suggested by the fact that the
Babylonians had no qualms about adding a “length” to an “area” or an
“area” to a “volume.”
Egyptian algebra had been much concerned with linear equations,

but the Babylonians evidently found these too elementary for much
attention. In one problem, the weight x of a stone is called for if
ðx1 x / 7Þ1 1

11ðx1 x / 7Þ is one mina; the answer is simply given as 48;7,30
gin, where 60 gin make a mina. In another problem in an Old Babylonian
text, we find two simultaneous linear equations in two unknown quantities,
called respectively the “first silver ring” and the “second silver ring.” If
we call these x and y in our notation, the equations are x / 71 y / 115 1 and
6x / 75 l0y / 11. The answer is expressed laconically in terms of the rule

x

7
5

11

71 11
1

1

72
and

y

11
5

7

71 11
2

1

72
:

In another pair of equations, part of the method of solution is included in
the text. Here 1

4 width1 length5 7 hands, and length1width5 10 hands.
The solution is first found by replacing each “hand” with 5 “fingers” and
then noticing that a width of 20 fingers and a length of 30 fingers will
satisfy both equations. Following this, however, the solution is found by
an alternative method equivalent to an elimination through combination.
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Expressing all dimensions in terms of hands, and letting the length and the
width be x and y, respectively, the equations become y1 4x5 28 and
x1 y5 10. Subtracting the second equation from the first, one has the
result 3x5 18; hence, x5 6 hands, or 30 fingers, and y5 20 fingers.

Quadratic Equations

The solution of a three-term quadratic equation seems to have exceeded
by far the algebraic capabilities of the Egyptians, but Otto Neugebauer in
1930 disclosed that such equations had been handled effectively by the
Babylonians in some of the oldest problem texts. For instance, one
problem calls for the side of a square if the area less the side is 14,30.
The solution of this problem, equivalent to solving x22 x5 870, is
expressed as follows:

Take half of 1, which is 0;30, and multiply 0;30 by 0;30, which is 0;15;

add this to 14,30 to get l4,30;15. This is the square of 29;30. Now add

0;30 to 29;30, and the result is 30, the side of the square.

The Babylonian solution is, of course, exactly equivalent to the for-
mula x5 ðp=2Þ2 1 q

p
1 p=2 for a root of the equation x22 px5 q,

which is the quadratic formula that is familiar to high school students of
today. In another text, the equation 1x21 7x5 6;15 was reduced by the
Babylonians to the standard type x21 px5 q by first multiplying through
by 11 to obtain (11x)21 7(11x)5 1,8;45. This is a quadratic in normal
form in the unknown quantity y5 11x, and the solution for y is easily
obtained by the familiar rule y5 ðp=2Þ2 1 q

p
2 p=2, from which the

value of x is then determined. This solution is remarkable as an instance
of the use of algebraic transformations.
Until modern times, there was no thought of solving a quadratic

equation of the form x21 px1 q5 0, where p and q are positive, for the
equation has no positive root. Consequently, quadratic equations in
ancient and medieval times—and even in the early modern period—
were classified under three types:

1. x2 1 px5 q
2. x2 5 px1 q
3. x2 1 q5 px

All three types are found in Old Babylonian texts of some 4,000 years ago.
The first two types are illustrated by the problems given previously; the
third type appears frequently in problem texts, where it is treated as
equivalent to the simultaneous system x1 y5 p, xy5 q. So numerous are
problems in which one is asked to find two numbers when given their
product and either their sum or their difference that these seem to
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have constituted for the ancients, both Babylonian and Greek, a sort
of “normal form” to which quadratics were reduced. Then, by trans-
forming the simultaneous equations xy5 a and x 6 y5 b into the pair of
linear equations x6 y5 b and x7 y5 b2 7 4a

p
; the values of x and y are

found through an addition and a subtraction. A Yale cuneiform tablet, for
example, asks for the solution of the system x1 y5 6;30 and xy5 7;30.
The instructions of the scribe are essentially as follows. First find

x1 y

2
5 3;15

and then find
x1 y

2

� �2

5 10;33;45:

Then, x1 y

2

� �2

2 xy5 3;3;45

and

x1 y

2

� �2

2 xy

s
5 1;45:

Hence,
x1 y

2

� �
1

x2 y

2

� �
5 3;151 1;45

and
x1 y

2

� �
2

x2 y

2

� �
5 3;152 1;45:

From the last two equations, it is obvious that x5 5 and y5 11
2. Because the

quantities x and y enter symmetrically in the given conditional equations, it
is possible to interpret the values of x and y as the two roots of the quadratic
equation x21 7;305 6;30x. Another Babylonian text calls for a number that
when added to its reciprocal becomes 2;0,0,33,20. This leads to a quadratic
of type 3, and again we have two solutions, 1;0,45 and 0;59,15,33,20.

Cubic Equations

The Babylonian reduction of a quadratic equation of the form
ax21 bx5 c to the normal form y21 by5 ac through the substitution
y5 ax shows the extraordinary degree of flexibility in Mesopotamian
algebra. There is no record in Egypt of the solution of a cubic equation,
but among the Babylonians there are many instances of this.
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Pure cubics, such as x35 0;7,30, were solved by direct reference to
tables of cubes and cube roots, where the solution x5 0;30 was read off.
Linear interpolation within the tables was used to find approximations
for values not listed in the tables. Mixed cubics in the standard form
x31 x25 a were solved similarly by reference to the available tables,
which listed values of the combination n31 n2 for integral values of
n from 1 to 30. With the help of these tables, they easily read off
that the solution, for example, of x31 x25 4,12 is equal to 6. For still
more general cases of equations of the third degree, such as
144x31 12x25 21, the Babylonians used their method of substitution.
Multiplying both sides by 12 and using y5 12x, the equation becomes
y31 y25 4,12, fromwhich y is found to be equal to 6, hence x is just 12 or 0;30.
Cubics of the form ax31 bx25 c are reducible to the Babylonian normal
form by multiplying through by a2 / b3 to obtain (ax / b)31 (ax / b)25
ca2 / b3, a cubic of standard type in the unknown quantity ax / b. Reading off
from the tables the value of this unknown quantity, the value of x is deter-
mined. Whether the Babylonians were able to reduce the general four-
term cubic, ax31 bx21 ex5 d, to their normal form is not known. It is
not too unlikely that they could reduce it, as is indicated by the fact that a
solution of a quadratic suffices to carry the four-term equation to the
three-term form px31 qx25 r, from which, as we have seen, the normal
form is readily obtained. There is, however, no evidence now available to
suggest that the Mesopotamian mathematicians actually carried out such
a reduction of the general cubic equation.
With modern symbolism, it is a simple matter to see that (ax)31 (ax)25 b

is essentially the same type of equation as y31 y25 b, but to recognize this
without our notation is an achievement of far greater significance for the
development of mathematics than even the vaunted positional principle in
arithmetic that we owe to the same civilization. Babylonian algebra had
reached such an extraordinary level of abstraction that the equations
ax41 bx25 c and ax81 bx45 c were recognized as nothing worse than
quadratic equations in disguise—that is, quadratics in x2 and x4.

Measurements: Pythagorean Triads

The algebraic achievements of the Babylonians are admirable, but the
motives behind this work are not easy to understand. It has commonly been
supposed that virtually all pre-Hellenic science and mathematics were
purely utilitarian, but what sort of real-life situation in ancient Babylon
could possibly lead to problems involving the sum of a number and its
reciprocal or a difference between an area and a length? If utility was the
motive, then the cult of immediacy was less strong than it is now, for direct
connections between purpose and practice in Babylonian mathematics are
far from apparent. That there may well have been toleration for, if not
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encouragement of,mathematics for its ownsake is suggestedbya tablet (No.
322) in the Plimpton Collection at Columbia University. The tablet dates
from the Old Babylonian period (ca. 1900 1600 BCE), and the tabulations it
contains could easily be interpreted as a record of business accounts. Ana-
lysis, however, shows that it has deepmathematical significance in the theory
of numbers and that it was perhaps related to a kind of proto-trigonometry.
Plimpton 322 was part of a larger tablet, as is illustrated by the break along
the left-hand edge, and the remaining portion contains four columns of
numbers arranged in fifteen horizontal rows. The right-hand column contains
the digits from 1 to 15, and, evidently, its purpose was simply to identify in
order the items in the other three columns, arranged as follows:

1,59,0,15 1,59 2,49 1

1,56,56,58,14,50,6,15 56,7 1,20,25 2

1,55,7,41,15,33,45 1,16,41 1,50,49 3

1,53,10,29,32,52,16 3,31,49 5,9,1 4

1,48,54,1,40 1,5 1,37 5

1,47,6,41,40 5,19 8,1 6

1,43,11,56,28,26,40 38,11 59,1 7

1,41,33,59,3,45 13,19 20,49 8

1,38,33,36,36 8,1 12,49 9

1,35,10,2,28,27,24,26,40 1,22,41 2,16,1 10

1,33,45 45,0 1,15,0 11

1,29,21,54,2,15 27,59 48,49 12

1,27,0,3,45 2,41 4,49 13

1,25,48,51,35,6,40 29,31 53,49 14

1,23,13,46,40 56 1,46 15

The tablet is not in such excellent condition that all of the numbers can
still be read, but the clearly discernible pattern of construction in the table
made it possible to determine from the context the few items that were
missing because of small fractures. To understand what the entries in
the table probably meant to the Babylonians, consider the right triangle
ABC (Fig. 3.1). If the numbers in the second and third columns (from left
to right) are thought of as the sides a and c, respectively, of the right
triangle, then the first, or left-hand, column contains in each case the
square of the ratio of c to b. The left-hand column, therefore, is a short
table of values of sec2 A, but we must not assume that the Babylonians
were familiar with our secant concept. Neither the Egyptians nor the
Babylonians introduced a measure of angles in the modern sense.
Nevertheless, the rows of numbers in Plimpton 322 are not arranged in
haphazard fashion, as a superficial glance might imply. If the first comma
in column one (on the left) is replaced by a semicolon, it is obvious that
the numbers in this column decrease steadily from top to bottom. More-
over, the first number is quite close to sec2 45�, and the last number in the
column is approximately sec2 31�, with the intervening numbers close to
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the values of sec2A as A decreases by degrees from 45� to 31�. This
arrangement obviously is not the result of chance alone. Not only was the
arrangement carefully thought out, but the dimensions of the triangle were
also derived according to a rule. Those who constructed the table evi-
dently began with two regular sexagesimal integers, which we shall call
p and q, with p. q, and then formed the triple of numbers p22 q2 and
2pq and p21 q2. The three integers thus obtained are easily seen to form a
Pythagorean triple, in which the square of the largest is equal to the sum of
the squares of the other two. Hence, these numbers can be used as the
dimensions of the right triangle ABC, with a5 p22 q2 and b5 2pq and
c5 p21 q2. Restricting themselves to values of p less than 60 and to
corresponding values of q such that 1, p=q, 11 2

p
, that is, to right

triangles for which a, b, the Babylonians presumably found that there
were just 38 possible pairs of values of p and q satisfying the conditions,
and for these they apparently formed the 38 corresponding Pythagorean
triples. Only the first 15, arranged in descending order for the ratio
( p21 q2) / 2pq, are included in the table on the tablet, but it is likely that
the scribe had intended to continue the table on the other side of the tablet.
It has also been suggested that the portion of Plimpton 322 that has broken
off from the left side contained four additional columns, in which were
tabulated the values of p and q and 2pq and what we should now call
tan2A.
The Plimpton Tablet 322 might give the impression that it is an

exercise in the theory of numbers, but it is likely that this aspect of the
subject was merely ancillary to the problem of measuring the areas of
squares on the sides of a right triangle. The Babylonians disliked
working with the reciprocals of irregular numbers, for these could not be
expressed exactly in finite sexagesimal fractions. Hence, they were
interested in values of p and q that should give them regular integers
for the sides of right triangles of varying shapes, from the isosceles right

A

B

ac

b C

FIG. 3.1
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triangle down to one with a small value for the ratio a / b. For example,
the numbers in the first row are found by starting with p5 12 and q5 5,
with the corresponding values a5 119 and b5 120 and c5 169.
The values of a and c are precisely those in the second and third
positions from the left in the first row on the Plimpton tablet; the ratio
c2 / b25 28561 / 14400 is the number 1;59,0,15 that appears in the first
position in this row. The same relationship is found in the other fourteen
rows; the Babylonians carried out the work so accurately that the ratio
c2/b2 in the tenth row is expressed as a fraction with eight sexagesimal
places, equivalent to about fourteen decimal places in our notation.
So much of Babylonian mathematics is bound up with tables of

reciprocals that it is not surprising to find that the items in Plimpton 322
are related to reciprocal relationships. If a5 1, then 15 (c1 b)(c2 b),
so that c1 b and c2 b are reciprocals. If one starts with c1 b5 n, where
n is any regular sexagesimal, then c2 b5 l / n; hence, a5 1 and
b5 1

2ðn2 1=nÞ and c5 1
2ðn1 1=nÞ are a Pythagorean fraction triple,

which can easily be converted to a Pythagorean integer triple by mul-
tiplying each of the three by 2n. All triples in the Plimpton tablet are
easily calculated by this device.
The account of Babylonian algebra that we have given is representa-

tive of their work, but it is not intended to be exhaustive. There are in the
Babylonian tablets many other things, although none so striking as those

Plimpton 322
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in the Plimpton Tablet 322; as in this case, many are still open to
multiple interpretations. For instance, in one tablet the geometric pro-
gression 11 21 221?1 29 is summed, and in another the sum of the
series of squares 121 221 321?1 102 is found. One wonders whether
the Babylonians knew the general formulas for the sum of a geometric
progression and the sum of the first n perfect squares. It is quite possible
that they did, and it has been conjectured that they were aware that the
sum of the first n perfect cubes is equal to the square of the sum of
the first n integers. Nevertheless, it must be borne in mind that tablets
from Mesopotamia resemble Egyptian papyri in that only specific cases
are given, with no general formulations.

Polygonal Areas

It used to be held that the Babylonians were better in algebra than were the
Egyptians, but that they had contributed less to geometry. The first half of
this statement is clearly substantiated by what we have learned in previous
paragraphs; attempts to bolster the second half of the comparison generally
are limited to the measure of the circle or to the volume of the frustum of
a pyramid. In the Mesopotamian Valley, the area of a circle was generally
found by taking three times the square of the radius, and in accuracy this
falls considerably below the Egyptian measure. Yet the counting of deci-
mal places in the approximations for π is scarcely an appropriate measure
of the geometric stature of a civilization, and a twentieth-century discovery
has effectively nullified even this weak argument.
In 1936, a group of mathematical tablets was unearthed at Susa, a

couple of hundred miles from Babylon, and these include significant
geometric results. True to the Mesopotamian penchant for making tables
and lists, one tablet in the Susa group compares the areas and the squares
of the sides of the regular polygons of three, four, five, six, and seven
sides. The ratio of the area of the pentagon, for example, to the square on
the side of the pentagon is given as 1;40, a value that is correct to two
significant figures. For the hexagon and the heptagon, the ratios
are expressed as 2;37,30 and 3;41, respectively. In the same tablet, the
scribe gives 0;57,36 as the ratio of the perimeter of the regular hexagon
to the circumference of the circumscribed circle, and from this, we can
readily conclude that the Babylonian scribe had adopted 3;7,30, or 3 1

8, as
an approximation for π. This is at least as good as the value adopted
in Egypt. Moreover, we see it in a more sophisticated context than in
Egypt, for the tablet from Susa is a good example of the systematic
comparison of geometric figures. One is almost tempted to see in it the
genuine origin of geometry, but it is important to note that it was not so
much the geometric context that interested the Babylonians as the
numerical approximations that they used in mensuration. Geometry for
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them was not a mathematical discipline in our sense, but a sort of applied
algebra or arithmetic in which numbers are attached to figures.
There is some disagreement as to whether the Babylonians were

familiar with the concept of similar figures, although this appears to be
likely. The similarity of all circles seems to have been taken for granted in
Mesopotamia, as it had been in Egypt, and the many problems on triangle
measure in cuneiform tablets seem to imply a concept of similarity. A
tablet in the Baghdad Museum has a right triangle ABC (Fig. 3.2) with
sides a5 60 and b5 45 and c5 75, and it is subdivided into four smaller
right triangles, ACD, CDE, DEF, and EFB. The areas of these four tri-
angles are then given as 8,6 and 5,11;2,24 and 3,19;3,56,9,36 and
5,53;53,39,50,24, respectively. From these values, the scribe computed the
length of AD as 27, apparently using a sort of “similarity formula”
equivalent to our theorem that areas of similar figures are to each other as
squares on corresponding sides. The lengths of CD and BD are found to be
36 and 48, respectively, and through an application of the “similarity
formula” to triangles BCD and DCE, the length of CE is found to be
21;36. The text breaks off in the middle of the calculation of DE.

Geometry as Applied Arithmetic

Measurement was the keynote of algebraic geometry in the Mesopota-
mian Valley, but a major flaw, as in Egyptian geometry, was that the
distinction between exact and approximate measures was not made clear.
The area of a quadrilateral was found by taking the product of the
arithmetic means of the pairs of opposite sides, with no warning that
this is in most cases only a crude approximation. Again, the volume of
a frustum of a cone or a pyramid was sometimes found by taking the
arithmetic mean of the upper and lower bases and multiplying by
the height; sometimes, for a frustum of a square pyramid with areas a2

and b2 for the lower and upper bases, the formula

V 5
a1 b

2

� �2

h

A
D

B
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FIG. 3.2
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was applied. For the latter, however, the Babylonians also used a rule
equivalent to

V 5 h
a1 b

2

� �2

1
1

3

a2 b

2

� �2� �
;

a formula that is correct and reduces to the one used by the Egyptians.
It is not known whether Egyptian and Babylonian results were always

independently discovered, but in any case, the latter were definitely more
extensive than the former, in both geometry and algebra. The Pytha-
gorean theorem, for example, does not appear in any form in surviving
documents from Egypt, but tablets even from the Old Babylonian period
show that in Mesopotamia the theorem was widely used. A cuneiform
text from the Yale Collection, for example, contains a diagram of a
square and its diagonals in which the number 30 is written along one side
and the numbers 42;25,35 and 1;24,51,10 appear along a diagonal. The
last number obviously is the ratio of the lengths of the diagonal and a
side, and this is so accurately expressed that it agrees with 2

p
to within

about a millionth. The accuracy of the result was made possible by
knowledge of the Pythagorean theorem. Sometimes, in less precise
computations, the Babylonians used 1;25 as a rough-and-ready approx-
imation to this ratio. Of more significance than the precision of the values,
however, is the implication that the diagonal of any square could be found
by multiplying the side by 2

p
. Thus, there seems to have been some

awareness of general principles, despite the fact that these are exclusively
expressed in special cases.
Babylonian recognition of the Pythagorean theorem was by no means

limited to the case of a right isosceles triangle. In one Old Babylonian
problem text, a ladder or a beam of length 0;30 stands against a wall; the
question is, how far will the lower end move out from the wall if
the upper end slips down a distance of 0;6 units? The answer is correctly
found by use of the Pythagorean theorem. Fifteen hundred years later,
similar problems, some with new twists, were still being solved in
the Mesopotamian Valley. A Seleucid tablet, for example, proposes the
following problem. A reed stands against a wall. If the top slides down 3
units when the lower end slides away 9 units, how long is the reed? The
answer is given correctly as 15 units.
Ancient cuneiform problem texts provide a wealth of exercises in what

we might call geometry, but which the Babylonians probably thought of
as applied arithmetic. A typical inheritance problem calls for the parti-
tion of a right-triangular property among six brothers. The area is given
as 11,22,30 and one of the sides is 6,30; the dividing lines are to be
equidistant and parallel to the other side of the triangle. One is asked to
find the difference in the allotments. Another text gives the bases of
an isosceles trapezoid as 50 and 40 units and the length of the sides
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as 30; the altitude and the area are required (van der Waerden 1963,
pp. 76 77).
The ancient Babylonians were aware of other important geometric

relationships. Like the Egyptians, they knew that the altitude in an
isosceles triangle bisects the base. Hence, given the length of a chord in a
circle of known radius, they were able to find the apothem. Unlike the
Egyptians, they were familiar with the fact that an angle inscribed in
a semicircle is a right angle, a proposition generally known as the
Theorem of Thales, despite the fact that Thales lived more than a mil-
lennium after the Babylonians had begun to use it. This misnaming of a
well-known theorem in geometry is symptomatic of the difficulty in
assessing the influence of pre-Hellenic mathematics on later cultures.
Cuneiform tablets had a permanence that could not be matched by
documents from other civilizations, for papyrus and parchment do not so
easily survive the ravages of time. Moreover, cuneiform texts continued
to be recorded down to the dawn of the Christian era, but were they read
by neighboring civilizations, especially the Greeks? The center of
mathematical development was shifting from the Mesopotamian Valley
to the Greek world half a dozen centuries before the beginning of our
era, but reconstructions of early Greek mathematics are rendered
hazardous by the fact that there are virtually no extant mathematical
documents from the pre-Hellenistic period. It is important, therefore, to
keep in mind the general characteristics of Egyptian and Babylonian
mathematics so as to be able to make at least plausible conjectures
concerning analogies that may be apparent between pre-Hellenic con-
tributions and the activities and attitudes of later peoples.
There is a lack of explicit statements of rules and of clear-cut distinc-

tions between exact and approximate results. The omission in the tables of
cases involving irregular sexagesimals seems to imply some recognition
of such distinctions, but neither the Egyptians nor the Babylonians appear
to have raised the question of when the area of a quadrilateral (or of a
circle) is found exactly and when only approximately. Questions about the
solvability or unsolvability of a problem do not seem to have been raised,
nor was there any investigation into the nature of proof. The word “proof”
means various things at different levels and ages; hence, it is hazardous to
assert categorically that pre-Hellenic peoples had no concept of proof, nor
any feeling of the need for proof. There are hints that these people were
occasionally aware that certain area and volume methods could be justi-
fied through a reduction to simpler area and volume problems. Moreover,
pre-Hellenic scribes not infrequently checked or “proved” their divisions
by multiplication; occasionally, they verified the procedure in a problem
through a substitution that verified the correctness of the answer. Never-
theless, there are no explicit statements from the pre-Hellenic period that
would indicate a felt need for proofs or a concern for questions of logical
principles. In Mesopotamian problems, the words “length” and “width”
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should perhaps be interpreted much as we interpret the letters x and y, for
the writers of cuneiform tablets may well have moved on from specific
instances to general abstractions. How else does one explain the addition
of a length to an area? In Egypt also, the use of the word for quantity is not
incompatible with an abstract interpretation such as we read into it today.
In addition, there were in Egypt and Babylonia problems that have the
earmarks of recreational mathematics. If a problem calls for a sum of cats
and measures of grain, or of a length and an area, one cannot deny to the
perpetrator either a modicum of levity or a feeling for abstraction. Of
course, much of pre-Hellenic mathematics was practical, but surely not all
of it. In the practice of computation, which stretched over a couple of
millennia, the schools of scribes used plenty of exercise material, often,
perhaps, simply as good clean fun.
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4

Hellenic Traditions

To Thales . . . the primary question was not What do we know but How do

we know it. [Emphasis added.]

Aristotle

The Era and the Sources

The intellectual activity of the river valley civilizations in Egypt and
Mesopotamia had lost its verve well before the Christian era, but as
learning in the river valleys declined, and as bronze gave way to iron in
weaponry, vigorous new cultures sprang up all along the shores of the
Mediterranean Sea. To indicate this change in the centers of civilization,
the interval from roughly 800 BCE to 800 CE is sometimes known as the
Thalassic Age (that is, the “sea” age). There was no sharp disruption to
mark the transition in intellectual leadership from the valleys of the Nile,
Tigris, and Euphrates rivers to the shores of the Mediterranean. Egyptian
and Babylonian scholars continued to produce papyrus and cuneiform
texts for many centuries after 800 BCE, but a new civilization meanwhile
was rapidly preparing to take over scholarly hegemony, not only around
the Mediterranean but, ultimately, in the chief river valleys as well. To
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indicate the source of the new inspiration, the first portion of the
Thalassic Age is labeled the Hellenic era, so that the older cultures are
consequently known as pre-Hellenic. The Greeks of today still call
themselves Hellenes. Greek history is traceable back into the second
millennium BCE, when several waves of invaders pressed down from the
north. They brought with them no known mathematical or literary tra-
dition. They seem to have been very eager to learn, however, and it did
not take them long to improve on what they absorbed. It is presumed that
some rudiments of computation traveled along trade routes. This is true
of the early Greek alphabets that had been taken over and expanded from
the existing alphabet of the Phoenicians, which consisted only of con-
sonants. The alphabet seems to have originated between the Babylonian
and Egyptian worlds, possibly in the region of the Sinai Peninsula,
through a process of drastic reduction in the number of cuneiform or
hieratic symbols. This alphabet found its way to the new colonies—
Greek, Roman, and Carthaginian—through the activities of traders.
Before long, Greek traders, businessmen, and scholars made their way to
the centers of learning in Egypt and Babylonia. There they made contact
with pre-Hellenic mathematics, but they were not willing merely to
receive long-established traditions, for they made the subject so thor-
oughly their own that it soon took a drastically different form.
The first Olympic Games were held in 776 BCE, and by then, an

absorbing Greek literature had already developed. Of Greek mathe-
matics at the time we know nothing. Presumably, it lagged behind the
development of literary forms; the latter lend themselves more readily to
continuity of oral transmission. It would be almost another two centuries
before there was any word, even indirectly, concerning Greek mathe-
matics. Then, during the sixth century BCE, there appeared twomen, Thales
and Pythagoras, to whom are ascribed definite mathematical discoveries.
They are somewhat indistinct figures, historically. No mathematical
masterpiece from either one has survived, nor is it even established that
either Thales or Pythagoras ever composed such a work. Nevertheless, the
earliest Greek accounts of the history of mathematics, which no longer
survive, ascribed to Thales and Pythagoras a number of very definite
discoveries in mathematics.We outline these contributions in this chapter,
but the reader should understand that it is largely persistent tradition, rather
than any extant historical document, on which the account is based.
To a certain extent, this situation prevails regarding any written

mathematical treatises or other works throughout the fifth century BCE.
There are virtually no extant mathematical or scientific documents until
we encounter those from the days of Plato in the fourth century BCE.
Nevertheless, during the last half of the fifth century, there circulated
persistent and consistent reports concerning a handful of mathematicians
who evidently were intensely concerned with problems that formed the
basis for most of the later developments in geometry. We shall therefore
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refer to this period as the “Heroic Age of Mathematics,” for seldom,
either before or since, have men with so little to work with tackled
mathematical problems of such fundamental significance. No longer
was mathematical activity centered almost entirely in two regions nearly
at opposite ends of the Greek world; it flourished all around the
Mediterranean. In what is now southern Italy, there were Archytas of
Tarentum (born ca. 428 BCE) and Hippasus of Metapontum (fl. ca. 400
BCE); at Abdera in Thrace, we find Democritus (born ca. 460 BCE); nearer
the center of the Greek world, on the Attic peninsula, there was Hippias
of Elis (born ca. 460 BCE); and in nearby Athens, there lived at various
times during the pivotal last half of the fifth century BCE three scholars
from other regions: Hippocrates of Chios (fl. ca. 430 BCE), Anaxagoras of
Clazomenae (fl. 428 BCE), and Zeno of Elea (fl. ca. 450 BCE). Through the
work of these seven men, we shall describe the fundamental changes in
mathematics that took place a little before the year 400 BCE. Again, we
must remember that although the histories of Herodotus and Thucydides
and the plays of Aeschylus, Euripides, and Aristophanes have in some
measure survived, scarcely a line is extant of what was written by
mathematicians of the time.
Firsthand mathematical sources from the fourth century BCE are almost

as scarce, but this inadequacy is made up for in large measure by accounts
written by philosophers who were au courant with the mathematics of
their day. We have most of what Plato wrote and about half of the work of
Aristotle; with the writings of these intellectual leaders of the fourth
century BCE as a guide, we can give a far more dependable account of what
happened in their day than we could about the Heroic Age.

Thales and Pythagoras

Accounts of the origins of Greek mathematics center on the so-called
Ionian and Pythagorean schools and the chief representative of each—
Thales and Pythagoras—although, as just noted, reconstructions of their
thought rest on fragmentary reports and traditions built up during later
centuries. The Greek world had its center between the Aegean and
Ionian seas for many centuries, but Hellenic civilization was far from
localized there. By about 600 BCE, Greek settlements were scattered
along the borders of most of the Black Sea and the Mediterranean Sea,
and it was in these outskirts that a new surge in mathematics developed.
In this respect, the sea-bordering colonists, especially in Ionia, had two
advantages: they had the bold and imaginative spirit typical of pioneers,
and they were in closer proximity to the two chief river valleys where
knowledge thrived. Thales of Miletus (ca. 624 548 BCE) and Pythagoras
of Samos (ca. 580 500 BCE) had a further advantage: they were in a
position to travel to centers of ancient learning and there acquire
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firsthand information on astronomy and mathematics. In Egypt, they are
said to have learned geometry; in Babylon, under the enlightened
Chaldean ruler Nebuchadnezzar, Thales may have come in touch with
astronomical tables and instruments. Tradition has it that in 585 BCE,
Thales amazed his countrymen by predicting the solar eclipse of that
year. The historicity of this tradition is very much open to question,
however.
What is really known about the life and work of Thales is very little

indeed. Ancient opinion is unanimous in regarding Thales as an unusually
clever man and the first philosopher—by general agreement, the first
of the Seven Wise Men. He was regarded as “a pupil of the Egyptians and
the Chaldeans,” an assumption that appears plausible. The proposition
now known as the theorem of Thales—that an angle inscribed in a
semicircle is a right angle—may well have been learned by Thales during
his travels to Babylon. Tradition goes further, however, and attributes to
him some sort of demonstration of the theorem. For this reason, Thales
has frequently been hailed as the first true mathematician—as the origi-
nator of the deductive organization of geometry. This report, or legend,
was embellished by adding to this theorem four others that Thales is said
to have proved:

1. A circle is bisected by a diameter.
2. The base angles of an isosceles triangle are equal.
3. The pairs of vertical angles formed by two intersecting lines are

equal.
4. If two triangles are such that two angles and a side of one are equal,

respectively, to two angles and a side of the other, then the triangles
are congruent.

There is no document from antiquity that can be pointed to as evidence
of this achievement, yet the tradition has been persistent. About the
nearest one can come to reliable evidence on this point is derived from a
source a thousand years after the time of Thales. A student of Aristotle’s
by the name of Eudemus of Rhodes (fl. ca. 320 BCE) wrote a history of
mathematics. This has been lost, but before it disappeared, someone had
summarized at least part of the history. The original of this summary has
also been lost, but during the fifth century of our era, information from
the summary was incorporated by the Neoplatonic philosopher Proclus
(410 485) into the early pages of his Commentary on the First Book of
Euclid’s Elements.
Designations of Thales as the first mathematician largely hinge on the

remarks of Proclus. Later in his Commentary, Proclus—again depending
on Eudemus—attributes to Thales the four theorems mentioned pre-
viously. There are other scattered references to Thales in ancient
sources, but most of these describe his more practical activities. They do
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not establish the bold conjecture that Thales created demonstrative
geometry, but in any case, Thales is the first man in history to whom
specific mathematical discoveries have been attributed.
That it was the Greeks who added the element of logical structure to

geometry is virtually universally admitted today, but the big question
remains whether this crucial step was taken by Thales or by others
later—perhaps as much as two centuries later. On this point, we must
suspend final judgment until there is additional evidence on the devel-
opment of Greek mathematics.
Pythagoras is scarcely less controversial a figure than Thales, for he

has been more thoroughly enmeshed in legend and apotheosis. Thales
had been a man of practical affairs, but Pythagoras was a prophet and a
mystic, born at Samos, one of the Dodecanese islands not far from
Miletus, the birthplace of Thales. Although some accounts picture
Pythagoras as having studied under Thales, this is rendered unlikely by
the half-century difference in their ages. Some similarity in their inter-
ests can readily be accounted for by the fact that Pythagoras also traveled
to Egypt and Babylon—possibly even to India. During his peregrina-
tions, he evidently absorbed not only mathematical and astronomical
information but also much religious lore. Pythagoras was, incidentally,
virtually a contemporary of Buddha, Confucius, and Laozi (Lao-tzu); the
century was a crucial time in the development of religion, as well as of
mathematics. When Pythagoras returned to the Greek world, he settled at
Croton on the southeastern coast of what is now Italy, but at that time
was known as Magna Graecia. There he established a secret society that
somewhat resembled an Orphic cult, except for its mathematical and
philosophical basis.
That Pythagoras remains a very obscure figure is due in part to the loss

of documents from that age. Several biographies of Pythagoras were
written in antiquity, including one by Aristotle, but these have not sur-
vived. A further difficulty in clearly identifying the figure of Pythagoras
lies in the fact that the order he established was communal as well as
secret. Knowledge and property were held in common, hence attribution
of discoveries was not to be made to a specific member of the school. It
is best, consequently, not to speak of the work of Pythagoras, but rather
of the contributions of the Pythagoreans, although in antiquity it was
customary to give all credit to the master.
Perhaps the most striking characteristic of the Pythagorean order was

the confidence it maintained in the pursuit of philosophical and mathe-
matical studies as a moral basis for the conduct of life. The very words
“philosophy” (or “love of wisdom”) and “mathematics” (or “that which
is learned”) are supposed to have been coined by Pythagoras himself to
describe his intellectual activities.
It is evident that the Pythagoreans played an important role in the

history of mathematics. In Egypt and Mesopotamia, the elements of
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arithmetic and geometry were primarily exercises in the application
of numerical procedures to specific problems, whether concerned with
beer or pyramids or the inheritance of land; we find nothing resembling
a philosophical discussion of principles. Thales is generally regarded as
having made a beginning in this direction, although tradition supports
the view of Eudemus and Proclus that the new emphasis in mathematics
was due primarily to the Pythagoreans. With them, mathematics was
more closely related to a love of wisdom than to the exigencies of
practical life. That Pythagoras was one of the most influential figures in
history is difficult to deny, for his followers, whether deluded or inspired,
spread their beliefs throughout most of the Greek world. The harmonies
and mysteries of philosophy and mathematics were essential parts of the
Pythagorean rituals. Never before or since has mathematics played so
large a role in life and religion as it did among the Pythagoreans.
The motto of the Pythagorean school is said to have been “All is

number.” Recalling that the Babylonians had attached numerical mea-
sures to things around them, from the motions of the heavens to the
values of their slaves, we may perceive in the Pythagorean motto a
strong Mesopotamian affinity. The very theorem to which the name of
Pythagoras still clings quite likely was derived from the Babylonians. It
has been suggested, as justification for calling it the Theorem of
Pythagoras, that the Pythagoreans first provided a demonstration, but this
conjecture cannot be verified. It is reasonable to assume that the earliest
members of the Pythagorean school were familiar with geometric
properties known to the Babylonians, but when the Eudemus-Proclus
summary ascribes to them the construction of the “cosmic figures” (that
is, the regular solids), there is room for doubt. The cube, the octahedron,
and the dodecahedron could perhaps have been observed in crystals,
such as those of pyrite (iron disulfide), but a scholium in Euclid’s Ele-
ments XIII reports that the Pythagoreans knew only three of the regular
polyhedra: the tetrahedron, the cube, and the dodecahedron. Familiarity
with the last figure is rendered plausible by the discovery near Padua of
an Etruscan dodecahedron of stone dating from before 500 BCE. It is not
improbable, therefore, that even if the Pythagoreans did not know of the
octahedron and the icosahedron, they knew of some of the properties of
the regular pentagon. The figure of a five-pointed star (which is formed
by drawing the five diagonals of a pentagonal face of a regular dode-
cahedron) is said to have been the special symbol of the Pythagorean
school. The star pentagon had appeared earlier in Babylonian art, and it
is possible that here, too, we find a connecting link between pre-Hellenic
and Pythagorean mathematics.
One of the tantalizing questions in Pythagorean geometry concerns the

construction of a pentagram or a star pentagon. If we begin with a regular
polygon ABCDE (Fig. 4.1) and draw the five diagonals, these diagonals
intersect in points AuBuCuDuEu, which form another regular pentagon.
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Noting that the triangle BCDu, for example, is similar to the isosceles
triangle BCE, and noting also the many pairs of congruent triangles in the
diagram, it is not difficult to see that the diagonal points AuBuCuDuEu divide
the diagonals in a striking manner. In each case, a diagonal point divides a
diagonal into two unequal segments such that the ratio of the whole
diagonal is to the larger segment as this segment is to the smaller segment.
This subdivision of a diagonal is the well-known “golden section” of a line
segment, but this name was not used until a couple of thousand years
later—just about the time when Johannes Kepler wrote lyrically:

Geometry has two great treasures: one is the Theorem of Pythagoras; the

other, the division of a line into extreme and mean ratio. The first we may

compare to a measure of gold; the second we may name a precious jewel.

To the ancient Greeks, this type of subdivision soon became so familiar
that no need was felt for a special descriptive name; hence, the longer
designation “the division of a segment in mean and extreme ratio”
generally was replaced by the simple words “the section.”
One important property of “the section” is that it is, so to speak, self-

propagating. If a point P1 divides a segment RS (Fig. 4.2) in mean and
extreme ratio, with RP1 the longer segment, and if on this larger segment we
mark off a point P2 such that RP25P1S, then segment RP1 will in turn be
subdivided in mean and extreme ratio at point P2. Again, on marking off on
RP2 point P3 such that RP35P2P1, segment RP2 will be divided in mean and
extreme ratio at P3. This iterative procedure can be carried out as many times
as desired, the result being an ever smaller segment RPn divided in mean and
extreme ratio by point Pn1 1. Whether the earlier Pythagoreans noticed this
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unending process or drew significant conclusions from it is not known.
Even the more fundamental question of whether the Pythagoreans of about
500 BCE could divide a given segment into mean and extreme ratio cannot be
answered with certainty, although the probability that they could and did
seems to be high. The construction required is equivalent to the solution of a
quadratic equation. To show this, let RS5 a and RP15 x in Fig. 4.2. Then,
by the property of the golden section, a : x5 x : (a2 x), and on multiplying
means and extremes we have the equation x25 a22 ax. This is a quadratic
equation of type 1, as described in chapter 3, and Pythagoras could have
learned from the Babylonians how to solve this equation algebraically. If a is
a rational number, however, then there is no rational number x satisfying the
equation. Did Pythagoras realize this? It seems unlikely. Perhaps instead of
the Babylonian algebraic type of solution, the Pythagoreans may have
adopted a geometric procedure similar to that found in Euclid’s Elements
II.11 and VI.30. To divide a line segment AB in mean and extreme ratio,
Euclid first constructed on the segment AB the square ABCD (Fig. 4.3).
Then, he bisected AC at point E, drew line segment EB, and extended line
CEA to F so that EF5EB. When the square AFGH is completed, point H
will be the point desired, for one can readily show that AB :AH5AH :HB.
Knowing what solution, if any, the earlier Pythagoreans used for the golden
section would go far toward clarifying the problem of the level and the
characteristics of pre-Socratic mathematics. If Pythagorean mathematics
began under a Babylonian aegis, with strong faith that all is number, how
(and when) did it happen that this gave way to the familiar emphasis on pure
geometry that is so firmly enshrined in the classical treatises?

Number Mysticism

Number mysticism was not original with the Pythagoreans. The number
7, for example, had been singled out for special awe, presumably on

F

A

G

B

D

H

E

C

FIG. 4.3

Tha l e s and P y t ha go ra s 47



account of the seven wandering stars or planets from which the week
(hence our names for the days of the week) is derived. The Pythagoreans
were not the only people who fancied that the odd numbers had male
attributes and the even female—with the related (and not unprejudiced)
assumption, found as late as Shakespeare, that “there is divinity in odd
numbers.” Many early civilizations shared various aspects of numerol-
ogy, but the Pythagoreans carried number worship to its extreme, basing
their philosophy and their way of life on it. The number 1, they argued, is
the generator of numbers and the number of reason; the number 2 is
the first even or female number, the number of opinion; 3 is the first
true male number, the number of harmony, being composed of unity
and diversity; 4 is the number of justice or retribution, indicating the
squaring of accounts; 5 is the number of marriage, the union of the first
true male and female numbers; and 6 is the number of creation. Each
number in turn had its peculiar attributes. The holiest of all was the
number 10, or the tetractys, for it represented the number of the universe,
including the sum of all of the possible geometric dimensions. A single
point is the generator of dimensions, two points determine a line of
dimension one, three points (not on a line) determine a triangle with area
of dimension two, and four points (not in a plane) determine a tetra-
hedron with volume of dimension three; the sum of the numbers
representing all dimensions, therefore, is the reversed number 10. It is a
tribute to the abstraction of Pythagorean mathematics that the veneration
of the number 10 evidently was not dictated by the anatomy of the
human hand or foot.

Arithmetic and Cosmology

In Mesopotamia, geometry had been not much more than number
applied to spatial extension; it appears that, at first, it may have been
much the same among the Pythagoreans—but with a modification.
Number in Egypt had been the domain of the natural numbers and the
unit fractions; among the Babylonians, it had been the field of all rational
fractions. In Greece, the word “number” was used only for the integers.
A fraction was not looked on as a single entity but as a ratio or rela-
tionship between two whole numbers. (Greek mathematics, in its earlier
stages, frequently came closer to the “modern” mathematics of today
than to the ordinary arithmetic of a generation ago.) As Euclid later
expressed it (Elements V.3), “A ratio is a kind of relation in respect of
size of two magnitudes of the same kind.” Such a view, focusing
attention on the connection between pairs of numbers, tends to sharpen
the theoretical or rational aspects of the number concept and to deem-
phasize the role of number as a tool in computation or approximation in
mensuration. Arithmetic now could be thought of as an intellectual
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discipline as well as a technique, and a transition to such an outlook
seems to have been nurtured in the Pythagorean school.
If tradition is to be trusted, the Pythagoreans not only established

arithmetic as a branch of philosophy; they seem to havemade it the basis of
a unification of all aspects of the world around them. Through patterns of
points, or unextended units, they associated number with geometric
extension; this in turn led them to an arithmetic of the heavens. Philolaus
(died ca. 390 BCE), a later Pythagorean who shared the veneration of the
tetractys or decad, wrote that it was “great, all-powerful and all-producing,
the beginning and the guide of the divine as of the terrestrial life.” This
view of the number 10 as the perfect number, the symbol of health and
harmony, seems to have provided the inspiration for the earliest nongeo-
centric astronomical system. Philolaus postulated that at the center of the
universe, there was a central fire about which the earth and the seven
planets (including the sun and the moon) revolved uniformly. Inasmuch as
this brought to only nine the number of heavenly bodies (other than the
sphere of fixed stars), the Philolaic system assumed the existence of a tenth
body—a “counterearth” collinear with the earth and the central fire—
having the same period as the earth in its daily revolution about the central
fire. The sun revolved about the fire once a year, and the fixed stars were
stationary. The earth in its motion maintained the same uninhabited face
toward the central fire, hence neither the fire nor the counterearth was ever
seen. The postulate of uniform circular motion that the Pythagoreans
adopted was to dominate astronomical thought for more than 2,000 years.
Copernicus, almost 2,000 years later, accepted this assumption without
question, and it was the Pythagoreans to whom Copernicus referred to
show that his doctrine of a moving earth was not so new or revolutionary.
The thoroughness with which the Pythagoreans wove number into their

thought is well illustrated by their concern for figurate numbers. Although no
triangle can be formed by fewer than three points, it is possible to have tri-
angles of a larger number of points, such as six, ten, or fifteen (see Fig. 4.4).
Numbers such as 3, 6, 10, and 15 or, in general, numbers given by the formula

N5 11 21 31?1 n5
nðn1 1Þ

2

were called triangular, and the triangular pattern for the number 10, the
holy tetractys, vied with the pentagon for veneration in Pythagorean
number theory. There were, of course, indefinitely many other categories
of privileged numbers. Successive square numbers are formed from the
sequence 11 31 51 71?1 (2n2 1), where each odd number in turn
was looked on as a pattern of dots resembling a gnomon (the Babylonian
shadow clock) placed around two sides of the preceding square pattern of
dots (see Fig. 4.4). Hence, the word “gnomon” (related to the word for
“knowing”) came to be attached to the odd numbers themselves.
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The sequence of even numbers, 21 41 61?1 2n5 n(n1 1),
produces what the Greeks called “oblong numbers,” each of which is
double a triangular number. Pentagonal patterns of points illustrated the
pentagonal numbers given by the sequence

N5 11 41 71?1 ð3n2 2Þ5 nð3n2 1Þ
2

and hexagonal numbers were derived from the sequence

11 51 91?1 ð4n2 3Þ5 2n2 2 n:

In a similar manner, polygonal numbers of all orders are designated; the
process, of course, is easily extended to three-dimensional space, where
one deals with polyhedral numbers. Emboldened by such views, Philo-
laus is reported to have maintained that

All things which can be known have number; for it is not possible that

without number anything can be either conceived or known.

The dictum of Philolaus seems to have been a tenet of the Pythagorean
school; hence, stories arose about the discovery by Pythagoras of some
simple laws of music. Pythagoras is reputed to have noticed that when
the lengths of vibrating strings are expressible as ratios of simple whole
numbers, such as 2 to 3 (for the fifth) or as 3 to 4 (for the fourth), the tones
will be harmonious. If, in other words, a string sounds the note C when
plucked, then a similar string twice as long will sound the note C an
octave below, and tones between these two notes are emitted by strings
whose lengths are given by intermediate ratios: 16 : 9 for D, 8 : 5 for E,
3 : 2 for F, 4 : 3 for G, 6 : 5 for A, and 16 : 15 for B, in ascending order.
Here we have perhaps the earliest quantitative laws of acoustics—possibly
the oldest of all quantitative physical laws. So boldly imaginative were the
early Pythagoreans that they hastily extrapolated to conclude that
the heavenly bodies in their motions similarly emitted harmonious tones,
the “harmony of the spheres.” Pythagorean science, like Pythagorean
mathematics, seems to have been an odd congeries of sober thought and
fanciful speculation. The doctrine of a spherical earth is often ascribed to

FIG. 4.4
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Pythagoras, but it is not known whether this conclusion was based on
observation (perhaps of new constellations as Pythagoras traveled south-
ward) or on imagination. The very idea that the universe is a “cosmos,” or
a harmoniously ordered whole, seems to be a related Pythagorean con-
tribution—one that at the time had little basis in direct observation but that
has been enormously fruitful in the development of astronomy. As we
smile at ancient number fancies, we should at the same time be aware of
the impulse these gave to the development of both mathematics and sci-
ence. The Pythagoreans were among the earliest people to believe that the
operations of nature could be understood through mathematics.

Proportions

Proclus, quoting perhaps from Eudemus, ascribed to Pythagoras two
specific mathematical discoveries: (1) the construction of the regular
solids and (2) the theory of proportionals. Although there is question
about the extent to which this is to be taken literally, there is every
likelihood that the statement correctly reflects the direction of Pytha-
gorean thought. The theory of proportions clearly fits into the pattern of
early Greek mathematical interests, and it is not difficult to find a likely
source of inspiration. It is reported that Pythagoras learned inMesopotamia
of three means—the arithmetic, the geometric, and the subcontrary
(later called the harmonic)—and of the “golden proportion” relating two
of these: the first of two numbers is to their arithmetic mean as their
harmonic mean is to the second of the numbers. This relationship is the
essence of the Babylonian square-root algorithm; hence, the report is at
least plausible. At some stage, however, the Pythagoreans generalized
this work by adding seven new means to make ten in all. If b is the
mean of a and c, where a, c, then the three quantities are related
according to one of the following ten equations:

ð1Þ b2 a

c2 b
5

a

a
ð6Þ b2 a

c2 b
5

c

b

ð2Þ b2 a

c2 b
5

a

b
ð7Þ c2 a

b2 a
5

c

a

ð3Þ b2 a

c2 b
5

a

c
ð8Þ c2 a

c2 b
5

c

a

ð4Þ b2 a

c2 b
5
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a
ð9Þ c2 a
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ð5Þ b2 a

c2 b
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c2 b
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The first three equations are, of course, the equations for the arithmetic, the
geometric, and the harmonic means, respectively.
It is difficult to assign a date to the Pythagorean study of means, and

similar problems arise with respect to the classification of numbers. The
study of proportions or the equality of ratios presumably formed at first a
part of Pythagorean arithmetic or theory of numbers. Later, the quan-
tities a, b, and c entering in such proportions were more likely to be
regarded as geometric magnitudes, but the period in which the change
took place is not clear. In addition to the polygonal numbers mentioned
previously and the distinction between odd and even, the Pythagoreans
at some stage spoke of odd-odd and even-odd numbers, based on whether
the number in question was the product of two odd numbers or of an odd
and an even number, so that sometimes the name “even number” was
reserved for integral powers of two. By the time of Philolaus, the dis-
tinction between prime and composite numbers seems to have become
important. Speusippus, a nephew of Plato and his successor as head of the
Academy, asserted that 10 was “perfect” for the Pythagoreans because,
among other things, it is the smallest integer n for which there are just as
many primes between 1 and n as nonprimes. (Occasionally, prime numbers
were called linear, inasmuch as they are usually represented by dots in one
dimension only.) Neopythagoreans sometimes excluded 2 from the list of
primes on the ground that 1 and 2 are not true numbers, but the generators
of the odd and even numbers. The primacy of the odd numbers was
assumed to be established by the fact that odd1 odd is even, whereas
even1 even remains even.
To the Pythagoreans has been attributed the rule for Pythagorean triads

given by (m22 1) / 2, m, (m21 1) / 2, where m is an odd integer, but
inasmuch as this rule is so closely related to the Babylonian examples, it is
perhaps not an independent discovery. Also ascribed to the Pythagoreans,
with doubt as to the period in question, are the definitions of perfect,
abundant, and deficient numbers, based on whether the sum of the proper
divisors of the number is equal to, greater than, or less than the number
itself. According to this definition, 6 is the smallest perfect number, with
28 next. That this view was probably a later development in Pythagorean
thought is suggested by the early veneration of 10 rather than 6. Hence,
the related doctrine of “amicable” numbers is also likely to have been a
later notion. Two integers a and b are said to be “amicable” if a is the sum
of the proper divisors of b and if b is the sum of the proper divisors of a.
The smallest such pair are the integers 220 and 284.

Numeration

The Hellenes were celebrated as shrewd traders and businessmen, and
there must have been a lower level of arithmetic or computation that
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satisfied the needs of the vast majority of Greek citizens. Number activ-
ities of this type would have been beneath the notice of philosophers, and
recorded accounts of practical arithmetic were unlikely to find their way
into the libraries of scholars. If, then, there are not even fragments
surviving of the more sophisticated Pythagorean works, it is clear that
it would be unreasonable to expect manuals of trade mathematics to
survive the ravages of time. Hence, it is not possible to tell at this
distance how the ordinary processes of arithmetic were carried out in
Greece 2,500 years ago. About the best one can do is to describe the
systems of numeration that appear to have been in use.
In general, there seem to have been two chief systems of numeration in

Greece: one, probably the earlier, is known as the Attic (or Herodianic)
notation; the other is called the Ionian (or alphabetic) system. Both
systems are, for integers, based on the 10 scale, but the former is the
more primitive, being based on a simple iterative scheme found in
the earlier Egyptian hieroglyphic numeration and in the later Roman
numerals. In the Attic system, the numbers from 1 to 4 were represented
by repeated vertical strokes. For the number 5 a new symbol—the
first letter Π (or Γ) of the word for five, “pente”—was adopted. (Only
capital letters were used at the time, both in literary works and in
mathematics, lowercase letters being an invention of the later ancient or
early medieval period.) For numbers from 6 through 9, the Attic system
combined the symbol Γ with unit strokes, so that 8, for example, was
written as . For positive integral powers of the base (10), the initial
letters of the corresponding number words were adopted— for deka
(10), for hekaton (100), for khilioi (1,000), and for myrioi (10,000).
Except for the forms of the symbols, the Attic system is much like the
Roman, but it had one advantage. Where the Latin word adopted dis-
tinctive symbols for 50 and 500, the Greeks wrote these numbers
by combining letters for 5, 10, and 100, using (or 5 times 10) for 50,
and (or 5 times 100) for 500. In the same way, they wrote for 5,000
and for 50,000. In Attic script, the number 45,678, for example, would
appear as

The Attic system of notation (also known as Herodianic, inasmuch as it
was described in a fragment attributed to Herodian, a grammarian of the
second century) appears in inscriptions at various dates from 454 to 95
BCE, but by the early Alexandrian Age, at about the time of Ptolemy
Philadelphius, it was being displaced by the Ionian or alphabetic numerals.
Similar alphabetic schemes were used at one time or another by various
Semitic peoples, including the Hebrews, the Syrians, the Aramaeans, and
the Arabs—as well as by other cultures, such as the Gothic—but these
would seem to have been borrowed from the Greek notation. The Ionian
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system probably was used as early as the fifth century BCE and perhaps as
early as the eighth century BCE. One reason for placing the origin of the
notation relatively early is that the scheme called for twenty-seven letters
of the alphabet—nine for the integers less than 10, nine for multiples of 10
that are less than 100, and nine for multiples of 100 that are less than
1,000. The classical Greek alphabet contains only twenty-four letters;
hence, use was made of an older alphabet that included three additional
archaic letters— (vau or digamma or stigma), (koppa), and
(sampi)—to establish the following association of letters and numbers:

After the introduction of small letters in Greece, the association of
letters and numbers appeared as follows:

Because these forms are more familiar today, we shall use them here.
For the first nine multiples of 1,000, the Ionian system adopted the first
nine letters of the alphabet, a partial use of the positional principle, but
for added clarity, these letters were preceded by a stroke or accent:

Within this system, any number less than 10,000 was easily written
with only four characters. The number 8888, for example, would appear
as or as , the accent sometimes being omitted when the
context was clear. The use of the same letters for thousands as for units
should have suggested to the Greeks the full-fledged positional scheme
in decimal arithmetic, but they do not seem to have appreciated the
advantages of such a move. That they had such a principle more or less
in mind is evident not only in the repeated use of the letters α through θ
for units and thousands, but also in the fact that the symbols are arranged
in order of magnitude, from the smallest on the right to the largest on the
left. At 10,000, which for the Greeks was the beginning of a new count
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or category (much as we separate thousands from lower powers by a
comma), the Ionian Greek notation adopted a multiplicative principle.
A symbol for an integer from 1 to 9999, when placed above the letter M,
or after it, separated from the rest of the number by a dot, indicated the
product of the integer and the number 10,000—the Greek myriad. Thus,
the number 88888888 would appear as . Where still
larger numbers are called for, the same principle could be applied to the
double myriad, 100000000 or 108. Early Greek notations for integers
were not excessively awkward, and they served their purposes effec-
tively. It was in the use of fractions that the systems were weak.
Like the Egyptians, the Greeks were tempted to use unit fractions, and

for these they had a simple representation. They wrote down the
denominator and then simply followed this with a diacritical mark or
accent to distinguish it from the corresponding integer. Thus, 1

34 would
appear as λδ0. This could, of course, be confused with the number 301

4,
but context or the use of words could be assumed to make the situation
clear. In later centuries, general common fractions and sexagesimal
fractions were in use; these will be discussed below in connection with
the work of Archimedes, Ptolemy, and Diophantus, for there are extant
documents that, while not actually dating from the time of these men, are
copies of works written by them—a situation strikingly different from
that concerning mathematicians of the Hellenic period.

Arithmetic and Logistic

Because documents from the period are entirely missing, there is far
more uncertainty about Greek mathematics from 600 to 450 BCE than
about Babylonian algebra or Egyptian geometry from about 1700 BCE.
Not even mathematical artifacts have survived from the early days of
Greece. It is evident that some form of counting board or abacus was
used in calculation, but the nature and operation of the device must be
inferred from the Roman abacus and from some casual references in
works by Greek authors. Herodotus, writing in the early fifth century
BCE, said that in counting with pebbles, as in writing, the Greek hand
moved from left to right, the Egyptian from right to left. A vase from a
somewhat later period pictures a collector of tribute with a counting
board, which was used not only for integral decimal multiples of the
drachma but for nondecimal fractional subdivisions. Beginning on the
left, the columns designate myriads, thousands, hundreds, and tens of
drachmas respectively, the symbols being in Herodianic notation. Then,
following the units column for drachmas, there are columns for obols
(six obols5 one drachma), for the half obol, and for the quarter obol.
Here we see how ancient civilizations avoided an excessive use of
fractions: they simply subdivided units of length, weight, and money so

Ar i t hme t i c and Lo g i s t i c 55



effectively that they could calculate in terms of integral multiples of the
subdivisions. This undoubtedly is the explanation for the popularity in
antiquity of duodecimal and sexagesimal subdivisions, for the decimal
system here is at a severe disadvantage. Decimal fractions were rarely
used, either by the Greeks or by other Western peoples, before the period
of the Renaissance. The abacus can be readily adapted to any system of
numeration or to any combination of systems; it is likely that the
widespread use of the abacus accounts at least in part for the amazingly
late development of a consistent positional system of notation for inte-
gers and fractions. In this respect, the Pythagorean Age contributed little
if anything.
The point of view of the Pythagoreans seems to have been so over-

whelmingly philosophical and abstract that technical details in compu-
tation were relegated to a separate discipline, called logistic. This dealt
with the numbering of things, rather than with the essence and properties
of number as such, matters of concern in arithmetic. That is, the ancient
Greeks made a clear distinction between mere calculation, on the one
hand, and what today is known as the theory of numbers, on the other.
Whether such a sharp distinction was a disadvantage to the historical
development of mathematics may be a moot point, but it is not easy to
deny to the early Ionian and Pythagorean mathematicians the primary
role in establishing mathematics as a rational and liberal discipline. It is
obvious that tradition can be quite inaccurate, but it is seldom entirely
misdirected.

Fifth-CenturyAthens

The fifth century BCE was a crucial period in the history of Western
civilization, for it opened with the defeat of the Persian invaders and
closed with the surrender of Athens to Sparta. Between these two events
lay the great Age of Pericles, with its accomplishments in literature and
art. The prosperity and intellectual atmosphere of Athens during the
century attracted scholars from all parts of the Greek world, and
a synthesis of diverse aspects was achieved. From Ionia came men such
as Anaxagoras, with a practical turn of mind; from southern Italy came
others, such as Zeno, with stronger metaphysical inclinations. Demo-
critus of Abdera espoused a materialistic view of the world, while
Pythagoras in Italy held idealistic attitudes in science and philosophy. In
Athens, one found eager devotees of old and new branches of learning,
from cosmology to ethics. There was a bold spirit of free inquiry that
sometimes came into conflict with established mores.
In particular, Anaxagoras was imprisoned in Athens for impiety in

asserting that the sun was not a deity but a huge red-hot stone as big as
the whole Peloponnesus, and that the moon was an inhabited earth that
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borrowed its light from the sun. He well represents the spirit of rational
inquiry, for he regarded as the aim of his life the study of the nature of
the universe—a purposefulness that he derived from the Ionian tradition
of which Thales had been a founder. The intellectual enthusiasm of
Anaxagoras was shared with his countrymen through the first scientific
best-seller—a book On Nature—which could be bought in Athens for
only a drachma. Anaxagoras was a teacher of Pericles, who saw to it that
his mentor was ultimately released from prison. Socrates was at first
attracted to the scientific ideas of Anaxagoras but found the naturalistic
Ionian view less satisfying than the search for ethical verities. Greek
science had been rooted in a highly intellectual curiosity that is often
contrasted with the utilitarian immediacy of pre-Hellenic thought;
Anaxagoras clearly represented the typical Greek motive—the desire to
know. In mathematics also, the Greek attitude differed sharply from that
of the earlier potamic cultures. The contrast was clear in the contribu-
tions generally attributed to Thales and Pythagoras, and it continues to
show through in the more reliable reports about what went on in Athens
during the Heroic Age. Anaxagoras was primarily a natural philosopher,
rather than a mathematician, but his inquiring mind led him to share in
the pursuit of mathematical problems.

Three Classical Problems

We are told by Plutarch that while Anaxagoras was in prison, he
occupied himself with an attempt to square the circle. Here we have
the first mention of a problem that was to fascinate mathematicians for
more than 2,000 years. There are no further details concerning the origin
of the problem or the rules governing it. At a later date, it came to be
understood that the required square, exactly equal in area to the circle,
was to be constructed by the use of a compass and a straightedge alone.
Here we see a type of mathematics that is quite unlike that of the
Egyptians and the Babylonians. It is not the practical application of a
science of number to a facet of life experience, but a theoretical question
involving a nice distinction between accuracy in approximation and
exactitude in thought.
Anaxagoras died in 428 BCE, the year that Archytas was born, just one

year before Plato’s birth and one year after Pericles’ death. It is said that
Pericles died of the plague that carried off perhaps a quarter of the
Athenian population, and the deep impression that this catastrophe
created is perhaps the origin of a second famous mathematical problem.
It is reported that a delegation had been sent to the oracle of Apollo at
Delos to inquire how the plague could be averted, and the oracle had
replied that the cubical altar to Apollo must be doubled. The Athenians
are said to have dutifully doubled the dimensions of the altar, but this
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was of no avail in curbing the plague. The altar had, of course, been
increased eightfold in volume, rather than twofold. Here, according to
the legend, was the origin of the “duplication of the cube” problem,
one that henceforth was usually referred to as the “Delian problem”—
given the edge of a cube, construct with compasses and straightedge
alone the edge of a second cube having double the volume of the first.
At about the same time, there circulated in Athens still a third celebrated

problem: given an arbitrary angle, construct by means of compasses and
straightedge alone an angle one-third as large as the given angle. These
three problems—the squaring of the circle, the duplication of the cube, and
the trisection of the angle—have since been knownas the “three famous (or
classical) problems” of antiquity. More than 2,200 years later, it was to be
proved that all three of the problems were unsolvable by means of
straightedge and compass alone. Nevertheless, the better part of Greek
mathematics and of much later mathematical thought was suggested by
efforts to achieve the impossible—or, failing this, to modify the rules. The
Heroic Age failed in its immediate objective, under the rules, but
the efforts were crowned with brilliant success in other respects.

Quadrature of Lunes

Somewhat younger than Anaxagoras and coming originally from about
the same part of the Greek world was Hippocrates of Chios. He should
not be confused with his still more celebrated contemporary, the phy-
sician Hippocrates of Cos. Both Cos and Chios are islands in the
Dodecanese group, but in about 430 BCE, Hippocrates of Chios left his
native land for Athens in his capacity as a merchant. Aristotle reported
that Hippocrates was less shrewd than Thales and that he lost his money
in Byzantium through fraud; others say that he was beset by pirates.
In any case, the incident was never regretted by the victim, for he
counted this his good fortune, in that as a consequence he turned to
the study of geometry, in which he achieved remarkable success—a
story typical of the Heroic Age. Proclus wrote that Hippocrates com-
posed an “Elements of Geometry,” anticipating by more than a century
the better-known Elements of Euclid. Yet the textbook of Hippocrates—
as well as another reported to have been written by Leon, a later
associate of the Platonic school—has been lost, although it was known
to Aristotle. In fact, no mathematical treatise from the fifth century
has survived, but we do have a fragment concerning Hippocrates that
Simplicius (fl. ca. 520 CE) claims to have copied literally from the
History of Mathematics (now lost) by Eudemus. This brief statement,
the nearest thing we have to an original source on the mathematics of
the time, describes a portion of the work of Hippocrates dealing with the
quadrature of lunes. A lune is a figure bounded by two circular arcs of
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unequal radii; the problem of the quadrature of lunes undoubtedly arose
from that of squaring the circle. The Eudemian fragment attributes to
Hippocrates the following theorem:

Similar segments of circles are in the same ratio as the squares on their

bases.

The Eudemian account reports that Hippocrates demonstrated this by
first showing that the areas of two circles are to each other as the squares
on their diameters. Here Hippocrates adopted the language and the
concept of proportion that played so large a role in Pythagorean thought.
In fact, it is thought by some that Hippocrates became a Pythagorean.
The Pythagorean school in Croton had been suppressed (possibly
because of its secrecy, perhaps because of its conservative political
tendencies), but the scattering of its adherents throughout the Greek
world served only to broaden the influence of the school. This influence
undoubtedly was felt, directly or indirectly, by Hippocrates.
The theorem of Hippocrates on the areas of circles seems to be the

earliest precise statement on curvilinear mensuration in the Greek world.
Eudemus believed that Hippocrates gave a proof of the theorem, but a
rigorous demonstration at that time (say, about 430 BCE) would appear to
be unlikely. The theory of proportions at that stage probably was
established only for commensurable magnitudes. The proof as given in
Euclid XII.2 comes from Eudoxus, a man who lived halfway in time
between Hippocrates and Euclid. Just as much of the material in the first
two books of Euclid seems to stem from the Pythagoreans, however, so it
would appear reasonable to assume that the formulations, at least,
of much of Books III and IV of the Elements came from the work of
Hippocrates. Moreover, if Hippocrates did give a demonstration of
this theorem on the areas of circles, he may have been responsible for
the introduction into mathematics of the indirect method of proof.
That is, the ratio of the areas of two circles is equal to the ratio of the
squares on the diameters or it is not. By a reductio ad absurdum from
the second of the two possibilities, the proof of the only alternative is
established.
From this theorem on the areas of circles, Hippocrates readily found

the first rigorous quadrature of a curvilinear area in the history of
mathematics. He began with a semicircle circumscribed about an isos-
celes right triangle, and on the base (hypotenuse) he constructed a
segment similar to the circular segments on the sides of the right triangle
(Fig. 4.5). Because the segments are to each other as squares on their
bases and from the Pythagorean theorem as applied to the right triangle,
the sum of the two small circular segments is equal to the larger circular
segment. Hence, the difference between the semicircle on AC and
the segment ADCE equals triangle ABC. Therefore, the lune ABCD is
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precisely equal to triangle ABC, and because triangle ABC is equal to the
square on half of AC, the quadrature of the lune has been found.
Eudemus also described a Hippocratean lune quadrature based on an

isosceles trapezoid, ABCD, inscribed in a circle so that the square on the
longest side (base), AD, is equal to the sum of the squares on the three
equal shorter sides, AB and BC and CD (Fig. 4.6). Then, if on side AD
one constructs a circular segment, AEDF, similar to those on the three
equal sides, lune ABCDE is equal to trapezoid ABCDF.
That we are on relatively firm ground historically in describing the

quadrature of lunes by Hippocrates is indicated by the fact that scholars
other than Simplicius also refer to this work. Simplicius lived in the sixth
century, but he depended not only on Eudemus (fl. ca. 320 BCE) but also
on Alexander of Aphrodisias (fl. ca. 200 CE), one of the chief com-
mentators on Aristotle. Alexander described two quadratures other than
those given previously. (1) If on the hypotenuse and the sides of an
isosceles right triangle one constructs semicircles (Fig. 4.7), then the
lunes created on the smaller sides together equal the triangle. (2) If on a
diameter of a semicircle one constructs an isosceles trapezoid with three
equal sides (Fig. 4.8), and if on the three equal sides semicircles are
constructed, then the trapezoid is equal in area to the sum of four cur-
vilinear areas: the three equal lunes and a semicircle on one of the equal
sides of the trapezoid. From the second of these quadratures, it would
follow that if the lunes can be squared, the semicircle—hence, the cir-
cle—can also be squared. This conclusion seems to have encouraged
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Hippocrates, as well as his contemporaries and early successors, to hope
that ultimately the circle would be squared.
The Hippocratean quadratures are significant not so much as attempts

at circle-squaring as indications of the level of mathematics at the time.
They show that Athenian mathematicians were adept at handling trans-
formations of areas and proportions. In particular, there was evidently
no difficulty in converting a rectangle of sides a and b into a square.
This required finding the mean proportional or geometric mean between a
and b. That is, if a : x5 x : b, geometers of the day easily constructed the
line x. It was natural, therefore, that geometers should seek to generalize
the problem by inserting two means between two given magnitudes a and
b. That is, given two line segments a and b, they hoped to construct two
other segments x and y such that a : x5 x : y5 y : b. Hippocrates is said to
have recognized that this problem is equivalent to that of duplicating the
cube, for if b5 2a, the continued proportions, on the elimination of y,
lead to the conclusion that x35 2a3.
There are three views on what Hippocrates deduced from his quad-

rature of lunes. Some have accused him of believing that he could square
all lunes, hence also the circle; others think that he knew the limitations
of his work, concerned as it was with only some types of lunes. At least
one scholar has held that Hippocrates knew he had not squared the circle
but tried to deceive his countrymen into thinking that he had succeeded.
There are other questions, too, concerning Hippocrates’ contributions,
for to him has been ascribed, with some uncertainty, the first use of
letters in geometric figures. It is interesting to note that whereas he
advanced two of the three famous problems, he seems to have made no
progress in the trisecting of the angle, a problem studied somewhat later
by Hippias of Elis.

Hippias of Elis

Toward the end of the fifth century BCE, a group of professional teachers
quite unlike the Pythagoreans flourished in Athens. Disciples of Pytha-
goras had been forbidden to accept payment for sharing their knowledge
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with others. The Sophists, however, openly supported themselves by
tutoring fellow citizens—not only in honest intellectual endeavor, but
also in the art of “making the worse appear the better.” To a certain
extent, the accusation of shallowness directed against the Sophists was
warranted, but this should not conceal the fact that Sophists were usually
very broadly informed in many fields and that some of them made real
contributions to learning. Among these was Hippias, a native of Elis who
was active in Athens in the second half of the fifth century BCE. He is one
of the earliest mathematicians of whom we have firsthand information,
for we learn much about him from Plato’s dialogues. We read, for
example, that Hippias boasted that he had made more money than any
two other Sophists. He is said to have written much, from mathematics
to oratory, but none of his work has survived. He had a remarkable
memory, he boasted immense learning, and he was skilled in handicrafts.
To this Hippias (there are many others in Greece who bore the same
name), we apparently owe the introduction into mathematics of the first
curve beyond the circle and the straight line; Proclus and other com-
mentators ascribe to him the curve since known as the trisectrix or
quadratrix of Hippias. This is drawn as follows: In the square ABCD
(Fig. 4.9), let side AB move down uniformly from its present position
until it coincides with DC, and let this motion take place in exactly the
same time that side DA rotates clockwise from its present position until it
coincides with DC. If the positions of the two moving lines at any given
time are given by AuBu and DAv, respectively, and if P is the point of
intersection of AuBu and DAv, the locus of P during the motions will be
the trisectrix of Hippias—curve APQ in the figure. Given this curve, the
trisection of an angle is carried out with ease. For example, if PDC is the
angle to be trisected, one simply trisects segments BuC and AuD at points
R, S, T, and U. If lines TR and US cut the trisectrix in V and W,
respectively, lines VD and WD will, by the property of the trisectrix,
divide angle PDC in three equal parts.
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The curve of Hippias is generally known as the quadratrix, because it
can be used to square the circle. Whether Hippias himself was aware of
this application cannot now be determined. It has been conjectured that
Hippias knew of this method of quadrature but that he was unable to
justify it. Since the quadrature through Hippias’s curve was specifically
given later by Dinostratus, we shall describe this work below.
Hippias lived at least as late as Socrates (d. 399 BCE), and from the pen

of Plato we have an unflattering account of him as a typical Sophist—
vain, boastful, and acquisitive. Socrates is reported to have described
Hippias as handsome and learned but boastful and shallow. Plato’s
dialogue on Hippias satirizes his show of knowledge, and Xenophon’s
Memorabilia includes an unflattering account of Hippias as one who
regarded himself an expert in everything from history and literature to
handicrafts and science. In judging such accounts, however, we must
remember that Plato and Xenophon were uncompromisingly opposed to
the Sophists in general. It is also well to bear in mind that both Prota-
goras, the “founding father of the Sophists,” and Socrates, the arch
opponent of the movement, were antagonistic to mathematics and the
sciences. With respect to character, Plato contrasts Hippias with
Socrates, but one can bring out much the same contrast by comparing
Hippias with another contemporary—the Pythagorean mathematician
Archytas of Tarentum.

Philolaus and Archytas of Tarentum

Pythagoras is said to have retired to Metapontum toward the end of his
life and to have died there about 500 BCE. Tradition holds that he left no
written works, but his ideas were carried on by a large number of eager
disciples. The center at Croton was abandoned when a rival political
group from Sybaris surprised and murdered many of the leaders, but
those who escaped the massacre carried the doctrines of the school to
other parts of the Greek world. Among those who received instruction
from the refugees was Philolaus of Tarentum, and he is said to have
written the first account of Pythagoreanism—permission having been
granted, so the story goes, to repair his damaged fortunes. Apparently, it
was this book from which Plato derived his knowledge of the Pytha-
gorean order. The number fanaticism that was so characteristic of the
brotherhood evidently was shared by Philolaus, and it was from his
account that much of the mystical lore concerning the tetractys was
derived, as well as knowledge of the Pythagorean cosmology. The
Philolaean cosmic scheme is said to have been modified by two later
Pythagoreans, Ecphantus and Hicetas, who abandoned the central fire
and the counterearth and explained day and night by placing a rotating
earth at the center of the universe. The extremes of Philolaean number
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worship also seem to have undergone some modification, more espe-
cially at the hands of Archytas, a student of Philolaus’s at Tarentum.
The Pythagorean sect had exerted a strong intellectual influence

throughoutMagna Graecia, with political overtones that may be described
as a sort of “reactionary international,” or perhaps better as a cross between
Orphism and Freemasonry. At Croton, political aspects were especially
noticeable, but at outlying Pythagorean centers, such as Tarentum, the
impact was primarily intellectual. Archytas believed firmly in the efficacy
of number; his rule of the city, which allotted him autocratic powers, was
just and restrained, for he regarded reason as a forceworking toward social
amelioration. Formany years in succession, hewas elected general, and he
was never defeated, yet he was kind and a lover of children, for whom he is
reported to have invented “Archytas’s rattle.” Possibly also themechanical
dove, which he is said to have fashioned of wood, was built to amuse the
young folk.
Archytas continued the Pythagorean tradition in placing arithmetic above

geometry, but his enthusiasm for number had less of the religious and
mystical admixture found earlier inPhilolaus.Hewrote on the applicationof
the arithmetic, geometric, and subcontrary means to music, and it was
probably either Philolaus or Archytas whowas responsible for changing the
name of the last one to “harmonic mean.” Among his statements in this
connectionwas the observation that between twowhole numbers in the ratio
n:(n1 1), there could be no integer that is a geometric mean. Archytas gave
more attention to music than had his predecessors, and he felt that this
subject should play a greater role than literature in the education of children.
Amonghis conjectureswas one that attributeddifferences in pitch to varying
rates of motion resulting from the flow that caused the sound. Archytas
seems to have paid considerable attention to the role of mathematics in the
curriculum, and to him has been ascribed the designation of the four bran-
ches in the mathematical quadrivium—arithmetic (or numbers at rest),
geometry (or magnitudes at rest), music (or numbers in motion), and
astronomy (or magnitudes in motion). These subjects, together with the
trivium consisting of grammar, rhetoric, and dialectics (which Aristotle
traced back to Zeno), later constituted the seven liberal arts; hence, the
prominent role that mathematics has played in education is in no small
measure due to Archytas.
It is likely that Archytas had access to an earlier treatise on the ele-

ments of mathematics, and the iterative square-root process often known
as Archytas’s had been used long before in Mesopotamia. Nevertheless,
Archytas was a contributor of original mathematical results. The most
striking contribution was a three-dimensional solution of the Delian
problem, which may be most easily described, somewhat anachronisti-
cally, in the modern language of analytic geometry. Let a be the edge of
the cube to be doubled, and let the point (a, 0, 0) be the center of three
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mutually perpendicular circles of radius a and each lying in a plane
perpendicular to a coordinate axis. Through the circle perpendicular
to the x-axis, construct a right circular cone with vertex (0, 0, 0); through
the circle in the xy-plane, pass a right circular cylinder; and let the
circle in the xz-plane be revolved about the z-axis to generate a torus.
The equations of these three surfaces are, respectively, x25 y21 z2

and 2ax5 x21 y2 and (x21 y21 z2)25 4a2(x21 y2). These three surfaces
intersect in a point whose x-coordinate is a 123

p
; hence, the length of this

line segment is the edge of the cube desired.
The achievement of Archytas is the more impressive when we recall

that his solution was worked out synthetically without the aid of
coordinates. Nevertheless, Archytas’s most important contribution to
mathematics may have been his intervention with the tyrant Dionysius
to save the life of his friend Plato. The latter remained to the end of
his life deeply committed to the Pythagorean veneration of number and
geometry, and the supremacy of Athens in the mathematical world of the
fourth century BCE resulted primarily from the enthusiasm of Plato,
the “maker of mathematicians.” Before taking up the role of Plato in
mathematics, however, it is necessary to discuss the work of an earlier
Pythagorean—an apostate by the name of Hippasus.
Hippasus of Metapontum (or Croton), roughly contemporaneous with

Philolaus, is reported to have originally been a Pythagorean but to have
been expelled from the brotherhood. One account has it that the
Pythagoreans erected a tombstone to him, as though he were dead;
another story reports that his apostasy was punished by death at sea in a
shipwreck. The exact cause of the break is unknown, in part because of
the rule of secrecy, but there are three suggested possibilities. According
to one, Hippasus was expelled for political insubordination, having
headed a democratic movement against the conservative Pythagorean
rule. A second tradition attributes the expulsion to disclosures con-
cerning the geometry of the pentagon or the dodecahedron—perhaps a
construction of one of the figures. A third explanation holds that
the expulsion was coupled with the disclosure of a mathematical dis-
covery of devastating significance for Pythagorean philosophy—the
existence of incommensurable magnitudes.

Incommensurability

It had been a fundamental tenet of Pythagoreanism that the essence of
all things, in geometry as well as in the practical and theoretical affairs
of man, is explainable in terms of arithmos, or intrinsic properties of
whole numbers or their ratios. The dialogues of Plato show, however,
that the Greek mathematical community had been stunned by a disclosure
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that virtually demolished the basis for the Pythagorean faith in whole
numbers. This was the discovery that within geometry itself, the whole
numbers and their ratios are inadequate to account for even simple
fundamental properties. They do not suffice, for example, to compare the
diagonal of a square or a cube or a pentagon with its side. The line
segments are incommensurable, no matter how small a unit of measure is
chosen.
The circumstances surrounding the earliest recognition of incommen-

surable line segments are as uncertain as is the time of the discovery.
Ordinarily, it is assumed that the recognition came in connection with the
application of the Pythagorean theorem to the isosceles right triangle.
Aristotle referred to a proof of the incommensurability of the diagonal of a
square with respect to a side, indicating that it was based on the distinction
between odd and even. Such a proof is easy to construct. Let d and s be the
diagonal and the side of a square, and assume that they are commensur-
able—that is, that the ratio d / s is rational and equal to p / q, where p and q
are integerswith no common factor. Now, from the Pythagorean theorem it
is known that d25 s21 s2; hence, (d / s)25 p2 / q25 2, or p25 2q2. There-
fore, p2 must be even; hence, pmust be even. Consequently, qmust be odd.
Letting p5 2r and substituting in the equation p25 2q2, we have 4r25 2q2,
or q25 2r2. Then q2 must be even; hence, q must be even. Yet q was pre-
viously shown to be odd, and an integer cannot be both odd and even. It
follows, therefore, by the indirect method, that the assumption that d and s
are commensurable must be false.
In this proof, the degree of abstraction is so high that the possibility

that it was the basis for the original discovery of incommensurability has
been questioned. There are, however, other ways in which the discovery
could have come about. Among these is the simple observation that
when the five diagonals of a regular pentagon are drawn, these diagonals
form a smaller regular pentagon (Fig. 4.10), and the diagonals of the
second pentagon in turn form a third regular pentagon, which is still
smaller. This process can be continued indefinitely, resulting in penta-
gons that are as small as desired and leading to the conclusion that the
ratio of a diagonal to a side in a regular pentagon is not rational. The
irrationality of this ratio is, in fact, a consequence of the argument
presented in connection with Fig. 4.2, in which the golden section
was shown to repeat itself over and over again. Was it perhaps this
property that led to the disclosure, possibly by Hippasus, of incom-
mensurability? There is no surviving document to resolve the question,
but the suggestion is at least a plausible one. In this case, it would not
have been 2

p
but 5

p
that first disclosed the existence of incommen-

surable magnitudes, for the solution of the equation a : x5 x : (a2 x) leads
to ð 5

p
2 1Þ=2 as the ratio of the side of a regular pentagon to a diagonal.

The ratio of the diagonal of a cube to an edge is 3
p

, and here, too, the
specter of the incommensurable rears its ugly head.
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A geometric proof somewhat analogous to that for the ratio of the
diagonal of a pentagon to its side can also be provided for the ratio of
the diagonal of a square to its side. If in the square ABCD (Fig. 4.11)
one lays off on the diagonal AC the segment AP5AB and at P erects the
perpendicular PQ, the ratio of CQ to PC will be the same as the ratio of
AC to AB. Again, if on CQ one lays off QR5QP and constructs RS
perpendicular to CR, the ratio of hypotenuse to side again will be what it
was before. This process, too, can be continued indefinitely, thus
affording a proof that no unit of length, however small, can be found so
that the hypotenuse and a side will be commensurable.

Paradoxes of Zeno

The Pythagorean doctrine that “Numbers constitute the entire heaven”
was now faced with a very serious problem indeed, but it was not the
only one, for the school was also confronted with arguments pro-
pounded by the neighboring Eleatics, a rival philosophical movement.
Ionian philosophers of Asia Minor had sought to identify a first prin-
ciple for all things. Thales had thought to find this in water, but others
preferred to think of air or fire as the basic element. The Pythagoreans
had taken a more abstract direction, postulating that number in all of its
plurality was the basic stuff behind phenomena; this numerical ato-
mism, beautifully illustrated in the geometry of figurate numbers, had
come under attack by the followers of Parmenides of Elea (fl. ca. 450
BCE). The fundamental tenet of the Eleatics was the unity and perma-
nence of being, a view that contrasted with the Pythagorean ideas of
multiplicity and change. Of Parmenides’ disciples, the best known was
Zeno the Eleatic (fl. ca. 450 BCE), who propounded arguments to prove
the inconsistency in the concepts of multiplicity and divisibility. The
method Zeno adopted was dialectical, anticipating Socrates in this
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indirect mode of argument: starting from his opponent’s premises, he
reduced these to an absurdity.
The Pythagoreans had assumed that space and time can be thought of

as consisting of points and instants, but space and time also have a
property, more easily intuited than defined, known as “continuity.” The
ultimate elements making up a plurality were assumed, on the one hand,
to have the characteristics of the geometric unit—the point—and, on the
other, to have certain characteristics of the numeric units or numbers.
Aristotle described a Pythagorean point as “unity having position” or as
“unity considered in space.” It has been suggested that it was against
such a view that Zeno propounded his paradoxes, of which those on
motion are cited most frequently. As they have come down to us, through
Aristotle and others, four of them seem to have caused the most trouble:
(1) the Dichotomy, (2) the Achilles, (3) the Arrow, and (4) the Stade. The
first argues that before a moving object can travel a given distance, it
must first travel half of this distance, but before it can cover this, it must
travel the first quarter of the distance, and before this, the first eighth, and
so on, through an infinite number of subdivisions. The runner wishing to
get started must make an infinite number of contacts in a finite time, but it
is impossible to exhaust an infinite collection, hence the beginning of
motion is impossible. The second of the paradoxes is similar to the first,
except that the infinite subdivision is progressive, rather than regressive.
Here Achilles is racing against a tortoise that has been given a head start,
and it is argued that Achilles, no matter how swiftly he may run, can
never overtake the tortoise, no matter how slow it may be. By the time
that Achilles will have reached the initial position of the tortoise, the
latter will have advanced some short distance, and by the time that
Achilles will have covered this distance, the tortoise will have advanced
somewhat farther, and so the process continues indefinitely, with the
result that the swift Achilles can never overtake the slow tortoise.
The Dichotomy and the Achilles argue that motion is impossible

under the assumption of the infinite subdivisibility of space and time; the
Arrow and the Stade, on the other hand, argue that motion is equally
impossible if one makes the opposite assumption—that the subdivisibility
of space and time terminates in indivisibles. In the Arrow, Zeno argues
that an object in flight always occupies a space equal to itself, but that
which always occupies a space equal to itself is not in motion. Hence, the
flying arrow is at rest at all times, so that its motion is an illusion.
Most controversial of the paradoxes on motion and most awkward to

describe is the Stade (or Stadium), but the argument can be phrased
somewhat as follows. Let A1, A2, A3, A4 be bodies of equal size that
are stationary; let B1, B2, B3, B4 be bodies, of the same size as the A’s,
that are moving to the right so that each B passes each A in an instant—the
smallest possible interval of time. Let C1, C2, C3, C4 also be of equal size
with the A’s and B’s and let them move uniformly to the left with respect
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to the A’s so that each C passes each A in an instant of time. Let us assume
that at a given time, the bodies occupy the following relative positions:

Then, after the lapse of a single instant—that is, after an indivisible
subdivision of time—the positions will be as follows:

It is clear, then, that C1 will have passed two of the B’s; hence, the
instant cannot be the minimum time interval, for we can take as a new
and smaller unit the time it takes C1 to pass one of the B’s.
The arguments of Zeno seem to have had a profound influence on the

development ofGreekmathematics, comparable to that of the discovery of
the incommensurable, with which they may have been related. Originally,
in Pythagorean circles, magnitudeswere represented by pebbles or calculi,
from which our word “calculation” comes, but by the time of Euclid there
is a complete change in point of view. Magnitudes are not in general
associated with numbers or pebbles, but with line segments. In the Ele-
ments, even the integers themselves are represented by segments of lines.
The realm of number continued to have the property of discreteness, but
the world of continuous magnitudes (and this includes most of pre-
Hellenic and Pythagorean mathematics) was a thing apart from number
and had to be treated through geometricmethod. It seemed to be geometry,
rather than number, that ruled the world. This was perhaps the most far-
reaching conclusion of the Heroic Age, and it is not unlikely that this was
due in large measure to Zeno of Elea and Hippasus of Metapontum.
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Deductive Reasoning

There are several conjectures as to the causes leading to the conversion
of the mathematical prescriptions of pre-Hellenic peoples into the
deductive structure that appears in Greece. Some have suggested that
Thales in his travels had noted discrepancies in pre-Hellenic mathe-
matics—such as the Egyptian and Babylonian rules for the area of a
circle—and that he and his early successors therefore saw the need for a
strict rational method. Others, more conservative, would place the
deductive form much later—perhaps even as late as the early fourth
century, following the discovery of the incommensurable. Other sug-
gestions find the cause outside mathematics. One, for example is that
deduction may have come out of logic, in attempts to convince an
opponent of a conclusion by looking for premises from which the con-
clusion necessarily follows.
Whether deduction came into mathematics in the sixth century BCE

or the fourth and whether incommensurability was discovered before or
after 400 BCE, there can be no doubt that Greek mathematics had
undergone drastic changes by the time of Plato. The dichotomy between
number and continuous magnitude required a new approach to the
Babylonian algebra that the Pythagoreans had inherited. The old prob-
lems in which, given the sum and the product of the sides of a rectangle,
the dimensions were required had to be dealt with differently from the
numerical algorithms of the Babylonians. A “geometric algebra” had to
take the place of the older “arithmetic algebra,” and in this new algebra
there could be no adding of lines to areas or adding of areas to volumes.
From now on, there had to be a strict homogeneity of terms in equations,
and the Mesopotamian normal forms, xy5A, x6 y5 b, were to be
interpreted geometrically. The obvious conclusion, which the reader can
arrive at by eliminating y, is that one must construct on a given line b a
rectangle whose unknown width x must be such that the area of the
rectangle exceeds the given area A by the square x2 or (in the case of
the minus sign) falls short of the area A by the square x2 (Fig. 4.12). In
this way, the Greeks built up the solution of quadratic equations by their
process known as “the application of areas,” a portion of geometric
algebra that is fully covered by Euclid’s Elements. Moreover, the
uneasiness resulting from incommensurable magnitudes led to an
avoidance of ratios, insofar as possible, in elementary mathematics. The
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linear equation ax5 bc, for example, was looked on as an equality of
the areas ax and bc, rather than as a proportion—an equality between the
two ratios a : b and c : x. Consequently, in constructing the fourth pro-
portion, x in this case, it was usual to construct a rectangle OCDB with
sides b5OB and c5OC (Fig. 4.13) and then along OC to lay off
OA5 a. One completes rectangle OAEB and draws the diagonal OE
cutting CD at P. It is now clear that CP is the desired line x, for rectangle
OARS is equal in area to rectangle OCDB. Not until Book V of the
Elements did Euclid take up the difficult matter of proportionality.
Greek geometric algebra strikes the modern reader as excessively

artificial and difficult; to those who used it and became adept at handling
its operations, however, it probably appeared to be a convenient tool.
The distributive law a(b1 c1 d)5 ab1 ac1 ad undoubtedly was far
more obvious to a Greek scholar than to the beginning student of algebra
today, for the former could easily picture the areas of the rectangles in
this theorem, which simply says that the rectangle on a and the sum of
segments b, c, d is equal to the sum of the rectangles on a and each of
the lines b, c, d taken separately (Fig. 4.14). Again, the identity
(a1 b)25 a21 2ab1 b2 becomes obvious from a diagram that shows the
three squares and the two equal rectangles in the identity (Fig. 4.15); and
a difference of two squares a22 b25 (a1 b)(a2 b) can be pictured in a
similar fashion (Fig. 4.16). Sums, differences, products, and quotients of
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line segments can easily be constructed with a straightedge and a
compass. Square roots also afford no difficulty in geometric algebra. If
one wishes to find a line x such that x25 ab, one simply follows the
procedure found in elementary geometry textbooks today. One lays off on
a straight line the segment ABC, where AB5 a and BC5 b (Fig. 4.17).
With AC as the diameter, one constructs a semicircle (with center O) and
at B erects the perpendicular BP, which is the segment x desired. It is
interesting that here, too, the proof as given by Euclid, probably following
the earlier avoidance of ratios, makes use of areas rather than proportions.
If in our figure we let PO5AO5CO5 r and BO5 s, Euclid would say
essentially that x25 r22 s25 (r2 s)(r1 s)5 ab.

Democritus of Abdera

The Heroic Age in mathematics produced half a dozen great figures,
and among them must be included a man who is better known as a
chemical philosopher. Democritus of Abdera (ca. 460 370 BCE) is today
celebrated as a proponent of a materialistic atomic doctrine, but in his
time he had also acquired a reputation as a geometer. He is reported to
have traveled more widely than anyone of his day—to Athens, Egypt,
Mesopotamia, and possibly India—acquiring what learning he could, but
his own achievements in mathematics were such that he boasted that not
even the “rope-stretchers” in Egypt excelled him. He wrote a number of
mathematical works, not one of which is extant today.
The key to the mathematics of Democritus is to be found in his

physical doctrine of atomism. All phenomena were to be explained, he
argued, in terms of indefinitely small and infinitely varied (in size and
shape), impenetrably hard atoms moving about ceaselessly in empty
space. The physical atomism of Leucippus and Democritus may have
been suggested by the geometric atomism of the Pythagoreans, and it is
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not surprising that the mathematical problems with which Democritus
was chiefly concerned were those that demand some sort of infinitesimal
approach. The Egyptians, for example, were aware that the volume of a
pyramid is one-third the product of the base and the altitude, but a proof
of this fact almost certainly was beyond their capabilities, for it requires
a point of view equivalent to the calculus. Archimedes later wrote that
this result was due to Democritus but that the latter did not prove it
rigorously. This creates a puzzle, for if Democritus added anything to the
Egyptian knowledge here, it must have been some sort of demonstration,
albeit inadequate. Perhaps Democritus showed that a triangular prism
can be divided into three triangular pyramids that are equal in height and
area of the base and then deduced, from the assumption that pyramids of
the same height and equal bases are equal, the familiar Egyptian
theorem.
This assumption can be justified only by the application of infinite-

simal techniques. If, for example, one thinks of two pyramids of equal
bases and the same height as composed of indefinitely many infinitely
thin equal cross-sections in one-to-one correspondence (a device
usually known as Cavalieri’s principle, in deference to the seventeenth-
century geometer), the assumption appears to be justified. Such a fuzzy
geometric atomism might have been at the base of Democritus’s
thought, although this has not been established. In any case, following
the paradoxes of Zeno and the awareness of incommensurables, such
arguments based on an infinity of infinitesimals were not acceptable.
Archimedes consequently could well hold that Democritus had not
given a rigorous proof. The same judgment would be true with respect
to the theorem, also attributed by Archimedes to Democritus, that the
volume of a cone is one-third the volume of the circumscribing
cylinder. This result was probably looked on by Democritus as a cor-
ollary to the theorem on the pyramid, for the cone is essentially a
pyramid whose base is a regular polygon of infinitely many sides.
Democritean geometric atomism was immediately confronted with

certain problems. If the pyramid or the cone, for example, is made up of
indefinitely many infinitely thin triangular or circular sections parallel to
the base, a consideration of any two adjacent laminae creates a paradox.
If the adjacent sections are equal in area, then, because all sections are
equal, the totality will be a prism or a cylinder and not a pyramid or a
cone. If, on the other hand, adjacent sections are unequal, the totality will
be a step pyramid or a step cone and not the smooth-surfaced figure
one has in mind. This problem is not unlike the difficulties with the
incommensurable and with the paradoxes of motion. Perhaps, in his On
the Irrational, Democritus analyzed the difficulties here encountered, but
there is no way of knowing what direction his attempts may have taken.
His extreme unpopularity in the two dominant philosophical schools of
the next century, those of Plato and Aristotle, may have encouraged the
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disregard of Democritean ideas. Nevertheless, the chief mathematical
legacy of the Heroic Age can be summed up in six problems: the squaring
of the circle, the duplication of the cube, the trisection of the angle, the
ratio of incommensurable magnitudes, the paradoxes on motion, and the
validity of infinitesimal methods. To some extent, these can be asso-
ciated, although not exclusively, with men considered in this chapter:
Hippocrates, Archytas, Hippias, Hippasus, Zeno, and Democritus. Other
ages were to produce a comparable array of talent, but perhaps never
again was any age to make so bold an attack on so many fundamental
mathematical problems with such inadequate methodological resources.
It is for this reason that we have called the period from Anaxagoras to
Archytas the Heroic Age.

Mathematics and the Liberal Arts

We included Archytas among the mathematicians of the Heroic Age, but
in a sense he really is a transition figure in mathematics during Plato’s
time. Archytas was among the last of the Pythagoreans, both literally and
figuratively. He could still believe that number was all-important in life
and in mathematics, but the wave of the future was to elevate geometry
to the ascendancy, largely because of the problem of incommensur-
ability. On the other hand, Archytas is reported to have established the
quadrivium—arithmetic, geometry, music, and astronomy—as the core
of a liberal education, and here his views were to dominate much of
pedagogical thought to our day. The seven liberal arts, which remained a
shibboleth for almost two millennia, were made up of Archytas’s
quadrivium and the trivium of grammar, rhetoric, and Zeno’s dialectic.
Consequently, one may with some justice hold that the mathematicians
of the Heroic Age were responsible for much of the direction in Western
educational traditions, especially as transmitted through the philosophers
of the fourth century BCE.

The Academy

The fourth century BCE had opened with the death of Socrates, a scholar
who adopted the dialectic method of Zeno and repudiated the Pytha-
goreanism of Archytas. Socrates admitted that in his youth, he had been
attracted by such questions as why the sum 21 2 was the same as the
product 23 2, as well as by the natural philosophy of Anaxagoras, but
on realizing that neither mathematics nor science could satisfy his desire
to know the essence of things, he gave himself up to his characteristic
search for the good.

74 He l l en i c Tr a d i t i on s



In the Phaedo of Plato, the dialogue in which the last hours of Socrates
are so beautifully described, we see how deep metaphysical doubts
precluded a Socratic concern with either mathematics or natural science:

I cannot satisfy myself that, when one is added to one, the one to which

the addition is made becomes two, or that the two units added together

make two by reason of the addition. I cannot understand how when

separated from the other, each of them was one and not two, and now,

when they are brought together, the mere juxtaposition or meeting of

them should be the cause of their becoming two.

Hence, the influence of Socrates in the development of mathematics
was negligible, if not actually negative. This makes it all the more
surprising that it was his student and admirer Plato who became the
mathematical inspiration of the fourth century BC.
Although Plato himself made no specific outstanding contribution to

technical mathematical results, he was the center of the mathematical
activity of the time and guided and inspired its development. Over the
doors of his school, the Academy in Athens, was inscribed the motto “Let
no one ignorant of geometry enter here.” His enthusiasm for the subject
led him to become known not as a mathematician, but as “the maker of
mathematicians.”
The men whose work we shall describe (in addition to that of Plato and

Aristotle) lived between the death of Socrates in 399 BCE and the death
of Aristotle in 322 BCE. They are Theodorus of Cyrene (fl. ca. 390 BCE),
Theaetetus (ca. 414 369 BCE), Eudoxus of Cnidus (d. ca. 355 BCE),
Menaechmus (fl. ca. 350 BCE) and his brother Dinostratus (fl. ca. 350
BCE), and Autolycus of Pitane (fl. ca. 330 BCE).
These six mathematicians were not scattered throughout the Greek

world, as had been those in the fifth century BCE; they were associated
more or less closely with the Academy. It is clear that Plato’s high regard
for mathematics did not come from Socrates; in fact, the earlier Platonic
dialogues seldom refer to mathematics. The one who converted Plato to a
mathematical outlook was undoubtedly Archytas, a friend whom he vis-
ited in Sicily in 388 BCE. Perhaps it was there that Plato learned of the five
regular solids, which were associated with the four elements of Empe-
docles in a cosmic scheme that fascinated men for centuries. Possibly, it
was the Pythagorean regard for the dodecahedron that led Plato to look on
this, the fifth and last, regular solid as a symbol of the universe. Plato put
his ideas on the regular solids into a dialogue titled the Timaeus, pre-
sumably named for a Pythagorean who serves as the chief interlocutor. It
is not known whether Timaeus of Locri really existed or whether Plato
invented him as a character through whom to express the Pythagorean
views that still were strong in what is now southern Italy. The regular
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polyhedra have often been called “cosmic bodies” or “Platonic solids”
because of the way in which Plato in the Timaeus applied them to the
explanation of scientific phenomena. Although this dialogue, probably
written when Plato was near seventy, provides the earliest definite evi-
dence for the association of the four elements with the regular solids,
much of this fantasy may be due to the Pythagoreans.
Proclus attributes the construction of the cosmic figures to Pythagoras,

but the scholiast Suidas reported that Plato’s friend Theaetetus (ca. 414
BCE 369 BCE) and the son of one of the richest patricians in Attica first
wrote on them. A scholium (of uncertain date) to Book XIII of Euclid’s
Elements reports that only three of the five solids were due to the
Pythagoreans, and that it was through Theaetetus that the octahedron and
the icosahedron became known. It seems likely that in any case,
Theaetetus made one of the most extensive studies of the five regular
solids, and to him probably is due the theorem that there are five and
only five regular polyhedra. Perhaps he is also responsible for the cal-
culations in the Elements of the ratios of the edges of the regular solids to
the radius of the circumscribed sphere.
Theaetetus was a young Athenian who died from a combination of

dysentery and wounds received in battle, and the Platonic dialogue
bearing his name was a commemorative tribute by Plato to his friend.
In the dialogue, purporting to take place some thirty years earlier,
Theaetetus discusses with Socrates and Theodorus the nature of
incommensurable magnitudes. It has been assumed that this discussion
somewhat took the form that we find in the opening of Book X of
the Elements. Here distinctions are made not only between commen-
surable and incommensurable magnitudes, but also between those that
while incommensurable in length are, or are not, commensurable in
square. Surds such as 3

p
and 5

p
are incommensurable in length, but

they are commensurable in square, for their squares have the ratio 3 to 5.
The magnitudes 11 3

pp
and 11 5

pp
, on the other hand, are

incommensurable both in length and in square.

Moist

Water
icosahedron

Elements and regular solids

Air
octahedron

Cold

Dry Hot

Fire
tetrahedron

Earth
cube
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The dialogue that Plato composed in memory of his friend Theaetetus
contains information on another mathematician whom Plato admired and
who contributed to the early development of the theory of incommen-
surable magnitudes. Reporting on the then recent discovery of what we
call the irrationality of 2

p
, Plato in the Theaetetus says that his teacher,

Theodorus of Cyrene—of whom Theaetetus was also a pupil—was the
first to prove the irrationality of the square roots of the nonsquare
integers from 3 to 17 inclusive. It is not known how he did this or why
he stopped with 17

p
. The proof, in any case, would have been con-

structed along the lines of that for 2
p

as given by Aristotle and inter-
polated in later versions of Book X of the Elements. References in
ancient historical works indicate that Theodorus made discoveries
in elementary geometry that later were incorporated into Euclid’s
Elements, but the works of Theodorus are lost.
Plato is important in the history of mathematics largely for his role as

inspirer and director of others, and perhaps to him is due the sharp
distinction in ancient Greece between arithmetic (in the sense of the
theory of numbers) and logistic (the technique of computation). Plato
regarded logistic as appropriate for the businessman and for the man of
war, who “must learn the art of numbers or he will not know how to
array his troops.” The philosopher, on the other hand, must be an
arithmetician “because he has to arise out of the sea of change
and lay hold of true being.” Moreover, Plato says in the Republic,
“Arithmetic has a very great and elevating effect, compelling the mind to
reason about abstract number.” So elevating are Plato’s thoughts con-
cerning numbers that they reach the realm of mysticism and apparent
fantasy. In the last book of the Republic, he refers to a number that he
calls “the lord of better and worse births.” There has been much spec-
ulation concerning this “Platonic number,” and one theory is that it is
the number 6045 12,960,000—important in Babylonian numerology and
possibly transmitted to Plato through the Pythagoreans. In the Laws, the
number of citizens in the ideal state is given as 5040 (that is,
7 U 6 U 5 U 4 U 3 U 2 U 1). This is sometimes referred to as the Platonic
nuptial number, and various theories have been advanced to suggest
what Plato had in mind.
As in arithmetic, where Plato saw a gulf separating the theoretical and

the computational aspects, so also in geometry he espoused the cause of
pure mathematics as against the materialistic views of the artisan or the
technician. Plutarch, in his Life of Marcellus, speaks of Plato’s indig-
nation at the use of mechanical contrivances in geometry. Apparently,
Plato regarded such use as “the mere corruption and annihilation of the
one good of geometry, which was thus shamefully turning its back upon
the unembodied objects of pure intelligence.” Plato may consequently
have been largely responsible for the prevalent restriction in Greek
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geometric constructions to those that can be effected by straightedge and
compasses alone. The reason for the limitation is not likely to have been
the simplicity of the instruments used in constructing lines and circles,
but rather the symmetry of the configurations. Any one of the infinitely
many diameters of a circle is a line of symmetry of the figure; any point
on an infinitely extended straight line can be thought of as a center of
symmetry, just as any line perpendicular to the given line is a line with
respect to which the given line is symmetric. Platonic philosophy,
with its apotheosization of ideas, would quite naturally find a favored
role for the line and the circle among geometric figures. In a somewhat
similar manner, Plato glorified the triangle. The faces of the five regular
solids in Plato’s view were not simple triangles, squares, and pentagons.
Each of the four faces of the tetrahedron, for example, is made up of six
smaller right triangles, formed by altitudes of the equilateral triangular
faces. The regular tetrahedron he therefore thought of as made up of
twenty-four scalene right triangles in which the hypotenuse is double one
side; the regular octahedron contains 83 6 or 48 such triangles, and the
icosahedron is made up of 203 6 or 120 triangles. In a similar way
the hexahedron (or cube) is constructed of twenty-four isosceles right
triangles, for each of the six square faces contains four right triangles
when the diagonals of the squares are drawn.
To the dodecahedron, Plato had assigned a special role as repre-

sentative of the universe, cryptically saying that “God used it for the
whole” (Timaeus 55C). Plato looked on the dodecahedron as composed
of 360 scalene right triangles, for when the five diagonals and the five
medians are drawn in each of the pentagonal faces, each of the twelve
faces will contain thirty right triangles. The association of the first four
regular solids with the traditional four universal elements provided Plato
in the Timaeus with a beautifully unified theory of matter, according to
which everything was constructed of ideal right triangles. The whole of
physiology, as well as the sciences of inert matter, is based in the
Timaeus on these triangles.
Pythagoras is reputed to have established mathematics as a liberal

subject, but Plato was influential in making the subject an essential part
of the curriculum for the education of statesmen. Influenced perhaps by
Archytas, Plato would add to the original subjects in the quadrivium a
new subject, stereometry, for he believed that solid geometry had not
been sufficiently emphasized. Plato also discussed the foundations of
mathematics, clarified some of the definitions, and reorganized the
assumptions. He emphasized that the reasoning used in geometry does
not refer to the visible figures that are drawn but to the absolute ideas
that they represent. The Pythagoreans had defined a point as “unity
having position,” but Plato would rather think of it as the beginning of a
line. The definition of a line as “breadthless length” seems to have
originated in the school of Plato, as well as the idea that a line “lies
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evenly with the points on it.” In arithmetic, Plato emphasized not only
the distinction between odd and even numbers, but also the categories
“even times even,” “odd times even,” and “odd times odd.” Although we
are told that Plato added to the axioms of mathematics, we do not have
an account of his premises.
Few specific mathematical contributions are attributed to Plato.

A formula for Pythagorean triples—(2n)21 (n22 1)25 (n21 1)2, where n
is any natural number—bears Plato’s name, but this is merely a slightly
modified version of a result known to the Babylonians and the Pytha-
goreans. Perhaps more genuinely significant is the ascription to Plato of
the so-called analytic method. In demonstrative mathematics one begins
with what is given, either generally in the axioms and the postulates or
more specifically in the problems at hand. Proceeding step by step, one
then arrives at the statement that was to have been proved. Plato seems
to have pointed out that often it is pedagogically convenient, when a
chain of reasoning from premises to conclusion is not obvious, to reverse
the process. One might begin with the proposition that is to be proved
and from it deduce a conclusion that is known to hold. If, then, one can
reverse the steps in this chain of reasoning, the result is a legitimate
proof of the proposition. It is unlikely that Plato was the first to note the
efficacy in the analytic point of view, for any preliminary investigation
of a problem is tantamount to this. What Plato is likely to have done is to
formalize this procedure or perhaps to give it a name.
The role of Plato in the history of mathematics is still bitterly disputed.

Some regard him as an exceptionally profound and incisive thinker;
others picture him as a mathematical pied piper who lured men away
from problems that concerned the world’s work and who encouraged
idle speculation. In any case, few would deny that Plato had a tre-
mendous effect on the development of mathematics. The Platonic
Academy in Athens became the mathematical center of the world, and it
was from this school that the leading teachers and research workers
came during the middle of the fourth century. Of these, the greatest was
Eudoxus of Cnidus (408? 335? BCE), a man who was at one time a pupil
of Plato and who became the most renowned mathematician and
astronomer of his day.

Eudoxus

We sometimes read of the “Platonic reform” in mathematics, and although
the phrase tends to exaggerate the changes taking place, the work of
Eudoxus was so significant that the word “reform” is not inappropriate. In
Plato’s youth, the discovery of the incommensurable had caused a veri-
table logical scandal, for it had raised havoc with theorems involving
proportions. Two quantities, such as the diagonal and the side of a square,
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are incommensurable when they do not have a ratio such as a (whole)
number has to a (whole) number. How, then, is one to compare ratios of
incommensurable magnitudes? If Hippocrates really did prove that the
areas of circles are to each other as squares on their diameters, he must
have had some way of handling proportions or the equality of ratios. We
do not know how he proceeded or whether to some extent he anticipated
Eudoxus, who gave a new and generally accepted definition of equal
ratios. Apparently, the Greeks had made use of the idea that four quantities
are in proportion, a : b5 c : d, if the two ratios a : b and c : d have the same
mutual subtraction. That is, the smaller in each ratio can be laid off on the
larger the same integral number of times, and the remainder in each case
can be laid off on the smaller the same integral number of times, and the
new remainder can be laid off on the former remainder the same integral
number of times, and so on. Such a definition would be awkward to use,
and it was a brilliant achievement of Eudoxus to discover the theory of
proportion used in Book V of Euclid’s Elements.
The word “ratio” essentially denoted an undefined concept in Greek

mathematics, for Euclid’s “definition” of ratio as a kind of relation in
size between two magnitudes of the same type is quite inadequate. More
significant is Euclid’s statement that magnitudes are said to have a ratio
to one another if a multiple of either can be found to exceed the other.
This is essentially a statement of the so-called axiom of Archimedes—a
property that Archimedes himself attributed to Eudoxus. The Eudoxian
concept of ratio consequently excludes zero and clarifies what is meant
by magnitudes of the same kind. A line segment, for example, is not to
be compared, in terms of ratio, with an area; nor is an area to be com-
pared with a volume.
Following these preliminary remarks on ratios, Euclid gives in Defi-

nition 5 of Book V the celebrated formulation by Eudoxus:

Magnitudes are said to be in the same ratio, the first to the second and

the third to the fourth, when, if any equimultiples whatever be taken of the

first and the third, and any equimultiples whatever of the second and

fourth, the former equimultiples alike exceed, are alike equal to, or are

alike less than, the latter equimultiples taken in corresponding order

(Heath 1981, vol. 2, p. 114).

That is, a / b5 c / d if and only if given integers m and n, whenever
ma, nb, then mc, nd, or if ma5 nb, then mc5 nd, or if ma. nb, then
mc. nd.
The Eudoxian definition of equality of ratios is not unlike the process

of cross-multiplication that is used today for fractions—a / b5 c / d
according as ad5 bc—a process equivalent to a reduction to a common
denominator. To show that 3

6 is equal to
4
8, for example, we multiply 3 and

6 by 4, to obtain 12 and 24, and we multiply 4 and 8 by 3, obtaining the
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same pair of numbers 12 and 24. We could have used 7 and 13 as our
two multipliers, obtaining the pair 21 and 42 in the first case and 52 and
104 in the second, and as 21 is less than 52, so is 42 less than 104. (We
have here interchanged the second and third terms in Eudoxus’s defi-
nition to conform to the common operations as usually used today, but
similar relationships hold in either case.) Our arithmetical example does
not do justice to the subtlety and efficacy of Eudoxus’s thought, for the
application here appears to be trivial. To gain a heightened appreciation
of his definition, it would be well to replace a, b, c, d by surds or, better
still, to let a and b be spheres and c and d cubes on the radii of the spheres.
Here a cross-multiplication becomes meaningless, and the applicability of
Eudoxus’s definition is far from obvious. In fact, it will be noted that
strictly speaking, the definition is not far removed from the nineteenth-
century definitions of real number, for it separates the class of rational
numbers m / n into two categories, according as ma# nb or ma. nb.
Because there are infinitely many rational numbers, the Greeks by
implication were faced with the concept they wished to avoid—that of an
infinite set—but at least it was now possible to give satisfactory proofs of
theorems that involved proportions.

Method of Exhaustion

A crisis resulting from the incommensurable had been successfully met,
thanks to the imagination of Eudoxus, but there remained another
unsolved problem—the comparison of curved and straight-line config-
urations. Here, too, it seems to have been Eudoxus who supplied the key.
Earlier mathematicians apparently suggested that one try inscribing
and circumscribing rectilinear figures in and about the curved figure and
continue to multiply indefinitely the number of sides, but they did not
know how to clinch the argument, for the concept of a limit was
unknown at the time. According to Archimedes, it was Eudoxus who
provided the lemma that now bears Archimedes’ name—sometimes
known as the axiom of continuity—which served as the basis for the
method of exhaustion, the Greek equivalent of the integral calculus.
The lemma or axiom states that given two magnitudes having a ratio
(that is, neither being zero), one can find a multiple of either one that will
exceed the other. This statement excluded a fuzzy argument about
indivisible line segments, or fixed infinitesimals, that was sometimes
maintained in Greek thought. It also excluded the comparison of the
so-called angle of contingency or “horn angle” (formed by a curve C and
its tangent T at a point P on C) with ordinary rectilinear angles. The horn
angle seemed to be a magnitude different from zero, yet it does not
satisfy the axiom of Eudoxus with respect to the measures of rectilinear
angles.
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From the axiom of Eudoxus (or Archimedes) it is an easy step, by a
reductio ad absurdum, to prove a proposition that formed the basis of the
Greek method of exhaustion:

If from any magnitude there be subtracted a part not less than its half, and

if from the remainder one again subtracts not less than its half, and if this

process of subtraction is continued, ultimately there will remain a mag-

nitude less than any preassigned magnitude of the same kind.

This proposition, which we shall refer to as the “exhaustion property,”
is equivalent to Euclid X.1 and to the modern statement that if M is a
given magnitude, ε is a preassigned magnitude of the same kind, and r is
a ratio such that 1

2 # r, 1, then we can find a positive integer N such that
M(12 r)n, ε for all positive integers n.N. That is, the exhaustion
property is equivalent to the modern statement that limn-NMð12 rÞn 5 0.
Moreover, the Greeks made use of this property to prove theorems about
the areas and the volumes of curvilinear figures. In particular, Archimedes
ascribed to Eudoxus the earliest satisfactory proof that the volume of the
cone is one-third the volume of the cylinder having the same base and
altitude, a statement that would seem to indicate that the method of
exhaustion was derived by Eudoxus. If so, then it is to Eudoxus (rather than
to Hippocrates) that we probably owe the Euclidean proofs of theorems
concerning areas of circles and volumes of spheres. Facile earlier sug-
gestions had been made that the area of a circle could be exhausted by
inscribing in it a regular polygon and then increasing the number of sides
indefinitely, but the Eudoxian method of exhaustion first made such a
procedure rigorous. (It should be noted that the phrase “method of
exhaustion” was not used by the ancient Greeks, being a modern invention,
but the phrase has become so well established in the history of mathematics
that we shall continue to make use of it.) As an illustration of the way in
which Eudoxus probably carried out the method, we give here, in some-
what modernized notation, the proof that areas of circles are to each other
as squares on their diameters. The proof, as it is given in Euclid, Elements
XII.2, is probably that of Eudoxus.
Let the circles be c and C, with diameters d and D and areas a and A. It

is to be proved that a /A5 d2 /D2. The proof is complete if we proceed
indirectly and disprove the only other possibilities, namely, a /A, d2 /D2

and a / A. d2 /D2. Hence, we first assume that a /A. d2 /D2. Then,
there is a magnitude au, a such that au/A5 d2 /D2. Let a2 au be a
preassigned magnitude ε. 0. Within the circles c and C inscribe regular
polygons of areas pn and Pn, having the same number of sides n, and
consider the intermediate areas outside the polygons but inside the cir-
cles (Fig. 4.18). If the number of sides should be doubled, it is obvious
that from these intermediate areas, we would be subtracting more than
the half. Consequently, by the exhaustion property, the intermediate
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areas can be reduced through successive doubling of the number of
sides (i.e., by letting n increase) until a2 pn, ε. Then, because
a2 au5 ε, we have pn. au. Now, from earlier theorems it is known that
pn / Pn5 d2 /D2 and because it was assumed that au /A5 d2 /D2, we have
pn /Pn5 au / A. Hence, if pn. au, as we have shown, we must conclude
that Pn.A. Inasmuch as Pn is the area of a polygon inscribed within the
circle of area A, it is obvious that Pn cannot be greater than A. Because a
false conclusion implies a false premise, we have disproved the possi-
bility that a /A. d2 /D2. In an analogous manner, we can disprove the
possibility that a /A, d2 /D2, thereby establishing the theorem that areas
of circles are to each other as squares on their diameters.

Mathematical Astronomy

The property that we have just demonstrated appears to have been the first
precise theorem concerning the magnitudes of curvilinear figures; it marks
Eudoxus as the apparent anticipator of the integral calculus, the greatest
contribution to mathematics made by associates of the Platonic Academy.
Eudoxus, moreover, was by no means only a mathematician; in the his-
tory of science, he is known as the father of scientific astronomy. Plato is
said to have proposed to his associates that they attempt to give a geo-
metric representation of the movements of the sun, the moon, and the five
known planets. It evidently was tacitly assumed that the movements were
to be compounded of uniform circular motions. Despite such a restriction,
Eudoxus was able to give for each of the seven heavenly bodies a satis-
factory representation through a composite of concentric spheres with
centers at the earth and with varying radii, each sphere revolving uniformly
about an axis fixed with respect to the surface of the next larger sphere. For
each planet, then, Eudoxus gave a system known to his successors as
“homocentric spheres”; these geometric schemes were combined by
Aristotle into the well-known Peripatetic cosmology of crystalline spheres
that dominated thought for almost 2,000 years.

FIG. 4.18
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Eudoxus was without doubt the most capable mathematician of the
Hellenic Age, but all of his works have been lost. In his astronomical
scheme, Eudoxus had seen that by a combination of circular motions,
he could describe the motions of the planets in looped orbits along a
curve known as the hippopede, or horse fetter. This curve, resembling a
figure eight on a sphere, is obtained as the intersection of a sphere and a
cylinder tangent internally to the sphere—one of the few new curves that
the Greeks recognized. At the time, there were only two means of
defining curves: (1) through combinations of uniform motions and (2) as
the intersections of familiar geometric surfaces. The hippopede of
Eudoxus is a good example of a curve that is derivable in either of these
two ways. Proclus, who wrote some 800 years after the time of Eudoxus,
reported that Eudoxus had added many general theorems in geometry
and had applied the Platonic method of analysis to the study of the
section (probably the golden section), but Eudoxus’s two chief claims to
fame remain the theory of proportions and the method of exhaustion.

Menaechmus

Eudoxus is to be remembered in the history of mathematics not only for his
own work but also through that of his pupils. In Greece, there was a strong
thread of continuity of tradition from teacher to student. Thus, Plato
learned from Archytas, Theodorus, and Theaetetus; the Platonic influence
in turn was passed on through Eudoxus to the brothers Menaechmus and
Dinostratus, both of whom achieved eminence in mathematics. We saw
that Hippocrates of Chios had shown that the duplication of the cube could
be achieved provided that one could find and was permitted to use curves
with the properties expressed in the continued proportion a / x5 x / y5 y /
2a; we also noted that the Greeks had only two approaches to the discovery
of new curves. It was consequently a signal achievement on the part of
Menaechmus when he disclosed that curves having the desired property
were near at hand. In fact, there was a family of appropriate curves
obtainable from a single source—the cutting of a right circular cone by a
plane perpendicular to an element of the cone. That is, Menaechmus is
reputed to have discovered the curves that were later known as the ellipse,
the parabola, and the hyperbola.
Of all of the curves, other than circles and straight lines, that are

apparent to the eye in everyday experience, the ellipse should be the
most obvious, for it is present by implication whenever a circle is viewed
obliquely or whenever one saws diagonally through a cylindrical log.
Yet the first discovery of the ellipse seems to have been made by
Menaechmus as a mere by-product in a search in which it was the
parabola and the hyperbola that proffered the properties needed in
the solution of the Delian problem.
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Beginning with a single-napped right circular cone having a right
angle at the vertex (that is, a generating angle of 45�), Menaechmus
found that when the cone is cut by a plane perpendicular to an element,
the curve of intersection is such that in terms of modern analytic geo-
metry, its equation can be written in the form y25 lx, where l is a
constant, depending on the distance of the cutting plane from the vertex.
We do not know how Menaechmus derived this property, but it depends
only on theorems from elementary geometry. Let the cone be ABC and
let it be cut in the curve EDG by a plane perpendicular to the element
ADC of the cone (Fig. 4.19). Then, throughP, any point on the curve, pass
a horizontal plane cutting the cone in the circle PVR, and letQ be the other
point of intersection of the curve (parabola) and the circle. From the
symmetries involved, it follows that line PQ> RV atO. Hence,OP is the
mean proportional between RO and OV. Moreover, from the similarity of
triangles OVD and BCA it follows that OV /DO5BC / AB, and from the
similarity of triangles RuDA and ABC it follows that RuD /ARu5BC /AB.
If OP5 y and OD5 x are coordinates of point P, we have y25RO � OV,
or, on substituting equals,

y2 5R0DUOV 5AR0U
BC

AB
UDOU

BC

AB
5

AR0UBC2

AB2
x:

Inasmuch as segments ARu, BC, and AB are the same for all points P on the
curve EQDPG, we can write the equation of the curve, a “section of a right-
angled cone,” as y25 lx, where l is a constant, later to be known as the latus
rectum of the curve. In an analogous way, we can derive an equation of the
form y25 lx2 b2x2 / a2 for a “section of an acute-angled cone” and an
equation of the form y25 lx1 b2x2 / a2 for a “section of an obtuse-angled

A

R'

R

E

F

G

CB

D

V

P
O

Q

FIG. 4.19

The Ac ademy 85



cone,” where a and b are constants and the cutting plane is perpendicular to
an element of the acute-angled or obtuse-angled right circular cone.

Duplication of the Cube

Menaechmus had no way of foreseeing the hosts of beautiful properties
that the future would disclose. He had hit on the conics in a successful
search for curves with the properties appropriate to the duplication of the
cube. In terms of modern notation, the solution is easily achieved. By
shifting the cutting plane (Fig. 4.19), we can find a parabola with any
latus rectum. If we wish to duplicate a cube of edge a, we locate on a
right-angled cone two parabolas, one with latus rectum a and another with
latus rectum 2a. If, then, we place these with vertices at the origin and
with axes along the y- and x-axes, respectively, the point of intersection of
the two curves will have coordinates (x, y) satisfying the continued pro-
portion a / x5 x / y5 y / 2a (Fig. 4.20); that is, x5 a 23

p
, x, y5 a 43

p
. The

x-coordinate, therefore, is the edge of the cube sought.
It is probable that Menaechmus knew that the duplication could also

be achieved by the use of a rectangular hyperbola and a parabola. If the
parabola with equation y25 (a / 2)x and the hyperbola xy5 a2 are placed
on a common coordinate system, the point of intersection will have
coordinates x5 a 2;3

p
y5 a 2;3

p
the x-coordinate being the side of the

cube desired. Menaechmus was probably acquainted with many of
the now-familiar properties of the conic sections, including the asymp-
totes of the hyperbola, which would have permitted him to operate with
the equivalents of the modern equations that we used earlier. Proclus
reported that Menaechmus was one of those who “made the whole
of geometry more perfect,” but we know little about his actual work. We
do know that Menaechmus taught Alexander the Great, and legend
attributes to Menaechmus the celebrated comment, when his royal
pupil asked for a shortcut to geometry: “O King, for traveling over the
country there are royal roads and roads for common citizens; but in

x2 � ay

y2 � 2ax

FIG. 4.20
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geometry there is one road for all.” Among the chief authorities for
attributing to Menaechmus the discovery of conic sections is a letter
from Eratosthenes to King Ptolemy Euergetes, quoted some 700 years
later by Eutocius, in which several duplications of the cube are men-
tioned. Among them is one by Archytas’s unwieldy construction and
another by “cutting the cone in the triads of Menaechmus.”

Dinostratus and the Squaring of the Circle

Dinostratus, a brother of Menaechmus, was also a mathematician; one of
the brothers “solved” the duplication of the cube, the other “solved” the
squaring of the circle. The quadrature became a simple matter once a
striking property of the end point Q of the trisectrix of Hippias had been
noted, apparently by Dinostratus. If the equation of the trisectrix
(Fig. 4.21) is πr sin θ5 2aθ, where a is the side of the square ABCD
associated with the curve, the limiting value of r as θ tends toward zero
is 2a /π. This is obvious to one who has had calculus and recalls that
limθ- 0 sin θ=θ5 1 for radian measure. The proof, as given by Pappus
and probably due to Dinostratus, is based only on considerations from
elementary geometry. The theorem of Dinostratus states that side a is the
mean proportional between the segment DQ and the arc of the quarter
circle AC; that is, AC

_
=AB5AB=DQ. Using a typically Greek indirect

proof, we establish the theorem by demolishing the alternatives. Hence,
assume first that AC

_
=AB5AB=DR where DR.DQ. Then, let the circle

with center D and radius DR intersect the trisectrix at S and side AD of
the square at T. From S drop the perpendicular SU to side CD. Inasmuch
as it was known to Dinostratus that corresponding arcs of circles are to
each other as the radii, we have AC

_
=AB5 TR

_
=DR, and because by

hypothesis AC
_

=AB5AB=DR, it follows that TR
_

5AB. But from the
definitional property of the trisectrix it is known that TR

_
=SR
_

5AB=SU.
Hence, because TR

_
5AB, it must follow that SR

_
5 SU, which obviously

is false, because the perpendicular is shorter than any other line or curve
from point S to line DC. Hence, the fourth term DR in the proportion
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AC
_

=AB5AB=DR cannot be greater than DQ. In a similar manner, we
can prove that this fourth proportional cannot be less than DQ; hence,
Dinostratus’s theorem is established—that is, AC

_
=AB5AB=DQ.

Given the intersection point Q of the trisectrix with DC, we then have
a proportion involving three straight-line segments and the circular arc
AC. Hence, by a simple geometric construction of the fourth term in a
proportion, a line segment b equal in length to AC can easily be drawn.
On drawing a rectangle with 2b as one side and a as the other, we have
a rectangle exactly equal in area to the area of the circle with radius a; a
square equal to the rectangle is easily constructed by taking as the side of
the square the geometric mean of the sides of the rectangle. Inasmuch as
Dinostratus showed that the trisectrix of Hippias serves to square the
circle, the curve more commonly came to be known as the quadratrix. It
was, of course, always clear to the Greeks that the use of the curve in the
trisection and quadrature problems violated the rules of the game—that
only circles and straight lines were permitted. The “solutions” of Hippias
and Dinostratus, as their authors realized, were sophistic; hence, the
search for further solutions, canonical or illegitimate, continued, with
the result that several new curves were discovered by Greek geometers.

Autolycus of Pitane

A few years after Dinostratus and Menaechmus, in the second half of
the fourth century BCE, there flourished an astronomer who has the dis-
tinction of having written the oldest surviving Greek mathematical
treatise. Autolycus of Pitane is the author of a treatise, On the Moving
Sphere, that formed part of a collection known as the “Little Astronomy,”
which was widely used by ancient astronomers. On the Moving Sphere is
not a profound and probably not a very original work, for it includes little
beyond elementary theorems on the geometry of the sphere that would be
needed in astronomy. Its chief significance lies in the fact that it indi-
cates that Greek geometry had reached the form that we regard as typical
of the classical age. Theorems are clearly enunciated and proved.
Moreover, the author uses without proof or indication of source other
theorems that he regards as well known. We conclude, therefore, that in
Greece in his day, about 320 BCE, a thoroughly established textbook
tradition in geometry existed.

Aristotle

Aristotle (384 322 BCE), that most widely learned scholar, like Eudoxus,
was a student of Plato’s and, like Menaechmus, a tutor of Alexander the
Great. Aristotle was primarily a philosopher and a biologist, but he was
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thoroughly au courant with the activities of the mathematicians. He may
have taken a role in one of the leading controversies of the day, for to
him was ascribed a treatise titled On Indivisible Lines. Modern scho-
larship questions the authenticity of this work, but, in any case, it
probably was the result of discussions carried on in the Aristotelian
Lyceum. The thesis of the treatise is that the doctrine of indivisibles
espoused by Xenocrates, a successor of Plato as head of the Academy, is
untenable. Xenocrates thought that the notion of an indivisible, or fixed
infinitesimal of length or area or volume, would resolve the paradoxes,
such as those of Zeno, that plagued mathematical and philosophical
thought. Aristotle, too, devoted much attention to the paradoxes of Zeno,
but he sought to refute them on the basis of common sense. He hesitated
to follow Platonic mathematicians into the abstractions and technicalities
of the day and made no lasting contribution to the subject. Through his
foundation of logic and his frequent allusion to mathematical concepts
and theorems in his voluminous works, Aristotle can be regarded as
having contributed to the development of mathematics. The Aristotelian
discussion of the potentially and actually infinite in arithmetic and
geometry influenced many later writers on the foundations of mathe-
matics, but Aristotle’s statement that mathematicians “do not need the
infinite or use it” should be compared with the assertions of our day that
the infinite is the mathematician’s paradise. Of more positive sig-
nificance is Aristotle’s analysis of the roles of definitions and hypotheses
in mathematics.
In 323 BCE, Alexander the Great suddenly died, and his empire fell

apart. His generals divided the territory over which the young conqueror
had ruled. In Athens, where Aristotle had been regarded as a foreigner,
the philosopher found himself unpopular now that his powerful soldier-
student was dead. He left Athens and died the following year.
Throughout the Greek world, the old order was changing, politically and
culturally. Under Alexander, there had been a gradual blending of
Hellenic and Oriental customs and learning, so that it was more
appropriate to speak of the newer civilization as Hellenistic, rather than
Hellenic. Moreover, the new city of Alexandria, established by the world
conqueror, now took the place of Athens as the center of the mathe-
matical world. In the history of civilization, it is therefore customary to
distinguish two periods in the Greek world, with the almost simultaneous
deaths of Aristotle and Alexander (as well as that of Demosthenes) as a
convenient dividing line. The earlier portion is known as the Hellenic
Age, the later as the Hellenistic or Alexandrian Age. In the next few
chapters, we describe the mathematics of the first century of the new era,
often known as the Golden Age of Greek mathematics.
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5

Euclid of Alexandria

Ptolemy once asked Euclid whether there was any shorter way to a

knowledge of geometry than by a study of the Elements, whereupon

Euclid answered that there was no royal road to geometry.

Proclus Diadochus

Alexandria

The death of Alexander the Great had led to internecine strife among the
generals in the Greek army, but after 300 BCE, control of the Egyptian
portion of the empire was firmly in the hands of the Ptolemies, the
Macedonian rulers of Egypt. Ptolemy I laid the foundations for two
institutions at Alexandria that would make it the leading center of
scholarship for generations. They were the Museum and the Library,
both amply endowed by him and his son, Ptolemy II, who brought to this
great research center men of outstanding scholarship in a variety of
fields. Among these was Euclid, the author of the most successful
mathematics textbook ever written—the Elements (Stoichia). Consider-
ing the fame of the author and of his best-seller, remarkably little is
known of Euclid’s life. He was so obscure that no birthplace is
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associated with his name. Although editions of the Elements often bore
the identification of the author as Euclid of Megara and a portrait of
Euclid of Megara appears in histories of mathematics, this is a case of
mistaken identity.
From the nature of his work, it is presumed that Euclid of Alexandria

had studied with students of Plato, if not at the Academy itself. There is a
tale told of him that when one of his students asked of what use was the
study of geometry, Euclid asked his slave to give the student three pence,
“since he must needs make gain of what he learns.”

Lost Works

Of what Euclid wrote, more than half has been lost, including some of
his more important compositions, such as a treatise on conics in four
books. Both this work and an earlier lost treatise on Solid Loci (the
Greek name for the conic sections) by the somewhat older geometer
Aristaeus were soon superseded by the more extensive work on conics
by Apollonius. Among Euclid’s lost works are also one on Surface Loci,
another on Pseudaria (or fallacies), and three books on Porisms. It is not
even clear from ancient references what material these contained. As far
as we know, the Greeks did not study any surface other than that of a
solid of revolution.
The loss of the Euclidean Porisms is particularly tantalizing. Pappus

later reported that a porism is intermediate between a theorem, in which
something is proposed for demonstration, and a problem, in which
something is proposed for construction. Others have described a porism
as a proposition in which one determines a relationship between known
and variable or undetermined quantities, perhaps the closest approach
in antiquity to the concept of function.

Extant Works

Five works by Euclid have survived to our day: the Elements, the Data,
the Division of Figures, the Phaenomena, and the Optics. The last-
mentioned is of interest as an early work on perspective, or the geometry
of direct vision. The ancients had divided the study of optical phenomena
into three parts: (1) optics (the geometry of direct vision), (2) catoptrics
(the geometry of reflected rays), and (3) dioptrics (the geometry of
refracted rays). A Catoptrica sometimes ascribed to Euclid is of doubtful
authenticity, being perhaps by Theon of Alexandria, who lived some six
centuries later. Euclid’s Optics is noteworthy for its espousal of an
“emission” theory of vision, according to which the eye sends out rays that
travel to the object, in contrast to a rival Aristotelian doctrine in which an
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activity in a medium travels in a straight line from the object to the eye. It
should be noted that the mathematics of perspective (as opposed to the
physical description) is the same, no matter which of the two theories is
adopted. Among the theorems found in Euclid’s Optics is one widely used
in antiquity—tanα / tan β,α /β if 0,α,β,π / 2. One object of the
Optics was to combat an Epicurean insistence that an object was just as
large as it looked, with no allowance to be made for the foreshortening
suggested by perspective.
The Euclidean Division of Figures is a work that would have been lost

had it not been for the learning of Arabic scholars. It has not survived in
the original Greek, but before the disappearance of the Greek versions,
an Arabic translation had been made (omitting some of the original
proofs “because the demonstrations are easy”), which in turn was later
translated into Latin and ultimately into current modern languages. This
is not atypical of other ancient works. The Division of Figures includes a
collection of thirty-six propositions concerning the division of plane
configurations. For example, Proposition 1 calls for the construction of
a straight line that shall be parallel to the base of a triangle and shall
divide the triangle into two equal areas. Proposition 4 requires a bisec-
tion of a trapezoid abqd (Fig. 5.1) by a line parallel to the bases; the
required line zi is found by determining z such that ze2 5 1

2ðeb2
1 ea2Þ.

Other propositions call for the division of a parallelogram into two equal
parts by a line drawn through a given point on one of the sides (Pro-
position 6) or through a given point outside the parallelogram (Propo-
sition 10). The final proposition asks for the division of a quadrilateral in
a given ratio by a line through a point on one of the sides of the
quadrilateral.
Somewhat similar in nature and purpose to the Division of Figures is

Euclid’s Data, a work that has come down to us through both the Greek
and the Arabic. It seems to have been composed for use at the Museum
of Alexandria, serving as a companion volume to the first six books of
the Elements in much the way that a manual of tables supplements a
textbook. It opens with fifteen definitions concerning magnitudes and
loci. The body of the text comprises ninety-five statements concerning
the implications of conditions and magnitudes that may be given in a
problem. The first two state that if two magnitudes a and b are given,
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their ratio is given, and that if one magnitude is given and also its ratio to
a second, the second magnitude is given. There are about two dozen
similar statements, serving as algebraic rules or formulas. After this, the
work lays out simple geometric rules concerning parallel lines and
proportional magnitudes, while reminding the student of the implications
of the data given in a problem, such as the advice that when two line
segments have a given ratio then one knows the ratio of the areas of
similar rectilinear figures constructed on these segments. Some of the
statements are geometric equivalents of the solution of quadratic equa-
tions. For example, we are told that if a given (rectangular) area AB is
laid off along a line segment of given length AC (Fig. 5.2) and if the area
BC by which the area AB falls short of the entire rectangle AD is given,
the dimensions of the rectangle BC are known. The truth of this
statement is easily demonstrated by modern algebra. Let the length of
AC be a, the area of AB be b2, and the ratio of FC to CD be c:d. Then, if
FC5 x and CD5 y, we have x / y5 c / d and (a x)y5 b2. Eliminat-
ing y, we have (a2 x)dx5 b2c or dx22 adx1 b2c5 0, from which

x5 a=26 ða=2Þ2 2 b2c=d:
p

The geometric solution given by Euclid is
equivalent to this, except that the negative sign before the radical is used.
Statements 84 and 85 in the Data are geometric replacements of the
familiar Babylonian algebraic solutions of the systems xy5 a2, x 6 y
5 b, which again are the equivalents of solutions of simultaneous
equations. The last few statements in the Data concern relationships
between linear and angular measures in a given circle.

The Elements

The Elements was a textbook and by no means the first one. We know
of at least three earlier such Elements, including that by Hippocrates of
Chios, but there is no trace of these or of other potential rivals from
ancient times. The Elements of Euclid so far outdistanced competitors
that it alone survived. The Elements was not, as is sometimes thought, a
compendium of all geometric knowledge; it was instead an introductory
textbook covering all elementary mathematics—that is, arithmetic (in
the sense of the English “higher arithmetic” or the American “theory
of numbers”), synthetic geometry (of points, lines, planes, circles, and
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spheres), and algebra (not in the modern symbolic sense, but an
equivalent in geometric garb). It will be noted that the art of calculation
is not included, for this was not a part of mathematical instruction; nor
was the study of the conics or higher plane curves part of the book, for
these formed a part of more advanced mathematics. Proclus described
the Elements as bearing to the rest of mathematics the same sort of
relation as that which the letters of the alphabet have in relation to
language. Were the Elements intended as an exhaustive store of infor-
mation, the author might have included references to other authors,
statements of recent research, and informal explanations. As it is, the
Elements is austerely limited to the business in hand—the exposition in
logical order of the fundamentals of elementary mathematics. Occa-
sionally, however, later writers interpolated into the text explanatory
scholia, and such additions were copied by later scribes as part of the
original text. Some of these appear in every one of the manuscripts now
extant. Euclid himself made no claim to originality, and it is clear that
he drew heavily from the works of his predecessors. It is believed
that the arrangement is his own, and, presumably, some of the proofs
were supplied by him, but beyond that, it is difficult to estimate the
degree of originality that is to be found in this, the most renowned
mathematical work in history.

Definitions and Postulates

The Elements is divided into thirteen books or chapters, of which the first
half-dozen are on elementary plane geometry, the next three on the
theory of numbers, the tenth on incommensurables, and the last three
chiefly on solid geometry. There is no introduction or preamble to
the work, and the first book opens abruptly with a list of twenty-three
definitions. The weakness here is that some of the definitions do not
define, inasmuch as there is no prior set of undefined elements in terms
of which to define the others. Thus, to say, as does Euclid, that “a point is
that which has no part,” or that “a line is breadthless length,” or that “a
surface is that which has length and breadth only,” is scarcely to define
these entities, for a definition must be expressed in terms of things that
precede and are better known than the things defined. Objections can
easily be raised on the score of logical circularity to other so-called
definitions of Euclid, such as “The extremities of a line are points,”
or “A straight line is a line which lies evenly with the points on itself,” or
“The extremities of a surface are lines,” all of which may have been due
to Plato.
Following the definitions, Euclid lists five postulates and five common

notions. Aristotle had made a sharp distinction between axioms (or
common notions) and postulates; the former, he said, must be convincing
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in themselves—truths common to all studies—but the latter are less
obvious and do not presuppose the assent of the learner, for they pertain
only to the subject at hand. We do not know whether Euclid distinguished
between two types of assumptions. Surviving manuscripts are not in
agreement here, and in some cases, the ten assumptions appear together
in a single category. Modern mathematicians see no essential difference
between an axiom and a postulate. In most manuscripts of the Elements,
we find the following ten assumptions:

Postulates. Let the following be postulated:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and radius.

4. That all right angles are equal.

5. That, if a straight line falling on two straight lines makes the interior

angles on the same side less than two right angles, the two straight

lines, if produced indefinitely, meet on that side on which the angles

are less than the two right angles.

Common notions:

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

Aristotle had written that “other things being equal, that proof is the
better which proceeds from the fewer postulates,” and Euclid evidently
subscribed to this principle. For example, Postulate 3 is interpreted in the
very limited literal sense, sometimes described as the use of the Eucli-
dean (collapsible) compass, whose legs maintain a constant opening so
long as the point stands on the paper, but fall back on each other when
they are lifted. That is, the postulate is not interpreted to permit the use
of a pair of dividers to lay off a distance equal to one line segment on a
noncontiguous longer line segment, starting from an end point. It is
proved in the first three propositions of Book I that the latter construction
is always possible, even under the strict interpretation of Postulate 3. The
first proposition justifies the construction of an equilateral triangle ABC
on a given line segment AB by constructing through B a circle with a
center at A and another circle through A with a center at B, and letting C
be the point of intersection of the two circles. (That they do intersect is
tacitly assumed.) Proposition 2 then builds on Proposition 1 by showing
that from any point A as extremity (Fig. 5.3), one can lay off a straight
line segment equal to a given line segment BC. First, Euclid drew AB,
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and on this he constructed the equilateral triangle ABD, extending the
sides DA and DB to E and F, respectively. With B as center, describe
the circle through C, intersecting BF in G; then, with D as center, draw a
circle through G, intersecting DE in H. Line AH is then easily shown
to be the line required. Finally, in Proposition 3 Euclid made use of
Proposition 2 to show that given any two unequal straight lines, one can
cut off from the greater a segment equal to the smaller.

Scope of Book I

In the first three propositions, Euclid went to great pains to show that a very
restricted interpretation of Postulate 3 nevertheless implies the free use of a
compass as is usually done in laying off distances in elementary geometry.
Nevertheless, by modern standards of rigor, the Euclidean assumptions are
woefully inadequate, and in his proofs Euclid often makes use of tacit
postulates. In the first proposition of the Elements, for example, he assumes
without proof that the two circles will intersect in a point. For this and
similar situations, it is necessary to add to the postulates one equivalent
to a principle of continuity. Moreover, Postulates 1 and 2, as they were
expressed by Euclid, guarantee neither the uniqueness of the straight line
through two noncoincident points nor even its infinitude; they simply assert
that there is at least one and that it has no termini.
Most of the propositions in Book I of the Elements are well known to

anyone who has had a high school course in geometry. Included are
the familiar theorems on the congruence of triangles (but without an
axiom justifying the method of superposition), on simple constructions
by straightedge and compass, on inequalities concerning angles and
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sides of a triangle, on properties of parallel lines (leading to the fact that
the sum of the angles of a triangle is equal to two right angles), and on
parallelograms (including the construction of a parallelogram having
given angles and equal in area to a given triangle or a given rectilinear
figure). The book closes (in Propositions 47 and 48) with the proof of the
Pythagorean theorem and its converse. The proof of the theorem as given
by Euclid was not that usually given in textbooks of today, in which
simple proportions are applied to the sides of similar triangles formed by
dropping an altitude on the hypotenuse. For the Pythagorean theorem,
Euclid used instead the beautiful proof with a figure sometimes descri-
bed as a windmill or the peacock’s tail or the bride’s chair (Fig. 5.4). The
proof is accomplished by showing that the square on AC is equal to twice
the triangle FAB or to twice the triangle CAD or to the rectangle AL, and
that the square on BC is equal to twice the triangle ABK or to twice the
triangle BCE or to the rectangle BL. Hence, the sum of the squares is
equal to the sum of the rectangles—that is, to the square on AB. It has
been assumed that this proof was original with Euclid, and many con-
jectures have been made as to the possible form of earlier proofs. Since
the days of Euclid, many alternative proofs have been proposed.
It is to Euclid’s credit that the Pythagorean theorem is immediately

followed by a proof of the converse: If in a triangle the square on one of
the sides is equal to the sum of the squares on the other two sides, the
angle between these other two sides is a right angle. Not infrequently in
modern textbooks, the exercises following the proof of the Pythagorean
theorem are such that they require not the theorem itself but the still
unproved converse. There may be many a minor flaw in the Elements,
but the book had all of the major logical virtues.
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Geometric Algebra

Book II of the Elements is a short one, containing only fourteen pro-
positions, not one of which plays any role in modern textbooks, yet in
Euclid’s day this book was of great significance. This sharp discrepancy
between ancient and modern views is easily explained—today we have
symbolic algebra and trigonometry, which have replaced the geometric
equivalents from Greece. For instance, Proposition 1 of Book II states,
“If there be two straight lines, and one of them be cut into any number of
segments whatever, the rectangle contained by the two straight lines
is equal to the rectangles contained by the uncut straight line and each
of the segments.” This theorem, which asserts (Fig. 5.5) that AD
(AP1PR1RB)5AD �AP1AD �PR1AD �RB, is nothing more than a
geometric statement of one of the fundamental laws of arithmetic known
today as the distributive law: a(b1 c1 d)5 ab1 ac1 ad. In later books
of the Elements (V and VII), we find demonstrations of the commutative
and associative laws for multiplication. In Euclid’s day magnitudes were
pictured as line segments satisfying the axioms and the theorems of
geometry.
Book II of the Elements, which is a geometric algebra, served much the

same purpose as does our symbolic algebra. There can be little doubt that
modern algebra greatly facilitates themanipulation of relationships among
magnitudes. Yet, it is undoubtedly also true that a Greek geometer versed
in the fourteen theorems of Euclid’s “algebra” was far more adept in
applying these theorems to practical mensuration than is an experienced
geometer of today. Ancient geometric algebra was not an ideal tool, but it
was far from ineffective and its visual appeal to an Alexandrian schoolboy
must have been far more vivid than its modern algebraic counterpart can
ever be. For example, Elements II.5 contains what we should regard as an
impractical circumlocution for a22 b25 (a1 b)(a2 b):

If a straight line be cut into equal and unequal segments, the rectangle

contained by the unequal segments of the whole, together with the square

on the straight line between the points of section, is equal to the square on

the half.
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The diagram that Euclid uses in this connection played a key role
in Greek algebra; hence, we reproduce it with further explanation.
(Throughout this chapter, the translations and most of the diagrams
are based on the Thirteen Books of Euclid’s Elements, as edited by
T. L. Heath.) If in the diagram (Fig. 5.6) we let AC5CB5 a,
and CD5 b, the theorem asserts that (a1 b)(a2 b)1 b25 a2. The geo-
metric verification of this statement is not difficult; however,
the significance of the diagram lies not so much in the proof of the
theorem as in the use to which similar diagrams were put by Greek
geometric algebraists. If the Greek scholar were required to construct a
line x having the property expressed by ax x25 b2, where a and b are
line segments with a. 2b, he would draw line AB5a and bisect it at C.
Then, at C he would erect a perpendicular CP equal in length to b; with
P as center and radius a / 2, he would draw a circle cutting AB in point D.
Then, on AB he would construct rectangle ABMK of width BM5BD and
complete the square BDHM. This square is the area x2, having the property
specified in the quadratic equation. As the Greeks expressed it, we have
applied to the segment AB (5 a) a rectangle AH (5 ax2 x2), which is
equal to a given square (b2) and falls short (of AM) by a square DM. The
demonstration of this is provided by the proposition cited earlier (II.5), in
which it is clear that the rectangle ADHK equals the concave polygon
CBFGHL—that is, it differs from (a / 2)2 by the square LHGE, the side of

which by construction is CD5 ða=2Þ2 2 b2
p

:
The figure used by Euclid in Elements II.11 and again in VI.30 (our

Fig. 5.7) is the basis for a diagram that appears today in many geometry
books to illustrate the iterative property of the golden section. To
the gnomon BCDFGH (Fig. 5.7), we add point L to complete the rec-
tangle CDFL (Fig. 5.8), and within the smaller rectangle LBGH, which is
similar to the larger rectangle LCDF, we construct, by making GO5GL,
the gnomon LBMNOG similar to gnomon BCDFGH. Now within the
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rectangle BHOP, which is similar to the larger rectangles CDFL and
LBHG, we construct the gnomon PBHQRN similar to the gnomons
BCDFGH and LBMNOG. Continuing indefinitely in this manner, we
have an unending sequence of nested similar rectangles tending toward a
limiting point Z. It turns out that Z, which is easily seen to be the point of
intersection of lines FB and DL, is also the pole of a logarithmic spiral
tangent to the sides of the rectangles at points C, A, G, P,M, Q, . . . Other
striking properties can be found in this fascinating diagram.
Propositions 12 and 13 of Book II are of interest because they adum-

brate the concern with trigonometry that was shortly to blossom in Greece.
These propositions will be recognized by the reader as geometric
formulations—first for the obtuse angle and then for the acute angle—of
what later became known as the law of cosines for plane triangles:
Proposition 12. In obtuse-angled triangles, the square on the side sub-

tending the obtuse angle is greater than the squares on the sides containing
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the obtuse angle by twice the rectangle contained by one of the sides
about the obtuse angle, namely, that on which the perpendicular falls, and the
straight line cut off outside by the perpendicular toward the obtuse angle.
Proposition 13. In acute-angled triangles, the square on the side sub-

tending the acute angle is less than the squares on the sides containing
the acute angle by twice the rectangle contained by one of the sides of the
acute angle, namely, that on which the perpendicular falls, and the straight
line cut off within by the perpendicular toward the acute angle.
The proofs of Propositions 12 and 13 are analogous to those used today

in trigonometry through double application of the Pythagorean theorem.

Books III and IV

It has generally been supposed that the contents of the first two books of
the Elements are largely the work of the Pythagoreans. Books III and IV,
on the other hand, deal with the geometry of the circle, and here the
material is presumed to have been drawn primarily from Hippocrates of
Chios. The two books are not unlike the theorems on circles contained in
textbooks of today. The first proposition of Book III, for example, calls for
the construction of the center of a circle, and the last, Proposition 37, is the
familiar statement that if from a point outside a circle a tangent and a
secant are drawn, the square on the tangent is equal to the rectangle on the
whole secant and the external segment. Book IV contains sixteen pro-
positions, largely familiar to modern students, concerning figures in-
scribed in, or circumscribed about, a circle. Theorems on the measure of
angles are reserved until after a theory of proportions has been established.

Theory of Proportion

Of the thirteen books of the Elements, those most admired have been the
fifth and the tenth—the one on the general theory of proportion and
the other on the classification of incommensurables. The discovery of the
incommensurable had threatened a logical crisis that cast doubt on
proofs appealing to proportionality, but the crisis had been successfully
averted through the principles enunciated by Eudoxus. Nevertheless,
Greek mathematicians tended to avoid proportions. We have seen that
Euclid put off their use as long as possible, and such a relationship
among lengths as x:a5 b:c would be thought of as an equality of the
areas cx5 ab. Sooner or later, however, proportions are needed, and so
Euclid tackled the problem in Book V of the Elements. Some com-
mentators have gone so far as to suggest that the whole book, consisting
of twenty-five propositions, was the work of Eudoxus, but this seems to
be unlikely. Some of the definitions—such as that of a ratio—are so
vague as to be useless. Definition 4, however, is essentially the axiom of
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Eudoxus and Archimedes: “Magnitudes are said to have a ratio to one
another which are capable, when multiplied, of exceeding one another.”
Definition 5, the equality of ratios, is precisely that given earlier in
connection with Eudoxus’s definition of proportionality.
Book V deals with topics of fundamental importance in all mathe-

matics. It opens with propositions that are equivalent to such things as
the left-hand and right-hand distributive laws for multiplication over
addition, the left-hand distributive law for multiplication over subtrac-
tion, and the associative law for multiplication (ab)c5 a(bc). Then the
book lays out rules for “greater than” and “less than” and the well-
known properties of proportions. It is often asserted that Greek geo-
metric algebra could not rise above the second degree in plane geometry
or above the third degree in solid geometry, but this is not really the case.
The general theory of proportions would permit work with products of
any number of dimensions, for an equation of the form x45 abcd is
equivalent to one involving products of ratios of lines such as x / a � x / b
5 c / x � d / x.
Having developed the theory of proportions in Book V, Euclid

exploited it in Book VI by proving theorems concerning ratios and
proportions related to similar triangles, parallelograms, and other poly-
gons. Noteworthy is Proposition 31, a generalization of the Pythagorean
theorem: “In right-angled triangles the figure on the side subtending
the right angle is equal to the similar and similarly described figures
on the sides containing the right angle.” Proclus credits this extension to
Euclid himself. Book VI also contains (in Propositions 28 and 29) a
generalization of the method of application of areas, for the sound basis
for proportion given in Book V now enabled the author to make free
use of the concept of similarity. The rectangles of Book II are now
replaced by parallelograms, and it is required to apply to a given straight
line a parallelogram equal to a given rectilinear figure and deficient
(or exceeding) by a parallelogram similar to a given parallelogram.
These constructions, like those of II.5 6, are in reality solutions of the
quadratic equations bx5 ac6 x2, subject to the restriction (implied in
IX.27) that the discriminant is not negative.

Theory of Numbers

The Elements of Euclid is often mistakenly thought of as restricted to
geometry. We already have described two books (II and V) that are
almost exclusively algebraic; three books (VII, VIII, and IX) are devoted
to the theory of numbers. The word “number,” to the Greeks, always
referred to what we call the natural numbers—the positive whole
numbers or integers. Book VII opens with a list of twenty-two definitions

102 Euc l i d o f A l e x andr i a



distinguishing various types of numbers—odd and even, prime and
composite, plane and solid (that is, those that are products of two or three
integers)—and finally defining a perfect number as “that which is equal
to its own parts.” The theorems in Books VII, VIII, and IX are likely to
be familiar to the reader who has had an elementary course in the theory
of numbers, but the language of the proofs will certainly be unfamiliar.
Throughout these books, each number is represented by a line segment,
so that Euclid will speak of a number as AB. (The discovery of the
incommensurable had shown that not all line segments could be asso-
ciated with whole numbers, but the converse statement—that numbers
can always be represented by line segments—obviously remains true.)
Hence, Euclid does not use the phrases “is a multiple of” or “is a factor
of,” for he replaces these by “is measured by” and “measures,”
respectively. That is, a number n is measured by another number m if
there is a third number k such that n5 km.
Book VII opens with two propositions that constitute a celebrated

rule in the theory of numbers, which today is known as “Euclid’s
algorithm” for finding the greatest common divisor (measure) of two
numbers. It is a scheme suggestive of a repeated inverse application of
the axiom of Eudoxus. Given two unequal numbers, one subtracts the
smaller a from the larger b repeatedly until a remainder r1 less than
the smaller is obtained; then, one repeatedly subtracts this remainder r1
from a until a remainder r2, r1 results; then, one repeatedly subtracts r2
from r1; and so on. Ultimately, the process will lead to a remainder rn,
which will measure rn 1, hence all preceding remainders, as well as a and
b; this number rn will be the greatest common divisor of a and b. Among
succeeding propositions, we find equivalents of familiar theorems in
arithmetic. Thus, Proposition 8 states that if an5 bm and cn5 dm, then
(a2 c)n5 (b2 d)m; Proposition 24 states that if a and b are prime to c,
then ab is prime to c. The book closes with a rule (Proposition 39) for
finding the least common multiple of several numbers.
Book VIII is one of the less rewarding of the thirteen books of the

Elements. It opens with propositions on numbers in continued proportion
(geometric progression) and then turns to some simple properties of
squares and cubes, closing with Proposition 27: “Similar solid numbers
have to one another the ratio which a cube number has to a cube
number.” This statement simply means that if we have a “solid number”
ma �mb �mc and a “similar solid number” na � nb � nc, then their ratio will
be m3:n3—that is, as a cube is to a cube.
Book IX, the last of the three books on the theory of numbers, contains

several theorems that are of special interest. Of these, the most cele-
brated is Proposition 20: “Prime numbers are more than any assigned
multitude of prime numbers.” Euclid here gives the well-known ele-
mentary proof that the number of primes is infinite. The proof is indirect,
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for one shows that the assumption of a finite number of primes leads to a
contradiction. Let P be the product of all of the primes, assumed to be
finite in number, and consider the number N5P1 1. Now, N cannot
be prime, for this would contradict the assumption that P was the product
of all primes. Hence, N is composite and must be measured by some
prime p. But p cannot be any of the prime factors in P, for then it would
have to be a factor of 1. Hence, p must be a prime different from all of
those in the product P; therefore, the assumption that P was the product
of all of the primes must be false.
Proposition 35 of this book contains a formula for the sum of numbers

in geometric progression, expressed in elegant but unusual terms:

If as many numbers as we please be in continued proportion, and there be

subtracted from the second and the last numbers equal to the first, then as

the excess of the second is to the first, so will the excess of the last be to

all those before it.

This statement is, of course, equivalent to the formula

an1 1 2 a1

a1 1 a2 1?1 an
5

a2 2 a1

a1

;

which in turn is equivalent to

Sn 5
a2 arn

12 r
:

The following and last proposition in Book IX is the well-known for-
mula for perfect numbers: “If as many numbers as we please, beginning
from unity, be set out continuously in double proportion until the sum of
all becomes prime, and if the sum is multiplied by the last, the product
will be perfect.” That is, in modern notation, if Sn5 11 21 221?1
2n 15 2n2 1 is prime, then 2n 1(2n2 1) is a perfect number. The proof
is easily established in terms of the definition of a perfect number given
in Book VII. The ancient Greeks knew the first four perfect numbers:
6, 28, 496, and 8128. Euclid did not answer the converse question—
whether his formula provides all perfect numbers. It is now known that
all even perfect numbers are of Euclid’s type, but the question of the
existence of odd perfect numbers remains an unsolved problem. Of
the two dozen perfect numbers now known, all are even, but to conclude
by induction that all must be even would be hazardous.
In Propositions 21 through 36 of Book IX, there is a unity that

suggests that these theorems were at one time a self-contained math-
ematical system, possibly the oldest in the history of mathematics and
stemming presumably from the middle or early fifth century BCE. It has
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even been suggested that Propositions 1 through 36 of Book IX were
taken over by Euclid, without essential changes, from a Pythagorean
textbook.

Incommensurability

Book X of the Elements was, before the advent of early modern algebra,
the most admired—and the most feared. It is concerned with a sys-
tematic classification of incommensurable line segments of the forms
a6 b;

p
a

p
6 b;
p

a6 b
pp

and a
p

6 b
pp

, where a and b, when of
the same dimension, are commensurable. Today, we would be inclined
to think of this as a book on irrational numbers of the types above, where
a and b are rational numbers, but Euclid regarded this book as a part of
geometry, rather than of arithmetic. In fact, Propositions 2 and 3 of the
book duplicate for geometric magnitudes the first two propositions of
Book VII, where the author had dealt with whole numbers. Here he
proves that if to two unequal line segments one applies the process
described previously as Euclid’s algorithm, and if the remainder never
measures the one before it, the magnitudes are incommensurable. Pro-
position 3 shows that the algorithm, when applied to two commensurable
magnitudes, will provide the greatest common measure of the segments.
Book X contains 115 propositions—more than any other—most of

which contain geometric equivalents of what we now know arithmeti-
cally as surds. Among the theorems are counterparts of rationalizing
denominators of fractions of the form a=ðb6 c

p Þ and a=ð b
p

6 c
p Þ:

Line segments given by square roots, or by square roots of sums of
square roots, are about as easily constructed by straightedge and com-
passes as are rational combinations. One reason that the Greeks turned to
a geometric, rather than an arithmetic, algebra was that in view of the
lack of the real-number concept, the former appeared to be more general
than the latter. The roots of ax2 x25 b2, for example, can always be
constructed (provided that a. 2b). Why, then, should Euclid have gone
to great lengths to demonstrate, in Propositions 17 and 18 of Book X, the
conditions under which the roots of this equation are commensurable
with a? He showed that the roots are commensurable or incommensur-
able, with respect to a, according as a2 2 4b2

p
and a are commensurable

or incommensurable. It has been suggested that such considerations
indicate that the Greeks also used their solutions of quadratic equations
for numerical problems, much as the Babylonians had in their system of
equations x1 y5 a, xy5 b2. In such cases, it would be advantageous to
know whether the roots will or will not be expressible as quotients of
integers. A close study of Greek mathematics seems to give evidence
that beneath the geometric veneer, there was more concern for logistic
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and numerical approximations than the surviving classical treatises
portray.

Solid Geometry

The material in Book XI, containing thirty-nine propositions on the
geometry of three dimensions, will be largely familiar to one who has
taken a course in the elements of solid geometry. Again, the definitions
are easily criticized, for Euclid defines a solid as “that which has length,
breadth, and depth” and then tells us that “an extremity of a solid is a
surface.” The last four definitions are of four of the regular solids. The
tetrahedron is not included, presumably because of an earlier definition
of a pyramid as “a solid figure, contained by planes, which is con-
structed from one plane to any point.” The eighteen propositions of
Book XII are all related to the measurement of figures, using the
method of exhaustion. The book opens with a careful proof of the
theorem that areas of circles are to each other as squares on the dia-
meters. Similar applications of the typical double reductio ad absurdum
method are then applied to the volumetric mensuration of pyramids,
cones, cylinders, and spheres. Archimedes ascribed the rigorous proofs
of these theorems to Eudoxus, from whom Euclid probably adapted
much of this material.
The last book is devoted entirely to properties of the five regular

solids. The closing theorems are a fitting climax to a remarkable treatise.
Their object is to “comprehend” each of the regular solids in a sphere—
that is, to find the ratio of an edge of the solid to the radius of the cir-
cumscribed sphere. Such computations are ascribed by Greek com-
mentators to Theaetetus, to whom much of Book XIII is probably due. In
preliminaries to these computations, Euclid referred once more to the
division of a line in mean and extreme ratio, showing that “the square on
the greater segment added to half the whole is five times the square
on the half”—as is easily verified by solving a / x5 x / (a2 x)—and
citing other properties of the diagonals of a regular pentagon. Then, in
Proposition 10, Euclid proved the well-known theorem that a triangle
whose sides are respectively sides of an equilateral pentagon, hexagon,
and decagon inscribed in the same circle is a right triangle. Propositions
13 through 17 express the ratio of edge to diameter for each of the
inscribed regular solids in turn: e/d is 2

3

p
for the tetrahedron, 1

2

p
for

the octahedron, 1
3

p
for the cube or hexahedron, (5þ 5

p
) 10

p
for the

icosahedron, and ð 5
p

2 1Þ=2 3
p

for the dodecahedron. Finally, in Pro-
position 18, the last in the Elements, it is easily proved that there can be
no regular polyhedron beyond these five. About 1,900 years later, the
astronomer Kepler was so struck by this fact that he built a cosmology

=
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on the five regular solids, believing that they must have been the
Creator’s key to the structure of the heavens.

Apocrypha

In ancient times, it was not uncommon to attribute to a celebrated author
works that were not by him; thus, some versions of Euclid’s Elements
include a fourteenth and even a fifteenth book, both shown by later
scholars to be apocryphal. The so-called Book XIV continues Euclid’s
comparison of the regular solids inscribed in a sphere, the chief results
being that the ratio of the surfaces of the dodecahedron and the icosa-
hedron inscribed in the same sphere is the same as the ratio of their
volumes, the ratio being that of the edge of the cube to the edge of
the icosahedron, that is, 10 [3(5 5

p
)]

p
. This book may have been

composed by Hypsicles (fl. ca. 150 BCE) on the basis of a treatise (now
lost) by Apollonius comparing the dodecahedron and the icosahedron.
Hypsicles is also the author of an astronomical work, De ascensionibus,
an adaptation for the latitude of Alexandria of a Babylonian technique
for computing the rise times of the signs of the zodiac; this work also
contains the division of the ecliptic into 360 degrees.
The spurious Book XV, which is inferior, is thought to have been

(at least in part) the work of a student of Isidore of Miletus’s (fl. ca.
532 CE), the architect of the Hagia Sophia at Constantinople. This
book also deals with the regular solids, showing how to inscribe
certain of them within others, counting the number of edges and solid
angles in the solids, and finding the measures of the dihedral angles of
faces meeting at an edge. It is of interest to note that despite such
enumerations, all of the ancients apparently missed the so-called
polyhedral formula, known to René Descartes and later enunciated by
Leonhard Euler.

Influence of the Elements

The Elements of Euclid was composed in about 300 BCE and was copied
and recopied repeatedly after that. Errors and variations inevitably crept
in, and some later editors, notably Theon of Alexandria in the late fourth
century, sought to improve on the original. Later accretions, generally
appearing as scholia, add supplementary information, often of a histor-
ical nature, and in most cases they are readily distinguished from the
original. The transmission of translations from Greek to Latin, starting
with Boethius, has been traced in some detail. Numerous copies of the
Elements have also come down to us through Arabic translations, later

=
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turned into Latin, largely in the twelfth century, and finally, in the six-
teenth century, into the vernacular. The study of transmission of these
variants presents continuing challenges.
The first printed version of the Elements appeared at Venice in 1482,

one of the very earliest of mathematical books to be set in type. It has
been estimated that since then, at least a thousand editions have been
published. Perhaps no book other than the Bible can boast so many
editions, and, certainly, no mathematical work has had an influence
comparable to that of Euclid’s Elements.
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6

Archimedes of Syracuse

There was more imagination in the head of Archimedes

than in that of Homer.

Voltaire

The Siege of Syracuse

During the Second Punic War, the city of Syracuse was caught in the
power struggle between Rome and Carthage, and the city was besieged
by the Romans for three years beginning in 214 BCE. We are told that
throughout the siege, Archimedes, the leading mathematician of the age,
invented ingenious war machines to keep the enemy at bay—catapults to
hurl stones; ropes, pulleys, and hooks to raise and smash the Roman
ships; devices to set fire to the ships. Ultimately, however, during the
sack of the city in 212, Archimedes was slain by a Roman soldier,
despite orders from the Roman general Marcellus that the life of the
geometer be spared. Inasmuch as Archimedes at the time is reported to
have been seventy-five years old, he was most likely born in 287 BCE. His
father was an astronomer, and Archimedes also established a reputation
in astronomy. Marcellus is said to have reserved for himself, as booty,
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ingenious planetaria that Archimedes had constructed to portray the
motions of the heavenly bodies. Accounts of the life of Archimedes are
in agreement, however, in depicting him as placing less value in his
mechanical contrivances than in the unusually innovative approach to
abstract products of his thought. Even when dealing with levers and
other simple machines, he was reputedly more concerned with general
principles than with practical applications. Nearly a dozen works survive
that illustrate the problems that interested him.

On the Equilibriums of Planes

Archimedes was not the first to use the lever or even the first to for-
mulate the general law of the lever. Aristotelian works contain the
statement that two weights on a lever balance when they are inversely
proportional to their distances from the fulcrum, and the Peripatetics
associated the law with their assumption that vertical rectilinear motion
is the only natural terrestrial motion. Archimedes, on the other hand,
deduced the law from a more plausible static postulate—that bilaterally
symmetric bodies are in equilibrium. That is, let one assume that a
weightless bar four units long and supporting three unit weights, one at
either end and one in the middle (Fig. 6.1), is balanced by a fulcrum at
the center. By the Archimedean axiom of symmetry, the system is in
equilibrium. But the principle of symmetry also shows that considering
only the right-hand half of the system, the balancing effect will remain the
same if the two weights two units apart are brought together at the mid-
point of the right-hand side. This means that a unit weight two units from
the fulcrum will support on the other arm a weight of two units that is one
unit from the fulcrum. Through a generalization of this procedure,
Archimedes established the law of the lever on static principles alone,
without recourse to the Aristotelian kinematic argument. After examining
the history of these concepts during the medieval period, one concludes
that a conjunction of static and kinematic views produced advances in
both science and mathematics.
Archimedes’ work on the law of the lever is part of his treatise, in two

books, On the Equilibriums of Planes. This is not the oldest extant book on
what may be called physical science, for about a century earlier, Aristotle
had published an influential work, in eight books, titled Physics. But
whereas the Aristotelian approach was speculative and nonmathematical,

FIG. 6.1
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the Archimedean development was similar to the geometry of Euclid. From
a set of simple postulates, Archimedes deduced deep conclusions, estab-
lishing the close relationship between mathematics and mechanics that was
to become so significant for both physics and mathematics.

On Floating Bodies

Archimedes can well be called the father of mathematical physics, not
only for his On the Equilibriums of Planes, but also for another treatise,
in two books, On Floating Bodies. Again, beginning from a simple
postulate about the nature of fluid pressure, he obtained some very deep
results. Among the earlier propositions are two that formulate the well-
known Archimedean hydrostatic principle:

Any solid lighter than a fluid will, if placed in a fluid, be so far immersed

that the weight of the solid will be equal to the weight of the fluid dis-

placed (I.5).

A solid heavier than a fluid will, if placed in it, descend to the bottom of

the fluid, and the solid will, when weighed in the fluid, be lighter than its

true weight by the weight of the fluid displaced (I.7).

The mathematical derivation of this principle of buoyancy is
undoubtedly the discovery that led the absentminded Archimedes to
jump from his bath and run home naked, shouting, “Eureka!” (“I have
found it!”). It is also possible, although less likely, that the principle
aided him in checking on the honesty of a goldsmith suspected of
fraudulently substituting some silver for gold in a crown (or, more likely,
a wreath) made for King Hieron II of Syracuse. Such fraud could
easily have been detected by the simpler method of comparing the
densities of gold, silver, and the crown by measuring displacements
of water when equal weights of each are in turn immersed in a vessel
full of water.
The Archimedean treatise On Floating Bodies contains much more

than the simple fluid properties so far described. Virtually the whole of
Book II, for example, is concerned with the position of equilibrium
of segments of paraboloids when placed in fluids, showing that the position
of rest depends on the relative specific gravities of the solid paraboloid and
the fluid in which it floats. Typical of these is Proposition 4:

Given a right segment of a paraboloid of revolution whose axis a is

greater than 3
4 p (where p is the parameter), and whose specific gravity is

less than that of a fluid but bears to it a ratio not less than ða 3
4 pÞ2 : a2, if

the segment of the paraboloid be placed in the fluid with its axis at any

inclination to the vertical, but so that its base does not touch the surface
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of the fluid, it will not remain in that position but will return to the position

in which its axis is vertical.

Still more complicated cases, with long proofs, follow. It was probably
through his Alexandrian contacts that Archimedes became interested in
the technical problem of raising water from the Nile River to irrigate the
arable portions of the valley; for this purpose he invented a device, now
known as the Archimedean screw, made up of helical pipes or tubes
fastened to an inclined axle with a handle by which it was rotated. He is
supposed to have boasted that if he were given a lever long enough and a
fulcrum on which to rest it, he could move the earth.

The Sand-Reckoner

A clear distinction was made in Greek antiquity not only between theory
and application, but also between routine mechanical computation and
the theoretical study of the properties of number. The former, for which
Greek scholars are said to have shown scorn, was given the name logistic,
while arithmetic, an honorable philosophical pursuit, was understood to be
concerned solely with the latter.
Archimedes lived at about the time that the transition from Attic to

Ionian numeration was effected, and this may account for the fact that he
stooped to make a contribution to logistic. In a work titled the Psammites
(Sand-Reckoner), Archimedes boasted that he could write down a number
greater than the number of grains of sand required to fill the universe. In
doing so, he referred to one of the boldest astronomical speculations of
antiquity—that in which Aristarchus of Samos, toward the middle of the
third century BCE, proposed putting the earth in motion about the sun.
Aristarchus asserted that a lack of parallax can be attributed to the enor-
mity of the distance of the fixed stars from the earth. Now, to make good
his boast, Archimedes had to provide against all possible dimensions for
the universe, so he showed that he could enumerate the grains of sand
needed to fill even Aristarchus’s immense world.
For the universe of Aristarchus, which is to the ordinary universe as

the latter is to the earth, Archimedes showed that not more than 1063

grains of sand are required. Archimedes did not use this notation but
instead described the number as ten million units of the eighth order of
numbers (where the numbers of second order begin with a myriad-
myriads and the numbers of eighth order begin with the seventh power of
a myriad-myriads). To show that he could express numbers ever so much
larger even than this, Archimedes extended his terminology to call
all numbers of order less than amyriad-myriads those of the first period, the
second period consequently beginning with the number (108)108, one that
would contain 800,000,000 ciphers. That is, his system would go up to a
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number that would be written as 1 followed by some eighty thousand
million millions of ciphers. It was in connection with this work on huge
numbers that Archimedes mentioned, all too incidentally, a principle that
later led to the invention of logarithms—the addition of “orders” of
numbers (the equivalent of their exponents when the base is 100,000,000)
corresponds to finding the product of the numbers.

Measurement of the Circle

In his approximate evaluation of the ratio of the circumference to dia-
meter for a circle, Archimedes again showed his skill in computation.
Beginning with the inscribed regular hexagon, he computed the peri-
meters of polygons obtained by successively doubling the number of
sides until one reached ninety-six sides. His iterative procedure for these
polygons was related to what is sometimes called the Archimedean
algorithm. One sets out the sequence Pn, pn, P2n, p2n, P4n, p4n . . . , where Pn

and pn are the perimeters of the circumscribed and inscribed regular
polygons of n sides. Beginning with the third term, one calculates any
term from the two preceding terms by taking alternately their harmonic
and geometric means. That is, P2n5 2pnPn / (pn1Pn), p2n 5 pnP2n

p
, and so

on. If one prefers, one can use instead the sequence an, An, a2n, A2n, . . . ,
where an and An are the areas of the inscribed and circumscribed regular
polygons of n sides. The third and successive terms are calculated by taking
alternately the geometric and harmonic means, so that a2n 5 anAn

p
,

A2n 5 2Ana2n=ðAn 1 a2nÞ; and so on. His method for computing square
roots, in finding the perimeter of the circumscribed hexagon, and for the
geometric means was similar to that used by the Babylonians. The result of
the Archimedean computation on the circle was an approximation to the
value of π expressed by the inequality 310

71 ,π, 310
70, a better estimate than

those of the Egyptians and the Babylonians. (It should be borne in mind that
neither Archimedes nor any other Greek mathematician ever used our
notation π for the ratio of circumference to diameter in a circle.) This result
was given in Proposition 3 of the treatise on theMeasurement of the Circle,
one of the most popular of the Archimedean works during the medieval
period.

On Spirals

Archimedes, like his predecessors, was attracted by the three famous
problems of geometry, and the well-known Archimedean spiral provided
solutions to two of these (but not, of course, with straightedge and
compass alone). The spiral is defined as the plane locus of a point that
when starting from the end point of a ray or half line, moves uniformly

On Sp i r a l s 113



along this ray, while the ray in turn rotates uniformly about its end point.
In polar coordinates, the equation of the spiral is r5 aθ. Given such a
spiral, the trisection of an angle is easily accomplished. The angle is so
placed that the vertex and the initial side of the angle coincide with
the initial point O of the spiral and the initial position OA of the rotating
line. Segment OP, where P is the intersection of the terminal side of
the angle with the spiral, is then trisected at points R and S (Fig. 6.2),
and circles are drawn with O as center and OR and OS as radii. If these
circles intersect the spiral in points U and V, lines OH and OV will trisect
the angle AOP.
Greek mathematics has sometimes been described as essentially static,

with little regard for the notion of variability, but Archimedes, in his
study of the spiral, apparently found the tangent to a curve through
kinematic considerations akin to the differential calculus. Thinking of a
point on the spiral r5 aθ as subjected to a double motion—a uniform
radial motion away from the origin of coordinates and a circular motion
about the origin—he seems to have found (through the parallelogram of
velocities) the direction of motion (hence of the tangent to the curve) by
noting the resultant of the two component motions. This appears to be the
first instance in which a tangent was found to a curve other than a circle.
Archimedes’ study of the spiral, a curve that he ascribed to his friend

Conon of Alexandria, was part of the Greek search for solutions of the
three famous problems. The curve lends itself so readily to angle mul-
tisections that it may well have been devised by Conon for this purpose.
As in the case of the quadratrix, however, it can also serve to square the
circle, as Archimedes showed. At point P let the tangent to the spiral
OPR be drawn and let this tangent intersect in point Q the line through O
that is perpendicular to OP. Then, as Archimedes showed, the straight-
line segment OQ (known as the polar subtangent for point P) is equal
in length to the circular arc PS of the circle with center O and radius OP
(Fig. 6.3) that is intercepted between the initial line (polar axis) and line
OP (radius vector). This theorem, proved by Archimedes through a typical
double reductio ad absurdum demonstration, can be verified by a student

O
U

V

P

S

R

A

FIG. 6.2

114 Ar c h imede s o f S y r a c u s e



of the calculus who recalls that tan ψ5 r / ru, where r5 f(θ) is the polar
equation of a curve, ru is the derivative of r with respect to θ, and ψ is the
angle between the radius vector at a point P and the tangent line to the
curve at the point P. A large part of the work of Archimedes is such that it
would now be included in a calculus course; this is particularly true of the
work On Spirals. If point P on the spiral is chosen as the intersection of
the spiral with the 90� line in polar coordinates, the polar subtangent OQ
will be precisely equal to a quarter of the circumference of the circle of
radius OP. Hence, the entire circumference is easily constructed as four
times the segment OQ, and by Archimedes’ theorem, a triangle equal in
area to the area of the circle is found. A simple geometric transformation
will then produce a square in place of the triangle, and the quadrature of
the circle is effected.

Quadrature of the Parabola

The work On Spirals was much admired but little read, for it was gen-
erally regarded as the most difficult of all Archimedean works. Of the
treatises concerned chiefly with “the method of exhaustion,” the most
popular was Quadrature of the Parabola. The conic sections had been
known for almost a century when Archimedes wrote it, yet no progress
had been made in finding their areas. It took the greatest mathematician
of antiquity to square a conic section—a segment of the parabola—
which he accomplished in Proposition 17 of the work in which the
quadrature was the goal. The proof by the standard Eudoxean method of
exhaustion is long and involved, but Archimedes rigorously proved that
the area K of a parabolic segment APBQC (Fig. 6.4) is four-thirds the
area of a triangle T having the same base and equal height. In the suc-
ceeding (and last) seven propositions, Archimedes gave a second but
different proof of the same theorem. He first showed that the area of
the largest inscribed triangle, ABC, on the base AC is four times the sum
of the corresponding inscribed triangles on each of the lines AB and BC
as base. If you continue the process suggested by this relationship, it
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becomes clear that the area K of the parabolic segment ABC is given by
the sum of the infinite series T 1 T=41 T =42 1?1 T =4n 1?;
which, of course, is 4

3T . Archimedes did not refer to the sum of the
infinite series, for infinite processes were frowned on in his day; instead,
he proved by a double reductio ad absurdum that K can be neither more
nor less than 4

3 T . (Archimedes, like his predecessors, did not use the
name “parabola” but the word “orthotome,” or “section of a right cone.”)
In the preamble to Quadrature of the Parabola, we find the assump-

tion or lemma that is usually known today as the axiom of Archimedes:
“That the excess by which the greater of two unequal areas exceeds
the less can, by being added to itself, be made to exceed any given
finite area.” This axiom in effect rules out the fixed infinitesimal or
indivisible that had been much discussed in Plato’s day. Archimedes
freely admitted that

the earlier geometers have also used this lemma, for it is by the use of this

same lemma that they have shown that circles are to one another in the

duplicate ratio of their diameters, and that spheres are to one another in

the triplicate ratio of their diameters, and further that every pyramid is one

third part of the prism which has the same base with the pyramid and

equal height; also, that every cone is one third part of the cylinder having

the same base as the cone and equal height they proved by assuming a

certain lemma similar to that aforesaid.

The “earlier geometers” mentioned here presumably included Eudoxus
and his successors.

On Conoids and Spheroids

Archimedes apparently was unable to find the area of a general segment
of an ellipse or a hyperbola. Finding the area of a parabolic segment by
modern integration involves nothing worse than polynomials, but the
integrals arising in the quadrature of a segment of an ellipse or a
hyperbola (as well as the arcs of these curves or the parabola) require

A C

P

B
Q

FIG. 6.4

116 Ar c h imede s o f S y r a c u s e



transcendental functions. Nevertheless, in his important treatise On
Conoids and Spheroids, Archimedes found the area of the entire ellipse:
“The areas of ellipses are as the rectangles under their axes” (Proposi-
tion 6). This is, of course, the same as saying that the area of x2 / a21
y2 / b25 1 is πab or that the area of an ellipse is the same as the area of a
circle whose radius is the geometric mean of the semiaxes of the ellipse.
Moreover, in the same treatise Archimedes showed how to find the
volumes of segments cut from an ellipsoid or a paraboloid or a hyper-
boloid (of two sheets) of revolution about the principal axis. The process
that he used is so nearly the same as that in modern integration that we
shall describe it for one case. Let ABC be a paraboloidal segment (or
paraboloidal “conoid”) and let its axis be CD (Fig. 6.5); about the solid
circumscribe the circular cylinder ABFE, also having CD as axis. Divide
the axis into n equal parts of length h, and through the points of division
pass planes parallel to the base. On the circular sections that are cut from
the paraboloid by these planes, construct inscribed and circumscribed
cylindrical frusta, as shown in the figure. It is then easy to establish,
through the equation of the parabola and the sum of an arithmetic pro-
gression, the following proportions and inequalities:

Cylinder ABEF

Inscribed figure
5

n2h

h1 2h1 3h1?1 ðn2 1Þh .
n2h
1
2 n2h

;

Cylinder ABEF

Circumscribed figure
5

n2h

h1 2h1 3h1?1 nh
,

n2h
1
2 n2h

:

Archimedes had previously shown that the difference in volume
between the circumscribed and inscribed figures was equal to the volume
of the lowest slice of the circumscribed cylinder; by increasing the
number n of subdivisions on the axis, thereby making each slice thinner,
the difference between the circumscribed and inscribed figures can be
made less than any preassigned magnitude. Hence, the inequalities lead to
the necessary conclusion that the volume of the cylinder is twice the
volume of the conoidal segment. This work differs from the modern
procedure in integral calculus chiefly in the lack of the concept of limit of
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a function—a concept that was so near at hand and yet was never for-
mulated by the ancients, not even by Archimedes, the man who came
closest to achieving it.

On the Sphere and Cylinder

Archimedes composed many marvelous treatises; his successors were
inclined to admire most the one On Spirals. The author himself seems to
have been partial to another, On the Sphere and Cylinder. Archimedes
requested that on his tomb be carved a representation of a sphere
inscribed in a right circular cylinder the height of which is equal to its
diameter, for he had discovered and proved that the ratio of the volumes
of cylinder and sphere is the same as the ratio of the areas—that is,
3 to 2. This property, which Archimedes discovered subsequent to his
Quadrature of the Parabola, remained unknown, he said, to geometers
before him. It had once been thought that the Egyptians knew how to
find the area of a hemisphere, but Archimedes now appears to be the first
one to have known and proved that the area of a sphere is just four times
the area of a great circle of the sphere. Moreover, Archimedes showed
that “the surface of any segment of a sphere is equal to a circle whose
radius is equal to the straight line drawn from the vertex of the segment
to the circumference of the circle which is the base of the segment.”
This, of course, is equivalent to the more familiar statement that
the surface area of any segment of a sphere is equal to that of the curved
surface of a cylinder whose radius is the same as that of the sphere and
whose height is the same as that of the segment. That is, the surface area
of the segment does not depend on the distance from the center of the
sphere, but only on the altitude (or thickness) of the segment. The crucial
theorem on the surface of the sphere appears in Proposition 33, fol-
lowing a long series of preliminary theorems, including one that is
equivalent to an integration of the sine function:

If a polygon be inscribed in a segment of a circle LALu so that all its sides

excluding the base are equal and their number even, as LK . . .A . . .KuLu,
A being the middle point of the segment; and if the lines BBu, CCu, . . .
parallel to the base LLu and joining pairs of angular points be drawn, then

(BBu1CCu1 � � �1 LM) :AM5AuB :BA, where M is the middle point of

LLu and AAu is the diameter through M [Fig. 6.6].

This is the geometric equivalent of the trigonometric equation
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From this theorem, it is easy to derive the modern expressionR ϕ
0
sin xdx5 12 cosφ by multiplying both sides of the previous equation

by θ / n and taking limits as n increases indefinitely. The left-hand side
becomes

lim
n-N

Xn
i 1

sinðxiΔxiÞ;

where xi5 iθ / n for i5 1, 2, . . . n, Δxi5 θ / n for i5 1, 2, . . . n 1, and
Δxn5 θ / 2n. The right-hand side becomes

ð12 cos θÞ lim
n-N

θ
2n

cot
θ
2n

5 12 cos θ:

The equivalent of the special case
R π
0
sin xdx5 12 cosπ5 2 had been

given by Archimedes in the preceding proposition.
An interesting light on Greek geometric algebra is cast by a problem in

Book II of On the Sphere and Cylinder. In Proposition 2, Archimedes
justified his formula for the volume of a segment of a given sphere; in
Proposition 3, he showed that to cut a given sphere by a plane so that
the surfaces of the segments are in a given ratio, one simply passes a
plane perpendicular to a diameter through a point on the diameter that
divides the diameter into two segments having the desired ratio. He then
showed in Proposition 4 how to cut a given sphere so that the volumes of
the two segments are in a given ratio—a far more difficult problem. In
modern notation, Archimedes was led to the equation

4a2

x2
5

ð3a2 xÞðm1 nÞ
ma

;
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where m : n is the ratio of the segments. This is a cubic equation, and
Archimedes attacked its solution as had his predecessors in solving the
Delian problem—through intersecting conics. Interestingly, the Greek
approach to the cubic was quite different from that to the quadratic
equation. By analogy with the “application of areas” in the latter case,
we would anticipate an “application of volumes,” but this was not
adopted. Through substitutions, Archimedes reduced his cubic equation
to the form x2(c2 x)5 db2 and promised to give separately a complete
analysis of this cubic with respect to the number of positive roots. This
analysis had apparently been lost for many centuries when Eutocius,
an important commentator of the early sixth century, found a fragment
that seems to contain the authentic Archimedean analysis. The solution
was carried out by means of the intersection of the parabola cx25 b2y
and the hyperbola (c2 x)y5 cd. Going further, he found a condition on
the coefficients that determines the number of real roots satisfying the
given requirements—a condition equivalent to finding the discriminant,
27b2d2 4c3, of the cubic equation b2d5 x2(c2 x). Inasmuch as all cubic
equations can be transformed to the Archimedean type, we have here the
essence of a complete analysis of the general cubic.

Book of Lemmas

Most of the Archimedean treatises that we have described are a part of
advanced mathematics, but the great Syracusan was not above proposing
elementary problems. In his Book of Lemmas, for example, we find a
study of the so-called arbelos, or “shoemaker’s knife.” The shoemaker’s
knife is the region bounded by the three semicircles tangent in pairs in
Fig. 6.7, the area in question being that which lies inside the largest
semicircle and outside the two smallest. Archimedes showed in Propo-
sition 4 that if CD is perpendicular to AB, the area of the circle with CD
as diameter is equal to the area of the arbelos. In the next proposition, it
is shown that the two circles inscribed within the two regions into which
CD divides the shoemaker’s knife are equal.
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It is in the Book of Lemmas that we also find (as Proposition 8) the
well-known Archimedean trisection of the angle. Let ABC be the angle
to be trisected (Fig. 6.8). Then, with B as center, draw a circle of any
radius intersecting AB in P and BC in Q, with BC extended in R. Then,
draw a line STP such that S lies on CQBR extended and T lies on the
circle and such that ST5BQ5BP5BT. It is then readily shown,
because triangles STB and TBP are isosceles, that angle BST is precisely
a third of angle QBP, the angle that was to have been trisected. Archi-
medes and his contemporaries were, of course, aware that this is not a
canonical trisection in the Platonic sense, for it involves what they called
a neusis—that is, an insertion of a given length, in this case ST5BQ,
between two figures, here the line QR extended, and the circle.
The Book of Lemmas has not survived in the original Greek, but

through Arabic translation that later was turned into Latin. (Hence, it is
often cited by its Latin title of Liber assumptorum.) In fact, the work as
it has come down to us cannot be genuinely Archimedean, for his name
is quoted several times within the text. Yet, even if the treatise is
nothing more than a collection of miscellaneous theorems that were
attributed by the Arabs to Archimedes, the work probably is sub-
stantially authentic. There is also doubt about the authenticity of the
“cattle-problem,” which is a challenge to mathematicians to solve a set
of indeterminate simultaneous equations in eight unknown quantities.
The problem incidentally provides a first example of what later was to
be known as a “Pell equation.”

Semiregular Solids andTrigonometry

That quite a number of Archimedean works have been lost is clear from
many references. We learn (from Pappus) that Archimedes discovered
all of the thirteen possible so-called semiregular solids, or convex
polyhedrons whose faces are regular polygons but not all of the same
type. Arabic scholars inform us that the familiar area formula for a tri-
angle in terms of its three sides, usually known as Heron’s formula—
K5 sðs2 aÞðs2 bÞðs2 cÞp

, where s is the semiperimeter—was known
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to Archimedes several centuries before Heron lived. Arabic scholars also
attribute to Archimedes the “theorem on the broken chord”—ifAB andBC
make up any broken chord in a circle (with AB 6¼ BC) and if M is the
midpoint of the arc ABC and F the foot of the perpendicular fromM to the
longer chord, F will be the midpoint of the broken chord ABC (Fig. 6.9).
Al-Biruni gave several proofs of the theorem, one ofwhich is carried out by
drawing in the dotted lines in the figure, making FCu5FC and proving
that ΔMBCuDΔMBA. Hence, BCu5BA, and it therefore follows that
CuF5AB1BF5FC. We do not know whether Archimedes saw any
trigonometric significance in the theorem, but it has been suggested that it
served for him as a formula analogous to our sin (x2 y)5 sin x cos
y2 cos x sin y. To show the equivalence, we let MC

_
5 2x and BM

_
5 2y.

Then, AB
_

5 2x2 2y. Now, the chords corresponding to these three arcs
are, respectively, MC5 2 sin x, BM5 2 sin y, and AB5 2 sin (x2 y).
Moreover, the projections ofMC andMB on BC are FC5 2 sin x cos y and
FB5 2 sin y cos x. If, finally, we write the broken-chord theorem in the
form AB5FC2FB, and if for these three chords we substitute their tri-
gonometric equivalents, the formula for sin (x2 y) results. Other trigono-
metric identities can, of course, be derived from the same broken-chord
theorem, indicating that Archimedes may have found it a useful tool in his
astronomical calculations.

The Method

Unlike the Elements of Euclid, which have survived in many Greek and
Arabic manuscripts, the treatises of Archimedes have reached us through
a slender thread. Almost all copies are from a single Greek original that
was in existence in the early sixteenth century and itself was copied from
an original of about the ninth or tenth century. The Elements of Euclid
has been familiar to mathematicians virtually without interruption since
its composition, but Archimedean treatises have had a more checkered
career. There have been times when few or even none of Archimedes’
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works were known. In the days of Eutocius, a first-rate scholar and
skillful commentator of the sixth century, only three of the many
Archimedean works were generally known—On the Equilibrium of
Planes, the incomplete Measurement of a Circle, and the admirable On
the Sphere and Cylinder. Under the circumstances, it is a wonder that such
a large proportion of what Archimedes wrote has survived to this day.
Among the amazing aspects of the provenance of Archimedean works is
the discovery within the twentieth century of one of the most important
treatises—one that Archimedes simply called The Method and that had
been lost since the early centuries of our era until its rediscovery in 1906.
The Method of Archimedes is of particular significance because it

discloses for us a facet of Archimedes’ thought that is not found else-
where. His other treatises are gems of logical precision, with little hint of
the preliminary analysis that may have led to the definitive formulations.
So thoroughly without motivation did his proofs appear to some writers
of the seventeenth century that they suspected Archimedes of having
concealed his method of approach in order that his work might be
admired more. How unwarranted such an ungenerous estimate of
the great Syracusan was became clear in 1906 with the discovery of the
manuscript containing The Method. Here Archimedes had published a
description of the preliminary “mechanical” investigations that had led
to many of his chief mathematical discoveries. He thought that his
“method” in these cases lacked rigor, because it assumed an area, for
example, to be a sum of line segments.
The Method, as we have it, contains most of the text of some fifteen

propositions sent in the form of a letter to Eratosthenes, a mathematician
and the chief of the Alexandrian Library. The author opened by saying
that it is easier to supply a proof of a theorem if we first have some
knowledge of what is involved; as an example, he cites the proofs of
Eudoxus on the cone and the pyramid, which had been facilitated by the
preliminary assertions, without proof, made by Democritus. Then,
Archimedes announced that he himself had a “mechanical” approach
that paved the way for some of his proofs. The very first theorem that he
discovered by this approach was the one on the area of a parabolic
segment; in Proposition 1 of The Method, the author describes how he
arrived at this theorem by balancing lines as one balances weights in
mechanics. He thought of the areas of the parabolic segment ABC and
the triangle AFC (where FC is tangent to the parabola at C) as the
totality of a set of lines parallel to the diameter QB of the parabola, such
as OP (Fig. 6.10) for the parabola and OM for the triangle. If one were to
place at H (where HK5KC) a line segment equal to OP, this would just
balance the line OM where it now is, K being the fulcrum. (This can be
shown through the law of the lever and the property of the parabola.)
Hence, the area of the parabola, if placed with its center of gravity at H,
will just balance the triangle, whose center of gravity is along KC and a
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third of the way from K to C. From this, one easily sees that the area of
the parabolic segment is one-third the area of triangle AFC, or four-
thirds the area of the inscribed triangle ABC.
Archimedes’ favorite theorem, the one represented on his tomb, was

also suggested to him by his mechanical method. It is described in
Proposition 2 of The Method:

Any segment of a sphere has to the cone with the same base and height

the ratio which the sum of the radius of the sphere and the height of the

complementary segment has to the height of the complementary segment.

The theorem readily follows from a beautiful balancing property that
Archimedes discovered (and that can be easily verified in terms of
modern formulas). Let AQDCP be a cross-section of a sphere with center
0 and diameter AC (Fig. 6.11) and let AUV be a plane section of a right
circular cone with axis AC and UV as diameter of the base. Let IJUV be a
right circular cylinder with axis AC and with UV5 IJ as diameter and let
AH5AC. If a plane is passed through any point S on the axis AC and
perpendicular to AC, the plane will cut the cone, the sphere, and the
cylinder in circles of radii r15 SR, r25 SP, and r35 SN, respectively. If
we call the areas of these circles A1, A2, and A3, then, Archimedes found, A1

and A2, when placed with their centers at H, will just balance A3 where it
now is, with A as the fulcrum. Hence, if we call the volumes of the sphere,
the cone, and the cylinder V1, V2, and V3, it follows that V1 1V2 5

1
2V3,

and becauseV2 5
1
3V3; the spheremust be 1

6V3:Because the volume V3 of the
cylinder is known (from Democritus and Eudoxus), the volume of
the sphere is also known—in modern notation, V 5 4

3πr3. By applying the
same balancing technique to the spherical segment with base diameter BD,
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to the cone with base diameter EF, and to the cylinder with base diameter
KL, the volume of the spherical segment is found in the same manner as for
the whole sphere.
The method of equilibrium of circular sections about a vertex as ful-

crum was applied by Archimedes to discover the volumes of the seg-
ments of three solids of revolution—the ellipsoid, the paraboloid, and the
hyperboloid, as well as the centers of gravity of the paraboloid (conoid),
of any hemisphere, and of a semicircle. The Method closes with the
determination of volumes of two solids that are favorites in modern
calculus books—a wedge cut from a right circular cylinder by two
planes (as in Fig. 6.12) and the volume common to two equal right
circular cylinders intersecting at right angles.
The work that contained such marvelous results of more than 2,000

years ago was recovered almost by accident in 1906. The indefatigable
Danish scholar J. L. Heiberg had read that at Constantinople, there was a
palimpsest of mathematical content. (A palimpsest is a parchment the
original writing on which has been only imperfectly washed off and
replaced with a new and different text.) Close inspection showed him
that the original manuscript had contained something by Archimedes,
and through photographs, he was able to read most of the Archimedean
text. The manuscript consisted of 185 leaves, mostly of parchment but a
few of paper, with the Archimedean text copied in a tenth-century hand.
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An attempt—fortunately, none too successful—had been made to expunge
this text in order to use the parchment for a Euchologion (a collection of
prayers and liturgies used in the Eastern Orthodox Church) written in
about the thirteenth century. The mathematical text contained On the
Sphere and Cylinder, most of the work On Spirals, part of Measurement
of the Circle and On the Equilibrium of Planes, and On Floating Bodies,
all of which have been preserved in other manuscripts; most important of
all, the palimpsest gives us the only surviving copy of The Method.
The palimpsest, lost after World War I, once again came to public

notice in the 1990s when it was put up for sale at auction. In 1999, the
anonymous purchaser deposited it at the Walters Art Gallery in Balti-
more, Maryland, and proceeded to fund intensive study of the palimpsest
by a group of specialists brought from the areas of conservation, clas-
sical and medieval studies, and imaging techniques. They have been able
to capture most of the partially destroyed Archimedean text, a task made
difficult not only by the thirteenth-century reuse of the parchment but by
an additional twentieth-century forgery that superimposed religious
images over the text. Twentieth-century technology that was used to
assist in the revelation of the original text included spectral imaging
devices from the Rochester Institute of Technology and the Johns
Hopkins University, among others, and even a synchrotron from the
Stanford Linear Accelerator Center.
In a sense, the palimpsest is symbolic of the contributions of the

Middle Ages, as well as the Modern Age of Technology. Intense pre-
occupation with religious concerns very nearly wiped out one of the
most important works of the greatest mathematician of antiquity, yet in
the end, it was medieval scholarship that inadvertently preserved this and
much besides, which might otherwise have been lost. Similarly, modern
technology, despite its potential for material destruction, has enabled us
to glimpse in detail what it is that was preserved.

FIG. 6.12
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7

Apollonius of Perge

He who understands Archimedes and Apollonius will admire less the

achievements of the foremost men of later times.

Leibniz

Works andTradition

During the Hellenistic period, Alexandria remained the mathematical
focus of the Western world. Apollonius was born in Perge in Pamphylia
(southern Asia Minor), but he may have been educated in Alexandria,
and he seems to have spent some time teaching there. For a while, he
was in Pergamum, where there was a library second only to that in
Alexandria. Little is known about his life, and we do not know the
precise dates of his birth and death: the years 262 to 190 BCE have been
suggested.
His most famous and influential work and only one of two that sur-

vives is the treatise on Conics. The other, the Cutting-off of a Ratio, was
known only in Arabic until 1706, when Edmund Halley published a
Latin translation. It dealt with the various cases of a general problem—
given two straight lines and a point on each, draw through a third given
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point a straight line that cuts off on the given lines segments (measured
from the fixed points on them, respectively) that are in a given ratio. This
problem is equivalent to solving a quadratic equation of the type
ax2 x25 bc, that is, of applying to a line segment a rectangle equal to a
rectangle and falling short by a square.
What we know of his other, lost, works is based largely on the sum-

maries of the fourth-century commentator Pappus. Apollonius touched
on several themes that we discussed in the preceding chapter. For
example, he developed a scheme for expressing large numbers. The
numerical scheme of Apollonius was probably the one of which part is
described in the surviving last portion of Book II of the Mathematical
Collection of Pappus.
In a lost work titled Quick Delivery, Apollonius seems to have taught

speedy methods of calculation. In it, the author is said to have calculated
a closer approximation to π than that given by Archimedes—probably
the value we know as 3.1416. We have the titles of many lost works. In
some cases, we know what the treatise was about, for Pappus gave brief
descriptions of them. Six of the works of Apollonius were included,
together with a couple of Euclid’s more advanced treatises (now lost), in
a collection known as the “Treasury of Analysis.” Pappus described this
as a special body of doctrine for those who, after going through the usual
elements, wish to be capable of solving problems involving curves.

Lost Works

When in the seventeenth century the game of reconstructing lost geo-
metric books was at its height, the treatises of Apollonius were among
the favorites. From restorations of the one called Plane Loci, for example,
we infer that the following were two of the loci considered: (1) the locus
of points the difference of the squares of whose distances from two fixed
points is constant is a straight line perpendicular to the line joining
the points; (2) the locus of points the ratio of whose distances from two
fixed points is constant (and not equal to one) is a circle. The latter locus
is, in fact, now known as the “Circle of Apollonius,” but this is a mis-
nomer because it had been known to Aristotle, who used it to give a
mathematical justification of the semicircular form of the rainbow.
In Cutting-off of an Area, the problem is similar to that considered in

the Cutting-off of a Ratio, except that the intercepted segments are
required to contain a given rectangle, rather than being in a given ratio.
This problem leads to a quadratic of the form ax1 x25 bc, so that one
has to apply to a segment a rectangle equal to a rectangle and exceeding
by a square.
The Apollonian treatise On Determinate Section dealt with what might be

called an analytic geometry of one dimension. It considered the following
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general problem, using the typical Greek algebraic analysis in geometric
form: Given four points A, B, C, D on a straight line, determine a fifth
point P on it such that the rectangle on AP and CP is in a given ratio
to the rectangle on BP and DP. Here, too, the problem reduces easily to
the solution of a quadratic, and, as in other cases, Apollonius treated the
question exhaustively, including the limits of possibility and the number
of solutions.
The treatise on Tangencies is of a different sort from the three pre-

viously mentioned works, for, as Pappus describes it, we see the problem
familiarly known today as the “Problem of Apollonius.” Given three
things, each of which may be a point, a line, or a circle, draw a circle that
is tangent to each of the three given things (where tangency to a point is
to be understood to mean that the circle passes through the point). This
problem involves ten cases, from the two easiest (in which the three
things are three points or three lines) to the most difficult of all (to draw
a circle tangent to three circles). We do not have the solutions of
Apollonius, but they can be reconstructed on the basis of information
from Pappus. Nevertheless, scholars of the sixteenth and seventeenth
centuries generally were under the impression that Apollonius had not
solved the last case; hence, they regarded this problem as a challenge to
their abilities. Newton, in his Arithmetica universalis, was among those
who gave a solution, using straightedge and compass alone.
Apollonius’s treatise on Vergings considered the class of neusis

problems that can be solved by “plane” methods—that is, by the use
of a compass and a straightedge only. (The Archimedean trisection, of
course, is not such a problem, for in modern times it has been proved that
the general angle cannot be trisected by “plane” methods.) According to
Pappus, one of the problems dealt with in Vergings is the insertion
within a given circle of a chord of given length verging to a given point.
There were in antiquity allusions to still other works by Apollonius,

including one on Comparison of the Dodecahedron and the Icosahedron.
In this, the author gave a proof of the theorem (known perhaps to
Aristaeus) that the plane pentagonal faces of a dodecahedron are
the same distance from the center of the circumscribing sphere as are the
plane triangular faces of an icosahedron inscribed in the same sphere.
The main result in the spurious Book XIV of the Elements follows
immediately from the Apollonian proposition.

Cycles and Epicycles

Apollonius was also a celebrated astronomer. Whereas Eudoxus had used
concentric spheres to represent the motions of the planets, according to
Ptolemy, Apollonius proposed instead two alternative systems, one made
up of epicyclic motions and the other involving eccentric motions. In the
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first scheme, a planet P was assumed to move uniformly about a small
circle (epicycle), the center C of which in turn moved uniformly along the
circumference of a larger circle (deferent) with its center at the earth E
(Fig. 7.1).
In the eccentric scheme, the planet P moves uniformly along the

circumference of a large circle, the center Cu of which in turn moves
uniformly in a small circle with its center at E. If PC5CuE, the two
geometric schemes will be equivalent, as Apollonius evidently knew.
Although the theory of homocentric spheres had become, through the
work of Aristotle, the favorite astronomical scheme of those satisfied by
a gross representation of the approximate motions, the theory of cycles
and epicycles, or of eccentrics, became, through the work of Ptolemy,
the choice of mathematical astronomers who wanted refinement of detail
and predictive precision. For some 1,800 years, the two schemes—the
one of Eudoxus and the other of Apollonius—were friendly rivals vying
for the favor of scholars.

The Conics

Of the chefs d’oeuvre of Apollonius, the Conics, only half—the first
four of the original eight books—remains extant in Greek. Fortunately,
in the ninth century Thabit ibn Qurra translated the next three books into
Arabic, and this version has survived. In 1710, Halley provided a Latin
translation of the seven books, and editions in many languages have
appeared since then.
The conic sections had been known for about a century and a half when

Apollonius composed his celebrated treatise on these curves. At least
twice in the interval, general surveys had been written—by Aristaeus and
by Euclid—but just as Euclid’s Elements had displaced earlier elementary
textbooks, so on the more advanced level of the conic sections the Conics
of Apollonius superseded all rivals in its field, including the Conics of
Euclid.
Before the time of Apollonius, the ellipse, the parabola, and the

hyperbola were derived as sections of three distinctly different types of
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right circular cones, according as the vertex angle was acute, right, or
obtuse. Apollonius, apparently for the first time, systematically showed
that it is not necessary to take sections perpendicular to an element of the
cone and that from a single cone one can obtain all three varieties of
conic sections simply by varying the inclination of the cutting plane.
This was an important step in linking the three types of curve. A second
important generalization was made when Apollonius demonstrated that
the cone need not be a right cone—that is, one whose axis is perpen-
dicular to the circular base—but can equally well be an oblique or
scalene circular cone. If Eutocius, in commenting on the Conics, was
well informed, we can infer that Apollonius was the first geometer to
show that the properties of the curves are not different according as they
are cut from oblique cones or from right cones. Finally, Apollonius
brought the ancient curves closer to the modern point of view by
replacing the single-napped cone (somewhat like a modern ice-cream
cone) by a double-napped cone (resembling two oppositely oriented,
indefinitely long ice-cream cones placed so that the vertices coincide and
the axes are in a straight line). Apollonius gave, in fact, the same defi-
nition of a circular cone as that used today:

If a straight line indefinite in length and passing always through a fixed

point be made to move around the circumference of a circle which is not

in the same plane with the point so as to pass successively through every

point of that circumference, the moving straight line will trace out the

surface of a double cone.

This change made the hyperbola the double-branched curve that is
familiar to us today. Geometers often referred to the “two hyperbolas,”
rather than to the “two branches” of a single hyperbola, but in either
case, the duality of the curve was recognized.
Concepts are more important in the history of mathematics than is

terminology, but there is more than ordinary significance in a change of
name for the conic sections that was due to Apollonius. For about a
century and a half, the curves had had no more distinctive appellations
than banal descriptions of the manner in which the curves had been
discovered—sections of an acute-angled cone (oxytome), sections of a
right-angled cone (orthotome), and sections of an obtuse-angled cone
(amblytome). Archimedes had continued using these names (although he
is reported to have also used the word “parabola” as a synonym for a
section of a right-angled cone). It was Apollonius (possibly following
up a suggestion of Archimedes) who introduced the names “ellipse” and
“hyperbola” in connection with these curves. The words “ellipse,”
“parabola,” and “hyperbola” were not newly coined for the occasion;
they were adapted from an earlier use, perhaps by the Pythagoreans, in
the solution of quadratic equations through the application of areas.
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“Ellipsis” (meaning a deficiency) had been used when a rectangle of a
given area was applied to a given line segment and fell short by a square
(or other specified figure), and the word “hyperbola” (a throwing
beyond) had been adopted when the area exceeded the line segment. The
word “parabola” (a placing beside, or comparison) had indicated neither
excess nor deficiency. Apollonius now applied these words in a new
context as names for the conic sections. The familiar modern equation of
the parabola with vertex at the origin is y25 lx (where l is the “latus
rectum,” or parameter, now often represented by 2p, or occasionally by
4p). That is, the parabola has the property that no matter what point on
the curve one chooses, the square on the ordinate is precisely equal to
the rectangle on the abscissa x and the parameter l. The equations of the
ellipse and the hyperbola, similarly referred to a vertex as origin, are
ðx7 aÞ2=a2 6 y2=b2 5 1, or y2 5 lx7 b2x2=a2 (where l again is the latus
rectum, or parameter, 2b2 / a). That is, for the ellipse y2, lx and for the
hyperbola y2. lx, and it is the properties of the curves that are represented
by these inequalities that prompted the names given by Apollonius more
than two millennia ago, names that are still firmly attached to them. The
commentator Eutocius was responsible for an erroneous impression, still
fairly widespread, that the words “ellipse,” “parabola,” and “hyperbola”
were adopted by Apollonius to indicate that the cutting plane fell short of
or ran along with or ran into the second nappe of the cone. This is not at all
what Apollonius reported in the Conics.
In deriving all conic sections from a single double-napped oblique cir-

cular cone and in giving them eminently appropriate names, Apollonius
made an important contribution to geometry, but he failed to go as far in
generality as he might have. He could as well have begun with an
elliptic cone—or with any quadric cone—and still have derived the
same curves. That is, any plane section of Apollonius’s “circular” cone
could have served as the generating curve or “base” in his definition,
and the designation “circular cone” is unnecessary. In fact, as Apollo-
nius himself showed (Book I, Proposition 5), every oblique circular
cone has not only an infinite number of circular sections parallel to the
base, but also another infinite set of circular sections given by what he
called subcontrary sections. Let BFC be the base of the oblique circular
cone and let ABC be a triangular section of the cone (Fig. 7.2). Let P be
any point on a circular section DPE parallel to BFC and let HPK be a
section by a plane such that triangles AHK and ABC are similar but
oppositely oriented. Apollonius then called the section HPK a sub-
contrary section and showed that it is a circle. The proof is easily
established in terms of the similarity of triangles HMD and EMK, from
which it follows that HM �MK5DM �ME5PM2, the characteristic
property of a circle. (In the language of analytic geometry, if we let
HM5 x, HK5 a, and PM5 y, then y25 x(a x) or x21 y25 ax, which
is the equation of a circle.)
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Fundamental Properties

Greek geometers divided curves into three categories. The first, known
as “plane loci,” consisted of all straight lines and circles; the second,
known as “solid loci,” was made up of all conic sections; the third
category, known as “linear loci,” lumped together all other curves. The
name applied to the second category was undoubtedly suggested by the
fact that the conics were not defined as loci in a plane that satisfy a
certain condition, as is done today; they were described stereometrically
as sections of a three-dimensional figure. Apollonius, like his pre-
decessors, derived his curves from a cone in three-dimensional space,
but he dispensed with the cone as promptly as possible. From the cone, he
derived a fundamental plane property or “symptome” for the section,
and thereafter he proceeded with a purely planimetric study based on
this property. This step, which we here illustrate for the ellipse (Book I,
Proposition 13), probably was much the same as that used by his pre-
decessors, including Menaechmus. Let ABC be a triangular section of an
oblique circular cone (Fig. 7.3), and let P be any point on a section HPK
cutting all elements of the cone. Extend HK to meet BC in G and through
P pass a horizontal plane, cutting the cone in the circle DPE and the
plane HPK in the line PM. Draw DME, a diameter of the circle per-
pendicular to PM. Then, from the similarity of triangles HDM and
HBG we have DM /HM5BG /HC, and from the similarity of triangles
MEK and KCG we have ME /MK5CG /KG. Now, from the property
of the circle we have PM25DM �ME; hence, PM25 (HM �BG /HG)
(MK �CG) /KG. If PM5 y, HM5 x, and HK5 2a, the property in the
preceding sentence is equivalent to the equation y25 kx(2a2 x), which
we recognize as the equation of an ellipse with H as vertex and HK as
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major axis. In a similar manner, Apollonius derived for the hyperbola the
equivalent of the equation y25 kx(x1 2a). These forms are easily
reconciled with the previously mentioned “name” forms by taking
k5 b2 / a2 and l5 2b2 / a.

Conjugate Diameters

After Apollonius had derived from a stereometric consideration of the
cone the basic relationship between what we should now call the plane
coordinates of a point on the curve—given by the three equations y25 lx2
b2x2 / a2, y25 lx, and y25 lx1 b2x2 / a—he derived further properties from
the plane equations without reference to the cone. The author of the
Conics reported that in Book I he had worked out the fundamental
properties of the curves “more fully and generally than in the writings of
other authors.” The extent to which this statement holds true is suggested
by the fact that here, in the very first book, the theory of conjugate dia-
meters of a conic is developed. That is, Apollonius showed that the
midpoints of a set of chords parallel to one diameter of an ellipse or a
hyperbola will constitute a second diameter, the two being called “con-
jugate diameters.” In fact, whereas today we invariably refer a conic to a
pair of mutually perpendicular lines as axes, Apollonius generally used
a pair of conjugate diameters as equivalents of oblique coordinate axes.
The system of conjugate diameters provided an exceptionally useful
frame of reference for a conic, for Apollonius showed that if a line is
drawn through an extremity of one diameter of an ellipse or a hyperbola
parallel to the conjugate diameter, the line “will touch the conic, and no
other straight line can fall between it and the conic”—that is, the line will
be tangent to the conic. Here we see clearly the Greek static concept of a
tangent to a curve, in contrast to the Archimedean kinematic view. In fact,

D

H

M E
K

C
GB

P

FIG. 7.3

134 Apo l l on iu s o f P e r ge



often in the Conics we find a diameter and a tangent at its extremity used
as a coordinate frame of reference.
Among the theorems in Book I are several (Propositions 41 through

49) that are tantamount to a transformation of coordinates from a system
based on the tangent and the diameter through a point P on the conic to a
new system determined by a tangent and a diameter at a second point Q
on the same curve, together with the demonstration that a conic can be
referred to as any such system as axes. In particular, Apollonius was
familiar with the properties of the hyperbola and referred to its asymp-
totes as axes, given, for the equilateral hyperbola, by the equation
xy5 c2. He had no way of knowing, of course, that someday this rela-
tionship would be fundamental in the study of gases or that his study of
the ellipse would be essential to modern astronomy.
Book II continues the study of conjugate diameters and tangents. For

example, if P is any point on any hyperbola, with center C, the tangent at
P will cut the asymptotes in points L and Lu (Fig. 7.4) that are equidistant
from P (Propositions 8 and 10). Moreover (Propositions 11 and 16), any
chord QQu parallel to CP will meet the asymptotes in points K and Ku
such that QK5QuKu and QK �QK5CP2. (These properties were verified
synthetically, but the reader can double-check their validity by the use of
modern analytic methods.) Later propositions in Book II show how to
draw tangents to a conic by making use of the theory of harmonic
division. In the case of the ellipse (Proposition 49), for example, if Q is a
point on the curve (Fig. 7.5), Apollonius dropped a perpendicular QN
from Q to the axis AAu and found the harmonic conjugate T of N with
respect to A and Au. (That is, he found the point T on line AAu extended
such that AT /AuT5AN /NAu; in other words, he determined the point T
that divides the segment AAu externally in the same ratio as N divides AAu
internally.) The line through T and Q, then, will be tangent to the
ellipse. The case in which Q does not lie on the curve can be reduced to
this through familiar properties of harmonic division. (It can be proved
that there are no plane curves other than the conic sections such that
given the curve and a point, a tangent can be drawn, with straightedge
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and compass, from the point to the curve, but this was, of course,
unknown to Apollonius.)

The Three- and Four-Line Locus

Apollonius was apparently especially proud of Book III, for in the general
preface to the Conics he wrote:

The third book contains many remarkable theorems useful for the

synthesis of solid loci and determinations of limits; the most and prettiest

of these theorems are new and, when I had discovered them, I observed

that Euclid had not worked out the synthesis of the locus with respect to

three and four lines, but only a chance portion of it and that not suc-

cessfully: for it was not possible that the synthesis could have been

completed without my additional discoveries.

The three- and four-line locus to which reference is made played an
important role in mathematics from Euclid to Newton. Given three lines
(or four lines) in a plane, find the locus of a point P that moves so that
the square of the distance from P to one of these is proportional to the
product of the distances to the other two (or, in the case of four lines,
the product of the distances to two of them is proportional to the product
of the distances to the other two), the distances being measured at given
angles with respect to the lines. Through modern analytic methods,
including the normal form of the straight line, it is easy to show that the
locus is a conic section—real or imaginary, reducible or irreducible. If,
for the three-line locus, equations of the given lines are A1x1B1y1
C15 0, A2x1B2y1C25 0, and A3x1B3y1C35 0, and if the angles at
which the distances are to be measured are θ1, θ2, and θ3, then the locus of
P(x, y) is given by

ðA1x1B1y1C1Þ2
ðA2

1
1B2

1
Þ sin2 θ1

5
KðA2x1B2y1C2Þ

A2
2
1B2

2

p
sin θ2

U
ðA3x1B3y1C3Þ

A2
3

p
B2

3
sin θ3

:

This equation is, in general, of second degree in x and y; hence, the locus
is a conic section. Our solution does not do justice to the treatment given
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by Apollonius in Book III, in which more than fifty carefully worded
propositions, all proved by synthetic methods, lead eventually to the
required locus. Half a millennium later, Pappus suggested a general-
ization of this theorem for n lines, where n.4, and it was against this
generalized problem that Descartes in 1637 tested his analytic geometry.
Thus, few problems have played as important a role in the history of
mathematics as did the “locus to three and four lines.”

Intersecting Conics

Book IV of the Conics is described by its author as showing “in how
many ways the sections of cones meet one another,” and he is especially
proud of theorems, “none of which has been discussed by earlier wri-
ters,” concerning the number of points in which a section of a cone meets
the “opposite branches of a hyperbola.” The idea of the hyperbola as a
double-branched curve was new with Apollonius, and he thoroughly
enjoyed the discovery and the proof of theorems concerning it. It is in
connection with the theorems in this book that Apollonius makes a
statement implying that in his day, as in ours, there were narrow-minded
opponents of pure mathematics who pejoratively inquired about the
usefulness of such results. The author proudly asserted, “They are
worthy of acceptance for the sake of the demonstrations themselves, in
the same way as we accept many other things in mathematics for this and
for no other reason” (Heath 1961, p. lxxiv).

Books V VII

The preface to Book V, relating to maximum and minimum straight lines
drawn to a conic, again argues that “the subject is one of those which seem
worthy of study for their own sake.” Although one must admire the author
for his lofty intellectual attitude, it may be pertinently pointed out that
what in his day was beautiful theory, with no prospect of applicability to
the science or the engineering of his time, has since become fundamental
in such fields as terrestrial dynamics and celestial mechanics. Apollo-
nius’s theorems on maxima and minima are in reality theorems on tan-
gents and normals to conic sections. Without knowledge of the properties
of tangents to a parabola, an analysis of local trajectories would be
impossible, and a study of the paths of the planets is unthinkable without
reference to the tangents to an ellipse. It is clear, in other words, that it was
the pure mathematics of Apollonius that made possible, some 1,800 years
later, the Principia of Newton; the latter, in turn, gave scientists of the
1960s the hope that a round-trip visit to the moon would be possible. Even
in ancient Greece, the Apollonian theorem that every oblique cone has
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two families of circular sections was applicable to cartography in the
stereographic transformation, used by Ptolemy and possibly by Hip-
parchus, of a spherical region into a portion of a plane. It has often been
true in the development of mathematics that topics that originally could be
justified only as “worthy of study for their own sake” later became of
inestimable value to the “practical man.”
Greek mathematicians had no satisfactory definition of tangent to a

curve C at a point P, thinking of it as a line L such that no other line could
be drawn through P between C and L. Perhaps it was dissatisfaction with
this definition that led Apollonius to avoid defining a normal to a curve C
from a pointQ as a line through Q that cuts the curve C in a point P and is
perpendicular to the tangent to C at P. Instead, he made use of the fact
that the normal from Q to C is a line such that the distance from Q to C is
a relative maximum or minimum. In ConicsV.8, for example, Apollonius
proved a theorem concerning the normal to a parabola, which today is
generally part of a course in the calculus. In modern terminology, the
theorem states that the subnormal of the parabola y25 2px for any point P
on the curve is constant and equal to p; in the language of Apollonius, this
property is expressed somewhat as follows:

If A is the vertex of a parabola y25 px, and if G is a point on the axis such

that AG. p, and, if N is a point between A and G such that NG5 p, and

if NP is drawn perpendicular to the axis meeting the parabola in P

[Fig. 7.6], then PG is the minimum straight line from G to the curve and

hence is normal to the parabola at P.

The proof by Apollonius is of the typical indirect kind—it is shown that if
Pu is any other point on the parabola, PuG increases asPumoves further from
P in either direction. A proof of the corresponding, but more involved,
theorem concerning the normal to an ellipse or a hyperbola from a point on
the axis is then given, and it is shown that if P is a point on a conic, only one
normal can be drawn through P, whether the normal be regarded as a
minimum or a maximum, and this normal is perpendicular to the tangent at
P. Note that theperpendicularity thatwe take as a definition is here proved as
a theorem, whereas the maximum-minimum property that we take as a
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theorem serves, forApollonius, as a definition. Later propositions inBookV
carry the topic of normals to a conic to such a point that the author gives
criteria enabling one to tell how many normals can be drawn from a given
point to a conic section. These criteria are tantamount to what we should
describe as the equations of the evolutes to the conics. For the parabola y25
2px, Apollonius showed in essence that points whose coordinates satisfy the
cubic equation 27py25 8(x2 p)3 are limiting positions of the point of
intersection of normals to the parabola at pointsP andPu asPu approachesP.
That is, points on this cubic are the centers of curvature for points on the
conic (in other words, the centers of osculating circles for the parabola). In
the case of the ellipse and the hyperbola, whose equations are, respectively,
x2 / a2 6 y2 / b25 1, the corresponding equations of the evolute are

ðaxÞ2=3 6 ðbyÞ2=3 5 ða2 7 b2Þ2=3.
After giving the conditions for the evolute of a conic, Apollonius showed

how to construct a normal to a conic section fromapointQ. In the case of the
parabola y25 2px, and for Q outside the parabola and not on the axis, one
drops a perpendicular QM to the axis AK, measures offMH5 p, and erects
HR perpendicular to HA (Fig. 7.7). Then, through Q one draws the rectan-
gular hyperbola with asymptotesHA andHR, intersecting the parabola in a
point P. Line QP is the normal required, as one can prove by showing that
NK5HM5 p. If point Q lies inside the parabola, the construction is
similar, except that P lies between Q and R. Apollonius also gave con-
structions, likewise making use of an auxiliary hyperbola, for the normal
from a point to a given ellipse or hyperbola. It should be noted that the
construction of normals to the ellipse and the hyperbola, unlike the con-
struction of tangents, requires more than a straightedge and a compass. As
the ancients described the two problems, the drawing of a tangent to a
conic is a “plane problem,” for intersecting circles and straight lines
suffice. By contrast, the drawing of a normal from an arbitrary point in
the plane to a given central conic is a “solid problem,” for it cannot be
accomplished by the use of lines and circles alone but can be done
through the use of solid loci (in our case, a hyperbola). Pappus later
severely criticized Apollonius for his construction of a normal to the
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parabola, in that he treated it as a solid problem, rather than a plane
problem. That is, the hyperbola that Apollonius used could have been
replaced by a circle. Perhaps Apollonius felt that the line-and-circle fetish
should give way, in his construction of normals, to a desire for uniformity
of approach with respect to the three types of conics.
Apollonius described the sixth book of the Conics as embracing

propositions about “segments of conics equal and unequal, similar and
dissimilar, besides some other matters left out by those who have pre-
ceded me. In particular, you will find in this book how, in a given right
cone, a section is to be cut equal to a given section.” Two conics are said
to be similar if the ordinates, when drawn to the axis at proportional
distances from the vertex, are respectively proportional to the corre-
sponding abscissas. Among the easier of the propositions in Book VI are
those demonstrating that all parabolas are similar (VI.11) and that a
parabola cannot be similar to an ellipse or a hyperbola nor an ellipse to a
hyperbola (VI.14, 15). Other propositions (VI.26, 27) prove that if any
cone is cut by two parallel planes making hyperbolic or elliptic sections,
the sections will be similar but not equal.
Book VII returns to the subject of conjugate diameters and “many new

propositions concerning diameters of sections and the figures described
upon them.” Among these are some that are found in modern textbooks,
such as the proof (VII.12, 13, 29, 30) that

In every ellipse the sum, and in every hyperbola the difference, of the

squares on any two conjugate diameters is equal to the sum or difference

respectively of the squares on the axes.

There is also the proof of the familiar theorem that if tangents are
drawn at the extremities of a pair of conjugate axes of an ellipse or a
hyperbola, the parallelogram formed by these four tangents will be equal
to the rectangle on the axes. It has been conjectured that the lost Book
VIII of the Conics continued with similar problems, for in the preface
to Book VII the author wrote that the theorems of Book VII were used in
Book VIII to solve determinate conic problems, so that the last book “is
by way of an appendix.”

Commentary

The Conics of Apollonius is a treatise of such extraordinary breadth and
depth that we are startled to note the omission of some of the properties
that to us appear so obviously fundamental. As the curves are now
introduced in textbooks, the foci play a prominent role, yet Apollonius
had no name for these points, and he referred to them only indirectly. It
is not clear whether the author was aware of the now-familiar role of the
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directrix. He seems to have known how to determine a conic through five
points, but this topic is omitted in the Conics. It is quite possible, of
course, that some or all such tantalizing omissions resulted from the fact
that they had been treated elsewhere, in works no longer extant, by
Apollonius or other authors. So much of ancient mathematics has been
lost that an argument e silencio is precarious indeed.
Greek geometric algebra did not provide for negative magnitudes;

moreover, the coordinate system was in every case superimposed a
posteriori on a given curve in order to study its properties. Of Greek
geometry, we may say that equations are determined by curves, but not
that curves were defined by equations. Coordinates, variables, and
equations were subsidiary notions derived from a specific geometric
situation, and one gathers that in the Greek view, it was not sufficient to
define curves abstractly as loci satisfying given conditions on two
coordinates. To guarantee that a locus was really a curve, the ancients
felt it incumbent on them to exhibit it stereometrically as a section of a
solid or to describe a kinematic mode of construction.
TheGreek definition and study of curves lacked the flexibility and extent

of the modern treatment. Although the Greeks were esthetically one of the
most gifted peoples of all times, the only curves that they explored in
the heavens and on the earth were combinations of circles and straight
lines. ThatApollonius, the greatest geometer of antiquity, failed to develop
analytic geometry, was probably the result of a poverty of curves, rather
than of thought. Moreover, the early modern inventors of analytic geo-
metry had all of Renaissance algebra at their disposal, whereas Apollonius
necessarily worked with the more rigorous but far more awkward tool of
geometric algebra.
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8

Crosscurrents

Bees . . . by virtue of a certain geometrical forethought . . . know that the

hexagon is greater than the square and the triangle and will hold more

honey for the same expenditure of material.

Pappus of Alexandria

ChangingTrends

Today, we use the conventional phrase “Greek mathematics” as if it
indicates a homogeneous and well-defined body of doctrine. Such a view
can be very misleading, however, for it implies that the sophisticated
geometry of the Archimedean-Apollonian type was the only sort that the
Hellenes knew. We must remember that mathematics in the Greek world
spanned a time interval from at least 600 BCE to at least 600 CE and that it
traveled from Ionia to the toe of Italy, to Athens, to Alexandria, and to
other parts of the civilized world. The paucity of surviving works,
especially on the lower level, tends to obscure the fact that our know-
ledge about the Greek world is far from complete.
The death of Archimedes by the hand of a Roman soldier may have

been inadvertent, but it was truly portentous. Both Perge and Syracuse
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would flourish under Roman control, but during its long history, ancient
Rome contributed little to science or philosophy and less to mathe-
matics. Whether during the Republic or in the days of the Empire,
Romans were little attracted to speculative or logical investigation. The
practical arts of medicine and agriculture were cultivated with some
eagerness, and descriptive geography met with favor. Impressive engi-
neering projects and architectural monuments were related to the sim-
pler aspects of science, but Roman builders were satisfied with
elementary rule-of-thumb procedures that called for little in the way
of understanding of the great corpus of theoretical Greek thought. The
extent of Roman acquaintance with science may be judged from
the De architectura of Vitruvius, written during the middle part of the
Augustine Age and dedicated to the emperor. At one point, the author
describes what to him appeared to be the three greatest mathematical
discoveries: the incommensurability of the side and the diagonal of a
cube; the right triangle with sides 3, 4, and 5; and Archimedes’ calcu-
lation on the composition of the king’s crown. It is sometimes claimed
that impressive works of engineering, such as the Egyptian pyramids and
the Roman aqueducts, imply a high level of mathematical achievement,
but historical evidence does not bear this out.
The two major institutions associated with mathematics in ancient

Greece, the Academy in Athens and the Library in Alexandria, were
subject to several changes in direction before their eventual demise. The
Academy no longer maintained the strong support of mathematical stu-
dies that Plato had made mandatory; by the time of Proclus, a renewed
interest in mathematics can be attributed to its role as safe haven for
Neoplatonists. The Museum and Library at Alexandria no longer benefited
from the support they had been given by the first two Ptolemies, and even
Cleopatra, the last ruling Ptolemy, who is said to have enjoyed the
Museum gatherings, probably could not have persuaded either Antony or
Caesar to fund its scholarly pursuits.

Eratosthenes

When Archimedes sent his Method to Eratosthenes in Alexandria, he
chose as recipient a man who represented the many diverse areas of
study at the Alexandrian library. Eratosthenes (ca. 275 194 BCE) was a
native of Cyrene who had spent much of his early life in Athens. He had
achieved prominence in many fields—poetry, astronomy, history,
mathematics, athletics—when, in middle life, he was called by Ptolemy
III to Alexandria to tutor his son and to serve as head of the library there.
Today, Eratosthenes is best remembered for his measurement of the

earth—not the first or last such estimate made in antiquity, but by all
odds the most successful. Eratosthenes observed that at noon on the day
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of the summer solstice, the sun shone directly down a deep well at
Syene. At the same time in Alexandria, taken to be on the same meridian
and 5,000 stades north of Syene, the sun was found to cast a shadow
indicating that the sun’s angular distance from the zenith was one-fiftieth
of a circle. From the equality of the corresponding angles SuAZ and SvOZ
in Fig. 8.1, it is clear that the circumference of the earth must be fifty
times the distance between Syene and Alexandria. This results in a peri-
meter of 250,000 stades. How accurate this measurement was has been a
subject of debate among scholars, partly because there are differing
accounts concerning the length of a stadium. There is consensus, however,
that the result of the measurement was a remarkable achievement.
A contributor to many fields of learning, Eratosthenes is well known

in mathematics for the “sieve of Eratosthenes,” a systematic procedure
for isolating the prime numbers. With all of the natural numbers arr-
anged in order, one simply strikes out every second number following
the number 2, every third number (in the original sequence) following the
number 3, every fifth number following the number 5, and continues in
this manner to strike out every nth number following the number n. The
remaining numbers, from 2 on, will, of course, be primes. Eratosthenes
also wrote works on means and on loci, but these have been lost. Even his
treatise On the Measurement of the Earth is no longer extant, although
some details from it have been preserved by others, including Heron and
Ptolemy of Alexandria.

Angles and Chords

Like Eratosthenes, in his work on mathematical geography, a number of
astronomers of the Alexandrian Age handled problems that pointed to a
need for systematic relationships between angles and chords. Theorems
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on the lengths of chords are essentially applications of the modern law
of sines.

Aristarchus

Among Eratosthenes’ predecessors was Aristarchus of Samos (ca.
310 ca. 230 BCE), who, according to Archimedes and Plutarch, proposed
a heliocentric system; but whatever he may have written on this scheme
has been lost. Instead, we have an Aristarchan treatise, perhaps com-
posed earlier (ca. 260 BCE), On the Sizes and Distances of the Sun and
Moon, which assumes a geocentric universe. In this work, Aristarchus
made the observation that when the moon is just half-full, the angle
between the lines of sight to the sun and the moon is less than a right
angle by one-thirtieth of a quadrant. (The systematic introduction of the
360� circle came a little later.) In trigonometric language of today, this
would mean that the ratio of the distance of the moon to that of the sun
(the ratioME to SE in Fig. 8.2) is sin 3�. Trigonometric tables not having
been developed yet, Aristarchus fell back on a well-known geometric
theorem of the time that now would be expressed in the inequalities
sinα / sinβ, α, β, tanα / tan β, where 0�, β, α, 90�. From
these, he derived the conclusion that 1

20, sin 3�, 1
18; hence, he asserted

that the sun is more than 18, but less than 20, times as far from the earth
as is the moon. This is far from the modern value—somewhat less than
400—but it is better than the values 9 and 12 that Archimedes ascribed,
respectively, to Eudoxus and to Phidias (Archimedes’ father). Moreover,
the method used by Aristarchus was unimpeachable, the result being
vitiated only by the error of observation in measuring the angle MES as
87� (when in actuality it should have been about 89� 50u).
Having determined the relative distances of the sun and the moon,

Aristarchus also knew that the sizes of the sun and the moon were in
the same ratio. This follows from the fact that the sun and the moon have
very nearly the same apparent size—that is, they subtend about the
same angle at the eye of an observer on the earth. In the treatise in
question, this angle is given as 2�, but Archimedes attributed to Aris-
tarchus the much better value of 1

2

�
. From this ratio, Aristarchus was able
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to find an approximation for the sizes of the sun and the moon, as
compared with the size of the earth. From lunar eclipse observations,
he concluded that the breadth of the shadow cast by the earth at the
distance of the moon was twice the width of the moon. Then, if Rs, Re,
and Rm are the radii of the sun, the earth, and the moon, respectively, and
if Ds and Dm are the distances of the sun and the moon from the earth,
then, from the similarity of triangles BCD and ABE (Fig. 8.3), one has the
proportion (Re2 2Rm) / (Rs2Re)5Dm /Ds. If in this equation one replaces
Ds and Rs with the approximate values 19Dm and 19Rm, one obtains the
equation ðRe 2 2RmÞ=ð19Rm 2ReÞ5 1

19 or Rm 5
20
57Re. Here the actual com-

putations of Aristarchus have been considerably simplified. His reasoning
was in reality much more carefully carried out and led to the conclusion
that
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Hipparchus of Nicaea

For some two and a half centuries, from Hippocrates to Eratosthenes,
Greek mathematicians had studied relationships between lines and circles
and had applied these in a variety of astronomical problems, but no sys-
tematic trigonometry had resulted. Then, presumably during the second
half of the second century, the first trigonometric table apparently was
compiled by the astronomer Hipparchus of Nicaea (ca. 180 ca. 125 BCE).
Aristarchus had known that in a given circle, the ratio of arc to chord
decreased as the angle decreases from180� to 0�, tending toward a limit of 1.
Yet it appears that not until Hipparchus undertook the task had anyone
tabulated corresponding values of arc and chord for a whole series of
angles. It has, however, been suggested that Apollonius may have
anticipated Hipparchus in this respect, and that the contribution of
the latter to trigonometry was simply the calculation of a better set
of chords than had been drawn up by his predecessors. Hipparchus evi-
dently drew up his tables for use in his astronomy. He was a transitional
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figure between Babylonian astronomy and the work of Ptolemy. The
chief contributions attributed to Hipparchus in astronomy were his
organization of the empirical data derived from the Babylonians, the
drawing up of a star catalogue, improvement in important astronomical
constants (such as the length of the month and the year, the size of the
moon, and the angle of obliquity of the ecliptic), and, finally, the dis-
covery of the precession of the equinoxes.
It is not known just when the systematic use of the 360� circle came

into mathematics, but it seems to be due largely to Hipparchus in con-
nection with his table of chords. It is possible that he took over from
Hypsicles, who earlier had divided the order into 360 parts, a subdivision
that may have been suggested by Babylonian astronomy. Just how
Hipparchus made up his table is not known, for his works are not extant
(except for a commentary on a popular astronomical poem by Aratus). It
is likely that his methods were similar to those of Ptolemy, to be
described further on, for Theon of Alexandria, commenting on Ptol-
emy’s table of chords in the fourth century, reported that Hipparchus had
earlier written a treatise in twelve books on chords in a circle.

Menelaus of Alexandria

Theon also mentions another treatise, in six books, by Menelaus
of Alexandria (ca. 100 CE) dealing with Chords in a Circle. Other math-
ematical and astronomical works by Menelaus are mentioned by later
Greek and Arabic commentators, including an Elements of Geometry, but
the only one that has survived—and only through the Arabic translation—
is his Sphaerica. In Book I of this treatise,Menelaus established a basis for
spherical triangles analogous to that of Euclid I for plane triangles.
Included is a theorem without Euclidean analogue—that two spherical
triangles are congruent if corresponding angles are equal (Menelaus did
not distinguish between congruent and symmetric spherical triangles), and
the theorem A1B1C. 180� is established. The second book of the
Sphaerica describes the application of spherical geometry to astronomical
phenomena and is of little mathematical interest. Book III, the last, contains
the well-known “theorem of Menelaus” as part of what is essentially
spherical trigonometry in the typical Greek form—a geometry or trigono-
metry of chords in a circle. In the circle inFig. 8.4,we shouldwrite that chord
AB is twice the sine of half of the central angleAOB (multiplied by the radius
of the circle). Menelaus and his Greek successors instead referred to AB
simply as the chord corresponding to the arcAB. IfBOBu is a diameter of the
circle, then chord ABu is twice the cosine of half the angle AOB (multiplied
by the radius of the circle). Hence, the theorems of Thales and Pythagoras,
which lead to the equation AB21ABu22 4r2, are equivalent to the modern
trigonometric identity sin2 θ1 cos2 θ5 1. Menelaus, as Hipparchus probably
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also before him, was familiar with other identities, two of which he used
as lemmas in proving his theorem on transversals. The first of these lemmas
may be stated inmodern terminology as follows. If a chordAB in a circlewith
center O (Fig. 8.5) is cut in point C by a radius OD, then AC=CB5
sinAD

_
=sinDB

_
. The second lemma is similar: If the chordAB extended is cut

in point Cu by a radius ODu extended, then ACu=BCu5 sinAD
_

u=sinBD
_

u.
These lemmas were assumed by Menelaus without proof, presumably
because they could be found in earlierworks, possibly inHipparchus’s twelve
books on chords. (The reader can easily prove the lemmas by drawing AO
and BO, dropping perpendiculars from A and B to OD, and using similar
triangles.)
It is probable that the “theorem of Menelaus” for the case of plane

triangles had been known to Euclid, perhaps having appeared in the lost
Porisms. The theorem in the plane states that if the sides AB, BC, CA of a
triangle are cut by a transversal in points D, E, F, respectively (Fig. 8.6),
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then AD �BE �CF5BD �CE �AF. In other words, any line cuts the sides
of a triangle so that the product of three nonadjacent segments equals the
product of the other three, as can readily be proved by elementary
geometry or through the application of simple trigonometric relation-
ships. The theorem was assumed by Menelaus to be well known to his
contemporaries, but he went on to extend it to spherical triangles in a
form equivalent to sinAD sinBE sinCF5 sinBD sinCE sinAF. If sensed
segments are used, rather than absolute magnitudes, the two products are
equal in magnitude but differ in sign.

Ptolemy’s Almagest

By far the most influential and significant trigonometric work of all
antiquity was the Mathematical Syntaxis, a work in thirteen books
composed by Ptolemy of Alexandria about half a century after Mene-
laus. This celebrated Mathematical Synthesis was distinguished from
another group of astronomical treatises by other authors (including
Aristarchus) by referring to that of Ptolemy as the “greater” collection
and to that of Aristarchus et al. as the “lesser” collection.
From the frequent reference to the former as megiste, there arose later

in Arabia the custom of calling Ptolemy’s book Almagest (“the great-
est”), and it is by this name that the work has since been known.
Of the life of its author, we are as little informed as we are of that of

the author of the Elements. We know that Ptolemy made observations in
Alexandria from 127 to 151 CE, and we therefore assume that he was
born at the end of the first century. Suidas, a writer who lived in the tenth
century, reported that Ptolemy was still alive under Marcus Aurelius (the
emperor from 161 to 180 CE).
Ptolemy’s Almagest is presumed to be heavily indebted for its methods

to the Chords in a Circle of Hipparchus. Ptolemy made use of the
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catalogue of star positions bequeathed by Hipparchus, but whether
Ptolemy’s trigonometric tables were derived in large part from his dis-
tinguished predecessor cannot be determined. Fortunately, Ptolemy’s
Almagest has survived the ravages of time; hence, we have not only his
trigonometric tables but also an account of the methods used in their
construction. Central to the calculation of Ptolemy’s chords was a
geometric proposition still known as “Ptolemy’s theorem”: If ABCD
is a (convex) quadrilateral inscribed in a circle (Fig. 8.7), then
AB �CD1BC �DA5AC �BD; that is, the sum of the products of the
opposite sides of a cyclic quadrilateral is equal to the product of
the diagonals. The proof of this is easily carried through by drawing BE
so that angle ABE is equal to angle DBC and noting the similarity of the
triangles ABE and BCD.
Another, and more useful, special case of the general theorem of

Ptolemy is that in which one side—say, AD—is a diameter of the circle
(Fig. 8.8). Then, if AD5 2r, we have 2r �BC1AB �CD5AC �BD. If we
let arcBD5 2α and arc CD5 2β, then BC5 2r sin(α2β), AB5 2r
sin(90�2α), BD5 2r sinα, CD5 2r sinβ, and AC5 2r sin (90� 2β).
Ptolemy’s theorem therefore leads to the result sin (α2β)5 sinα cosβ2
cosα sinα. Similar reasoning leads to the formula sin (α1β)5 sinα
cosβ1 cosα sinβ and to the analogous pair cos (α6 β)5 cosα cosβ7
sinα sin β. These four sum-and-difference formulas consequently are often
known today as Ptolemy’s formulas.
It was the formula for sine of the difference—or, more accurately, chord

of the difference—that Ptolemy found especially useful in building up
his tables. Another formula that served him effectively was the equivalent
of our half-angle formula. Given the chord of an arc in a circle, Ptolemy
found the chord of half of the arc as follows: let D be the midpoint of arc
BC in a circle with diameter AC5 2r (Fig. 8.9), let AB5AE, and let
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DF bisect EC (perpendicularly). Then, it is not difficult to show
that FC5 1

2ð2r2ABÞ: But from elementary geometry, it is known that
DC25AC �FC, fromwhich it follows thatDC 25 r (2r2AB). If we let arc
BC5 2α, then DC5 2r sinα / 2 and AB5 2r cosα; hence, we have the
familiar modern formula sinα=25 ð12 cosαÞ=2p

. In other words, if
the chord of any arc is known, the chord of half of the arc is also
known. Now Ptolemy was equipped to build up a table of chords as
accurate as might be desired, for he had the equivalent of our funda-
mental formulas.

The 360-Degree Circle

It should be recalled that from the days of Hipparchus until modern
times, there were no such things as trigonometric ratios. The Greeks—
and, after them, the Hindus and the Arabs—used trigonometric lines.
These at first took the form, as we have seen, of chords in a circle, and it
became incumbent on Ptolemy to associate numerical values (or
approximations) with the chords. To do this, two conventions were
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needed: (1) some scheme for subdividing the circumference of a circle
and (2) some rule for subdividing the diameter. The division of a cir-
cumference into 360 degrees seems to have been in use in Greece since
the days of Hipparchus, although it is not known just how the convention
arose. It is not unlikely that the 360-degree measure was carried over
from astronomy, where the zodiac had been divided into twelve “signs”
or 36 “decans.” A cycle of the seasons of roughly 360 days could readily
be made to correspond to the system of zodiacal signs and decans by
subdividing each sign into thirty parts and each decan into ten parts. Our
common system of angle measure may stem from this correspondence.
Moreover, because the Babylonian positional system for fractions was so
obviously superior to the Egyptian unit fractions and the Greek common
fractions, it was natural for Ptolemy to subdivide his degrees into sixty
panes minutae primae, each of these latter into sixty partes minutae
secundae, and so on. It is from the Latin phrases that translators used in
this connection that our words “minute” and “second” were derived.
Our trigonometric identities are easily converted into the language of

Ptolemaic chords through the simple relationships

sin x5
chord 2x

120
and cos x5

chordð180� 2 2xÞ
120

:

The formulas cosðx6 yÞ5 cos x cos y7 sin x sin y become (chord is
abbreviated to cd)

cd 2x6 2 y5
cd 2 x cd 2 y7 cd 2 x cd 2 y

120
;

where a line over an arc (angle) indicates the supplementary arc. Note
that not only angles and arcs but also their chords were expressed sex-
agesimally. In fact, whenever scholars in antiquity wished an accurate
system of approximation, they turned to the sixty-scale for the fractional
portion; this led to the phrases “astronomers’ fractions” and “physicists’
fractions” to distinguish sexagesimal from common fractions.

Construction of Tables

Having decided on his system of measurement, Ptolemy was ready to
compute the chords of angles within the system. For example, because
the radius of the circle of reference contained sixty parts, the chord of an
arc of 60 degrees also contained sixty linear parts. The chord of 120� will
be 60 3

p
or approximately 103 parts and 55 minutes and 33 seconds or,

in Ptolemy’s Ionic or alphabetic notation, ργp υεuλγv. Ptolemy could
now have used his half-angle formula to find the chord of 30�, then the
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chord of 15�, and so on, for still smaller angles. Yet, he preferred to
delay the application of this formula and computed instead the chords of
36� and 72�. He used a theorem from Elements XIII.9, which shows that
a side of a regular pentagon, a side of a regular hexagon, and a side of a
regular decagon, all being inscribed within the same circle, constitute the
sides of a right triangle. Incidentally, this theorem from Euclid provides
the justification for Ptolemy’s elegant construction of a regular pentagon
inscribed in a circle. Let O be the center of a circle and AB a diameter
(Fig. 8.10). Then, if C is the midpoint of OB and OD is perpendicular to
AB, and if CE is taken equal to CD, the sides of the right triangle EDO
are the sides of the regular inscribed pentagon, hexagon, and decagon.
Then, if the radius OB contains 60 parts, from the properties of the
pentagon and the golden section, it follows that OE, the chord of 36�,
is 30ð 5

p
2 1Þ or about 37.083 or 37p 4u 5v or λζpνεv. By the Pythagorean

theorem, the chord of 72� is 30 102 2 5
pp

; or approximately 70.536 or
70p 32u 3v or opλβuγv.
Knowing the chord of an arc of s degrees in a circle, one can easily

find the chord of the arc 180� 2 s from the theorems of Thales and
Pythagoras, for cd2s1 cd2s5 1202. Hence, Ptolemy knew the chords of
the supplements of 36� and 72�. Moreover, from the chords of 72� and
60�, he found chord 12� by means of his formula for the chord of the
difference of two arcs. Then, by successive applications of his half-angle
formula, he derived the chords of arcs of 6�, 3�, 11

2

�
, and 3

4

�
, the last two

being 1p 34u 15v and 0p 47u 8v, respectively. Through a linear inter-
polation between these values, Ptolemy arrived at 1p 2u 50v as the chord
of 1�. By using the half-angle formula—or, because the angle is very
small, simply dividing by 2—he found the value of 0p 31u 25v for the
chord of 30u. This is equivalent to saying that sin 150 is 0.00873, which is
correct to almost half a dozen decimal places.
Ptolemy’s value of the chord of 1

2

�
is, of course, the length of a side of a

polygon of 720 sides inscribed in a circle of radius 60 units. Whereas
Archimedes’ polygon of 96 sides had led to 22

7 as an approximation to the
value of π, Ptolemy’s is equivalent to 6(0p 31u 25v) or 3;8,30. This
approximation to π, used by Ptolemy in the Almagest, is the same as 377

120,
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which leads to a decimal equivalent of about 3.1416, a value that may
have been given earlier by Apollonius.

Ptolemaic Astronomy

Armed with formulas for the chords of sums and differences and chords of
half an arc and having a good value of chord 1

2

�
, Ptolemy went on to build

up his table, correct to the nearest second, of chords of arcs from 1
2

�
to 180�

for every 1
4

�
. This is virtually the same as a table of sines from 1

4

�
to 90�,

proceeding by steps of 1
4

�
. The table formed an integral part of Book I

of the Almagest and remained an indispensable tool of astronomers for
more than a thousand years. The remaining twelve books of this celebrated
treatise contain, among other things, the beautifully developed theory of
cycles and epicycles for the planets known as the Ptolemaic system. Like
Archimedes, Hipparchus, and most other great thinkers of antiquity,
Ptolemy postulated an essentially geocentric universe, for a moving earth
appeared to be faced with difficulties—such as lack of apparent stellar
parallax and seeming inconsistency with the phenomena of terrestrial
dynamics. In comparison with these problems, the implausibility of an
immense speed required for the daily rotation of the sphere of the “fixed”
stars seemed to shrink into insignificance.
Plato had set for Eudoxus the astronomical problems of “saving the

phenomena”—that is, producing a mathematical device, such as a
combination of uniform circular motions, which should serve as a model
for the apparent motions of the planets. The Eudoxian system
of homocentric spheres had been largely abandoned by mathematicians
in favor of the system of cycles and epicycles of Apollonius and
Hipparchus. Ptolemy, in turn, made an essential modification in the latter
scheme. In the first place, he displaced the earth somewhat from the
center of the deferent circle, so that he had eccentric orbits. Such
changes had been made before him, but Ptolemy introduced a novelty so
drastic in scientific implication that later Nicholas Copernicus could not
accept it, effective though the device, known as the equant, was in
reproducing the planetary motions. Try as he would, Ptolemy had not
been able to arrange a system of cycles, epicycles, and eccentrics in
close agreement with the observed motions of the planets. His solution
was to abandon the Greek insistence on uniformity of circular motions
and to introduce instead a geometric point, the equant E collinear with
the earth G and the center C of the deferent circle, such that the apparent
angular motion of the center Q of the epicycle in which a planet P
revolves is uniform as seen from E (Fig. 8.11). In this way, Ptolemy
achieved accurate representations of planetary motions, but, of course,
the device was only kinematic and made no effort to answer the ques-
tions in dynamics raised by nonuniform circular movements.
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Other Works by Ptolemy

Ptolemy’s fame today is largely associated with a single book, the
Almagest, but there are other Ptolemaic works as well. Among the more
important was a Geography, in eight books, which was as much a
bible to geographers of his day as the Almagest was to astronomers. The
Geography of Ptolemy introduced the system of latitudes and longitudes
as used today, described methods of cartographic projection, and cata-
logued some 8,000 cities, rivers, and other important features of the
earth. Unfortunately, there was at the time no satisfactory means of
determining longitudes, hence substantial errors were inevitable. Even
more significant was the fact that Ptolemy seems to have made a poor
choice when it came to estimating the size of the earth. Instead of
accepting the figure 252,000 stadia, given by Eratosthenes, he preferred
the value 180,000 stadia that was proposed by Posidonius, a Stoic teach-
er of Pompey and Cicero. Hence, Ptolemy thought that the known
Eurasian world was a larger fraction of the circumference than it really
is—more than 180� in longitude, instead of the actual figure of about
130�. This large error suggested to later navigators, including Columbus,
that a voyage westward from Europe to India would not be nearly so far
as it turned out to be. Had Columbus known how badly Ptolemy had
underestimated the size of the earth, he might never have set sail.
Ptolemy’s geographical methods were better in theory than in practice,

for in separate monographs, which have survived only through Latin
translations from the Arabic, Ptolemy described two types of map pro-
jection. Orthographic projection is explained in the Analemma, the
earliest account we have of this method, although it may have been used
by Hipparchus. In this transformation from a sphere to a plane, points on
the spherical surface are projected orthogonally on three mutually per-
pendicular planes. In the Planisphaerium, Ptolemy described the ste-
reographic projection in which points on the sphere are projected by
lines from a pole onto a plane—in Ptolemy’s case, from the South Pole
to the plane of the equator. He knew that under such a transformation, a
circle not through the pole of projection went into a circle in the plane,
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and that a circle through the polewas projected into a straight line. Ptolemy
was also aware of the important fact that such a transformation is con-
formal, that is, angles are preserved. Ptolemy’s importance for geography
can be gauged from the fact that the earliest maps in the Middle Ages
that have come down to us in manuscripts, none before the thirteenth
century, had as prototypes the maps made by Ptolemy more than a thou-
sand years earlier.

Optics and Astrology

Ptolemy also wrote an Optics that has survived, imperfectly, through a
Latin version of an Arabic translation. This deals with the physics and
the psychology of vision, with the geometry of mirrors, and with an early
attempt at a law of refraction.
No account of Ptolemy’s work would be complete without mention of

his Tetrabiblos (or Quadripartitum), for it shows us a side of ancient
scholarship that we are prone to overlook. The Almagest is indeed a
model of good mathematics and accurate observational data put to work
in building a sober scientific astronomy, but the Tetrabiblos (or work
in four books) addresses a kind of sidereal religion to which much of
the ancient world had succumbed. Ptolemy in the Tetrabiblos argued
that one should not, because of the possibility of error, discourage the
astrologer any more than the physician.
The Tetrabiblos differs from the Almagest not only as astrology differs

from astronomy; the two works also make use of different types of
mathematics. The latter makes good use of synthetic Greek geometry; the
former suggests that the populace in general was more concerned with
arithmetical computation than with rational thought. At least from the
days of Alexander the Great to the close of the classical world, there was
undoubtedly much intercommunication between Greece and Mesopota-
mia, and it seems clear that the Babylonian arithmetic and algebraic
geometry continued to exert considerable influence in the Hellenistic
world. Greek deductive geometry, on the other hand, seems not to have
been welcomed in Mesopotamia until after the Arabic conquest.

Heron of Alexandria

Heron of Alexandria is best known in the history of mathematics for the
formula, bearing his name, for the area of a triangle:

K5 sðs2 aÞðs2 bÞðs2 cÞ
p

where a, b, and c are the sides and s is half of the sum of these sides, that
is, the semiperimeter. The Arabs tell us that “Heron’s formula” was
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known earlier to Archimedes, who undoubtedly had a proof of it, but the
demonstration of it in Heron’s Metrica is the earliest that we have.
Although now the formula is usually derived trigonometrically, Heron’s
proof is conventionally geometric. The Metrica, like the Method of
Archimedes, was long lost, until rediscovered at Constantinople in 1896 in
a manuscript dating from about 1100. The word “geometry” originally
meant “earth measure,” but classical geometry, such as that found in
Euclid’s Elements and Apollonius’s Conics, was far removed from mun-
dane surveying. Heron’s work, on the other hand, shows us that not all
mathematics in Greece was of the “classical” type. There evidently were
two levels in the study of configurations—comparable to the distinction
made in numerical context between arithmetic (or theory of numbers) and
logistic (or techniques of computation)—one of which, eminently rational,
might be known as geometry and the other, largely practical, might better
be described as geodesy. The Babylonians lacked the former but were
strong in the latter, and it was essentially the Babylonian type of mathe-
matics that is found in Heron. It is true that in the Metrica an occasional
demonstration is included, but the body of the work is concerned with
numerical examples in mensuration of lengths, areas, and volumes. There
are strong resemblances between his results and those found in ancient
Mesopotamian problem texts. For example, Heron gave a tabulation of the
areas An, of regular polygons of n sides in terms of the square of one side sn,
beginning with A3 5

13
30 s23 and continuing to A12 5

45
4 s212: As was the case in

pre-Hellenic mathematics, Heron also made no distinction between results
that are exact and those that are only approximations.
The gap that separated classical geometry from Heronian mensuration

is clearly illustrated by certain problems set and solved by Heron in
another of his works, the Geometrica. One problem calls for the dia-
meter, the perimeter, and the area of a circle, given the sum of these
three magnitudes. The axiom of Eudoxus would rule out such a problem
from theoretical consideration, for the three magnitudes are of unlike
dimensions, but from an uncritical numerical point of view, the problem
makes sense. Moreover, Heron did not solve the problem in general
terms but, taking a cue again from pre-Hellenic methods, chose the
specific case in which the sum is 212; his solution is like the ancient
recipes in which only steps, without reasons, are given. The diameter 14
is easily found by taking the Archimedean value for π and using the
Babylonian method of completing the square to solve a quadratic
equation. Heron simply gives the laconic instructions “Multiply 212 by
154, add 841, take the square root and subtract 29, and divide by 11.”
This is scarcely the way to teach mathematics, but Heron’s books were
intended as manuals for the practitioner.
Heron paid as little attention to the uniqueness of his answer as he did to

the dimensionality of his magnitudes. In one problem, he called for
the sides of a right triangle if the sum of the area and the perimeter is 280.
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This is, of course, an indeterminate problem, but Heron gave only one
solution,making use of theArchimedean formula for the area of a triangle.
Inmodern notation, if s is the semiperimeter of the triangle and r the radius
of the inscribed circle, then rs1 2s5 s(r1 2)5 280. Following his own
cookbook rule, “Always look for the factors,” he chose r1 25 8 and
s5 35. Then, the area rs is 210.But the triangle is a right triangle, hence the
hypotenuse c is equal to s2 r or 352 6, or 29; the sum of the two sides a
and b is equal to s1 r, or 41. The values of a and b are then easily found to
be 20 and 21. Heron says nothing about other factorizations of 280, which,
of course, would lead to other answers.

Principle of Least Distance

Heron was interested in mensuration in all its forms—in optics and
mechanics, as well as in geodesy. The law of reflection for light had been
known to Euclid and Aristotle (probably also to Plato), but it was Heron
who showed by a simple geometric argument, in a work on Catoptrics (or
reflection), that the equality of the angles of incidence and reflection is a
consequence of the Aristotelian principle that nature does nothing the hard
way. That is, if light is to travel from a source S to a mirror MMu and then
to the eye E of an observer (Fig. 8.12), the shortest possible path SPE is
that in which the angles SPM and EPMu are equal. That no other path SPuE
can be as short as SPE is apparent on drawing SQSu perpendicular to MMu,
with SQ5QSu and comparing the path SPE with the path SPuE. Because
paths SPE and SPuE are equal in length to paths SuPE and SuPuE, respec-
tively, and inasmuch as SuPE is a straight line (because angleMuPE is equal
to angle MPS), it follows that SuPE is the shortest path.
Heron is remembered in the history of science and technology as the

inventor of a primitive type of steam engine, described in his Pneumatics;
of a forerunner of the thermometer; and of various toys and mechanical
contrivances based on the properties of fluids and on the laws of the
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simple machines. He suggested in the Mechanics a law (clever but
incorrect) of the simple machine whose principle had eluded even
Archimedes—the inclined plane. His name is also attached to “Heron’s
algorithm” for finding square roots, but this method of iteration was in
reality due to the Babylonians of 2,000 years before his day. Although
Heron evidently learned much of Mesopotamian mathematics, he seems
not to have appreciated the importance of the positional principle for
fractions. Sexagesimal fractions had become the standard tool of scholars
in astronomy and physics, but it is likely that they remained unfamiliar to
the common man. Common fractions were used to some extent by the
Greeks, at first with the numerator placed below the denominator and later
with the positions reversed (and without the bar separating the two), but
Heron, writing for the practical man, seems to have preferred unit frac-
tions. In dividing 25 by 13, he wrote the answer as 11 1

2 1
1
3 1

1
13 1

1
78. The

old Egyptian addiction to unit fractions continued in Europe for at least a
thousand years after the time of Heron.

The Decline of Greek Mathematics

The period from Hipparchus to Ptolemy, covering three centuries, was
one in which applied mathematics was in the ascendant. It is sometimes
held that mathematics develops most effectively when in close touch
with the world’s work, but the period we have been considering would
argue for the opposite thesis. From Hipparchus to Ptolemy, there were
advances in astronomy and geography, optics and mechanics, but no
significant developments in mathematics outside of trigonometry. Some
attribute the decline to the inadequacies and difficulties in Greek geo-
metric algebra, others to the cold breath of Rome. In any event, the
period during which trigonometry and mensuration came to the fore was
characterized by a lack of progress, yet it was precisely these aspects of
Greek mathematics that most attracted the Hindu and Arabic scholars
who served as a bridge to the modern world. Before we turn to these
peoples, however, we must look at the Indian summer of Greek
mathematics, sometimes known as the “Silver Age.”
The period that we consider next, from Ptolemy to Proclus, covers almost

four centuries (from the second to the sixth), but our account is based in
large part on only two chief treatises, mere portions of which are now
extant, as well as on a number of works of lesser significance.

Nicomachus of Gerasa

It should be recalled that in ancient Greece, the word “arithmetic” meant
the theory of numbers, rather than computation. Often Greek arithmetic
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had more in common with philosophy than with what we think of as
mathematics; hence, the subject had played a large role in Neoplatonism
during the Later Alexandrian Age. This had been particularly true of the
Introductio arithmeticae of Nicomachus of Gerasa, a Neopythagorean who
lived not far from Jerusalem about the year 100 CE. The author is some-
times held to be of Syrian background, but Greek philosophical tendencies
certainly predominate in his work. The Introductio of Nicomachus, as we
have it, contains only two books, and it is possible that this is only an
abridged version of what was originally a more extensive treatise. At all
events, the possible loss in this case is far less to be regretted than the loss
of seven books of the Arithmetica of Diophantus. Nicomachus had, so far
as we can see, little mathematical competence and was concerned only
with the most elementary properties of numbers. The level of the work may
be judged from the fact that the author found it expedient to include a
multiplication table up to ι times ι (that is, 10 times 10).
The Introductio of Nicomachus opens with the anticipated Pythagor-

ean classification of numbers into even and odd, then into evenly even
(powers of two) and evenly odd (2n � p, where p is odd and p. 1 and
n. 1) and oddly even (2 � p, where p is odd and p. 1). Prime, com-
posite, and perfect numbers are defined, and a description of the sieve of
Eratosthenes is included, as well as a list of the first four perfect numbers
(6 and 28 and 496 and 8,128). The work also includes a classification of
ratios and combinations of ratios (ratios of integers are essential in the
Pythagorean theory of musical intervals), an extensive treatment of figu-
rate numbers (which had loomed so large in Pythagorean arithmetic) in
both two and three dimensions, and a comprehensive account of the
various means (again a favorite topic in Pythagorean philosophy). As did
some other writers, Nicomachus regarded the number 3 as the first number
in the strict sense of the word, for 1 and 2 were really only the generators
of the number system. For Nicomachus, numbers were endowed with such
qualities as better or worse, younger or older, and they could transmit
characters, as parents to their progeny. Despite such arithmetical anthro-
pomorphism as a background, the Introductio contains a moderately
sophisticated theorem. Nicomachus noticed that if the odd integers are
grouped in the pattern 1; 31 5; 71 91 11; 131 151 171 19; . . . ,
the successive sums are the cubes of the integers. This observation,
coupled with the early Pythagorean recognition that the sum of the first n
odd numbers is n2, leads to the conclusion that the sum of the first n perfect
cubes is equal to the square of the sum of the first n integers.

Diophantus of Alexandria

We have seen that Greek mathematics was not uniformly on a high level,
for the glorious period of the third century BCE had been followed by a
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decline, perhaps to some extent arrested in the days of Ptolemy, but not
effectively reversed until the century of the “Silver Age,” about 250 CE to
350. At the beginning of this period, also known as the Later Alexandrian
Age, we find the leading Greek algebraist Diophantus of Alexandria,
and toward its close there appeared the last significant Greek geometer,
Pappus of Alexandria. No other city has been the center of mathe-
matical activity for so long a period as was Alexandria from the days of
Euclid (ca. 300 BCE) to the time of Hypatia (415 CE).
Uncertainty about the life of Diophantus is so great that we do not

definitely know in which century he lived. Generally, he is assumed
to have flourished about 250 CE. According to a tradition that is reported
in a collection of problems known as the Greek Anthology (described
further on):

God granted him to be a boy for the sixth part of his life, and adding a

twelfth part to this, He clothed his cheeks with down; He lit him the light

of wedlock after a seventh part, and five years after his marriage He

granted him a son. Alas! late-born wretched child; after attaining the

measure of half his father’s life, chill Fate took him. After consoling his

grief by this science of numbers for four years he ended his life (Cohen

and Drabkin 1958; p. 27).

If this conundrum is historically accurate, Diophantus lived to be
eighty-four years old.
Diophantus is often called the father of algebra, but we shall see that

such a designation is not to be taken literally. His work is not at all the
type of material that forms the basis of modern elementary algebra, nor
is it yet similar to the geometric algebra found in Euclid. The chief
Diophantine work known to us is the Arithmetica, a treatise originally in
thirteen books, only the first six of which have survived.

The Arithmetica of Diophantus

The Arithmetica of Diophantus was a treatise characterized by a high
degree ofmathematical skill and ingenuity. In this respect, the book can be
compared with the great classics of the earlier Alexandrian Age, yet it has
practically nothing in common with these or, in fact, with any traditional
Greek mathematics. It essentially represents a new branch and makes use
of a different approach. Being divorced from geometric methods, it
resembles Babylonian algebra to a large extent. But whereas Babylonian
mathematicians had been concerned primarily with the approximate
solution of determinate equations as far as the third degree, theArithmetica
of Diophantus (such as we have it) is almost entirely devoted to the exact
solution of equations, both determinate and indeterminate. Because of the
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emphasis given in the Arithmetica to the solution of indeterminate pro-
blems, the subject dealing with this topic, sometimes known as inde-
terminate analysis, has since become known as Diophantine analysis.
Algebra now is based almost exclusively on symbolic forms of

statement, rather than on the customary written language of ordinary
communication in which earlier Greek mathematics, as well as Greek
literature, had been expressed. It has been said that three stages in the
historical development of algebra can be recognized: (1) the rhetorical or
early stage, in which everything is written out fully in words; (2) a
syncopated or intermediate stage, in which some abbreviations are
adopted; and (3) a symbolic or final stage. Such an arbitrary division of
the development of algebra into three stages is, of course, a facile
oversimplification, but it can serve effectively as a first approximation to
what has happened, and within such a framework the Arithmetica of
Diophantus is to be placed in the second category.
Throughout the six surviving books of the Arithmetica, there is a sys-

tematic use of abbreviations for powers of numbers and for relationships
and operations. An unknown number is represented by a symbol that
resembles the Greek letter (perhaps for the last letter of arithmos); the
square of this appears as Δγ; the cube as Kγ; the fourth power, called
square-square, as ΔγΔ; the fifth power, or square-cube, as ΔKγ; and the
sixth power, or cube-cube, as KγK. Diophantus was familiar with the rules
of combination equivalent to our laws of exponents. The chief difference
between the Diophantine syncopation and the modern algebraic notation is
in the lack of special symbols for operations and relations, as well as of the
exponential notation.

Diophantine Problems

If we think primarily of matters of notation, Diophantus has a good claim
to be known as the father of algebra, but in terms of motivation and
concepts, the claim is less appropriate. The Arithmetica is not a sys-
tematic exposition of the algebraic operations or of algebraic functions or
of the solution of algebraic equations. It is instead a collection of 150
problems, all worked out in terms of specific numerical examples, although
perhaps generality of method was intended. There is no postulational
development, nor is an effort made to find all possible solutions. No clear-
cut distinction is made between determinate and indeterminate problems,
and even for the latter, for which the number of solutions generally is
unlimited, only a single answer is given. Diophantus solved problems
involving several unknown numbers by skillfully expressing all unknown
quantities, where possible, in terms of only one of them.
Diophantus used much the same approach in indeterminate analysis. In

one problem, it is required to find two numbers such that either when
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added to the square of the other will yield a perfect square. This is a
typical instance of Diophantine analysis, in which only rational numbers
are acceptable as answers. In solving the problem, Diophantus did not
call the numbers x and y, but rather x and 2x1 1. Here the second, when
added to the square of the first, will yield a perfect square no matter what
value one chooses for x. Now, it is also required that (2x1 1)21 x must
be a perfect square. Here Diophantus does not point out the infinity of
possible answers. He is satisfied to choose a particular case of a perfect
square, in this instance the number (2x2 2)2, such that when equated to
(2x1 1)21 x, an equation that is linear in x results. Here the result is
x5 3

13, so that the other number, 2x1 1, is 19
13. One could, of course,

have used (2x2 3)2 or (2x2 4)2 or expressions of similar form, instead of
(2x2 2)2, to arrive at other pairs of numbers having the desired property.
Here we see an approach that comes close to a “method” in Diophantus’s
work: When two conditions are to be satisfied by two numbers, the two
numbers are so chosen that one of the two conditions is satisfied, and
then one turns to the problem of satisfying the second condition. That is,
instead of handling simultaneous equations on two unknowns, Dio-
phantus operates with successive conditions, so that only a single
unknown number appears in the work.

The Place of Diophantus in Algebra

Among the indeterminate problems in the Arithmetica are some invol-
ving equations such as x25 11 30y2 and x25 11 26y2, which are
instances of the so-called Pell equation, x25 11 py2; again, a single
answer is thought to suffice. In a sense, it is not fair to criticize Dio-
phantus for being satisfied with a single answer, for he was solving
problems, not equations. The Arithmetica is not an algebra textbook, but
a problem collection in the application of algebra. In this respect, Dio-
phantus is like the Babylonian algebraists, but his numbers are entirely
abstract and do not refer to measures of grain or dimensions of fields or
monetary units, as was the case in Egyptian and Mesopotamian algebra.
Moreover, he is interested only in exact rational solutions, whereas the
Babylonians were computationally inclined and were willing to accept
approximations to irrational solutions of equations.
We do not know how many of the problems in the Arithmetica were

original or whether Diophantus had borrowed from other similar collec-
tions. Possibly, some of the problems or methods are traceable back to
Babylonian sources, for puzzles and exercises have a way of reappearing
generation after generation. To us today, the Arithmetica of Diophantus
looks strikingly original, but possibly this impression results from the loss
of rival problem collections. Indications that Diophantus may have been
less isolated a figure than has been supposed are found in a collection of
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problems from about the early second century of our era (hence, pre-
sumably antedating the Arithmetica), in which some Diophantine symbols
appear. Nevertheless, Diophantus has had a greater influence on modern
number theory than any other nongeometric Greek mathematician has. In
particular, Pierre de Fermat was led to his celebrated “great” or “last”
theorem when he sought to generalize a problem that he had read in the
Arithmetica of Diophantus (II.8): to divide a given square into two squares.

Pappus of Alexandria

The Arithmetica of Diophantus is a brilliant work worthy of the period of
revival in which it was written, but it is, in motivation and content, far
removed from the beautifully logical treatises of the great geometric
triumvirate of the earlier Alexandrian Age. Algebra seemed to be more
appropriate for problem solving than for deductive exposition, and the
great work of Diophantus remained outside the mainstream of Greek
mathematics. A minor work on polygonal numbers by Diophantus comes
closer to the earlier Greek interests, but even this cannot be regarded as
approaching the Greek logical ideal. Classical geometry had found no
ardent supporter, with the possible exception of Menelaus, since the
death of Apollonius some four hundred and more years earlier. But
during the reign of Diocletian (284 305 CE), there lived again in
Alexandria a scholar who was moved by the spirit that had possessed
Euclid, Archimedes, and Apollonius.

The Collection

In about 320 CE, Pappus of Alexandria composed a work with the title
Collection (Synagoge), which is important for several reasons. In the first
place, it provides a most valuable historical record of parts of Greek
mathematics that otherwise would be unknown to us. For instance, it is
in Book V of the Collection that we learn of Archimedes’ discovery of
the thirteen semiregular polyhedra or “Archimedean solids.” Then,
too, the Collection includes alternative proofs and supplementary lem-
mas for propositions in Euclid, Archimedes, Apollonius, and Ptolemy.
Finally, the treatise includes new discoveries and generalizations not
found in any earlier work. The Collection, Pappus’s most important
treatise, contained eight books, but the first book and the first part of the
second book are now lost.
Book III of the Collection shows that Pappus thoroughly shared the

classical Greek appreciation of the niceties of logical precision in geo-
metry. Here he distinguishes sharply among “plane,” “solid,” and “lin-
ear” problems—the first being constructible with only circles
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and straight lines, the second being solvable through the use of conic
sections, and the last requiring curves other than lines, circles, and
conics. Then, Pappus describes some solutions of the three famous
problems of antiquity, the duplication and the trisection being problems
in the second or solid category and the squaring of the circle being a
linear problem. Here Pappus virtually asserts the fact that the classical
problems are impossible to solve under the Platonic conditions, for they
do not belong among the plane problems; but rigorous proofs were not
given until the nineteenth century.
In Book IV, Pappus is again insistent that one should give for a pro-

blem a construction appropriate to it. That is, one should not use linear
loci in the solution of a solid problem or solid or linear loci in the
solution of a plane problem. Asserting that the trisection of an angle is a
solid problem, he therefore suggests methods that make use of conic
sections, whereas Archimedes in one case had used a neusis, or sliding-
ruler type of construction, and in another the spiral, which is a linear
locus. One of the Pappus trisections is as follows. Let the given
angle AOB be placed in a circle with center O (Fig. 8.13) and let OC
be the angle bisector. Draw the hyperbola having A as one focus, OC as
the corresponding directrix, and with an eccentricity equal to 2. Then,
one branch of this hyperbola will cut the circumference of the circle in a
point T such that +AOT is one-third +AOB.
A second trisection construction proposed by Pappus makes use of an

equilateral hyperbola as follows. Let the side OB of the given angle AOB
be a diagonal of a rectangle ABCO, and through A draw the equilateral
hyperbola having BC and OC (extended) as asymptotes (Fig. 8.14). With
A as center and with radius twice OB, draw a circle intersecting the
hyperbola in P, and from P drop the perpendicular PT to the line CB
extended. Then, it is readily proved, from the properties of the hyper-
bola, that the straight line through O and T is parallel to AP and that
+AOT is one-third +AOB. Pappus gives no source for his trisections,
and we cannot help but wonder whether this trisection was known to
Archimedes. If we draw the semicircle passing through B, having QT as
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diameter and M as center, we have essentially the Archimedean neusis
construction, for OB5QM5MT5MB.
In Book III, Pappus also describes the theory of means and gives

an attractive construction that includes the arithmetic, the geometric, and
the harmonic means within a single semicircle. Pappus shows that if
in the semicircle ADC with center O (Fig. 8.15) one has DB ? AC and
BF ? OD, then DO is the arithmetic mean, DB the geometric mean,
and DF the harmonic mean of the magnitudes AB and BC. Here Pappus
claims for himself only the proof, attributing the diagram to an unnamed
geometer.

Theorems of Pappus

The Collection of Pappus is replete with bits of interesting information
and significant new results. In many cases, the novelties take the form of
generalizations of earlier theorems, and a couple of these instances
appear in Book IV. Here we find an elementary generalization of the
Pythagorean theorem. If ABC is any triangle (Fig. 8.16) and if ABDE and
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CBGF are any parallelograms constructed on two of the sides, then
Pappus constructs on side AC a third parallelogram ACKL equal to the
sum of the other two. This is easily accomplished by extending sides FG
and ED to meet in H, then drawing HB and extending it to meet side
AC in J, and finally drawing AL and CK parallel to HBJ. It is not known
whether this generalization, usually bearing the name of Pappus, was
original with Pappus, and it has been suggested that possibly it was
known earlier to Heron. Another instance of generalization in Book IV,
also bearing Pappus’s name, extends theorems of Archimedes on the
shoemaker’s knife. It asserts that if circles C1, C2, C3, C4, . . . , Cn, . . . are
inscribed successively as in Fig. 8.17, all being tangent to the semicircles
on AB and on AC, and successively to one another, the perpendicular
distance from the center of the nth circle to the base line ABC is n times
the diameter of the nth circle.

The Pappus Problem

Book V of the Collection was a favorite with later commentators, for it
raised a question about the sagacity of bees. Inasmuch as Pappus showed
that of two regular polygons having equal perimeters, the one with the
greater number of sides has the greater area, he concluded that bees
demonstrated some degree of mathematical understanding in constructing

A

E
L

D

B
G

H

K

J C
F

FIG. 8.16

A BC

C
1

C
2

C
3

C
4

FIG. 8.17

Pappu s o f A l e x andr i a 167



their cells as hexagonal, rather than square or triangular, prisms. The
book goes into other problems of isoperimetry, including a demon-
stration that the circle has a greater area, for a given perimeter, than
does any regular polygon. Here Pappus seems to have been closely
following On Isometric Figures, written almost half a millennium
earlier by Zenodorus (ca. 180 BCE), some fragments of which were
preserved by later commentators. Among the propositions in Zeno-
dorus’s treatise was one asserting that of all solid figures the surfaces of
which are equal, the sphere has the greatest volume, but only an incomplete
justification was given.
Books VI and VIII of the Collection are chiefly on applications of

mathematics to astronomy, optics, and mechanics (including an unsuc-
cessful attempt at finding the law of the inclined plane). Of far more
significance in the history of mathematics is Book VII, in which, through
his penchant for generalization, Pappus came close to the fundamental
principle of analytic geometry. The only means recognized by the
ancients for defining plane curves were (1) kinematic definitions in
which a point moves the subject to two superimposed motions, and (2)
the section by a plane of a geometric surface, such as a cone or a sphere
or a cylinder. Among the latter curves were certain quartics known as
spiric sections, described by Perseus (ca. 150 BCE), obtained by cutting
the anchor ring or torus by a plane. Occasionally, a twisted curve
caught the attention of the Greeks, including the cylindrical helix and an
analogue of the Archimedean spiral described on a spherical surface,
both of which were known to Pappus, but Greek geometry was primarily
restricted to the study of plane curves, in fact, to a very limited number
of plane curves. It is significant to note, therefore, that in Book VII of the
Collection, Pappus proposed a generalized problem that implied infi-
nitely many new types of curves. This problem, even in its simplest
form, is usually known as the “Pappus problem,” but the original
statement, involving three or four lines, seems to go back to the days of
Euclid. As first considered, the problem is referred to as “the locus to
three or four lines,” described previously in connection with the work of
Apollonius. Euclid evidently had identified the locus only for certain
special cases, but it appears that Apollonius, in a work now lost, had
given a complete solution. Pappus nevertheless gave the impression that
geometers had failed in attempts at a general solution and implied that it
was he who had first shown the locus in all cases to be a conic section.
More important, Pappus then went on to consider the analogous pro-

blem for more than four lines. For six lines in a plane, he recognized that
a curve is determined by the condition that the product of the distances
from three of the lines shall be in a fixed ratio to the product of the
distances to the other three lines. In this case, a curve is defined by
the fact that a solid is in a fixed ratio to another solid. Pappus hesitated to
go on to cases involving more than six lines, inasmuch as “there is not
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anything contained by more than three dimensions.” But, he continued,
“men a little before our time have allowed themselves to interpret such
things, signifying nothing at all comprehensible, speaking of the
product of the content of such and such lines by the square of this or
the content of those. These things might however be stated and shown
generally by means of compounded proportions.” The unnamed pre-
decessors evidently were prepared to take a highly important step in
the direction of an analytic geometry that should include curves of a
degree higher than three, just as Diophantus had used the expressions
square-square and cube-cube for higher powers of numbers. Had Pappus
pursued the suggestion further, he might have anticipated Descartes in a
general classification and theory of curves far beyond the classical dis-
tinction between plane, solid, and linear loci. His recognition that, no
matter what the number of lines in the Pappus problem, a specific curve
is determined is the most general observation on loci in all of ancient
geometry, and the algebraic syncopations that Diophantus had developed
would have been adequate to have disclosed some of the properties of
the curves. But Pappus was at heart only a geometer, as Diophantus had
been only an algebraist; hence, Pappus merely remarked with surprise
that no one had made a synthesis of this problem for any case
beyond that of four lines. Pappus himself made no deeper study of
these loci, “of which one has no further knowledge and which are simply
called curves.” What was needed for the next step in this connection was
the appearance of a mathematician equally concerned about algebra and
geometry; it is significant to note that when such a figure appeared in the
person of Descartes, it was this very problem of Pappus’s that served as
the point of departure in the invention of analytic geometry.

The Treasury of Analysis

There are other important topics in Book VII of the Collection, apart
from the Pappus problem. For one thing, there is a full description of
what was called the method of analysis and of a collection of works
known as the Treasury of Analysis. Pappus describes analysis as “a
method of taking that which is sought as though it were admitted and
passing from it through its consequences in order to something which is
admitted as a result of synthesis.” That is, he recognized analysis as a
“reverse solution,” the steps of which must be retraced in opposite order
to constitute a valid demonstration. If analysis leads to something
admitted to be impossible, the problem will also be impossible, for a
false conclusion implies a false premise. Pappus explains that the
method of analysis and synthesis is used by the authors whose works
constitute the Treasury of Analysis: “This is a body of doctrine furnished
for the use of those who, after going through the usual elements, wish to
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obtain power to solve problems set to them involving curves,” and
Pappus lists among the works in the Treasury of Analysis the treatises on
conics by Aristaeus, Euclid, and Apollonius. It is from Pappus’s des-
cription that we learn that Apollonius’s Conics contained 487 theorems.
Because the seven books now extant comprise 382 propositions, we can
conclude that the lost eighth book had 105 propositions. About half of the
works listed by Pappus in the Treasury of Analysis are now lost, including
Apollonius’s Cutting-off of a Ratio, Eratosthenes’ On Means, and
Euclid’s Porisms.

The Pappus-Guldin Theorems

Book VII of the Collection contains the first statement on record of the
focus-directrix property of the three conic sections. It appears that
Apollonius knew of the focal properties for central conics, but it is
possible that the focus-directrix property for the parabola was not known
before Pappus. Another theorem in Book VII that appears for the first
time is one usually named for Paul Guldin, a seventeenth-century
mathematician: If a closed plane curve is revolved about a line not
passing through the curve, the volume of the solid generated is found by
taking the product of the area bounded by the curve and the distance
traversed during the revolution by the center of gravity of the area.
Pappus was rightfully proud of this very general theorem, for it included
“a large number of theorems of all sorts about curves, surfaces, and
solids, all of which are proved simultaneously by one demonstration.”
There is a possibility that the “Guldin theorem” represents an inter-
polation in the manuscript of the Collection. In any case, the theorem is a
striking advance by someone during or following the long period of
decline. Pappus also gave the analogous theorem that the surface area
generated by the revolution of a curve about a line not cutting the curve
is equal to the product of the length of the curve and the distance tra-
versed by the centroid of the curve during the revolution.

The End of Alexandrian Dominance

The Collection of Pappus is the last truly significant ancient mathematical
treatise, for the attempt of the author to revive geometry was not suc-
cessful. Mathematical works continued to be written in Greek for about
another thousand years, continuing an influence that had begun almost a
millennium earlier, but authors following Pappus never again rose to his
level. Their works are almost exclusively in the form of commentary on
earlier treatises. Pappus himself is in part responsible for the ubiquitous
commentaries that ensued, for he had composed commentaries on the
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Elements of Euclid and on the Almagest of Ptolemy, among others, only
fragments of which survive. Later commentaries, such as those of Theon
of Alexandria (fl. 365 CE), are more useful for historical information than
for mathematical results. Theon was responsible for an important edition
of the Elements that has survived; he is also remembered as the father of
Hypatia, who wrote commentaries on Diophantus and Apollonius and also
revised part of her father’s commentary on Ptolemy. An ardent and
influential teacher of pagan Neoplatonism, Hypatia incurred the enmity of
a fanatical Christian mob at whose hands she suffered a cruel death in
415 CE. The dramatic impact of her death in Alexandria has caused that
year to be taken by some to mark the end of ancient mathematics; more
specifically, it marks the end of Alexandria as the major mathematical
center it had been.

Proclus of Alexandria

Alexandria produced in Proclus (410 485 CE) a young scholar who went
to Athens, where he became one of the last heads of the Academy and a
leader of the Neoplatonic school. Proclus was more a philosopher than a
mathematician, but his remarks are often essential for the history of early
Greek geometry. Of great significance is his Commentary on Book I of the
Elements of Euclid, for, while writing this, Proclus undoubtedly had at
hand a copy of the History of Geometry by Eudemus, now lost, as well as
Pappus’s Commentary on the Elements, largely lost. For our information
on the history of geometry before Euclid, we are heavily indebted to
Proclus, who included in his Commentary a summary or a substantial
extract from Eudemus’s History. This passage, which has come to be
known as the Eudemian Summary, may be taken as Proclus’s chief con-
tribution to mathematics, although to him is ascribed the theorem that if a
line segment of fixed length moves with its end points on two intersecting
lines, a point on the segment will describe a portion of an ellipse.

Boethius

During the years when Proclus was writing in Athens, the Roman
Empire in the West was gradually collapsing. The end of the empire is
usually placed at 476 CE, for in this year the incumbent Roman emperor
was displaced by Odoacer, a Goth. Some of the old Roman senatorial
pride remained, but the senatorial party had lost political control. In
this situation, Boethius (ca. 480 524 CE), one of the foremost mathe-
maticians produced by ancient Rome, found his position difficult, for
he came of an old distinguished patrician family. He was not only a
philosopher and a mathematician but also a statesman, and he probably
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viewed with distaste the rising Ostrogothic power. He was the author of
textbooks for each of the four mathematical branches in the liberal arts,
but these were jejune and exceedingly elementary abbreviations of
earlier classics—an Arithmetic that was only an abridgement of the
Introductio of Nicomachus; a Geometry based on Euclid and including
only statements, without proof, of some of the simpler portions of the
first four books of the Elements; an Astronomy derived from Ptolemy’s
Almagest; and a Music that is indebted to the earlier works of Euclid,
Nicomachus, and Ptolemy. In some cases, these primers, used exten-
sively in medieval monastic schools, may have suffered later inter-
polations; hence, it is difficult to determine precisely what is genuinely
due to Boethius himself. It is nevertheless clear that the author was
primarily concerned with two aspects of mathematics: its relationship to
philosophy and its applicability to simple problems of mensuration.
Boethius seems to have been a statesman of high purpose and unques-

tioned integrity. He and his sons in turn served as consuls, and Boethius
was among the chief advisers of Theodoric, but for some reason, whether
political or religious, the philosopher incurred the displeasure of the
emperor. It has been suggested that Boethius was a Christian (as perhaps
Pappus was also) and that he espoused Trinitarian views that alienated the
Arian emperor. It is also possible that Boethius was too closely associated
with political elements that looked to the Eastern Empire for help in
restoring the old Roman order in the West. In any case, Boethius was
executed in 524 or 525 CE, following a long imprisonment. (Theodoric,
incidentally, died only about a year later, in 526 CE.) While in prison, he
wrote his most celebrated work, De consolatione philosophiae. This essay,
written in prose and verse while he faced death, discusses moral respon-
sibility in the light of Aristotelian and Platonic philosophy.

Athenian Fragments

The death of Boethius may be taken to mark the end of ancient
mathematics in the Western Roman Empire, as the death of Hypatia had
marked the close of Alexandria as a mathematical center, but work
continued for a few years longer in Athens. There one found no great
original mathematician, but the Peripatetic commentator Simplicius
(fl. 520 CE) was sufficiently concerned about Greek geometry to have
preserved for us what may be the oldest fragment extant. Aristotle in the
Physica had referred to the quadrature of the circle or of a segment, and
Simplicius took this opportunity to quote “word for word” what Eude-
mus had written on the subject of the quadrature of lunes by Hippocrates.
The account, several pages long, gives full details on the quadratures of
lunes, quoted by Simplicius from Eudemus, who in turn is presumed to
have given at least part of the proofs in Hippocrates’ own words,
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especially where certain archaic forms of expression are used. This
source is the closest we can come to direct contact with Greek mathe-
matics before the days of Plato.
Simplicius was primarily a philosopher, but in his day there circulated

a work usually described as the Greek Anthology, the mathematical
portions of which remind us strongly of the problems in the Ahmes
Papyrus of more than two millennia earlier. The Anthology contained
some six thousand epigrams; of these, more than forty are mathematical
problems, presumably collected by Metrodorus, a grammarian of per-
haps the fifth or sixth century. Most of them, including the epigram in
this chapter on the age of Diophantus, lead to simple linear equations.
For example, one is asked to find how many apples are in a collection if
they are to be distributed among six people so that the first person
receives one-third of the apples, the second receives one-fourth, the third
person receives one-fifth, the fourth person receives one-eighth, the
fifth person receives ten apples, and there is one apple left for the last
person. Another problem is typical of elementary algebra texts of our
day: If one pipe can fill a cistern in one day, a second in two days, a third
in three days, and a fourth in four days, how long will it take all four
running together to fill it? The problems presumably were not original
with Metrodorus but were collected from various sources. Some prob-
ably go back before the days of Plato, reminding us that not all Greek
mathematics was of the type that we think of as classical.

Byzantine Mathematicians

There were contemporaries of Simplicius and Metrodorus who had
training that was adequate for an understanding of the works of Archi-
medes and Apollonius. Among these was Eutocius (born ca. 480 CE),
who commented on several Archimedean treatises and on the Apollonian
Conics. We owe to Eutocius the Archimedean solution of a cubic
through intersecting conics, referred to in The Sphere and Cylinder but
not otherwise extant except through the commentary of Eutocius. The
commentary by Eutocius on the Conics of Apollonius was dedicated to
Anthemius of Tralles (fl. ca. 534 CE), an able mathematician and
architect of St. Sophia of Constantinople, who described the string
construction of the ellipse and wrote a work, On Burning-Mirrors, in
which the focal properties of the parabola are described. His colleague
and successor in the building of St. Sophia, Isidore of Miletus (fl. 520
CE), was also a mathematician of some ability. It was Isidore who made
known the commentaries of Eutocius and spurred a revival of interest in
the works of Archimedes and Apollonius. To him perhaps we owe the
familiar T-square and string construction of the parabola—and possibly
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also the apocryphal Book XV of Euclid’s Elements. It may be in large
measure due to the activities of the Constantinople group—Eutocius,
Isidore, and Anthemius—that Greek versions of Archimedean works and
of the first four books of Apollonius’s Conics have survived to this day.
When in 527 CE Justinian became emperor in the East, he evidently felt

that the pagan learning of the philosophical schools in Athens was a threat
to orthodox Christianity; hence, in 529 CE the philosophical schools were
closed and the scholars dispersed. About this time, Simplicius and some of
the other philosophers looked to the East for a haven, which they found in
Persia, where under Sassanid rule they established what has been called
the “Athenian Academy in Exile.” The date 529 CE is therefore often taken
to mark the close of European mathematical development in antiquity.
Henceforth, the seeds of Greek science were to develop in Near and Far
Eastern countries until, some 600 years later, the Latin world was in a
more receptive mood. The date 529 CE has another significance that may
be taken as symptomatic of a change in values—in this year, the venerable
monastery of Monte Cassino was established.
Greek mathematics did not, of course, entirely disappear from Europe

in 529 CE, for commentaries continued to be written in Greek in the
Byzantine Empire, where Greek manuscripts were preserved and copied.
During the days of Proclus, the Academy at Athens had become a center
of Neoplatonic learning. Neoplatonic thought exerted a strong influence
in the Eastern Empire, which accounts for commentaries on Nico-
machus’s Introduction to Arithmetic by John Philoponus in the sixth
century and by Michael Constantine Psellus in the eleventh. Psellus
also wrote a Greek summary of the mathematical quadrivium, as did
Georgios Pachymeres (1242 1316) two centuries later. Both Pachy-
meres and his contemporary Maximos Planudes wrote commentaries on
the Arithmetic of Diophantus. These examples show that a thin thread of
the old Greek tradition continued in the Eastern Empire to the very end
of the medieval period. The spirit of mathematics languished, however,
where men argued less about the value of geometry and more about the
way to salvation. For the next steps in mathematical development, we
must therefore turn our backs on Europe and look toward the East.
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9

Ancient andMedieval
China

No one has the good method . . . . In this world there are no naturally

correct ways, and among methods, no solely good techniques.

Ji Kang

The Oldest Known Texts

Civilizations along the Yangtze and Yellow rivers are comparable in age
with those along the Nile or between the Tigris and Euphrates, but
chronological accounts in the mathematical history of China are less
dependable than those for Egypt and Babylonia. As in the case of other
ancient civilizations, there are vestiges of early mathematical activities in
the form of counting, measuring, and weighing of objects. Awareness of
the Pythagorean theorem appears to predate the earliest known mathe-
matical texts. The dating of mathematical documents from China is far
from easy, however. None of the original versions of the early classics are
known to have survived. A set of texts on bamboo strips discovered in
the early 1980s sheds light on the age of some related classics because
they were found in sealed tombs dating from the second century BCE.
Estimates concerning the Zhoubi Suanjing (Chou Pei Suan Ching),

175



generally considered to be the oldest of the mathematical classics, have
differed by almost a thousand years. Some considered the Zhoubi to be a
good record of Chinese mathematics of about 1200 BCE, but others placed
the work in the first century before our era. It may, in fact, represent the
work of different periods. A date after 300 BCE would appear reasonable,
thus placing it near or in the period of the Han dynasty (202 BCE). “Zhoubi”
seems to refer to the use of the gnomon in studying the circular paths of the
heavens, and the book of this title is concerned with astronomical calcu-
lations, although it includes an introduction on the properties of the right
triangle, the Pythagorean theorem, and some work on the use of fractions.
The work is cast in the form of a dialogue between a prince and his minister
concerning the calendar; the minister tells his ruler that the art of numbers is
derived from the circle and the square, the square pertaining to the earth and
the circle belonging to the heavens.

The Nine Chapters

Almost as old as the Zhoubi and perhaps the most influential of all Chinese
mathematical books was the Jiuzhang suanshu (Chui-chang suan-shu), or
Nine Chapters on the Mathematical Art. This book includes 246 problems
on surveying, agriculture, partnerships, engineering, taxation, calculation,
the solution of equations, and the properties of right triangles. Whereas the
Greeks of this period were composing logically ordered and system-
atically expository treatises, the Chinese, like the Babylonians and the
Egyptians, had the custom of compiling sets of specific problems.
In this and other Chinese works, one is struck by the juxtaposition of

exact results and approximations. Correct rules are used for the areas
of triangles, rectangles, and trapezoids. The area of the circle was found
by taking three-fourths of the square on the diameter or one-twelfth of
the square of the circumference—a correct result if the value 3 is
adopted for π—but for the area of a segment of a circle, the Nine
Chapters uses the approximate results s(s1 c) / 2, where s is the sagitta
(that is, the radius minus the apothem) and c the chord or base of the
segment. There are problems that are solved by the rule of three; in
others, square and cube roots are found. Chapter 8 of the Nine Chapters
is significant for its solution of problems in simultaneous linear equa-
tions, using both positive and negative numbers. The last problem in the
chapter involves four equations in five unknowns, and the topic of
indeterminate equations was to remain a favorite among mathematicians
of the Orient. The ninth and last chapter includes problems on right-
angled triangles, some of which later reappeared in India and Europe.
One of these asks for the depth of a pond 10 feet square if a reed growing
in the center and extending 1 foot above the water just reaches the
surface if drawn to the edge of the pond. Another of these well-known
problems is that of the “broken bamboo”: There is a bamboo 10 feet
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high, the upper end of which being broken reaches the ground 3 feet
from the stem. Find the height of the break.
The Chinese were especially fond of patterns; hence, it is not sur-

prising that the first record (of ancient but unknown origin) of a magic
square appeared there. The square

4 9 2

3 5 7

8 1 6

was supposedly brought to man by a turtle from the River Luo in the
days of the legendary Emperor Yii, who was reputed to be a hydraulic
engineer. The concern for such patterns led the author of the Nine
Chapters to solve the system of simultaneous linear equations

3x1 2y1 z5 39

2x1 3y1 z5 34

x1 2y1 3z5 26

by performing column operations on the matrix

1 2 3

2 3 2

3 1 1

26 34 39

to reduce it to

0 0 3

0 5 2

36 1 1

99 24 39

The second form represented the equations 36z5 99, 5y1 z5 24, and
3x1 2y1 z5 39, from which the values of z, y, and x are successively
found with ease.

Rod Numerals

Had Chinese mathematics enjoyed uninterrupted continuity of tradition,
some of the striking anticipations of modern methods might have sig-
nificantly modified the development of mathematics. But Chinese cul-
ture was seriously hampered by abrupt breaks. In 213 BCE, for example,
the Chinese emperor ordered the burning of books, an internationally
popular activity at times of political stress. Some works obviously must
have survived, either through the existence of copies or through oral
transmission, and learning did indeed persist, with mathematical emphasis
on problems of commerce and the calendar.
There seems to have been contact between India and China, as well as

between China and the West, but scholars differ on the extent and
direction of borrowing. The temptation to see Babylonian or Greek
influence in China, for example, is faced with the problem that the Chinese
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did not make use of sexagesimal fractions. Chinese numeration remained
essentially decimal, with notations rather strikingly different from those
in other lands. In China, from early times, two schemes of notation were
in use. In one, the multiplicative principle predominated; in the other,
a form of positional notation was used. In the first of these, there
were distinct ciphers for the digits from 1 to 10 and additional ciphers
for the powers of 10, and in the written forms, the digits in odd positions
(from left to right or from bottom to top) were multiplied by their
successor. Thus, the number 678 would be written as a 6, followed by
the symbol for 100, then a 7, followed by the symbol for 10, and finally
the symbol for 8.
In the system of “rod numerals,” the digits from 1 to 9 appeared

as , and the first nine multiples of 10 as
. By the use of these eighteen symbols

alternately in positions from right to left, numbers as large as desired
could be represented. The number 56,789, for instance, would appear as

. As in Babylonia, a symbol for an empty position appeared
only relatively late. In a work of 1247, the number 1,405,536 is written
with a round zero symbol as . (Occasionally, as in the
fourteenth-century form of the arithmetic triangle, the vertical and
horizontal rods or strokes were interchanged.)
The precise age of the original rod numerals cannot be determined, but

they were certainly in use several hundred years before our era that is,
long before the positional notation had been adopted in India. The use of
a centesimal, rather than a decimal, positional system in China was
convenient for adaptation to computations with the counting board.
Distinctive notations for neighboring powers often enabled the Chinese
to use, without confusion, a counting board with unmarked vertical
columns. Before the eighth century, the place in which a zero was
required was simply left blank. Although in texts older than 300 CE, the
numbers and multiplication tables were written out in words, calcula-
tions actually were made with rod numerals on a counting board.

TheAbacus and Decimal Fractions

The rod numerals of about 300 BCE were not merely a notation for the
written result of a computation. Actual bamboo, ivory, or iron rods were
carried about in a bag by administrators and used as a calculating device.
Counting rods were manipulated with such dexterity that an eleventh-
century writer described them as “flying so quickly that the eye could not
follow their movement.” Cancellations probably were more rapidly
carried out with rods on a counting board than in written calculations. So
effective, in fact, was the use of the rods on a counting board that the
abacus or rigid counting frame with movable markers on wires was not
used so early as has been generally supposed. The first clear descriptions
of the modern forms, known in China as the suan phan and in Japan as
the soroban, are of the sixteenth century, but anticipations would appear
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to have been in use perhaps a thousand years earlier. The word “abacus”
is probably derived from the Semitic word “abq,” or “dust,” indicating
that in other lands, as well as in China, the device grew out of a dust or
sand tray used as a counting board. It is possible, but by no means
certain, that the use of the counting board in China antedates the Eur-
opean, but clear-cut and reliable dates are not available. We have noted
that in the National Museum in Athens, there is a marble slab, dating
probably from the fourth century BCE, that appears to be a counting
board. And when a century earlier Herodotus wrote, “The Egyptians
move their hand from right to left in calculation, while the Greeks move
it from left to right,” he was probably referring to the use of some sort
of counting board. Just when such devices gave way to the abacus
proper is difficult to determine, nor can we tell whether the appearances
of the abacus in China, Arabia, and Europe were independent inventions.
The Arabic abacus had ten balls on each wire and no center bar, whereas
the Chinese had five lower and two upper counters on each wire, separated
by a bar. Each of the upper counters on a wire of the Chinese abacus is

An early printed picture of an abacus, from the Suan Fa Tongzong,
1592 (Reproduced from J. Needham 1959, Vol. 3, p. 76.)
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equivalent to five on the lower wire; a number is registered by sliding the
appropriate counters against the separating bar.
No description of Chinese numeration would be complete without

reference to the use of fractions. TheChinesewere familiarwith operations
on common fractions, in connection with which they found lowest com-
mon denominators. As in other contexts, they saw analogies with the
differences in the sexes, referring to the numerator as the “son” and to the
denominator as the “mother.” Emphasis on yin and yang (opposites,
especially in sex) made it easier to follow the rules for the manipulation of
fractions. More important than these, however, was the tendency in China
toward decimalization of fractions. As in Mesopotamia, a sexagesimal
metrology led to sexagesimal numeration, so also in China adherence to
the decimal idea in weights and measures resulted in a decimal habit in
the treatment of fractions that, it is said, can be traced back as far as the
fourteenth century BCE. Decimal devices in computation were sometimes
adopted to lighten manipulations of fractions. In a first-century commentary
on the Nine Chapters, for example, we find the use of the now-familiar
rules for square and cube roots, equivalent to a

p
5 100a
p

=10 and
a3

p
5 1000a3
p

=10;which facilitate the decimalization of root extractions.
The idea of negative numbers seems not to have occasioned much diffi-
culty for the Chinese because they were accustomed to calculating with
two sets of rods—a red set for positive coefficients or numbers and a
black set for negatives. Nevertheless, they did not accept the notion that
a negative number might be a solution of an equation.

Values of Pi

The earliest Chinese mathematics is so different from that of comparable
periods in other parts of the world that the assumption of independent
development would appear to be justified. At all events, it seems safe to
say that if there was some intercommunication before 400 CE, then
more mathematics came out of China than went in. For later periods, the
question becomes more difficult. The use of the value 3 for π in early
Chinese mathematics is scarcely an argument for dependence on
Mesopotamia, especially since the search for more accurate values, from
the first centuries of the Christian era, was more persistent in China than
elsewhere. Values such as 3.1547, 10

p
, 92/29, and 142 / 45 are found,

and in the third century Liu Hui, an important commentator on the
Nine Chapters, derived the figure 3.14 by use of a regular polygon of
96 sides and the approximation 3.14159 by considering a polygon
of 3,072 sides. In Liu Hui’s reworking of the Nine Chapters, there are
many problems in mensuration, including the correct determination
of the volume of a frustum of a square pyramid. For a frustum of a
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circular cone, a similar formula was applied, but with a value of 3 for π.
Unusual is the rule that the volume of a tetrahedron with two opposite
edges perpendicular to each other is one-sixth the product of these two
edges and their common perpendicular. The method of false position is
used in solving linear equations, but there are also more sophisticated
results, such as the solution, through a matrix pattern, of a Diophantine
problem involving four equations in five unknown quantities. The
approximate solution of equations of higher degree seems to have been
carried out by a device similar to what we know as “Horner’s method.”
Liu Hui also included, in his work on the Nine Chapters, numerous
problems involving inaccessible towers and trees on hillsides.
The Chinese fascination with the value of π reached its high point in

the work of Zu Chongzhi (Tsu Ch’ung-chih) (430 501). One of his
values was the familiar Archimedean 22/7, described by Zu Chongzhi as
“inexact”; his “accurate” value was 355/113. If one persists in seeking
possible Western influence, one can explain away this remarkably good
approximation, not equaled anywhere until the fifteenth century, by
subtracting the numerator and the denominator, respectively, of the
Archimedean value from the numerator and the denominator of the
Ptolemaic value 377/120. Yet, Zu Chongzhi went even further in his
calculations, for he gave 3.1415927 as an “excess” value and 3.1415926
as a “deficit value.” The calculations by which he arrived at these
bounds, apparently aided by his son Zu Chengzhi, were probably con-
tained in one of his books, since lost. In any case, his results were
remarkable for that age, and it is fitting that today a landmark on the
moon bears his name.
The work of Liu Hui and Zu Chongzhi represents a greater interest in

theory and proofs than known examples of earlier mathematical activity
in China; the example of the computation of π may obscure this fact
because accuracy in the value of π is more a matter of computational
stamina than of theoretical insight. The Pythagorean theorem alone
suffices to give as accurate an approximation as may be desired. Starting
with the known perimeter of a regular polygon of n sides inscribed in a
circle, the perimeter of the inscribed regular polygon of 2π sides can be
calculated by two applications of the Pythagorean theorem. Let C be a
circle with center O and radius r (Fig. 9.1), and let PQ5 s be a side of
a regular inscribed polygon of n sides having a known perimeter. Then,
the apothem OM5 u is given by u5 r2 2 ðs=2Þ2

p
; hence, the sagitta

MR5 v5 r2 u is known. Then, the side RQ5w of the inscribed regular
polygon of 2n sides is found from w5 v2 1 ðs=2Þ2

p
; hence, the

perimeter of this polygon is known. The calculation, as Liu Hui saw, can
be shortened by noting that w25 2rv. An iteration of the procedure will
result in an ever closer approximation to the perimeter of the circle, in
terms of which π is defined.
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From the sixth to the tenth century, a group of a dozen “classics,” cov-
ering topics in arithmetic and number theory, served as a foundation for
mathematics taught in the “School for the Sons of the State.” These works
included the early Zhoubi and Nine Chapters, as well as later, largely
derivative, textbooks such as works by Liu Hui and others. The group of a
dozen books covered topics in arithmetic and the theory of numbers, right
triangles, the computation of irregular areas and volumes, and more.
Between the tenth and the thirteenth centuries, we know of no new

Chinese mathematical breakthroughs, although some major technologi-
cal innovations such as paper and the mariner’s compass appeared at this
time. Generally, we may note that Chinese mathematical problems often
appear to be more picturesque than practical, yet Chinese civilization
was responsible for a substantial number of other technological inno-
vations. The use of printing and gunpowder (eighth century) was earlier
in China than elsewhere and earlier also than the high-water mark in
Chinese mathematics that occurred in the thirteenth century, during the
latter part of the Sung period.

Thirteenth-Century Mathematics

The later Sung period may be regarded as a high plateau of medieval
mathematics in China. During this period, which coincides with the time
of Mongol expansion and increased interaction with Islam, numerous
mathematicians combined traditional teachings of arithmetic and mea-
surement with new approaches to the solution of equations of higher
degree, both determinate and indeterminate.
At that time, there were mathematicians working in various parts of

China, but relations between them seem to have been remote, and, as in
the case of Greek mathematics, we evidently have relatively few of the
treatises that once were available.
One of the mathematicians of the period was Li Zhi (1192 1279),

a mathematician of Peking who spent a long and interesting life as
an occasional administrator, hermit, scholar, and academician. He was
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offered a post as a royal annalist by Kublai Khan in 1260 but politely
found an excuse to decline it. His Ceyuan Haijing (Ts’e-yuan hai-ching)
(Sea-Mirror of the Circle Measurements) includes 170 problems dealing
with circles inscribed within, or circumscribed without, a right triangle
and with determining the relationships between the sides and the radii, and
some of the problems lead to equations of the fourth degree. Although
he did not describe his method of solving equations, including some of the
sixth degree, it appears that it was not very different from that used by Zhu
Shijie (Chu Shih-chieh) (fl. 1280 1303) and Horner. Others who used the
Horner method were Qin Jiushao (Ch’in Chiu-shao) (ca. 1202 ca. 1261)
and Yang Hui (fl. ca. 1261 1275). The former was an unprincipled
governor and minister who acquired immense wealth within a hundred
days of assuming office. His Shushu jiuzhang (Mathematical Treatise in
Nine Sections) marks the high point in Chinese indeterminate analysis,
with the invention of routines for solving simultaneous congruences. In
this work, he also found the square root of 71,824 by steps paralleling
those in the Horner method. With 200 as the first approximation to a
root of x22 71,8245 0, he diminished the roots of this by 200 to obtain
y21 400y2 31,8245 0. For the latter equation, he found 60 as an ap-
proximation and diminished the roots by 60, arriving at a third equation,
z21 520z2 4,2245 0, of which 8 is a root. Hence, the value of x is 268.
In a similar way, he solved cubic and quartic equations.
The same “Horner” device was used by Yang Hui, about whose life

almost nothing is known. He was a prolific arithmetician; among his
contributions that are extant are the earliest Chinese magic squares of
order greater than three, including two each of orders four through eight
and one each of orders nine and ten.
Yang Hui’s works also included results in the summation of series and

the so-called Pascal triangle, things that were published and better
known through the Precious Mirror (Jade Mirror of the Four Origins) of
Zhu Shijie, with which the Golden Age of Chinese mathematics closed.
Zhu Shijie was the last and greatest of the Sung mathematicians, yet we

know little about him—not even when he was born or when he died. He
was a resident of Yanshan, near modern Peking, but he seems to have
spent some twenty years as a wandering scholar who earned his living
by teaching mathematics, even though he had the opportunity to write
two treatises. The first of these, written in 1299, was the Suanxue
qimeng (Suan-hsueh ch’i-meng) (Introduction to Mathematical Studies), a
relatively elementary work that strongly influenced Korea and Japan,
although in China it was lost until it reappeared in the nineteenth century.
Of greater historical and mathematical interest is the Siyuan yujian
(Ssu-yuan yu-chien) (Jade Mirror of the Four Origins) of 1303. In the
eighteenth century, this, too, disappeared in China, only to be rediscovered
in the next century. The four origins, called heaven, earth, man, and matter,
are the representations of four unknown quantities in the same equation.
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The book marks the peak in the development of Chinese algebra, for it
deals with simultaneous equations and with equations of degrees as high as
fourteen. In it, the author describes a transformation method that he calls
fan fa, the elements of which seem to have arisen much earlier than this in
China, but which generally bears the name of Horner, who lived half a
millennium later. In solving the equation x21 252x2 5,2925 0, for
example, Zhu Shijie first obtained x5 19 as an approximation (a root lies
between x5 19 and x5 20) and then used the fan fa, in this case the
transformation y5 x2 19, to obtain the equation y21 290y2 1435 0
(with a root between y5 0 and y5 1). He then gave the root of the
latter as (approximately) y5 143 / (11 290); hence, the corresponding
value of x is 19

143
291. For the equation x32 5745 0, he used y5 x2 8 to

obtain y31 24y21 192y2 625 0, and he gave the root as x5 81 62 /

(11 241 192) or x5 8
2
7. In some cases, he found decimal approximations.

A few of the many summations of series found in the Jade Mirror are
the following:

12 1 22 1 32 1?1 n2 5 nðn1 1Þ ð2n1 1Þ
3!

11 81 301 801?1 n2ðn1 1Þ ðn1 2Þ
3!

5 nðn1 1Þðn1 2Þðn1 3Þ3 ð4n1 1Þ
5!

:

No proofs are given, however, nor does the topic seem to have been
continued again in China until about the nineteenth century. Zhu Shijie
handled his summations through the method of finite differences,
some elements of which seem to date in China from the seventh century,
but shortly after his work, the method disappeared for many centuries.
The Jade Mirror opens with a diagram of the arithmetic triangle,

inappropriately known in the West as “Pascal’s triangle.” (See the fol-
lowing illustration.) In Zhu’s arrangement, we have the coefficients of
binomial expansions through the eighth power, clearly given in rod
numerals and a round zero symbol. Zhu disclaims credit for the triangle,
referring to it as a “diagram of the old method for finding eighth and lower
powers.” A similar arrangement of coefficients through the sixth power
had appeared in the work of Yang Hui, but without the round zero symbol.
There are references in Chinese works of about 1100 to tabulation systems
for binomial coefficients, and it is likely that the arithmetic triangle ori-
ginated in China by about that date. It is interesting to note that the
Chinese discovery of the binomial theorem for integral powers was
associated in its origin with root extractions, rather than with powers. The
equivalent of the theorem apparently was known to Omar Khayyam at
about the time that it was being used in China, but the earliest extant
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Arabic work containing it is by al-Kashi in the fifteenth century. By that
time, Chinese mathematics had declined. Emphasis was placed once again
on the tradition of the Nine Chapters and the requirements of commercial
arithmetic. The impressive theoretical achievements, cloaked in symbolic
language that lent them an aura of mystery, would be revived only after
the more intense interaction with Western European scholarship of the
sixteenth and seventeenth centuries.

The “Pascal” triangle, as depicted in 1303 at the front of Zhu
Shijie’s Jade Mirror. It is titled “The Old Method Chart of the
Seven Multiplying Squares” and tabulates the binomial coeffi
cients up to the eighth power. (Reproduced from J. Needham
1959, Vol. 3, p. 135.)
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10

Ancient andMedieval
India

A mixture of pearl shells and sour dates . . . or of costly

crystal and common pebbles.

Al Biruni’s India

Early Mathematics in India

Archaeological excavations at Mohenjo Daro and Harappa give evidence
of an old and highly cultured civilization in the Indus Valley during the
era of the Egyptian pyramid builders (ca. 2650 BCE), but we have no
Indian mathematical documents from that age. There is evidence of
structured systems of weights and measures, and samples of decimal-
based numeration have been found. During this period and succeeding
centuries, however, major movements and conquests of people occurred
on the Indian subcontinent. Many of the languages and the dialects that
evolved as a result have not been deciphered. It is therefore difficult at
this stage to plot a time-space chart of mathematical activities for this
vast area. The linguistic challenges are compounded by the fact that the
earliest known Indian language samples were part of an oral tradition,
rather than a written one. Nevertheless, Vedic Sanskrit, the language in
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question, presents us with the earliest concrete information about ancient
Indian mathematical concepts.
The Vedas, groups of ancient, essentially religious texts, include refer-

ences to large numbers and decimal systems. Especially interesting are
dimensions, shapes, and proportions given for bricks used in the con-
struction of ritual fire altars. India, like Egypt, had its “rope-stretchers,” and
the sparse geometric lore acquired in connection with the laying out of
temples and the measurement and construction of altars took the form of a
body of knowledge known as the Sulbasutras, or “rules of the cord.” Sulba
(or sulva) refers to cords used for measurements, and sutrameans a book of
rules or aphorisms relating to a ritual or a science. The stretching of ropes is
strikingly reminiscent of theorigin ofEgyptiangeometry, and its association
with temple functions reminds one of the possible ritual origin of mathe-
matics. Yet, the difficulty of dating the rules is also matched by doubt
concerning the influence the Egyptians had on later Hindu mathematicians.
Evenmore so than in the case of China, there is a striking lack of continuity
of tradition in the mathematics of India.

The Sulbasutras

There are a number of Sulbasutras; the major extant ones, all in verse,
are associated with the names of Baudhayama, Manava, Katyayana,
and the best-known, Apastamba. They may date from the first half of
the first millennium BCE, although earlier and later dates have been
suggested as well. We find rules for the construction of right angles by
means of triples of cords the lengths of which form “Pythagorean”
triads, such as 3, 4, and 5; or 5, 12, and 13; or 8, 15, and 17; or 12, 35,
and 37. Although Mesopotamian influence in the Sulbasutras is not
unlikely, we know of no conclusive evidence for or against this.
Apastamba knew that the square on the diagonal of a rectangle is equal
to the sum of the squares on the two adjacent sides. Less easily explained
is another rule given by Apastamba—one that strongly resembles some
of the geometric algebra in Book II of Euclid’s Elements. To construct a
square equal in area to the rectangle ABCD (Fig. 10.1), lay off the
shorter sides on the longer, so that AF5AB5BE5CD, and draw HG
bisecting segments CE and DF; extend EF to K, GH to L, and AB to M
so that FK5HL5FH5AM, and draw LKM. Now construct a rectangle
with a diagonal equal to LG and with a shorter side HFE. Then, the
longer side of this rectangle is the side of the square desired.
There are also rules for transforming rectilinear into curvilinear shapes

and vice versa. So conjectural are the origin and the period of the Sul-
basutras that we cannot tell whether the rules are related to early
Egyptian surveying or to the later Greek problem of altar doubling.
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The Siddhantas

There are references to arithmetic and geometric series in Vedic litera-
ture that purport to go back to 2000 BCE, but no contemporary documents
from India are available to confirm this. It has also been claimed that the
first recognition of incommensurables is to be found in India during the
Sulbasutra period, but such claims are not well substantiated. The period
of the Sulbasutras was followed by the age of the Siddhantas, or systems
(of astronomy). Five different versions of the Siddhantas are known by
the names: Paulisha Siddhanta, Surya Siddhanta, Vasisishta Siddhanta,
Paitamaha Siddhanta, and Romanka Siddhanta. Of these, the Surya
Siddhanta (System of the Sun), written about 400 CE, is the only one that
seems to be completely extant. According to the text, written in epic
stanzas, it is the work of Surya, the Sun God. The main astronomical
doctrines are evidently Greek, but with the retention of considerable old
Hindu folklore. The Paulisha Siddhanta, which dates from about 380 CE,
was summarized by the Hindu mathematician Varahamihira (fl. 505 CE),
who also listed the other four Siddhantas. It was referred to frequently by
the Arabic scholar al-Biruni, who suggested a Greek origin or influence.
Later writers report that the Siddhantas were in substantial agreement on
substance, only the phraseology varied; hence, we can assume that the
others, such as the Surya Siddhanta, were compendia of astronomy
comprising cryptic rules in Sanskrit verse, with little explanation and
without proof.
It is generally agreed that the Siddhantas stem from the late fourth or

the early fifth century, but there is sharp disagreement about the origin
of the knowledge that they contain. Indian scholars insist on the ori-
ginality and independence of the authors, whereas Western writers are
inclined to see definite signs of Greek influence. It is not unlikely, for
example, that the Paulisha Siddhanta was derived in considerable
measure from the work of the astrologer Paul, who lived in Alexandria
shortly before the presumed date of composition of the Siddhantas.
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(Al-Biruni, in fact, explicitly attributes this Siddhanta to Paul of Alex-
andria.) This would account in a simple manner for the obvious simi-
larities between portions of the Siddhantas and the trigonometry and the
astronomy of Ptolemy. The Paulisha Siddhanta, for example, uses
the value 3 177 / 1250 for π, which is in essential agreement with the
Ptolemaic sexagesimal value 3;8,30.
Even if Indian authors did acquire their knowledge of trigonometry

from the cosmopolitan Hellenism at Alexandria, the material in their
hands took on a significantly new form. Whereas the trigonometry of
Ptolemy had been based on the functional relationship between the
chords of a circle and the central angles they subtend, the writers of
the Siddhantas converted this to a study of the correspondence between
half of a chord of a circle and half of the angle subtended at the center
by the whole chord. Thus was born, apparently in India, the predecessor
of the modern trigonometric function known as the sine of an angle,
and the introduction of the sine function represents the chief contribution
of the Siddhantas to the history of mathematics. It was through the
Indians, and not the Greeks, that our use of the half chord has been
derived, and our word “sine,” through misadventure in translation (see
further on), has descended from the Sanskrit name jiva.

Aryabhata

During the sixth century, shortly after the composition of the Siddhantas,
there lived two Indian mathematicians who are known to have written
books on the same type of material. The older and more important of the
two was Aryabhata, whose best-known work, written around 499 CE

and titled Aryabhatiya, is a slim volume, written in verse, covering
astronomy and mathematics. The names of several Hindu mathemati-
cians before this time are known, but nothing of their work has been
preserved beyond a few fragments. In this respect, then, the position
of the Aryabhatiya of Aryabhata in India is somewhat akin to that of
the Elements of Euclid in Greece some eight centuries earlier. Both are
summaries of earlier developments, compiled by a single author.
There are, however, more striking differences than similarities between
the two works. The Elements is a well-ordered synthesis of pure
mathematics with a high degree of abstraction, a clear logical structure,
and an obvious pedagogical inclination; the Aryabhatiya is a brief
descriptive work, in 123 metrical stanzas, intended to supplement rules
of calculation used in astronomy and mensurational mathematics, with
no appearance of deductive methodology. About a third of the work is on
ganitapada, or mathematics. This section opens with the names of the
powers of 10 up to the tenth place and then proceeds to give instructions
for square and cube roots of integers. Rules of mensuration follow, about
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half of which are erroneous. The area of a triangle is correctly given
as half the product of the base and altitude, but the volume of a pyramid
is also taken to be half of the product of the base and the altitude. The
area of a circle is found correctly as the product of the circumference and
half of the diameter, but the volume of a sphere is incorrectly stated to be
the product of the area of a great circle and the square root of this area.
Again, in the calculation of areas of quadrilaterals, correct and incorrect
rules appear side by side. The area of a trapezoid is expressed as half of
the sum of the parallel sides multiplied by the perpendicular between
them, but then follows the incomprehensible assertion that the area of
any plane figure is found by determining two sides and multiplying
them. One statement in the Aryabhatiya to which Indian scholars have
pointed with pride is as follows:

Add 4 to 100, multiply by 8, and add 62,000. The result is approximately

the circumference of a circle of which the diameter is 20,000. (Clark

1930, p. 28)

Here we see the equivalent of 3.1416 for π, but it should be recalled
that this is essentially the value Ptolemy had used. The likelihood that
Aryabhata here was influenced by Greek predecessors is strengthened by
his adoption of the myriad, 10,000, as the number of units in the radius.
A typical portion of the Aryabhatiya is that involving arithmetic

progressions, which contains arbitrary rules for finding the sum of the
terms in a progression and for determining the number of terms in a
progression when given the first term, the common difference, and the
sum of the terms. The first rule had long been known by earlier writers.
The second is a curiously complicated bit of exposition:

Multiply the sum of the progression by eight times the common differ-

ence, add the square of the difference between twice the first term, and the

common difference, take the square root of this, subtract twice the first

term, divide by the common difference, add one, divide by two. The result

will be the number of terms.

Here, as elsewhere in the Aryabhatiya, no motivation or justification is
given for the rule. It was probably arrived at through a solution of
a quadratic equation, knowledge of which might have come from
Mesopotamia or Greece. Following some complicated problems on com-
pound interest (that is, geometric progressions), the author turns, in flowery
language, to the very elementary problem of finding the fourth term in a
simple proportion:

In the rule of three multiply the fruit by the desire and divide by the

measure. The result will be the fruit of the desire.
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This, of course, is the familiar rule that if a / b5 c / x, then x5 bc / a,
where a is the “measure,” b the “fruit,” c the “desire,” and x the “fruit of
the desire.” The work of Aryabhata is indeed a potpourri of the simple
and the complex, the correct and the incorrect. The Arabic scholar al-
Biruni, half a millennium later, characterized Indian mathematics as a
mixture of common pebbles and costly crystals, a description quite
appropriate to Aryabhatiya.

Numerals

The second half of the Aryabhatiya is on the reckoning of time and on
spherical trigonometry; here we note an element that would leave a
permanent impression on the mathematics of later generations—the
decimal place-value numeration. It is not known just how Aryabhata
carried out his calculations, but his phrase “from place to place each is
ten times the preceding” is an indication that the application of the
principle of position was in his mind. “Local value” had been an
essential part of Babylonian numeration, and perhaps the Hindus were
becoming aware of its applicability to the decimal notation for integers
in use in India. The development of numerical notations in India seems
to have followed about the same pattern found in Greece. Inscriptions
from the earliest period at Mohenjo Daro show at first simple vertical
strokes, arranged into groups, but by the time of Asoka (third century
BCE) a system resembling the Herodianic was in use. In the newer
scheme the repetitive principle was continued, but new symbols of
higher order were adopted for 4, 10, 20, and 100. This so-called Karosthi
script then gradually gave way to another notation, known as the Brahmi
characters, which resembled the alphabetic cipherization in the Greek
Ionian system; one wonders whether it was only a coincidence that the
change in India took place shortly after the period when in Greece the
Herodianic numerals were displaced by the Ionian.
From the Brahmi ciphered numerals to our present-day notation for

integers, two short steps are needed. The first is a recognition that
through the use of the positional principle, the ciphers for the first nine
units can also serve as the ciphers for the corresponding multiples of 10
or equally well as ciphers for the corresponding multiples of any power
of 10. This recognition would make superfluous all of the Brahmi
ciphers beyond the first nine. It is not known when the reduction to nine
ciphers occurred, and it is likely that the transition to the more eco-
nomical notation was made only gradually. It appears from extant evi-
dence that the change took place in India, but the source of the
inspiration for the change is uncertain. Possibly, the so-called Hindu
numerals were the result of internal development alone; perhaps they
developed first along the western interface between India and Persia,
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where remembrance of the Babylonian positional notation may have led
to modification of the Brahmi system. It is possible that the newer
system arose along the eastern interface with China, where the pseu-
dopositional rod numerals may have suggested the reduction to nine
ciphers. There is also a theory that this reduction may first have been
made at Alexandria within the Greek alphabetic system and that sub-
sequently the idea spread to India. During the later Alexandrian period,
the earlier Greek habit of writing common fractions with the numerator
beneath the denominator was reversed, and it is this form that was
adopted by the Hindus, without the bar between the two. Unfortunately,
the Hindus did not apply the new numeration for integers to the realm of
decimal fractions; hence, the chief potential advantage of the change
from Ionian notation was lost.
The earliest specific reference to the Hindu numerals is found in 662

in the writings of Severus Sebokt, a Syrian bishop. After Justinian closed
the Athenian philosophical schools, some of the scholars moved to Syria,
where they established centers of Greek learning. Sebokt evidently felt
piqued by the disdain for non-Greek learning expressed by some
associates; hence, he found it expedient to remind those who spoke
Greek that “there are also others who know something.” To illustrate his
point, he called attention to the Hindus and their “subtle discoveries in
astronomy,” especially “their valuable methods of calculation, and their
computing that surpasses description. I wish only to say that this com-
putation is done by means of nine signs” (Smith 1958, Vol. I, p. 167).
That the numerals had been in use for some time is indicated by the
fact that they occur on an Indian plate of the year 595 CE, where the date
346 is written in decimal place value notation.

The Symbol for Zero

It should be remarked that the reference to nine symbols, rather than ten,
implies that the Hindus evidently had not yet taken the second step in the
transition to the modern system of numeration—the introduction of a
notation for a missing position—that is, a zero symbol. The history of
mathematics holds many anomalies, and not the least of these is the fact
that “the earliest undoubted occurrence of a zero in India is in an
inscription of 876” (Smith 1958, Vol. II, p. 69)—that is, more than two
centuries after the first reference to the other nine numerals. It is not even
established that the number zero (as distinct from a symbol for an empty
position) arose in conjunction with the other nine Hindu numerals. It is
quite possible that zero originated in the Greek world, perhaps at
Alexandria, and that it was transmitted to India after the decimal posi-
tional system had been established there.
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The history of the zero placeholder in positional notation is further
complicated by the fact that the concept appeared independently, well
before the days of Columbus, in the western as well as the eastern
hemisphere.
With the introduction, in the Hindu notation, of the tenth numeral, a

round goose egg for zero, the modern system of numeration for integers
was completed. Although the medieval Hindu forms of the ten numerals
differ considerably from those in use today, the principles of the system
were established. The new numeration, which we generally call the
Hindu system, is merely a new combination of three basic principles, all
of ancient origin: (1) a decimal base; (2) a positional notation; and (3) a
ciphered form for each of the ten numerals. Not one of these three was
originally devised by the Hindus, but it presumably is due to them that
the three were first linked to form the modern system of numeration.
It may be well to say a word about the form of the Hindu symbol for

zero—which is also ours. It was once assumed that the round form
originally stemmed from the Greek letter omicron, the initial letter in the
word “ouden,” or “empty,” but recent investigations seem to belie such
an origin. Although the symbol for an empty position in some of the
extant versions of Ptolemy’s tables of chords does seem to resemble
an omicron, the early zero symbols in Greek sexagesimal fractions
are round forms variously embellished and differing markedly from
a simple goose egg. Moreover, when in the fifteenth century in the
Byzantine Empire a decimal positional system was fashioned out of
the old alphabetic numerals by dropping the last eighteen letters and
adding a zero symbol to the first nine letters, the zero sign took forms
quite unlike an omicron. Sometimes it resembled an inverted form of our
small letter h; other times, it appeared as a dot.

Trigonometry

The development of our system of notation for integers was one of the
two most influential contributions of India to the history of mathematics.
The other was the introduction of an equivalent of the sine function in
trigonometry to replace the Greek tables of chords. The earliest tables
of the sine relationship that have survived are those in the Siddhantas
and the Aryabhatiya. Here the sines of angles up to 90� are given for
twenty-four equal intervals of 3 3

4

�
each. In order to express arc length

and sine length in terms of the same unit, the radius was taken as
3,438 and the circumference as 360 � 605 21,600. This implies a value
of π agreeing to four significant figures with that of Ptolemy. In another
connection, Aryabhata used the value 10

p
for π, which appeared so

frequently in India that it is sometimes known as the Hindu value.
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For the sine of 3 3
4

�
, the Siddhantas and the Aryabhatiya took the number

of units in the arc—that is, 603 3 3
4 or 225. In modern language, the sine of

a small angle is very nearly equal to the radian measure of the angle (which
is virtually what the Hindus were using). For further items in the sine table,
the Hindus used a recursion formula that may be expressed as follows.
If the nth sine in the sequence from n5 1 to n5 24 is designated as sn, and
if the sum of the first n sines is Sn, then sn1 15 sn1 s12 Sn / s1. From this
rule, one easily deduces that sin 7 1

2

�
5 449, sin 111

4

�
5 671, sin 15� 5 890,

and so on, up to sin 90� 5 3,438—the values listed in the table in the
Siddhantas and the Aryabhatiya. Moreover, the table also includes values
for what we call the versed sine of the angle (that is, 12 cos θ in modern
trigonometry or 3,438 [12 cos θ] in Hindu trigonometry) from vers 3 3

4

�
5 7

to vers 90� 5 3,438. If we divide the items in the table by 3,438, the results
are found to be in close agreement with the corresponding values in
modern trigonometric tables (Smith 1958, Vol. II).

Multiplication

Trigonometry was evidently a useful and accurate tool in astronomy.
How the Indians arrived at results such as the recursion formula is
uncertain, but it has been suggested that an intuitive approach to differ-
ence equations and interpolation may have prompted such rules. Indian
mathematics is frequently described as “intuitive,” in contrast to the stern
rationalism of Greek geometry. Although in Indian trigonometry there is
evidence of Greek influence, the Indians seem to have had no occasion to
borrow Greek geometry, concerned as they were with simple mensura-
tional rules. Of the classical geometric problems or the study of curves
other than the circle, there is little evidence in India, and even the conic
sections seem to have been overlooked by the Indians, as by the Chinese.
Hindu mathematicians were instead fascinated by work with numbers,
whether it involved the ordinary arithmetic operations or the solution of
determinate or indeterminate equations. Addition and multiplication were
carried out in India much as they are by us today, except that the Indians
seem at first to have preferred to write numbers with the smaller units on
the left, hence to work from left to right, using small blackboards with
white removable paint or a board covered with sand or flour. Among the
devices used for multiplication was one that is known under various
names: lattice multiplication, gelosia multiplication, or cell or grating or
quadrilateral multiplication. The scheme behind this is readily recognized
in two examples. In the first example (Fig. 10.2), the number 456 is
multiplied by 34. The multiplicand has been written above the lattice and
the multiplier appears to the left, with the partial products occupying the
square cells. Digits in the diagonal rows are added, and the product 15,504
is read off at the bottom and the right. To indicate that other arrangements

194 Anc i e n t and Med i e v a l I nd i a



are possible, a second example is given in Fig. 10.3, in which the multi-
plicand 537 is placed at the top, the multiplier 24 is on the right, and the
product 12,888 appears to the left and along the bottom. Still other mod-
ifications are easily devised. In fundamental principle, gelosia multi-
plication is, of course, the same as our own, the cell arrangement being
merely a convenient device for relieving the mental concentration called
for in “carrying over” from place to place the 10s arising in the partial
products. The only “carrying” required in lattice multiplication is in the
final additions along the diagonals.

Long Division

It is not known when or where gelosia multiplication arose, but India
seems to be the most likely source. It was used there at least by the
twelfth century, and from India, it seems to have been carried to China
and Arabia. From the Arabs, it passed over to Italy in the fourteenth and
fifteenth centuries, where the name gelosia was attached to it because of
the resemblance to gratings placed on windows in Venice and elsewhere.
(The current word “jalousie” seems to stem from the Italian gelosia and
is used for Venetian blinds in France, Germany, Holland, and Russia.)
The Arabs (and, through them, the later Europeans) appear to have
adopted most of their arithmetic devices from the Hindus, so it is likely
that the pattern of long division known as the “scratch method” or the
“galley method” (from its resemblance to a boat) also came from India.
(See the following illustration.) To illustrate the method, let it be
required to divide 44,977 by 382. In Fig. 10.4 we give the modern
method, in Fig. 10.5 the galley method. The latter closely parallels the
former, except that the dividend appears in the middle, for subtractions
are performed by canceling digits and placing differences above, rather
than below, the minuends. Hence, the remainder, 283, appears above and
to the right, rather than below.
The process in Fig. 10.5 is easy to follow if we note that the digits in a

given subtrahend, such as 2,674, or in a given difference, such as 2,957,
are not necessarily all in the same row and that subtrahends are written
below the middle and differences above the middle. Position in a column

1 2 2
6 0 4

2 5 8

551

4 65

4

3

4

01 1 1

FIG. 10.2

0 6 4
1 0 1

2 1 2

888
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1

2

2

40 2 8

FIG. 10.3
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is significant, but not position in a row. The determination of roots of
numbers probably followed a somewhat similar “galley” pattern, cou-
pled in the later years with the binomial theorem in “Pascal triangle”
form, but Indian writers did not provide explanations for their calcula-
tions or proofs for their statements. It is possible that Babylonian and

382 44977
382

677
382
2957
2674

283

117

FIG. 10.4

Galley division, sixteenth century. From an unpublished manuscript of a
Venetian monk. The title of the work is “Opus Arithmetica D. Honorati
veneti monachj coenobij S. Lauretig.” From Mr. Plimpton’s library.
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Chinese influences played a role in the problem of evolution or root
extraction. It is often said that the “proof by nines,” or the “casting out of
nines,” is a Hindu invention, but it appears that the Greeks knew earlier
of this property, without using it extensively, and that the method came
into common use only with the Arabs of the eleventh century.

Brahmagupta

The last few paragraphs may leave the unwarranted impression that there
was a uniformity in Hindu mathematics, for we have frequently localized
developments as merely “of Indian origin,” without specifying the per-
iod. The trouble is that there is a high degree of uncertainty in Hindu
chronology. Material in the important Bakshali manuscript, containing
an anonymous arithmetic, is supposed by some to date from the third or
fourth century, by others from the sixth century, and by others from the
eighth or ninth century or later, and there is a suggestion that it may not
even be of Hindu origin. We have placed the work of Aryabhata around
the year 500 CE, but there were two mathematicians named Aryabhata,
and we cannot with certainty ascribe results to our Aryabhata, the elder.
Hindu mathematics presents more historical problems than does Greek
mathematics, for Indian authors referred to predecessors infrequently,
and they exhibited surprising independence in mathematical approach.
Thus, it is that Brahmagupta (fl. 628 CE), who lived in Central India
somewhat more than a century after Aryabhata, has little in common
with his predecessor, who had lived in eastern India. Brahmagupta
mentions two values of π—the “practical value” 3 and the “neat value”
10

p
—but not the more accurate value of Aryabhata; in the trigonometry

of his best-known work, the Brahmasphuta Siddhanta, he adopted a
radius of 3,270, instead of Aryabhata’s 3,438. In one respect, he does
resemble his predecessor—in the juxtaposition of good and bad results.
He found the “gross” area of an isosceles triangle by multiplying half of
the base by one of the equal sides; for the scalene triangle with base
fourteen and sides thirteen and fifteen, he found the “gross area” by
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multiplying half of the base by the arithmetic mean of the other sides. In
finding the “exact” area, he used the Archimedean-Heronian formula.
For the radius of the circle circumscribed about a triangle, he gave the
equivalent of the correct trigonometric result 2R5 a / sin A5 b / sin B5
c / sin C, but this, of course, is only a reformulation of a result known to
Ptolemy in the language of chords. Perhaps the most beautiful result
in Brahmagupta’s work is the generalization of “Heron’s” formula in
finding the area of a quadrilateral. This formula,

K5 ðs2 aÞðs2 bÞðs2 cÞðs2 dÞ
p

where a, b, c, d are the sides and s is the semiperimeter, still bears his
name, but the glory of his achievement is dimmed by failure to remark
that the formula is correct only in the case of a cyclic quadrilateral. The
correct formula for an arbitrary quadrilateral is

K5 ðs2 aÞðs2 bÞðs2 cÞðs2 dÞ2 abcd cos2 α
p

where α is half of the sum of two opposite angles. As a rule for the
“gross” area of a quadrilateral, Brahmagupta gave the pre-Hellenic
formula, the product of the arithmetic means of the opposite sides. For
the quadrilateral with sides a5 25, b5 25, c5 25, d5 39, for example,
he found a “gross” area of 800.

Brahmagupta’s Formula

Brahmagupta’s contributions to algebra are of a higher order than are his
rules of mensuration, for here we find general solutions of quadratic
equations, including two roots even in cases in which one of them is
negative.
The systematized arithmetic of negative numbers and zero is, in fact,

first found in his work. The equivalents of rules on negative magnitudes
were known through the Greek geometric theorems on subtraction, such
as (a2 b)(c2 d)5 ac1 bd2 ad2 be, but the Indians converted these
into numerical rules on positive and negative numbers. Moreover,
although the Greeks had a concept of nothingness, they never interpreted
this as a number, as did the Indians. Yet here again Brahmagupta spoiled
matters somewhat by asserting that 0 4 05 0, and on the touchy matter
of a4 0, for a 6¼ 0, he did not commit himself:

Positive divided by positive, or negative by negative, is affirmative. Cipher

divided by cipher is naught. Positive divided by negative is negative.

Negative divided by affirmative is negative. Positive or negative divided

by cipher is a fraction with that for denominator. (Colebrook 1817, Vol. I)
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It should also be mentioned that the Hindus, unlike the Greeks,
regarded irrational roots of numbers as numbers. This was of enormous
help in algebra, and Indian mathematicians have been much praised for
taking this step. We have seen the lack of nice distinction on the part of
Hindu mathematicians between exact and inexact results, and it was only
natural that they should not have taken seriously the difference between
commensurable and incommensurable magnitudes. For them, there was
no impediment to the acceptance of irrational numbers, and later gen-
erations uncritically followed their lead until in the nineteenth-century
mathematicians established the real number system on a sound basis.
Indian mathematics was, as we have said, a mixture of good and bad.

But some of the good was superlatively good, and here Brahmagupta
deserves high praise. Hindu algebra is especially noteworthy in its
development of indeterminate analysis, to which Brahmagupta made
several contributions. For one thing, in his work we find a rule for the
formation of Pythagorean triads expressed in the form m, 1

2ðm2=n2 nÞ,
1
2ðm2=n1 nÞ, but this is only a modified form of the old Babylonian rule,
with which he may have become familiar. Brahmagupta’s area formula
for a quadrilateral, mentioned previously, was used by him in conjunc-
tion with the formulas

ðab1cdÞðac1bdÞ=ðad1bcÞp
and ðac1bdÞðad1bcÞ=ðab1 cdÞp

for the diagonals to find quadrilaterals whose sides, diagonals, and areas
are all rational. Among them was the quadrilateral with sides a552,
b525, c539, d560, and diagonals 63 and 56. Brahmagupta gave the
“gross” area as 1;9333

4, despite the fact that his formula provides the
exact area, 1,764 in this case.

Indeterminate Equations

Like many of his countrymen, Brahmagupta evidently loved mathematics
for its own sake, for no practical-minded engineer would raise questions
such as those Brahmagupta asked about quadrilaterals. One admires his
mathematical attitude evenmorewhen one finds that hewas apparently the
first one to give a general solution of the linear Diophantine equation
ax1 by5 c, where a, b, and c are integers. For this equation to have
integral solutions, the greatest common divisor of a and b must divide c,
and Brahmagupta knew that if a and b are relatively prime, all solutions of
the equation are given by x5 p1mb, y5 q2ma, where m is an arbitrary
integer. He also suggested the Diophantine quadratic equation x25 11 py2,

which was mistakenly named for John Pell (1611 1685) but first appeared
in the Archimedean cattle problem. The Pell equation was solved for some
cases by Brahmagupta’s countryman Bhaskara (1114 ca. 1185). It is
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greatly to the credit of Brahmagupta that he gave all integral solutions of the
linearDiophantine equation,whereasDiophantus himself had been satisfied
to give one particular solution of an indeterminate equation. Inasmuch as
Brahmagupta used some of the same examples as Diophantus, we see again
the likelihood of Greek influence in India—or the possibility that they both
madeuse of a commonsource, possibly fromBabylonia. It is also interesting
to note that the algebra of Brahmagupta, like that of Diophantus, was syn-
copated. Addition was indicated by juxtaposition, subtraction by placing a
dot over the subtrahend, and division by placing the divisor below the
dividend, as in our fractional notation but without the bar. The operations of
multiplication and evolution (the taking of roots), as well as unknown
quantities, were represented by abbreviations of appropriate words.

Bhaskara

India produced a number of later medieval mathematicians, but we shall
describe the work of only one of these—Bhaskara, the leading mathe-
matician of the twelfth century. It was he who filled some of the gaps in
Brahmagupta’s work, as by giving a general solution of the Pell equation
and by considering the problem of division by zero. Aristotle had once
remarked that there is no ratio by which a number such as 4 exceeds the
number zero, but the arithmetic of zero had not been part of Greek
mathematics, and Brahmagupta had been noncommittal on the division
of a number other than zero by the number zero. It is therefore in
Bhaskara’s Vija-Ganita that we find the first statement that such a
quotient is infinite.

Statement: Dividend 3. Divisor 0. Quotient the fraction 3/0. This fraction

of which the denominator is cipher, is termed an infinite quantity. In this

quantity consisting of that which has cipher for a divisor, there is no

alteration, though many be inserted or extracted; as no change takes place

in the infinite and immutable God.

This statement sounds promising, but a lack of clear understanding of
the situation is suggested by Bhaskara’s further assertion that a / 0 � 05 a.
Bhaskara was one of the last significant medieval mathematicians from

India, and his work represents the culmination of earlier Hindu con-
tributions. In his best-known treatise, the Lilavati, he compiled problems
from Brahmagupta and others, adding new observations of his own. The
very title of this book may be taken to indicate the uneven quality of
Indian thought, for the name in the title is that of Bhaskara’s daughter,
who, according to legend, lost the opportunity to marry because of her
father’s confidence in his astrological predictions. Bhaskara had calcu-
lated that his daughter might propitiously marry only at one particular
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hour on a given day. On what was to have been her wedding day,
the eager girl was bending over the water clock, as the hour for the
marriage approached, when a pearl from her headdress fell, quite unno-
ticed, and stopped the outflow of water. Before the mishap was noted,
the propitious hour had passed. To console the unhappy girl, the father
gave her name to the book we are describing.

The Lilavati

The Lilavati, like the Vija-Ganita, contains numerous problems dealing
with favorite Hindu topics: linear and quadratic equations, both deter-
minate and indeterminate; simple mensuration; arithmetic and geometric
progressions; surds; Pythagorean triads; and others. The “broken bam-
boo” problem, popular in China (and also included by Brahmagupta),
appears in the following form: if a bamboo 32 cubits high is broken by
the wind so that the tip meets the ground 16 cubits from the base, at what
height above the ground was it broken? Also making use of the Pytha-
gorean theorem is the following problem: A peacock is perched atop a
pillar at the base of which is a snake’s hole. Seeing the snake at a dis-
tance from the pillar, which is three times the height of the pillar, the
peacock pounces on the snake in a straight line before it can reach its
hole. If the peacock and the snake have gone equal distances, how many
cubits from the hole do they meet?
These two problems well illustrate the heterogeneous nature of the

Lilavati, for despite their apparent similarity and the fact that only a
single answer is required, one of the problems is determinate and
the other is indeterminate. In the treating of the circle and the sphere, the
Lilavati also fails to distinguish between exact and approximate state-
ments. The area of the circle is correctly given as one-quarter the cir-
cumference multiplied by the diameter and the volume of the sphere as
one-sixth the product of the surface area and the diameter, but for the
ratio of circumference to diameter in a circle, Bhaskara suggests either
3,927 to 1,250 or the “gross” value 22 / 7. The former is equivalent to the
ratio mentioned, but not used, by Aryabhata. There is no hint in Bhas-
kara or other Hindu writers that they were aware that all ratios that had
been proposed were only approximations. Yet, Bhaskara severely con-
demns his predecessors for using the formulas of Brahmagupta for the
area and the diagonals of a general quadrilateral, because he saw that a
quadrilateral is not uniquely determined by its sides. Evidently, he did
not realize that the formulas are indeed exact for all cyclic quadrilaterals.
Many of Bhaskara’s problems in the Lilavati and the Vija-Ganita were

evidently derived from earlier Hindu sources; hence, it is no surprise
to note that the author is at his best in dealing with indeterminate analysis.
In connection with the Pell equation, x25 11 py2, proposed earlier by
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Brahmagupta, Bhaskara gave particular solutions for the five cases p5 8,
11, 32, 61, and 67. For x25 11 61y2, for example, he gave the solution
x5 1,776,319,049 and y5 22,615,390. This is an impressive feat in cal-
culation, and its verification alone will tax the efforts of the reader.
Bhaskara’s books are replete with other instances of Diophantine problems.

Madhava and the Keralese School

Beginning in the late fourteenth century, a group of mathematicians
emerged along the southwestern coast of India and came to be known as
members of the “Keralese School,” named after their geographic loca-
tion of Kerala. The group appears to have started under the leadership of
Madhava, who is best known for his expansion of the power series for
sines and cosines that is usually named after Newton and the series
for π / 4 credited to Leibniz. Among his other contributions are a com-
putation of π that is accurate to eleven decimal places, computation of
the circumference of a circle using polygons, and expansion of the
arctangent series usually attributed to James Gregory, as well as various
other series expansions and astronomical applications.
Few of Madhava’s original verses have been documented; most of

his work has come down to us through descriptions and references by his
students and other later members of the Keralese school.
The Keralese school, with its astonishing achievements in series

expansions and geometric, arithmetic, and trigonometric procedures, as
well as astronomical observations, has inspired considerable speculation
concerning transmission and influence. Until now, there is inadequate
documentation to support any of the related major conjectures. There is,
however, a great deal to be learned from recent translations of these and
prior texts. (We have given only a few examples of results usually
associated with the seventeenth-century giants of western Europe. For
samples of translations providing a closer appreciation of the nature
of the mathematical issues found in the ancient and medieval Sanskrit
texts, the reader is referred to Plofker 2009.)
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11

The Islamic Hegemony

Ah, but my Computations, People say, Have squared the Year to

human Compass, eh? If so, by striking from the Calendar

Unborn To-morrow, and dead Yesterday.

Omar Khayyam (Rubaiyat in the FitzGerald version)

Arabic Conquests

One of the most transformative developments affecting mathematics in
the Middle Ages was the remarkable spread of Islam. Within one century
from 622 CE, the year of the prophet Mohammed’s Hegira, Islam had
expanded from Arabia to Persia, to North Africa, and to Spain.
At the time that Brahmagupta was writing, the Sabean Empire of

Arabia Felix had fallen, and the peninsula was in a severe crisis. It was
inhabited largely by desert nomads, known as Bedouins, who could nei-
ther read nor write. Among them was the prophet Mohammed, born in
Mecca in about 570. During his journeys, Mohammed came in contact
with Jews and Christians, and the amalgam of religious feelings that were
raised in his mind led to the belief that he was the apostle of God sent to
lead his people. For some ten years, he preached at Mecca but in 622,
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faced by a plot on his life, he accepted an invitation to Medina. This
“flight,” known as the Hegira, marked the beginning of the Mohammedan
era—one that was to exert a strong influence on the development of
mathematics. Mohammed now became a military, as well as a religious,
leader. Ten years later, he had established a Mohammedan state, with its
center at Mecca, within which Jews and Christians, being also mono-
theistic, were afforded protection and freedom of worship. In 632, while
planning to move against the Byzantine Empire, Mohammed died in
Medina. His sudden death in no way impeded the expansion of the Islamic
state, for his followers overran neighboring territories with astonishing
rapidity. Within a few years, Damascus and Jerusalem and much of
the Mesopotamian Valley fell to the conquerors; by 641, Alexandria,
which for many years had been the mathematical center of the world,
was captured. As happens so often in these conquests, the books in the
library were burned. The extent of the damage done at that time is unclear;
it has been assumed that following depredations by earlier military and
religious fanatics and long ages of sheer neglect, there may have been
relatively few books left to fuel the flames in the library that had once been
the greatest in the world.
For more than a century, the Arab conquerors fought among them-

selves and with their enemies, until by about 750 the warlike spirit
subsided. By this time, a schism had arisen between the western Arabs in
Morocco and the eastern Arabs, who, under the caliph al-Mansur, had
established a new capital at Baghdad, a city that was shortly to become
the new center for mathematics. Yet the caliph at Baghdad could not
even command the allegiance of all Moslems in the eastern half of his
empire, although his name appeared on coins of the realm and was
included in the prayers of his “subjects.” The unity of the Arab world, in
other words, was more economic and religious than it was political.
Arabic was not necessarily the common language, although it was a kind
of lingua franca for intellectuals. Hence, it may be more appropriate to
speak of the culture as Islamic, rather than Arabic, although we shall use
the terms more or less interchangeably.
During the first century of the Arabic conquests, there had been

political and intellectual confusion, and possibly this accounts for the
difficulty in localizing the origin of the modern system of numeration.
The Arabs were at first without known intellectual interest, and
they had little culture, beyond a language, to impose on the peoples they
conquered. In this respect, we see a repetition of the situation when
Rome conquered Greece, of which it was said that in a cultural sense,
captive Greece took captive the captor Rome. By about 750 CE, the
Arabs were ready to have history repeat itself, for the conquerors
became eager to absorb the learning of the civilizations they had
overrun. We learn that by the 770s, an astronomical-mathematical
work known to the Arabs as the Sindhind was brought to Baghdad
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from India. A few years later, perhaps about 775, this Siddhanta was
translated into Arabic, and it was not long afterward (ca. 780) that
Ptolemy’s astrological Tetrabiblos was translated into Arabic from the
Greek. Alchemy and astrology were among the first studies to appeal
to the dawning intellectual interests of the conquerors. The “Arabic
miracle” lies not so much in the rapidity with which the political
empire rose, as in the alacrity with which, their tastes once aroused,
the Arabs absorbed the learning of their neighbors.

The House of Wisdom

The first century of the Muslim Empire had been devoid of scientific
achievement. This period (from about 650 to 750) had been, in fact,
perhaps the nadir in the development of mathematics, for the Arabs
had not yet achieved intellectual drive, and concern for learning in
other parts of the world had pretty much faded. Had it not been for
the sudden cultural awakening in Islam during the second half of the
eighth century, considerably more of ancient science and mathematics
would have been lost. To Baghdad at that time were called scholars
from Syria, Iran, and Mesopotamia, including Jews and Nestorian
Christians; under three great Abbasid patrons of learning—al-Mansur,
Haroun al-Raschid, and al-Mamun—the city became a new Alexandria.
During the reign of the second of these caliphs, familiar to us today
through the Arabian Nights, part of Euclid was translated. It was
during the caliphate of al-Mamun (809 833), however, that the Arabs
fully indulged their passion for translation. The caliph is said to have
had a dream in which Aristotle appeared, and as a consequence al-
Mamun determined to have Arabic versions made of all of the Greek
works he could lay his hands on, including Ptolemy’s Almagest and a
complete version of Euclid’s Elements. From the Byzantine Empire,
with which the Arabs maintained an uneasy peace, Greek manuscripts
were obtained through treaties.
Al-Mamun established in Baghdad a “House ofWisdom” (Bait al-hikma)

comparable to the ancient Museum in Alexandria. Major emphasis from
its beginning was placed on translations, initially from Persian to Arabic,
later fromSanskrit andGreek. Gradually, theHouse ofWisdom included a
collection of ancient manuscripts, obtained largely from Byzantine sour-
ces. Finally, an observatory was added to the institutional holdings.
Among the mathematicians and astronomers there, we note Mohammed
ibn Musa al-Khwarizmi, whose name, like that of Euclid, was later to
become a household word in Western Europe. Others active in the ninth
century of translation were the brothers Banu Musa, al Kindi, and Thabit
ibn Qurra. By the thirteenth century, during the Mongol invasion of
Baghdad, the library of the House ofWisdomwas destroyed; this time, we
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are told, books were not burned but thrown into the river, which was
equally effective because water quickly washed out the ink.

Al-Khwarizmi

Muhammad ibn Musa al-Khwarizmi (ca. 780 ca. 850) wrote more than
half a dozen astronomical and mathematical works, of which the earliest
were probably based on the Sindhind. Besides astronomical tables and
treatises on the astrolabe and the sundial, al-Khwarizmi wrote two books
on arithmetic and algebra that played very important roles in the history
of mathematics. One of these survives only in a unique copy of a Latin
translation with the title De numero indorum, the original Arabic version
having since been lost. In this work, based presumably on an Arabic
translation of Brahmagupta, al-Khwarizmi gave so full an account of the
Hindu numerals that he is probably responsible for the widespread but
false impression that our system of numeration is Arabic in origin.
Al-Khwarizmi made no claim to originality in connection with the
system, the Hindu source of which he assumed as a matter of course, but
when Latin translations of his work subsequently appeared in Europe,
cursory readers began to attribute not only the book but also the
numeration to the author. The new notation came to be known as that of
al-Khwarizmi or, more carelessly, algorismi; ultimately, the scheme of
numeration that made use of the Hindu numerals came to be called
simply “algorism” or “algorithm,” a word that, originally derived from
the name al-Khwarizmi, now means, more generally, any peculiar rule of
procedure or operation—such as the Euclidean method for finding the
greatest common divisor.

Al-Jabr

Through his arithmetic, al-Khwarizmi’s name has become a common
English word; through the title of his most important book, Hisob al-jabr
wa’l muqabalah, he has supplied us with an even more popular house-
hold term. From this title has come the word “algebra,” for it is from this
book that Europe later learned the branch of mathematics bearing this
name. Neither al-Khwarizmi nor other Arabic scholars made use of
syncopation or of negative numbers. Nevertheless, the Al-jabr comes
closer to the elementary algebra of today than do the works of either
Diophantus or Brahmagupta, for the book is not concerned with difficult
problems in indeterminate analysis but with a straightforward and ele-
mentary exposition of the solution of equations, especially of the second
degree. The Arabs in general loved a good clear argument from premise
to conclusion, as well as systematic organization—respects in which
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neither Diophantus nor the Hindus excelled. The Hindus were strong in
association and analogy, in intuition and an aesthetic and imaginative
flair, whereas the Arabs were more practical-minded and down-to-earth
in their approach to mathematics.
The Al-jabr has come down to us in two versions, Latin and Arabic,

but in the Latin translation, Liber algebrae et al mucabala, a con-
siderable portion of the Arabic draft is missing. The Latin, for example,
has no preface, perhaps because the author’s preface in Arabic gave
fulsome praise to Mohammed, the prophet, and to al-Mamun, “the
Commander of the Faithful.” Al-Khwarizmi wrote that the latter had
encouraged him to

compose a short work on Calculating by (the rules of) Completion and

Reduction, confining it to what is easiest and most useful in arithmetic,

such as men constantly require in cases of inheritance, legacies, partitions,

lawsuits, and trade, and in all their dealings with one another, or where

the measuring of lands, the digging of canals, geometrical computation,

and other objects of various sorts and kinds are concerned (Karpinski

1915, p. 96).

It is not certain just what the terms al-jabr and muqabalah mean, but
the usual interpretation is similar to that implied in the previous trans-
lation. The word “al-jabr” presumably meant something like “restora-
tion” or “completion” and seems to refer to the transposition of
subtracted terms to the other side of an equation; the word “muqabalah”
is said to refer to “reduction” or “balancing”—that is, the cancellation of
like terms on opposite sides of the equation. Arabic influence in Spain
long after the time of al-Khwarizmi is found in Don Quixote, where the
word “algebrista” is used for a bone-setter, that is, a “restorer.”

Quadratic Equations

The Latin translation of al-Khwarizmi’s Algebra opens with a brief
introductory statement of the positional principle for numbers and then
proceeds to the solution, in six short chapters, of the six types of equa-
tions made up of the three kinds of quantities: roots, squares, and num-
bers (i.e., x, x2, and numbers). Chapter I, in three short paragraphs, covers
the case of squares equal to roots, expressed in modern notation as
x25 5x, x2 / 35 4x, and 5x25 10x, giving the answers x5 5, x5 12, and
x5 2, respectively. (The root x5 0 was not recognized.) Chapter II
covers the case of squares equal to numbers, and Chapter III solves the
case of roots equal to numbers, again with three illustrations per
chapter to cover the cases in which the coefficient of the variable term
is equal to, more than, or less than 1. Chapters IV, V, and VI are more
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interesting, for they cover in turn the three classical cases of three-term
quadratic equations: (1) squares and roots equal to numbers, (2) squares
and numbers equal to roots, and (3) roots and numbers equal to squares.
The solutions are “cookbook” rules for “completing the square”
applied to specific instances. Chapter IV, for example, includes the
three illustrations x21 10x5 39, 2x21 10x5 48, and 1

2 x2 1 5x5 28. In
each case, only the positive answer is given. In Chapter V, only a single
example, x21 215 10x, is used, but both roots, 3 and 7, are given,
corresponding to the rule x5 57 252 21

p
. Al-Khwarizmi here calls

attention to the fact that what we designate as the discriminant must be
positive:

You ought to understand also that when you take the half of the roots in

this form of equation and then multiply the half by itself; if that which

proceeds or results from the multiplication is less than the units above-

mentioned as accompanying the square, you have an equation.

In Chapter VI, the author again uses only a single example,
3x1 45 x2, for whenever the coefficient of x2 is not unity, the author
reminds us to divide first by this coefficient (as in Chapter IV). Once
more, the steps in completing the square are meticulously indicated,
without justification, the procedure being equivalent to the solution
x5 11

2 1 ð11
2Þ2 1 4

p
. Again, only one root is given, for the other is

negative.
The six cases of equations given previously exhaust all possibilities for

linear and quadratic equations having a positive root. The arbitrariness of
the rules and the strictly numerical form of the six chapters remind us
of ancient Babylonian andmedieval Indianmathematics. The exclusion of
indeterminate analysis, a favorite Hindu topic, and the avoidance of any
syncopation, such as is found in Brahmagupta, might suggest Mesopota-
mia as more likely a source than India. As we read beyond the sixth
chapter, however, an entirely new light is thrown on the question.
Al-Khwarizmi continues:

We have said enough so far as numbers are concerned, about the six types of

equations. Now, however, it is necessary that we should demonstrate geo-

metrically the truthof the sameproblemswhichwehave explained innumbers.

The ring in this passage is obviously Greek, rather than Babylonian or
Indian. There are thus three main schools of thought on the origin of
Arabic algebra: one emphasizes Hindu influences; another stresses the
Mesopotamian, or Syriac-Persian, tradition; and the third points to Greek
inspiration. The truth is probably approached if we combine the three
theories. The philosophers of Islam admired Aristotle to the point of
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aping him, but eclectic Mohammedan mathematicians seem to have
chosen appropriate elements from various sources.

Geometric Foundation

TheAlgebra of al-Khwarizmi betrays unmistakableHellenic elements, but
the first geometric demonstrations have little in common with classical
Greek mathematics. For the equation x21 10x5 39, al-Khwarizmi drew a
square, ab, to represent x2, and on the four sides of this square he placed
rectangles c, d, e, and f, each 2 1

2 units wide. To complete the larger square,
one must add the four small corner squares (dotted in Fig. 11.1), each of
which has an area of 6 1

4 units. Hence, to “complete the square” we add 4
times 6 1

4 units, or 25 units, thus obtaining a square of total area 391
255 64 units (as is clear from the right-hand side of the given equation).
The side of the large square must therefore be 8 units, from which we
subtract 2 times 2 1

2, or 5, units to find that x5 3, thus proving that the answer
found in Chapter IV is correct.
The geometric proofs for Chapters V and VI are somewhat more

involved. For the equation x21 215 10x, the author draws the square ab
to represent x2 and the rectangle bg to represent 21 units. Then the large
rectangle, comprising the square and the rectangle bg, must have an area
equal to 10x, so that the side ag or hd must be 10 units. If, then, one
bisects hd at e, draws et perpendicular to hd, extends te to c so that
tc5 tg, and completes the squares tclg and cmne (Fig. 11.2), the area tb
is equal to the area md. But the square tl is 25, and the gnomon tenmlg is
21 (because the gnomon is equal to the rectangle bg). Hence, the square
nc is 4, and its side ec is 2. Inasmuch as ec5 be, and because he5 5, we
see that x5 hb5 52 2 or 3, which proves that the arithmetic solution
given in Chapter V is correct. A modified diagram is given for the root

c

e

a

b

df

FIG. 11.1

A l K hwar i zmi 209



x5 51 25 7, and an analogous type of figure is used to justify geo-
metrically the result found algebraically in Chapter VI.

Algebraic Problems

A comparison of Fig. 11.2, taken from al-Khwarizmi’s Algebra, with
diagrams found in the Elements of Euclid in connection with Greek
geometric algebra leads to the inevitable conclusion that Arabic algebra
had much in common with Greek geometry; however, the first, or
arithmetic, part of al-Khwarizmi’s Algebra is obviously alien to Greek
thought. What apparently happened in Baghdad was just what one would
expect in a cosmopolitan intellectual center. Arabic scholars had great
admiration for Greek astronomy, mathematics, medicine, and philoso-
phy—subjects that they mastered as best they could. Yet, they could
scarcely help but notice the same thing that the Nestorian bishop Sebokt
had observed when in 662 he first called attention to the nine marvelous
digits of the Hindus: “There are also others who know something.” It is
probable that al-Khwarizmi typified the Arabic eclecticism that will so
frequently be observed in other cases. His system of numeration most
likely came from India, his systematic algebraic solution of equations
may have been a development from Mesopotamia, and the logical
geometric framework for his solutions was palpably derived from
Greece.
The Algebra of al-Khwarizmi contains more than the solution of

equations, material that occupies about the first half. There are, for
example, rules for operations on binomial expressions, including products
such as (101 2)(102 1) and (101 x)(102 x). Although the Arabs
rejected negative roots and absolute negative magnitudes, they were
familiar with the rules governing what are now known as signed numbers.
There are also alternative geometric proofs of some of the author’s six
cases of equations. Finally, the Algebra includes a wide variety of prob-
lems illustrating the six chapters or cases. As an illustration of the fifth

dh b

a t g

lmc

ne

FIG. 11.2
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chapter, for example, al-Khwarizmi asks for the division of 10 into two
parts in such a way that “the sum of the products obtained by multiplying
each part by itself is equal to fifty eight.” The extant Arabic version, unlike
the Latin, also includes an extended discussion of inheritance problems,
such as the following:

A man dies, leaving two sons behind him, and bequeathing one-third of

his capital to a stranger. He leaves ten dirhems of property and a claim of

ten dirhems upon one of the sons.

The answer is not what one would expect, for the stranger gets only
5 dirhems. According to Arabic law, a son who owes to the estate of his
father an amount greater than the son’s portion of the estate retains the
whole sum that he owes, one part being regarded as his share of
the estate and the remainder as a gift from his father. To some extent, it
seems to have been the complicated nature of laws governing inheritance
that encouraged the study of algebra in Arabia.

A Problem from Heron

A few of al-Khwarizmi’s problems give rather clear evidence of
Arabic dependence on the Babylonian-Heronian stream of mathe-
matics. One of them presumably was taken directly from Heron, for
the figure and the dimensions are the same. Within an isosceles tri-
angle having sides of 10 yards and a base of 12 yards (Fig. 11.3), a
square is to be inscribed, and the side of this square is called for. The
author of the Algebra first finds through the Pythagorean theorem that
the altitude of the triangle is 8 yards, so that the area of the triangle is
48 square yards. Calling the side of the square the “thing,” he notes
that the square of the “thing” will be found by taking from the area of
the large triangle the areas of the three small triangles lying outside the
square but inside the large triangle. The sum of the areas of the two
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lower small triangles he knows to be the product of the “thing” by 6 less
half of the “thing,” and the area of the upper small triangle is the product
of 8 less the “thing” by half of the “thing.” Hence, he is led to the obvious
conclusion that the “thing” is 4 4

5 yards—the side of the square. The chief
difference between the form of this problem in Heron and that of al-
Khwarizmi is that Heron had expressed the answer in terms of unit
fractions as 4 1

2
1
5

1
10. The similarities are so much more pronounced than

the differences that we may take this case as confirmation of the general
axiom that continuity in the history of mathematics is the rule, rather
than the exception. Where a discontinuity seems to arise, we should first
consider the possibility that the apparent saltus may be explained by the
loss of intervening documents.

‘Abd Al-Hamid ibn-Turk

The Algebra of al-Khwarizmi is usually regarded as the first work
on the subject, but a publication in Turkey raises some question about
this. A manuscript of a work by ‘Abd-al-Hamid ibn-Turk, titled
“Logical Necessities in Mixed Equations,” was part of a book on
Al-jabr wa’l muqabalah, which was evidently very much the same as
that by al-Khwarizmi and was published at about the same time—
possibly even earlier. The surviving chapters on “Logical Necessities”
give precisely the same type of geometric demonstration as al-
Khwarizmi’s Algebra and in one case the same illustrative example,
x21 215 10x. In one respect, ‘Abd al-Hamid’s exposition is more
thorough than that of al-Khwarizmi for he gives geometric figures to
prove that if the discriminant is negative, a quadratic equation has no
solution. Similarities in the work of the two men and the systematic
organization found in them seem to indicate that algebra in their day
was not so recent a development as has usually been assumed. When
textbooks with a conventional and well-ordered exposition appear
simultaneously, a subject is likely to be considerably beyond the for-
mative stage. Successors of al-Khwarizmi were able to say, once a pro-
blem had been reduced to the form of an equation, “Operate according
to the rules of algebra and almucabala.” In any case, the survival of
al-Khwarizmi’s Algebra can be taken to indicate that it was one of the
better textbooks typical of Arabic algebra of the time. It was to algebra
what Euclid’s Elements was to geometry—the best elementary exposition
available until modern times—but al-Khwarizmi’s work had a serious
deficiency that had to be removed before it could effectively serve its
purpose in the modern world: a symbolic notation had to be developed to
replace the rhetorical form. This step the Arabs never took, except for the
replacement of number words by number signs.
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Thabit ibn-Qurra

The ninth century was a glorious one in mathematical transmission and
discovery. It produced not only al-Khwarizmi in the first half of the
century, but also Thabit ibn-Qurra (826 901) in the second half. Thabit,
a Sabean, was born in Harran, the ancient Mesopotamian city that is
located in present-day southeastern Turkey and once lay along one of the
notable trade routes of the region. Thabit, trilingual since his youth, came
to the attention of one of the Musa brothers, who encouraged him to come
to Baghdad to study with his brothers in the House of Wisdom. Thabit
became proficient in medicine, as well as in mathematics and astronomy,
and, when appointed court astronomer by the caliph of Baghdad, estab-
lished a tradition of translations, especially from Greek and Syriac. To him
we owe an immense debt for translations into Arabic of works by Euclid,
Archimedes, Apollonius, Ptolemy, and Eutocius. Had it not been for
Thabit’s efforts, the number of Greek mathematical works extant today
would be smaller. For example, we should have only the first four, rather
than the first seven, books of Apollonius’s Conics.
Moreover, Thabit had so thoroughly mastered the content of the

classics he translated that he suggested modifications and general-
izations. To him is due a remarkable formula for amicable numbers: if
p, q, and r are prime numbers, and if they are of the form p5 3 � 2n2 1,
q5 3 � 2n 12 1, and r5 9 � 22n 12 1, then 2npq and 2nr are amicable
numbers, for each is equal to the sum of the proper divisors of the
other. Like Pappus, Thabit also gave a generalization of the Pytha-
gorean theorem that is applicable to all triangles, whether right or
scalene. If from vertex A of any triangle ABC one draws lines inter-
secting BC in points Bu and Cu such that angles ABuB and ACuC are each
equal to angle A (Fig. 11.4), then AB

2
1AC

2
5BCðBB0 1CC0 Þ: Thabit

gave no proof of the theorem, but this is easily supplied through
theorems on similar triangles. In fact, the theorem provides a beautiful
generalization of the pinwheel diagram used by Euclid in the proof of
the Pythagorean theorem. If, for example, angle A is obtuse, then the
square on side AB is equal to the rectangle BBuBvBuv, and the square on
AC is equal to the rectangle CCv Cu Cuv, here BBv5CCv5BC5BvCv.
That is, the sum of the squares on AB and AC is the square on BC less
the rectangle BuCuBuvCuv. If angle A is acute, then the positions of Bu
and Cu are reversed with respect to AP, where P is the projection of A
on BC, and in this case, the sum of the squares on AB and AC is equal
to the square on BC increased by the rectangle BuCuBuvCuv. If A is a
right angle, then Bu and Cu coincide with P, and for this case, Thabit’s
theorem becomes the Pythagorean theorem. (Thabit did not draw
the dotted lines that are shown in Fig. 11.4, but he did consider the
several cases.)
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Alternative proofs of the Pythagorean theorem, works on parabolic and
paraboloidal segments, a discussion of magic squares, angle trisections,
and new astronomical theories are among Thabit’s further contributions to
scholarship. Thabit boldly added a ninth sphere to the eight previously
assumed in simplified versions of Aristotelian-Ptolemaic astronomy, and
instead of the Hipparchan precession of the equinoxes in one direction or
sense only, Thabit proposed a “trepidation of the equinoxes” in a reci-
procating type of motion.

Numerals

Within the confines of the Arabic empire lived peoples of very varied
ethnic backgrounds: Syrian, Greek, Egyptian, Persian, Turkish, and many
others. Most of them shared a common faith, Islam, although Christians
and Jews were tolerated; very many shared a common language, Arabic,
althoughGreek andHebrewwere sometimes used. Therewas considerable
factionalism at all times, and it sometimes erupted into conflict. Thabit
himself had grown up in a pro-Greek community, which opposed him for
his pro-Arabic sympathies. Cultural differences occasionally became
quite apparent, as in the works of the tenth- and eleventh-century scholars
Abu’l-Wefa (940 998) and al-Karkhi (or al-Karagi, ca. 1029). In some of
their works, they used the Hindu numerals, which had reached Arabia
through the astronomical Sindhind; at other times, they adopted the Greek
alphabetic pattern of numeration (with, of course, Arabic equivalents for
the Greek letters). Ultimately, the superior Hindu numerals won out, but
even within the circle of those who used the Indian numeration, the forms
of the numerals differed considerably. Variations had obviously been
prevalent in India, but in Arabia variants were so striking that there are
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theories suggesting entirely different origins for forms used in the eastern
and western halves of the Arabic world. Perhaps the numerals of the
Saracens in the east came directly from India, while the numerals of the
Moors in the west were derived from Greek or Roman forms. More likely,
the variants were the result of gradual changes taking place in space and
time, for the Arabic numerals of today are strikingly different from the
modern Devanagari (or “divine”) numerals still in use in India. After all, it
is the principles within the system of numeration that are important, rather
than the specific forms of the numerals. Our numerals are often known as
Arabic, despite the fact that they bear little resemblance to those now in use
in Egypt, Iraq, Syria, Arabia, Iran, and other lands within the Islamic
culture—that is, the forms We call our numerals Arabic
because the principles in the two systems are the same and because our
forms may have been derived from the Arabic. Yet the principles behind
the Arabic numerals presumably were derived from India; hence, it is
better to call ours the Hindu or the Hindu-Arabic system (see the illus-
tration above).

Genealogy of our digits. Following Karl Menninger, Zahlwort und Ziffer
(Göttingen: Vanderhoeck & Ruprecht 1957 1958, 2 vols.), Vol. II, p. 233
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Trigonometry

As in numeration, there was competition between systems of Greek
and Indian origin, so also in astronomical calculations there were at first
in Arabia two types of trigonometry—the Greek geometry of chords,
as found in the Almagest, and the Hindu tables of sines, as derived
through the Sindhind. Here, too, the conflict resulted in triumph
for the Hindu aspect, and most Arabic trigonometry was ultimately
built on the sine function. It was, in fact, again through the Arabs,
rather than directly from the Hindus, that this trigonometry of the
sine reached Europe.
Sometimes attempts are made to attribute the functions tangent,

cotangent, secant, and cosecant to specific times and even to specific
individuals, but this cannot be done with any assurance. In India and
Arabia, there had been a general theory of shadow lengths, as related to a
unit of length or gnomon, for varying solar altitudes. There was no one
standard unit of length for the staff or the gnomon used, although a hand
span or a man’s height was frequently adopted. The horizontal shadow,
for a vertical gnomon of given length, was what we call the cotangent of
the angle of elevation of the sun. The “reverse shadow”—that is, the
shadow cast on a vertical wall by a stick or a gnomon projecting hori-
zontally from the wall—was what we know as the tangent of the solar
elevation. The “hypotenuse of the shadow”—that is, the distance from
the tip of the gnomon to the tip of the shadow—was the equivalent of the
cosecant function, and the “hypotenuse of the reverse shadow” played
the role of our secant. This shadow tradition seems to have been well
established in Asia by the time of Thabit ibn-Qurra, but values of the
hypotenuse (secant or cosecant) were seldom tabulated.

Tenth- and Eleventh-Century Highlights

With Abu’l-Wefa, trigonometry assumes amore systematic form inwhich
such theorems as double and half-angle formulas are proved. Although the
Hindu sine function had displaced the Greek chord, it was nevertheless the
Almagest of Ptolemy that motivated the logical arrangement of trigono-
metric results. The law of sines had been known to Ptolemy in essence and
is implied in the work of Brahmagupta, but it is frequently attributed to
Abu’l-Wefa and his contemporary Abu Nasr Mensur because of their
clear-cut formulation of the law for spherical triangles. Abu’l-Wefa also
made up a new sine table for angles differing by 1

4

�
, using the equivalent of

eight decimal places. In addition, he contributed a table of tangents and
made use of all six of the common trigonometric functions, together with
relations among them, but his use of the new functions seems not to have
been widely followed in the medieval period.
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Abu’l-Wefa was a capable algebraist, as well as a trigonometer. He
commented on al-Khwarizmi’s Algebra and translated from the Greek
one of the last great classics—the Arithmetica of Diophantus. His suc-
cessor al-Karkhi evidently used this translation to become an Arabic
disciple of Diophantus—but without Diophantine analysis! That is,
al-Karkhi was concerned with the algebra of al-Khwarizmi, rather than
with the indeterminate analysis of the Hindus, but like Diophantus (and
unlike al-Khwarizmi), he did not limit himself to quadratic equations—
despite the fact that he followed the Arabic custom of giving geometric
proofs for quadratics. In particular, to al-Karkhi is attributed the first
numerical solution of equations of the form ax2n1 bxn5 c (only equa-
tions with positive roots were considered), where the Diophantine
restriction to rational numbers was abandoned. It was in just this
direction, toward the algebraic solution (in terms of radicals) of equa-
tions of more than the second degree, that the early developments in
mathematics in the Renaissance were destined to take place.
The time of al-Karkhi—the early eleventh century—was a brilliant era

in the history of Arabic learning, and a number of his contemporaries
deserve brief mention—brief not because they were less capable, but
because they were not primarily mathematicians.
Ibn-Sina (980 1037), better known to the West as Avicenna, was the

foremost scholar and scientist in Islam, but in his encyclopedic interests,
mathematics played a smaller role than medicine and philosophy. He
made a translation of Euclid and explained the casting-out of nines
(which consequently is sometimes unwarrantedly attributed to him), but
he is better remembered for his application of mathematics to astronomy
and physics.
As Avicenna reconciled Greek learning with Muslim thought, so his

contemporary al-Biruni (973 1048) made the Arabs—hence, us—familiar
with Hindu mathematics and culture through his well-known book titled
India. An indefatigable traveler and a critical thinker, he gave a sym-
pathetic but candid account, including full descriptions of the Siddhantas
and the positional principle of numeration. It is he who told us that
Archimedes was familiar with Heron’s formula and gave a proof of this
and of Brahmagupta’s formula, correctly insisting that the latter applies
only to a cyclic quadrilateral. In inscribing a nonagon in a circle, al-
Biruni reduced the problem, through the trigonometric formula for
cos 3θ, to solving the equation x35 11 3x, and for this, he gave the
approximate solution in sexagesimal fractions as 1;52,15,17,13—
equivalent to more than six-place accuracy. Al-Biruni also gave us, in a
chapter on gnomon lengths, an account of the Hindu shadow reckoning.
The boldness of his thought is illustrated by his discussion of whether the
earth rotates on its axis, a question to which he did not give an answer.
(Earlier, Aryabhata seems to have suggested a rotating earth at the center
of space.)
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Al-Biruni also contributed to physics, especially through studies in
specific gravity and the causes of artesian wells, but as a physicist and a
mathematician he was excelled by ibn-al-Haitham (ca. 965 1039),
known to the West as Alhazen. The most important treatise written by
Alhazen was the Treasury of Optics, a book that was inspired by work of
Ptolemy on reflection and refraction and that in turn inspired scientists of
medieval and early modern Europe. Among the questions that Alhazen
considered were the structure of the eye, the apparent increase in the size
of the moon when near the horizon, and an estimate, from the obser-
vation that twilight lasts until the sun is 19� below the horizon, of the
height of the atmosphere. The problem of finding the point on a spherical
mirror at which light from a source will be reflected to the eye of an
observer is known to this day as “Alhazen’s problem.” It is a “solid
problem” in the old Greek sense, solvable by conic sections, a subject
with which Alhazen was quite familiar. He extended Archimedes’
results on conoids by finding the volume generated by revolving about
the tangent at the vertex the area bounded by a parabolic arc and the axis
and an ordinate of the parabola.

Omar Khayyam

Arabic mathematics can with some propriety be divided into four parts:
(1) an arithmetic presumably derived from India and based on the
principle of position; (2) an algebra that, although from Greek, Hindu,
and Babylonian sources, nevertheless in Muslim hands assumed a
characteristically new and systematic form; (3) a trigonometry the
substance of which came chiefly from Greece but to which the Arabs
applied the Hindu form and added new functions and formulas; and (4) a
geometry that came from Greece but to which the Arabs contributed
generalizations here and there. There was a significant contribution
about a century after Alhazen by a man who in the East is known as a
scientist but whom the West recalls as one of the greatest Persian poets.
Omar Khayyam (ca. 1050 1123), the “tent-maker,” wrote an Algebra
that went beyond that of al-Khwarizmi to include equations of the third
degree. Like his Arabic predecessors, Omar Khayyam provided both
arithmetic and geometric solutions for quadratic equations; for general
cubic equations, he believed (mistakenly, as the sixteenth century later
showed), arithmetic solutions were impossible; hence, he gave only
geometric solutions. The scheme of using intersecting conics to solve
cubics had been used earlier by Menaechmus, Archimedes, and Alhazen,
but Omar Khayyam took the praiseworthy step of generalizing the method
to cover all third-degree equations (having positive roots). When in an
earlier work he came across a cubic equation, he specifically remarked,
“This cannot be solved by plane geometry [i.e., using straightedge and

218 The I s l ami c He gemony



compasses only] since it has a cube in it. For the solution we need conic
sections” (Amir-Moez 1963, p. 328).
For equations of a higher degree than three, Omar Khayyam evi-

dently did not envision similar geometric methods, for space does not
contain more than three dimensions, “what is called square-square by
algebraists in continuous magnitude is a theoretical fact. It does not
exist in reality in any way.” The procedure that Omar Khayyam so
tortuously—and so proudly—applied to cubic equations can be stated
with far greater succinctness in modern notation and concepts as fol-
lows. Let the cubic be x31 ax21 b2x1 c35 0. Then, if for x2 in this
equation we substitute 2py, we obtain (recalling that x35 x2 � x) the
result 2pxy1 2apy1 b2x1 c35 0. Because the resulting equation
represents a hyperbola, and the equality x25 2py used in the substitu-
tion represents a parabola, it is clear that if the hyperbola and the
parabola are sketched on the same set of coordinate axes, then
the abscissas of the points of intersection of the two curves will be the
roots of the cubic equation. Obviously, many other pairs of conic
sections can be used in a similar way to solve the cubic.
Our exposition of Omar Khayyam’s work does not do justice to his

genius, for, lacking the concept of negative coefficients, he had to break
the problem into many separate cases according as the parameters a, b, c
are positive, negative, or zero.Moreover, he had to specifically identify his
conic sections for each case, for the concept of a general parameter was not
at hand in his day. Not all roots of a given cubic equationwere given, for he
did not accept the appropriateness of negative roots and did not note all
intersections of the conic sections. It should also be mentioned that in the
earlier Greek geometric solutions of cubic equations, the coefficients had
been line segments, whereas in the work of Omar Khayyam they were
specific numbers. One of the most fruitful contributions of Arabic eclec-
ticismwas the tendency to close the gap between numerical and geometric
algebra. The decisive step in this direction camemuch laterwithDescartes,
but Omar Khayyam was moving in this direction when he wrote, “Who-
ever thinks algebra is a trick in obtaining unknowns has thought it in vain.
No attention should be paid to the fact that algebra and geometry are
different in appearance. Algebras are geometric facts which are proved.”
In replacing Euclid’s theory of proportions with a numerical approach, he
came close to a definition of the irrational and struggledwith the concept of
real number in general.
In his Algebra, Omar Khayyam wrote that elsewhere he had set forth a

rule that he had discovered for finding fourth, fifth, sixth, and higher
powers of a binomial, but such a work is not extant. It is presumed that
he was referring to the Pascal triangle arrangement, one that seems to
have appeared in China at about the same time. Such a coincidence is not
easy to explain, but until further evidence is available, independence of
discovery is to be assumed. Intercommunication between Arabia and
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China was not extensive at that time, but there was a silk route con-
necting China with Persia, and information might have trickled along it.

The Parallel Postulate

Islamic mathematicians were clearly more attracted to algebra and trigono-
metry than to geometry, but one aspect of geometry held a special fascination
for them—the proof of Euclid’s fifth postulate. Even among the Greeks, the
attempt to prove the postulate had become virtually a “fourth famous pro-
blemof geometry,” and severalMuslimmathematicians continued the effort.
Alhazen had begun with a trirectangular quadrilateral (sometimes known as
“Lambert’s quadrangle” in recognition of efforts in the eighteenth century)
and thought that hehadproved that the fourth anglemust alsobe a right angle.
From this “theorem” on the quadrilateral, the fifth postulate can easily be
shown to follow. Inhis “proof,”Alhazenhad assumed that the locusof apoint
that moves so as to remain equidistant from a given line is necessarily a line
parallel to the given line—an assumption shown in modern times to be
equivalent to Euclid’s postulate. Omar Khayyam criticized Alhazen’s proof
on the ground that Aristotle had condemned the use of motion in geometry.
Omar Khayyam then began with a quadrilateral the two sides of which are
equal and are both perpendicular to the base (usually known as a “Saccheri
quadrilateral,” again in recognition of eighteenth-century efforts), and he
asked about the other (upper) angles of the quadrilateral, which necessarily
are equal to each other. There are, of course, three possibilities. The angles
may be (1) acute, (2) right, or (3) obtuse. Thefirst and third possibilitiesOmar
Khayyam ruled out on the basis of a principle, which he attributed to Aris-
totle, that two converging lines must intersect—again, an assumption
equivalent to Euclid’s parallel postulate.

Nasir al-Din al-Tusi

When Omar Khayyam died in 1123, Islamic science was in a state of
decline, but Muslim contributions did not come to a sudden stop with his
death. Both in the thirteenth century and again in the fifteenth century,
we find an Islamic mathematician of note. At Maragha, for example,
Nasir al-Din (Eddin) al-Tusi (1201 1274), an astronomer to Hulagu
Khan, a grandson of the conqueror Genghis Khan and a brother of Kublai
Khan, continued efforts to prove the parallel postulate, starting from the
usual three hypotheses on a Saccheri quadrilateral. His “proof” depends on
the following hypothesis, again equivalent to Euclid’s:

If a line u is perpendicular to a line w at A, and if line v is oblique to w at

3, then the perpendiculars drawn from u upon v are less than AB on the
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side on which v makes an acute angle with w and greater on the side on

which v makes an obtuse angle with w.

The views of al-Tusi, the last in the sequence of three Arabic pre-
cursors of non-Euclidean geometry, were translated and published by
John Wallis in the seventeenth century. It appears that this work was the
starting point for the developments by Saccheri in the first third of
the eighteenth century.
Continuing the work of Abu’l-Wefa, al-Tusi was responsible for the

first systematic treatise on plane and spherical trigonometry, treating
the material as an independent subject in its own right and not simply
as the handmaid of astronomy, as had been the case in Greece and India.
The six usual trigonometric functions are used, and rules for solving the
various cases of plane and spherical triangles are given. Unfortunately,
the work of al-Tusi had limited influence, inasmuch as it did not become
well known in Europe. In astronomy, however, al-Tusi made a con-
tribution that may have come to the attention of Copernicus. The Arabs
had adopted theories of both Aristotle and Ptolemy for the heavens;
noticing elements of conflict between the cosmologies, they sought to
reconcile and refine them. In this connection, al-Tusi observed that a
combination of two uniform circular motions in the usual epicyclic
construction can produce a reciprocating rectilinear motion. That is, if a
point moves with uniform circular motion clockwise around the epi-
cycle, while the center of the epicycle moves counterclockwise with half
of this speed along an equal deferent circle, the point will describe a
straight-line segment. (In other words, if a circle rolls without slipping
along the inside of a circle whose diameter is twice as great, the locus of
a point on the circumference of the smaller circle will be a diameter
of the larger circle.) This “theorem of Nasir Eddin” became known to, or
was rediscovered by, Nicholas Copernicus and Jerome Cardan in the
sixteenth century.

Al-Kashi

The mathematics of Islam continued to decline after al-Tusi, but our
account of the Muslim contribution would not be adequate without
reference to the work of a figure in the early fifteenth century. Jamshid
al-Kashi (ca. 1380 1429) found a patron in the prince Ulugh Beg, who
was a grandson of the Mongol conqueror Tamerlane. In Samarkand,
where he held his court, Ulugh Beg had built an observatory and estab-
lished a center of learning, and al-Kashi joined the group of scientists
gathered there. In numerous works, written in Persian and Arabic, al-
Kashi contributed to mathematics and astronomy. He also produced a
major textbook for the use of students in Samarkand, which provided an
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introduction to arithmetic, algebra, and their applications to architecture,
surveying, commerce, and other interest areas. His computational skills
appear to have been unequalled. Noteworthy is the accuracy of his
computations, especially in connection with the solution of equations by a
special case of Horner’s method, derived perhaps from the Chinese. From
China, too, al-Kashi may have taken the practice of using decimal frac-
tions. Al-Kashi is an important figure in the history of decimal fractions,
and he realized the significance of his contribution in this respect,
regarding himself as the inventor of decimal fractions. Although to some
extent he had had precursors, he was perhaps the first user of sexagesimal
fractions to suggest that decimals are just as convenient for problems
requiring many-place accuracy. Nevertheless, in his systematic compu-
tations of roots, he continued to make use of sexagesimals. In illustrating
his method for finding the nth root of a number, he took the sixth root of
the sexagesimal

34,59,1,7,14,54,23,3,47,37;40.

This was a prodigious feat of computation, using the steps that we follow
in Horner’s method—locating the root, diminishing the roots, and
stretching or multiplying the roots—and using a pattern similar to our
synthetic division.
Al-Kashi evidently delighted in long calculations, and he was justifiably

proud of his approximation of π, which was more accurate than any of the
values given by his predecessors. He expressed his value of 2π in both
sexagesimal and decimal forms. The former—6;16,59,28,34,51,46,15,50—
is more reminiscent of the past, and the latter, 6.2831853071795865, in a
sense presaged the future use of decimal fractions. No mathematician
approached the accuracy in this tour de force of computation until the
late sixteenth century. His computational skills appear to have been at the
basis of the table of sines produced at the Samarkand observatory. In al-
Kashi, the binomial theorem in “Pascal triangle” form again appears, just
about a century after its publication in China and about a century before it
was printed in European books.
The number of significant Islamic contributors to mathematics before

al-Kashi was considerably larger than our exposition would suggest, for
we have concentrated only on major figures, but after al-Kashi the
number is negligible. It was very fortunate indeed that when Arabic
learning began to decline, scholarship in Europe was on the upgrade and
was prepared to accept the intellectual legacy bequeathed by earlier
ages.
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12

The LatinWest

Neglect of mathematics works injury to all knowledge, since he who is

ignorant of it cannot know the other sciences or the things of this world.

Roger Bacon

Introduction

Time and history are seamless wholes, and any subdivision into periods is
man’s handiwork, but just as a coordinate framework is useful in geo-
metry, so also the subdivision of events into periods or eras is convenient
in history. For purposes of political history, it has been customary to
designate the fall of Rome in 476 as the beginning of the Middle Ages and
the fall of Constantinople to the Turks in 1453 as the end. For the history of
mathematics, let us simply consider the period 500 to 1450 as encom-
passing mathematics of the Middle Ages. We remind readers that five
great civilizations, writing in five major languages, make up the bulk of
the history of medieval mathematics. In the four preceding chapters, we
described contributions in Greek, Chinese, Sanskrit, and Arabic from the
Byzantine Empire, China, India, and Islam, four of the five leading
medieval cultures. In this chapter, we look at the mathematics of the
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Western or Roman Empire, which had no one center and no single spoken
language, but in which Latin was the lingua franca of scholars.

Compendia of the Dark Ages

The sixth centurywas a grimperiod for the countries that had formed part of
theWestern Empire. Internal conflicts, invasions, and migrations left much
of the region depopulated and in poverty. Roman institutions, including the
notable school system, were largely defunct. The growing Christian
Church, itself not immune to internal strife, was only gradually building up
an educational system. It is against this background that we must assess the
limited mathematical contributions of Boethius, as well as Cassiodorus
(ca. 480 ca. 575) and Isidore of Seville (570 636). Neither of the three
was particularly adept at mathematics; their arithmetic and geometric
contributions should be seen in the context of their aiming to supply the
monastic schools and libraries with an introduction to the liberal arts.
Cassiodorus, a contemporary of Boethius, whom he succeeded as

magister officiorum in the service of Theodorus, spent his retirement in a
monastery that he had founded, where he established a library and
instructed the monks in the fine art of accurately copying both Greek
and Latin manuscript texts. This set the stage for an activity that played a
large role in the preservation of ancient texts, both Christian and “pagan.”
Isidore of Seville, considered by contemporaries to be the most learned

man of his time, was the author of the voluminous Origines or Etymol-
ogies, consisting of twenty books, one of which dealt with mathematics.
It comprised four parts: arithmetic, geometry, music, and astronomy—the
quadrivium. Similar to the Arithmetic of Boethius, the arithmetic and
geometric portions were restricted to elementary definitions and prop-
erties of numbers and figures.
These men are distinguished for being instrumental in preserving

elements of traditional learning in what were truly the “Dark Ages” of
science. For the next two centuries, the gloom continued to such an
extent that it has been said nothing scholarly could be heard in Europe
but the scratching of the pen of the Venerable Bede (ca. 673 735),
writing in England about the mathematics needed to determine the date
of Easter or about the representation of numbers by means of the fingers.
Both topics were significant: the first was necessary to establish the
annual calendar in the Christian era; the second enabled an illiterate
populace to conduct arithmetic transactions.

Gerbert

In 800, Charlemagne was crowned emperor by the pope. He endeavored
to pull his empire out of the doldrums of the Dark Ages and under that
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program called on the educator Alcuin of York (ca. 735 804), whom he
had brought to Tours some years earlier, to revitalize education in
France. This brought sufficient improvement to lead some historians to
speak of a Carolingian Renaissance. Alcuin was no mathematician, how-
ever; presumably, he showed Neopythagorean influence in his explana-
tion that the act of creation had taken six days because 6 was a perfect
number. Beyond some arithmetic, geometry, and astronomy that Alcuin
is reputed to have written for beginners, there was little mathematics in
France or England for another two centuries. In Germany, Hrabanus
Maurus (784 856) continued the slight mathematical and astronomical
efforts of Bede, especially in connection with the computation of the
date of Easter. But not for another century and a half was there any
notable change in the mathematical climate in Western Europe, and
then it came in the person of one who rose ultimately to become Pope
Sylvester II.
Gerbert (ca. 940 1003) was born in France, educated in Spain and

Italy, and then served in Germany as tutor and later adviser to the
Holy Roman Emperor Otto III. Having also served as archbishop, first
at Reims and later at Ravenna, Gerbert in 999 was elevated to the
papacy, taking the name Sylvester—possibly in recollection of an
earlier pope who had been noted for scholarship, but more probably
because Sylvester I, the pope during the days of Constantine, sym-
bolized the unity of papacy and empire. Gerbert was active in politics,
both lay and ecclesiastical, but he also had time for educational
matters. He wrote on both arithmetic and geometry, likely depending
on the Boethian tradition, which had dominated the teaching in
Western church schools. More interesting than these expository
works, however, is the fact that Gerbert was perhaps the first one in
Europe to have taught the use of the Hindu-Arabic numerals. It is not
clear how he came in contact with these. Moorish learning included
Arabic numeration with the Western, or Gobar (dust), forms of the
numerals, although there is little evidence of Arabic influence in
extant documents. A Spanish copy of the Origines of Isidore, dating
from 992, contains the numerals, without the zero. In certain manu-
scripts of Boethius, however, similar numeral forms, or apices, appear
as counters for use on a computing board or an abacus. The Boethian
apices, on the other hand, may themselves have been later inter-
polations. The situation with respect to the introduction of the
numerals into Europe is about as confused as is that surrounding the
invention of the system perhaps half a millennium earlier. Moreover,
it is not clear that there was any continued use of the new numerals in
Europe during the two centuries following Gerbert. Not until the
thirteenth century was the Hindu-Arabic system definitively intro-
duced into Europe, and then the achievement was not the work of one
man but of several.
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The Century of Translation

One cannot absorb the wisdom of one’s neighbors if one cannot
understand their language. The Muslims had broken down the lan-
guage barrier to Greek culture in the ninth century, and the Latin
Europeans overcame the language barrier to Arabic learning in the
twelfth century. At the beginning of the twelfth century, no European
could expect to be a mathematician or an astronomer, in any real
sense, without a good knowledge of Arabic, and Europe, during the
earlier part of the twelfth century, could not boast of a mathematician
who was not a Moor, a Jew, or a Greek. By the end of the century, the
leading and most original mathematician came from Christian Italy.
The period was one of transition from an older to a newer point of
view. The revival began of necessity with a spate of translations. At
first, these were almost exclusively from Arabic into Latin, but by the
thirteenth century there were many variants—Arabic to Spanish,
Arabic to Hebrew, Greek to Latin, or combinations such as Arabic to
Hebrew to Latin.
It is not easy to tell whether the religious crusades had a positive

influence on the transmission of learning, but it is likely that they dis-
rupted channels of communication more than they facilitated them. At
all events, the channels through Spain and Sicily were the most
important in the twelfth century, and these were largely undisturbed by
the marauding armies of the crusaders between 1096 and 1272. The
revival of learning in Latin Europe took place during, but probably
despite, the crusades.
There were at the time three chief bridges between Islam and the

Christian world—Spain, Sicily, and the Eastern Empire—and of these the
first was the most important. Yet, not all of the major translators availed
themselves of the Spanish intellectual bridge. For example, the English-
man Adelard of Bath (ca. 1075 1160) is known to have been in Sicily and
theEast but seems not to have been in Spain; it is not clear howhe had come
into contact with Muslim learning. In 1126, Adelard translated Khwar-
izmi’s astronomical tables from Arabic into Latin. In 1142, he produced a
major version of the Elements of Euclid, among the earliest of the math-
ematical classics to appear in Latin translation from the Arabic. Adelard’s
translation of the Elements did not become very influential for another
century, but itwas far froman isolated event. Later (ca. 1155), he translated
Ptolemy’s Almagest from Greek into Latin.
On the Iberian peninsula, especially at Toledo, where the archbishop

promoted such work, a veritable school of translation was developing. The
city, once a Visigothic capital and later, from 712 to 1085, in Muslim
hands before falling to the Christians, was an ideal spot for the transfer of
learning. In Toledo libraries, there was a wealth of Muslim manuscripts,
and of the populace, including Christians, Mohammedans, and Jews,
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many spoke Arabic, facilitating the interlingual flow of information. The
cosmopolitanism of the translators is evident from some of the names:
Robert of Chester, Hermann the Dalmatian, Plato of Tivoli, Rudolph of
Bruges, Gerard of Cremona, and John of Seville, the last a converted Jew.
These are but a small portion of the men associated with the translation
projects in Spain.
Of the translators in Spain, perhaps the most prolific was Gerard of

Cremona (1114 1187). He had gone to Spain to learn Arabic in order to
understand Ptolemy, but he devoted the rest of his life to translations
from the Arabic. Among these exemplary works was the translation into
Latin of a revised version of Thabit ibn-Qurra’s Arabic edition of
Euclid’s Elements; Gerard’s later translation of the Almagest, through
which Ptolemy came chiefly to be known in the West; and translations of
more than eighty other manuscripts.
Among the works of Gerard was a Latin adaptation of the Algebra of

al-Khwarizmi, but an earlier and more popular translation of the Algebra
had been made in 1145 by Robert of Chester. This, the first translation of
al-Khwarizmi’s treatise (as Robert’s translation of the Koran, a few
years before, had marked another “first”), may be taken as marking the
beginning of European algebra. Robert of Chester returned to England in
1150, but the Spanish work of translation continued unabated through
Gerard and others. The works of al-Khwarizmi were evidently among
the more popular subjects of the time, and the names of Plato of Tivoli
and John of Seville are attached to still other adaptations of the Algebra.
Western Europe suddenly took far more favorably to Arabic mathe-
matics than it ever had to Greek geometry. Perhaps part of the reason for
this is that Arabic arithmetic and algebra were on a more elementary
level than Greek geometry had been during the days of the Roman
republic and empire. The Romans, however, had never displayed much
interest in Greek trigonometry, relatively useful and elementary though
it was, yet Latin scholars of the twelfth century devoured Arabic tri-
gonometry as it appeared in astronomical works.

Abacists and Algorists

It was during the twelfth-century period of translation and the following
century that confusion arose concerning the name al-Khwarizmi and led to
the word “algorithm.” The Hindu numerals had been explained to Latin
readers by Adelard of Bath and John of Seville at about the same time that
an analogous schemewas introduced to the Jews byAbraham ibn-Ezra (ca.
1090 1167), an author of books on astrology, philosophy, and mathe-
matics. As in the Byzantine culture, the first nine Greek alphabetic
numerals, supplemented by a special zero symbol, took the place of the
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Hindu numerals, so ibn-Ezra used the first nine Hebraic alphabetic
numerals and a circle for zero in the decimal positional system for integers.
Despite the numerous accounts of the Hindu-Arabic numerals, the tran-
sition from the Roman number schemewas surprisingly slow. Perhaps this
was because computation with the abacus was quite common, and in this
case the advantages of the new scheme are not nearly so apparent as in
calculation with only pen and paper. For several centuries, there was keen
competition between the “abacists” and the “algorists,” and the latter tri-
umphed definitively only in the sixteenth century.
Thirteenth-century authors from many walks of life helped popularize

“algorism,” but we shall mention three in particular. One of them,
Alexandre de Villedieu (fl. ca. 1225), was a French Franciscan; another,
John of Halifax (ca. 1200 1256), also known as Sacrobosco, was an

A woodcut from Gregor Reisch, Margarita Philosophica (Freiburg,
1503). Arithmetic is instructing the algorist and the abacist, here
inaccurately represented by Boethius and Pythagoras.
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English schoolman; and the third was Leonardo of Pisa (ca. 1180 1250),
better known as Fibonacci, or “son of Bonaccio,” an Italian merchant. The
Carmen de algorismo of Alexandre is a poem in which the fundamental
operations on integers are fully described, using the Hindu-Arabic
numerals and treating zero as a number. The Algorismus vulgaris of
Sacrobosco is a practical account of reckoning that rivaled in popularity
his Sphaera, an elementary tract on astronomy used in the schools during
the later Middle Ages. The book in which Fibonacci described the new
algorism is a celebrated classic, completed in 1202, but it bears a mis-
leading title—Liber abaci (or Book of the Abacus). It is not on the abacus;
it is a very thorough treatise on algebraic methods and problems in which
the use of the Hindu-Arabic numerals is strongly advocated.

Fibonacci

Fibonacci’s father, Bonaccio, was a Pisan engaged in business in
northern Africa, and his son Leonardo studied under a Muslim teacher
and traveled in Egypt, Syria, and Greece. It therefore was natural that
Fibonacci should have been steeped in Arabic algebraic methods,
including, fortunately, the Hindu-Arabic numerals and, unfortunately,
the rhetorical form of expression. The Liber abaci opens with an idea
that sounds almost modern but that was characteristic of both Islamic
and Christian medieval thought—that arithmetic and geometry are
connected and support each other. This view is, of course, reminiscent of
al-Khwarizmi’s Algebra, but it was equally accepted in the Latin
Boethian tradition. The Liber abaci, nevertheless, is much more con-
cerned with number than with geometry. It first describes “the nine
Indian figures,” together with the sign 0, “which is called zephirum in
Arabic.” Incidentally, it is from zephirum and its variants that our words
“cipher” and “zero” are derived. Fibonacci’s account of Hindu-Arabic
numeration was important in the process of transmission, but it was not,
as we have seen, the first such exposition, nor did it achieve the popu-
larity of the later but more elementary descriptions by Sacrobosco and
Villedieu. The horizontal bar in fractions, for example, was used reg-
ularly by Fibonacci (and was known earlier in Arabia), but it was only in
the sixteenth century that it came into general use. (The slanted solidus
was suggested in 1845 by Augustus De Morgan.)

The LiberAbaci

The Liber abaci is not a rewarding book for the modern reader, for after an
explanation of the usual algoristic or arithmetic processes, including the
extraction of roots, it stresses problems in commercial transactions, using a
complicated system of fractions to compute exchanges of currency. It is one
of the ironies of history that the chief advantage of positional notation—its
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applicability to fractions—almost entirely escaped the users of the Hindu-
Arabic numerals for the first thousand years of their existence. In this
respect, Fibonacci was as much to blame as anyone, for he used three types
of fractions—common, sexagesimal, andunit—but not decimal fractions. In
the Liber abaci, in fact, the two worst of these systems, unit fractions and
common fractions, are extensively used. Moreover, problems of the fol-
lowing type abound: If 1 solidus imperial, which is 12 deniers imperial, is
sold for 31 deniers Pisan, how many deniers Pisan should one obtain for 11
deniers imperial? In a recipe-type of exposition, the answer is laboriously
found to be 5

1228 (or, as we should write it, 28 5
12). Fibonacci customarily

placed the fractional part or parts of a mixed number before the integral
part. Instead of writing 115

6, for example, he wrote 1
3

1
211, with the juxtapo-

sition of unit fractions and integers implying addition.
Fibonacci evidently was fond of unit fractions—or he thought his

readers were—for the Liber abaci includes tables of conversion from
common fractions to unit fractions. The fraction 98

100, for instance, is
broken into 1

100
1
50

1
5

1
4

1
2, and

99
100 appears as 1

25
1
5

1
4

1
2. An unusual quirk in his

notation led him to express the sum of 1
5

3
4 and

1
10

2
9 as

1 6 2
2 9 101, the notation

1 6 2
2 9 10 meaning in this case

1

2U9U10
1

6

9U10
1

2

10
:

Analogously, in another of the many problems on monetary conver-
sion in the Liber abaci, we read that if 1

4
2
3 of a rotulus is worth 1

7
1
6

2
5 of a

bizantium, then 1 4 7
8 9 10 of a bizantium is worth 3 8 83 11

4 10 149 12 of a rotulus. Pity the
poor medieval businessman who had to operate with such a system!

The Fibonacci Sequence

Much of the Liber abaci makes dull reading, but some of the problems
were so lively that they were used by later writers. Among these is a
hardy perennial that may have been suggested by a similar problem in
the Ahmes Papyrus. As expressed by Fibonacci, it read,

Seven old women went to Rome; each woman had seven mules; each

mule carried seven sacks, each sack contained seven loaves; and with

each loaf were seven knives; each knife was put up in seven sheaths.

Without doubt, the problem in the Liber abaci that has most inspired
future mathematicians was the following:

How many pairs of rabbits will be produced in a year, beginning with a

single pair, if in every month each pair bears a new pair which becomes

productive from the second month on?
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This celebrated problem gives rise to the “Fibonacci sequence” 1, 1, 2,
3, 5, 8, 13, 21, . . . , un, . . . , where un5 un 11 un 2, that is, where each term
after the first two is the sum of the two terms immediately preceding it.
This sequence has been found to have many beautiful and significant
properties. For instance, it can be proved that any two successive terms
are relatively prime and that limn-Nun�1=un is the golden section ratio
ð 5
p

2 1Þ=2. The sequence is also applicable to questions in phyllotaxy
and organic growth.

A Solution of a Cubic Equation

The Liber abaci was Fibonacci’s best-known book, appearing in another
edition in 1228, but it was evidently not widely appreciated in the
schools, and it did not appear in print until the nineteenth century.
Fibonacci was without doubt the most original and most capable
mathematician of the medieval Christian world, but much of his work
was too advanced to be understood by his contemporaries. His treatises
other than the Liber abaci also contain many good things. In the Flos,
dating from 1225, there are indeterminate problems reminiscent of
Diophantus and determinate problems reminiscent of Euclid, the Arabs,
and the Chinese.
Fibonacci evidently drew from many and varied sources. Especially

interesting for its interplay of algorithm and logic is Fibonacci’s treat-
ment of the cubic equation x31 2x21 10x5 20. The author showed an
attitude close to that of the modern period in first proving the impossi-
bility of a root in the Euclidean sense, such as a ratio of integers or
a number of the form a1 b

p
, where a and b are rational. As of that

time, this meant that the equation could not be solved exactly by alge-
braic means. Fibonacci then went on to express the positive root
approximately as a sexagesimal fraction to half a dozen places—
1;22,7,42,33,4,40. This was a remarkable achievement, but we do not
know how he did it. Perhaps through the Arabs he had learned what we
call “Horner’s method,” a device known before this time in China, as
we saw earlier. This is the most accurate European approximation to an
irrational root of an algebraic equation up to that time or anywhere in
Europe for another 300 years and more. It is characteristic of the era that
Fibonacci should have used sexagesimal fractions in theoretical math-
ematical work but not in mercantile affairs. Perhaps this explains why
the Hindu-Arabic numerals were not promptly used in astronomical
tables, such as the Alfonsine Tables of the thirteenth century. Where the
“Physicists’” (sexagesimal) fractions were in use, there was less urgency
in displacing them than there was in connection with the common and
unit fractions in commerce.
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The Theory of Numbers and Geometry

In 1225, Fibonacci published not only the Flos, but also the Liber
quadratorum, a brilliant work on indeterminate analysis. This, like the
Flos, contains a variety of problems, some of which stemmed from
the mathematical contests held at the court of the emperor Frederick II,
to which Fibonacci had been invited. One of the proposed problems
strikingly resembles the type in which Diophantus had delighted—to
find a rational number such that if 5 is added to, or subtracted from, the
square of the number, the result will be the square of a rational number.
Both the problem and a solution, 3 5

12, are given in Liber quadratorum.
The book makes frequent use of the identities

ða2 1 b2Þðc2 1d2Þ5 ðac1 bdÞ2 1 ðbc2 adÞ2 5 ðad1 bcÞ2 1 ðac2 bdÞ2;
which had appeared in Diophantus and had been widely used by the
Arabs. Fibonacci, in some of his problems and methods, seems to closely
follow the Arabs.
Fibonacci was primarily an algebraist, but he also wrote, in 1220, a

book titled Practica geometriae. This seems to be based on an Arabic
version of Euclid’s Division of Figures (which is now lost) as well as on
Heron’s works on mensuration. It contains, among other things, a proof
that the medians of a triangle divide each other in the ratio 2 to 1 and a
three-dimensional analogue of the Pythagorean theorem. Continuing a
Babylonian and Arabic tendency, he used algebra to solve geometric
problems.

Jordanus Nemorarius

It will be clear from the few illustrations we have given that Fibonacci
was an unusually capable mathematician. It is true that he had no worthy
rival during the 900 years of medieval European culture, but he was not
quite the isolated figure he is sometimes held to be. He had an able,
though less gifted, younger contemporary in Jordanus Nemorarius
(1225 1260). Jordanus Nemorarius, or Jordanus de Nemore, represents
a more Aristotelian aspect of science than others we have met in the
thirteenth century, and he became the founder of what is sometimes
known as the medieval school of mechanics. To him, we owe the first
correct formulation of the law of the inclined plane, a law that the
ancients had sought in vain: the force along an oblique path is inversely
proportional to the obliquity, where obliquity is measured by the ratio of
a given segment of the oblique path to the amount of the vertical
intercepted by that path, that is, the “run” over the “rise.” In the language
of trigonometry, this means that F :W5 1/csc θ, which is equivalent to
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the modern formulation F5W sin θ, whereW is weight, F is force, and θ
is the angle of inclination.
Jordanus was the author of books on arithmetic, geometry, and

astronomy, as well as mechanics. His Arithmetica, in particular, was the
basis of popular commentaries at the University of Paris as late as
the sixteenth century; this was not a book on computation but a quasi-
philosophical work in the tradition of Nicomachus and Boethius. It con-
tains such theoretical results as the theorem that any multiple of a perfect
number is abundant and that a divisor of a perfect number is deficient. The
Arithmetica is especially significant for the use of letters instead of
numerals as numbers, thus making possible the statement of general
algebraic theorems. In the arithmetical theorems in Euclid’s Elements
VII IX, numbers had been represented by line segments to which letters
had been attached, and the geometric proofs in al-Khwarizmi’s Algebra
made use of lettered diagrams, but all coefficients in the equations used in
the Algebra are specific numbers, whether represented by numerals or
written out in words. The idea of generality is implied in al-Khwarizmi’s
exposition, but he had no scheme for expressing algebraically the general
propositions that are so readily available in geometry.
In the Arithmetica, the use of letters suggests the concept of “para-

meter,” but Jordanus’s successors generally overlooked his scheme of
letters. They seem to have been more interested in the Arabic aspects of
algebra found in another Jordanian work, De numeris datis, a collection
of algebraic rules for finding, from a given number, other numbers
related to it according to certain conditions, or for showing that a number
satisfying specific restrictions is determined. A typical instance is the
following: if a given number is divided into two parts such that the product
of one part by the other is given, then each of the two parts is necessarily
determined.
It is greatly to his credit that he first stated the rule, equivalent to the

solution of a quadratic equation, completely in general form. Only later
did he provide a specific example of it, expressed in Roman numerals: to
divide the number X into two parts the product of which is to be XXI,
Jordanus follows through the steps indicated previously to find that the
parts are III and VII.

Campanus of Novara

To Jordanus is also attributed an Algorismus (or Algorithmus) demon-
stratus, an exposition of arithmetic rules that was popular for three cen-
turies. The Algorismus demonstratus again shows Boethian and Euclidean
inspiration, as well as Arabic algebraic characteristics. Still greater
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preponderance of Euclidean influence is seen in the work of Johannes
Campanus of Novara (fl. ca. 1260), the chaplain to PopeUrban IV. To him,
the late medieval period owed the authoritative translation of Euclid from
Arabic into Latin, the one that first appeared in printed form in 1482. In
making the translation, Campanus used various Arabic sources, as well as
the earlier Latin version by Adelard. Both Jordanus and Campanus dis-
cussed the angle of contact, or horn angle, a topic that produced lively
discussions in the latermedieval period, whenmathematics took on amore
philosophical and speculative aspect. Campanus noticed that if one com-
pared the angle of contact—that is, the angle formed by an arc of a circle
and the tangent at an end point—with the angle between two straight lines,
there appears to be an inconsistency with Euclid’s Elements X.1, the
fundamental proposition of the “method of exhaustion.” The rectilineal
angle is obviously greater than the horn angle. Then, if from the larger
anglewe take awaymore than half, and if from the remainderwe take away
more than half, and if we continue in this way, each time taking awaymore
than half, ultimately we should reach a rectilineal angle less than the horn
angle, but this obviously is not true. Campanus correctly concluded that the
proposition applies to magnitudes of the same kind, and horn angles are
different from rectilineal angles.
Similarity in the interests of Jordanus and Campanus is seen in the fact

that Campanus, at the end of Book IV of his translation of the Elements,
describes an angle trisection that is exactly the same as that which had
appeared in Jordanus’s De triangulis. The only difference is that the let-
tering of theCampanus diagram isLatin, whereas that of Jordanus isGreco-
Arabic. The trisection, unlike those in antiquity, is essentially as follows.
Let the angle AOB that is to be trisected be placed with its vertex at the

center of a circle of any radius OA5OB (Fig. 12.1). From O draw a
radius OC > OB, and through A place a straight line AED in such a way
that DE5OA. Finally, through O draw line OF parallel to AED. Then,
+FOB is one-third +AOB, as required.

A

F

B

C

E

O

D

FIG. 12.1
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Learning in the Thirteenth Century

In the work of Fibonacci, Western Europe had come to rival other civi-
lizations in the level of its mathematical achievement, but this was only a
small part of what was taking place in Latin culture as a whole. Many of
the famous universities—Bologna, Paris, Oxford, and Cambridge—were
established in the late twelfth and early thirteenth centuries, and this was
the period in which great Gothic cathedrals—Chartres, Notre Dame,
Westminster, Reims—were built. Aristotelian philosophy and science had
been recovered and were taught in the universities and the church schools.
The thirteenth century is the period of great scholars and churchmen, such
as Albertus Magnus, Robert Grosseteste, Thomas Aquinas, and Roger
Bacon. Two of these, Grosseteste and Bacon, made strong pleas for the
importance of mathematics in the curriculum, although neither was
himself much of a mathematician. It was during the thirteenth century that
many practical inventions became known in Europe: gunpowder and the
compass, both perhaps from China, and spectacles from Italy, with
mechanical clocks appearing only a little later.

Archimedes Revived

The twelfth century had seen the great tide of translation from Arabic
into Latin, but there now were other crosscurrents of translations. Most
of the works of Archimedes, for example, had been virtually unknown to
the medieval West, but in 1269, William of Moerbeke (ca. 1215 1286)
published a translation (the original manuscript of which was discovered
in 1884 in the Vatican) from Greek into Latin of the chief Archimedean
scientific and mathematical treatises. Moerbeke, who came from Flan-
ders and was named Archbishop of Corinth, knew little mathematics;
hence, his excessively literal translation (helpful now in reconstructing
the original Greek text) was of limited usefulness, but from this
time on, most of Archimedes’ works were at least accessible. In fact, the
Moerbeke translation included parts of Archimedes’ works with
which the Arabs evidently were not familiar, such as the treatises On
Spirals, the Quadrature of the Parabola, and Conoids and Spheroids.
Nevertheless, the Muslims had been able to make more progress in
understanding the mathematics of Archimedes than did the Europeans
during the medieval period.
During the twelfth century, the works of Archimedes had not com-

pletely escaped the attention of the indefatigable Gerard of Cremona,
who had converted into Latin an Arabic version of the short work
Measurement of the Circle, which was used in Europe for several cen-
turies. There had also circulated, before 1269, a portion of the Archi-
medean Sphere and Cylinder. These two examples could provide only a
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very inadequate idea of what Archimedes had done, and, therefore, the
translation by Moerbeke was of the greatest importance, including as it
did a number of major treatises. It is true that the version was only
occasionally used during the next two centuries, but it at least remained
extant. It was this translation that became known to Leonardo da Vinci
and other Renaissance scholars, and it was Moerbeke’s version that was
first printed in the sixteenth century.

Medieval Kinematics

The history of mathematics has not been a record of smooth and con-
tinuous development; hence, it should come as no surprise that the
upward surge during the thirteenth century should have lost some of its
momentum. There was no Latin equivalent of Pappus to stimulate a
revival of classical higher geometry. The works of Pappus were not
available in Latin or Arabic. Even Apollonius’s Conics was little known,
beyond some of the simplest properties of the parabola that arose in
connection with the ubiquitous treatises on optics, a branch of science
that fascinated the Scholastic philosophers. The science of mechanics,
too, appealed to the scholars of the thirteenth and fourteenth centuries,
for now they had at hand both the statics of Archimedes and the kine-
matics of Aristotle.
We noted earlier that the Aristotelian conclusions on motion had not

gone unchallenged and modifications had been suggested, notably by
Philoponus. During the fourteenth century, the study of change, in
general, and of motion, in particular, was a favorite topic in the uni-
versities, especially at Oxford and Paris. At Merton College in Oxford,
the Scholastic philosophers had deduced a formulation for uniform rate
of change that today is generally known as the Merton rule. Expressed
in terms of distance and time, the rule essentially says that if a body
moves with uniformly accelerated motion, then the distance covered
will be that which another body would have covered had it been
moving uniformly for the same length of time with a speed equal to that
of the first body at the midpoint of the time interval. As we should
formulate it, the average velocity is the arithmetic mean of the initial
and terminal velocities. Meanwhile, at the University of Paris, there
was developed a more specific and clear-cut doctrine of impetus than
that proposed by Philoponus. In it, we can recognize a concept akin to
our inertia.

Thomas Bradwardine

The late medieval physicists comprised a large group of university tea-
chers and churchmen, but we call attention to only two, for these were also
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prominent mathematicians. The first is Thomas Bradwardine (1290?
1349), a philosopher, a theologian, and a mathematician who rose to the
position of Archbishop of Canterbury; the second is Nicole Oresme
(1323? 1382), a Parisian scholar who became the Bishop of Lisieux. To
these two men was due a broadened view of proportionality.
The Elements of Euclid had included a logically sound theory of

proportion, or the equality of ratios, and this had been applied by ancient
and medieval scholars to scientific questions. For a given time, the
distance covered in uniform motion is proportional to the speed, and for
a given distance, the time is inversely proportional to the speed.
Aristotle had thought, none too correctly, that the speed of an object

subject to a moving force acting in a resisting medium is proportional
to the force and inversely proportional to the resistance. In some
respects, this formulation seemed to later scholars to contradict
common sense. When force F is equal to or less than resistance, a
velocity V will be imparted according to the law V5KF / R, where K
is a nonzero constant of proportionality, but when resistance balances
or exceeds force, one should expect no velocity to be acquired. To
avoid this absurdity, Bradwardine made use of a generalized theory of
proportions. In his Tractatus de proportionibus of 1328, Bradwardine
developed the Boethian theory of double or triple or, more generally,
what we would call “n-tuple” proportion. His arguments are expressed
in words, but in modern notation we would say that in these cases,
quantities vary as the second or third or nth power. In the same
way, the theory of proportions included subduple or subtriple or sub-
n-tuple proportion, in which quantities vary as the second or third or
nth root.
Now Bradwardine was ready to propose an alternative to the Aristo-

telian law of motion. To double a velocity that arises from some ratio or
proportion F / R, he said, it was necessary to square the ratio F / R; to triple
the velocity, one must cube the “proportio,” or ratio F / R; to increase
the velocity n-fold, one must take the nth power of the ratio F / R. This is
tantamount to asserting that velocity is given, in our notation, by the
relationship V5K logF /R, for log (F /R)n5 n logF / R. That is, if
V05 logF0 /R0, then Vn5 log (F0 /R0)n5 n logF0 /R05 nV0. Bradwardine
himself evidently never sought experimental confirmation of his law, and
it seems not to have been widely accepted.
In addition, Bradwardine wrote several other mathematical works, all

pretty much in the spirit of the times. His Arithmetic and his Geometry
show the influence of Boethius, Aristotle, Euclid, and Campanus. Brad-
wardine, known in his day as “Doctor profundus,” was also attracted to
topics such as the angle of contact and star polygons, both of which occur
in Campanus and earlier works. Star polygons, which include regular
polygons as special cases, go back to ancient times. A star polygon is
formed by connecting with straight lines every mth point, starting from a
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given one, of the n points that divide the circumference of a circle into n
equal parts, where n. 2 and m is prime to n. There is in the Geometry
even a touch of Archimedes’ Measurement of the Circle. The philo-
sophical bent in all of Bradwardine’s works is seen most clearly in the
Geometrica speculativa and the Tractatus de continuo, in which he
argued that continuous magnitudes, although including an infinite
number of indivisibles, are not made up of such mathematical atoms but
are instead composed of an infinite number of continua of the same
kind. His views are sometimes said to resemble those of the modern
intuitionists; at any rate, medieval speculations on the continuum,
popular among Scholastic thinkers such as Thomas Aquinas, later
influenced the Cantorian infinite of the nineteenth century.

Nicole Oresme

Nicole Oresme lived later than Bradwardine, and in the work of the
former, we see extensions of ideas of the latter. In De proportionibus
proportionum, composed about 1360, Oresme generalized Bradwar-
dine’s proportion theory to include any rational fractional power and to
give rules for combining proportions that are the equivalents of our laws
of exponents, now expressed in the notations xm � xn5 xm1 n and
(xm)n5 xmn. For each rule, specific instances are given, and the latter part
of another work, the Algorismus proportionum, applies the rules in
geometric and physical problems. Oresme also suggested the use of
special notations for fractional powers, for in his Algorismus pro-
portionum there are expressions such as

to denote the “one and one-half proportion,” that is, the cube of the
principal square root, and forms such as

1UpU1
4U2U2

for 2
1
2

4
p

. We now take for granted our symbolic notations for powers and
roots, with little thought for the slowness with which these developed in
the history of mathematics. Even more imaginative than Oresme’s
notations was his suggestion that irrational proportions are possible.
Here, he was striving toward what we should write as x 2

p
, for example,

which is perhaps the first hint in the history of mathematics of a higher
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transcendental function, but lack of adequate terminology and notation
prevented him from effectively developing his notion of irrational
powers.

The Latitude of Forms

The notion of irrational powers may have been Oresme’s most brilliant
idea, but it was not in this direction that he was most influential. For
almost a century before his time, Scholastic philosophers had been
discussing the quantification of variable “forms,” a concept of Aristotle
roughly equivalent to qualities. Among these forms were such things as
the velocity of a moving object and the variation in temperature from
point to point in an object with nonuniform temperature. The discussions
were interminably prolix, for the available tools of analysis were inap-
propriate. Despite this handicap, the logicians at Merton College had
reached, as we saw, an important theorem concerning the mean value
of a “uniformly difform” form—that is, one in which the rate of change
of the rate of change is constant. Oresme was well aware of this result,
and a brilliant thought occurred to him, sometime before 1361—why not
draw a picture or a graph of the way in which things vary? Here we see,
of course, an early suggestion of what we now describe as the graphical
representation of functions. Marshall Clagett has found what looks like
an earlier graph, drawn by Giovanni di Cosali, in which the line of
longitude is placed in a vertical position (Clagett 1959, pp. 332 333,
414). The exposition of Oresme surpasses that of Cosali in clarity and
influence, however.
Everything measurable, Oresme wrote, is imaginable in the manner

of continuous quantity; hence, he drew a velocity-time graph for a
body moving with uniform acceleration. Along a horizontal line, he
marked points that represented instants of time (or longitudes), and
for each instant he drew perpendicular to the line of longitudes a line
segment (latitude) the length of which represented the velocity. The
end points of these segments, he saw, lie along a straight line, and if
the uniformly accelerated motion starts from rest, the totality of
velocity lines (which we call ordinates) will make up the area of a
right triangle (see Fig. 12.2). Inasmuch as this area represents the
distance covered, Oresme has provided a geometric verification of
the Merton rule, for the velocity at the midpoint of the time interval is
half of the terminal velocity. Moreover, the diagram obviously leads
to the law of motion generally ascribed to Galileo in the seventeenth
century. It is clear from the geometric diagram that the area in the first
half of the time is to that in the second half in the ratio 1 : 3. If we
subdivide the time into three equal parts, the distances covered (given
by the areas) are in the ratio 1 : 3 : 5. For four equal subdivisions, the
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distances are in the ratio 1:3:5:7. In general, as Galileo later observed,
the distances are to one another as the odd numbers, and because the
sum of the first n consecutive odd numbers is the square of n, the total
distance covered varies as the square of the time, the familiar Galilean
law for falling bodies.
The terms “latitude” and “longitude” that Oresme used are in a general

sense equivalent to our ordinate and abscissa, and his graphical repre-
sentation is akin to our analytic geometry. His use of coordinates was
not, of course, new, for Apollonius and others before him had used
coordinate systems, but Oresme’s graphical representation of a variable
quantity was novel. He seems to have grasped the essential principle that
a function of one unknown can be represented as a curve, but he was
unable to make any effective use of this observation except in the case of
the linear function. Moreover, Oresme was chiefly interested in the area
under the curve; hence, it is not very likely that he saw that every plane
curve can be represented, with respect to a coordinate system, as a
function of one variable. Where we say that the velocity graph in uni-
formly accelerated motion is a straight line, Oresme wrote, “Any uni-
formly difform quality terminating in zero intensity is imagined as a
right triangle.” That is, Oresme was more concerned with (1) the way in
which the function varies (that is, the differential equation of the curve),
and (2) the way in which the area under the curve varies (that is, the
integral of the function). He pointed out the constant-slope property for
his graph of uniformly accelerated motion—an observation equivalent to
the modern two-point equation of the line in analytic geometry and
leading to the concept of the differential triangle. Moreover, in finding
the distance function, the area, Oresme is obviously performing a simple
integration geometrically that results in the Merton rule. He did not
explain why the area under a velocity-time curve represents the distance
covered, but it is probable that he thought of the area as made up of
many vertical lines or indivisibles, each of which represented a velocity
that continued for a very short time.

Fig. 12.2
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The graphical representation of functions, known then as the latitude
of forms, remained a popular topic from the time of Oresme to that of
Galileo. The Tractatus de latitudinibus formarum, written perhaps by a
student of Oresme’s, if not by Oresme himself, appeared in numerous
manuscript forms and was printed at least four times between 1482 and
1515, but this was only a précis of a larger work by Oresme titled
Tractatus de figuratione potentiarum et mensurarum. Here, Oresme went
so far as to suggest a three-dimensional extension of his “latitude of
forms,” in which a function of two independent variables was pictured as
a volume made up of all of the ordinates erected according to a given
rule at points in a portion of the reference plane.

Infinite Series

Mathematicians of the Western world in the fourteenth century had
imagination and precision of thought, but they lacked algebraic and
geometric facility; hence, their contributions lay not in extensions of
classical work but in new points of view. Among these was an occu-
pation with infinite series, an essentially novel topic in the West
anticipated only by some ancient iterative algorithms and Archimedes’
summation of an infinite geometric progression. Where the Greeks had a
horror infiniti, the late medieval Scholastic philosophers frequently
referred to the infinite, both as a potentiality and as an actuality (or
something “completed”). In England in the fourteenth century, a logician
by the name of Richard Suiseth (fl. ca. 1350), but better known as
Calculator, solved the following problem in the latitude of forms:

If throughout the first half of a given time interval a variation continues at

a certain intensity, throughout the next quarter of the interval at double

this intensity, throughout the following eighth at triple the intensity and so

ad infinitum; then the average intensity for the whole interval will be

the intensity of the variation during the second subinterval (or double the

initial intensity).

This is equivalent to saying that 1
2 1

2
4 1

3
8 1?1 n

2n 1?5 2.

Calculator gave a long and tedious verbal proof, for he did not know
about graphical representation, butOresmeused his graphical procedure to
prove the theorem more easily. Oresme also handled other cases, such as

1U3
4

1
2U3
16

1
3U3
64

1?1
nU3
4n

1?

in which the sum is 4
3. Problems similar to these continued to occupy

scholars during the next century and a half.
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Among Oresme’s other contributions to infinite series was his proof
that the harmonic series is divergent. He grouped the successive terms in
the series

1

2
1

1

3
1

1

4
1

1

5
1

1

6
1

1

7
1

1

8
1?1

1

n
1?;

placing the first term in the first group, the next two terms in the second
group, the next four terms in the third group, and so on, the mth group
containing 2m 1 terms. Then, it is obvious that we have infinitely many
groups and that the sum of the terms within each group is at least 1

2.
Hence, by adding together enough terms in order, we can exceed any
given number.

Levi ben Gerson

Levi ben Gerson (1288 1344), a Jewish scholar living in Provence,
contributed a number of mathematical works in Hebrew. Provence then
not being part of France, where Jews were persecuted under Philip the
Fair, Levi ben Gerson benefited from the tolerant support of the Avignon
pope Clement VI and wrote one of his texts at the request of the Bishop
of Meaux. His scholarship was extensive; perhaps best known as a theo-
logian and a philosopher, he was well versed in numerous disciplines and
appears to have been respected by the educated elite of Provence. He was
an independent thinker, apparently questioning accepted belief in most
areas he studied, whether it was Jewish theology or Ptolemaic astronom-
ical doctrine.
He wrote the Art of Calculation in 1321, in which he described many

topics later found in courses of so-called higher algebra: extraction of
square roots and cube roots, the summation of series, permutations and
combinations, and binomial coefficients, among others. He provided
proofs using methods not customary at the time. In 1342, he wrote The
Harmony of Numbers, which contains a proof that (1,2), (2,3), (3,4), and
(8,9) are the only pairs of consecutive numbers whose only factors are 2
or 3. His chief contributions to geometry consisted of two books, in one
of which he provided a commentary on the first five books of Euclid; he
also provided arguments concerning the independence of the parallel
postulate.
His largest work, The Wars of the Lord, which he wrote between 1317

and 1328, consists of six books. The fifth, a voluminous Astronomy,
translated into Latin at the Avignon court, included his On Sines, Chords
and Arcs, which was also issued separately. This contains his main
discussion of trigonometry, including proof of the sine theorem for plane
triangles and a discussion on the construction of tables for sines and
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versed sines. His tables are very accurate down to 3/4�. His astronomical
contributions include descriptions of the Jacob’s staff, which is used for
measuring angular distances, and of other astronomical measuring instru-
ments, as well as the critique of Ptolemy alluded to previously, which called
for better coincidence of theory and observation.

Nicholas of Cusa

Oresme had argued that everything measurable can be represented by
a line (latitude), and a mathematics of mensuration, from both a theo-
retical and a practical standpoint, would flourish during the early
Renaissance period. A similar view was adopted by Nicholas of Cusa
(1401 1464), a man who well represents the weaknesses of the age, for
he was on the borderline between medieval and modern times. Nicholas
saw that a scholastic weakness in science had been a failure to measure;
“mens,” he thought, was etymologically related to “mensura,” so that
knowledge must be based on measurement.
Nicholas of Cusa was also influenced by the Humanist concern for

antiquity and espoused Neoplatonic views. Moreover, he studied the
works of Ramon Lull and had access to a translation of some of
Archimedes’ works. But, alas, Nicholas of Cusa was better as an
ecclesiastic than as a mathematician. In the church, he rose to the rank of
cardinal, but in the field of mathematics, he is known as a misguided
circle-squarer. His philosophical doctrine of the “concordance of con-
traries” led him to believe that maxima and minima are related, hence
that the circle (a polygon with the greatest possible number of sides)
must be reconcilable with the triangle (the polygon with the smallest
number of sides). He believed that through an ingenious averaging of
inscribed and circumscribed polygons, he had arrived at a quadrature.
That he was wrong was of less significance than that he was one of the
first modern Europeans to attempt a problem that had fascinated the best
minds of antiquity, and that his effort stimulated contemporaries to
criticize his work.

The Decline of Medieval Learning

We have traced the history of mathematics in Europe through the
Dark Ages of the early medieval centuries to the high point in the time
of the Scholastics. From the nadir in the seventh century to the work of
Fibonacci and Oresme in the thirteenth and fourteenth centuries,
the improvement had been striking, but medieval efforts were in no
sense comparable to the mathematical achievements in ancient Greece.
The progress of mathematics had not been steadily upward in any part of
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the world—Babylonia, Greece, China, India, Islam, or the Roman
Empire—and it should come as no surprise that in Western Europe, a
decline set in after the work of Bradwardine and Oresme. In 1349,
Thomas Bradwardine had succumbed to the Black Death, the worst
scourge ever to strike Europe. Estimates of the number of those who died
of the plague within the short space of a year or two run between one-
third and one-half of the population. This catastrophe inevitably caused
severe dislocations and loss of morale. If we note that England and
France, the nations that had seized the lead in mathematics in the
fourteenth century, were further devastated in the fifteenth century by
the Hundred Years’ War and the Wars of the Roses, the decline in
learning will be understandable. Italian, German, and Polish universities
during the fifteenth century took over the lead in mathematics from the
waning Scholasticism of Oxford and Paris, and it is primarily to repre-
sentatives from these lands that we now turn.
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The European
Renaissance

I will sette as I doe often in woorke use, a paire of parallels, or Gemowe

[twin] lines of one lengthe, thus:555, bicause noe 2. thynges, can be

moare equalle.

Robert Recorde

Overview

The fall of Constantinople in 1453 signaled the collapse of the Byzantine
Empire. It is frequently asserted that at that time, refugees fled to Italy with
treasured manuscripts of ancient Greek treatises, thereby putting the Wes-
tern European world in touch with the works of antiquity. It is as likely,
though, that the fall of the city had just the opposite effect: that now theWest
could no longer count on what had been a dependable source of manuscript
material for ancient classics, both literary and mathematical. Whatever the
ultimate decision may be on this matter, there can be no question that
mathematical activity was again rising during the middle years of the fif-
teenth century. Europewas recovering from the physical and spiritual shock
of the Black Death, and the then recent invention of printing with movable
type made it possible for learned works to become much more widely
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available thaneverbefore. The earliest printedbook fromWesternEurope is
dated 1447, and by the end of the century, more than 30,000 editions of
variousworkswere available.Of these, fewweremathematical, but the few,
coupled with existing manuscripts, provided a base for expansion.
The recovery of unfamiliar Greek geometric classics was at first less

significant than the printing of medieval Latin translations of Arabic
algebraic and arithmetic treatises, for few men of the fifteenth century
either read Greek or were sufficiently proficient in mathematics to profit
from the works of the better Greek geometers. In this respect, mathe-
matics differed from literature and even from the natural sciences. As
Humanists of the fifteenth and sixteenth centuries fell ever more deeply
in love with the newly rediscovered Greek treasures in science and the
arts, their estimate of the immediately preceding Latin and Arabic
achievements declined. On the other hand, classical mathematics, except
for the most elementary portions of Euclid, was accessible only to those
with a high degree of preliminary training; hence, the disclosure of
Greek treatises in this field did not at first seriously impinge on the
continuing medieval mathematical tradition. Medieval Latin studies in
elementary geometry and the theory of proportions, as well as Arabic
contributions to arithmetic operations and algebraic methods, did not
present difficulties comparable to those associated with the works of
Archimedes and Apollonius. It was the more elementary branches that
were to attract notice and to appear in printed works. At the same time,
significant differences characterizing the language and scope of a reborn
mathematics emerged. Probably no one’s life is more representative of
the changing factors that affected this transitional period than that of the
man known as Regiomontanus.

Regiomontanus

Perhaps the most influential mathematician of the fifteenth century,
Johann Müller (1436 1476), born near Königsberg in Franconia, adop-
ted the name Regiomontanus, the Latin form of “King’s Mountain.”
A precocious student with an early interest in mathematics and astron-
omy, he attended the University of Leipzig before heading for the Uni-
versity of Vienna at age fourteen, where he studied with Georg Peurbach
(1423 1469), taught courses in geometry, and collaborated with
Peurbach in observational and theoretical studies of astronomy. A year
before Peurbach’s death, Cardinal Bessarion, then papal legate to the
Holy Roman Empire, who was known for his efforts on behalf of uniting
the Greek and Roman churches and for wishing to spread knowledge of
the Greek classics, came to Vienna. He had a special interest in seeing a
new translation of Ptolemy’s Almagest and suggested to Peurbach that he
undertake this work. Peurbach bequeathed the task to Regiomontanus,
who became attached to Bessarion, accompanying him to Rome,
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spending time and lecturing at Padua when Bessarion became papal
legate to the Venetian Republic, and meeting numerous international
scholars, some of whom were influential in helping him gain access to
major observatories and library collections.
Among the cities in Central Europe where individuals and institutions

assumed leadership in mathematics and astronomy at this time were
Vienna, Cracow, Prague, and Nuremberg. It was Nuremberg where
Regiomontanus settled on returning to Germany; it would become a center
for the printing of books (as well as for learning, art, and invention), and
some of the greatest scientific classics were published there toward the
middle of the sixteenth century. In Nuremberg, Regiomontanus had
acquired a new patron, and with this merchant’s support, Regiomontanus
established a printing press and an observatory. The trade list of books he
hoped to print survives. It includes translations of works by Archimedes,
Apollonius, Heron, Ptolemy, and Diophantus. We also know of a variety
of astronomical instruments that he designed, including torqueta, astro-
labes, and other astronomical measuring devices; some were built in his
small workshop. Like his other plans, his hopes to straighten out various
discrepancies in astronomy remained largely unfulfilled, however,
because, having been called to Rome for a conference on reform of the
calendar, he died there under disputed circumstances.
In astronomy, Regiomontanus’s chief contribution was the completion

of the new Latin version, begun by Peurbach, of Ptolemy’s Almagest.
A new textbook of astronomy, Peurbach’s Theoricae Novae Planetarum,
was published in Regiomontanus’s shop in 1472; it was an improvement
on the ubiquitous copies of the Sphere of Sacrobosco. Regiomontanus’s
translation project also resulted in textbooks of his own. His Epitome of
Ptolemy’s Almagest is noteworthy for its emphasis on the mathematical
portions that had often been omitted in commentaries dealing with ele-
mentary descriptive astronomy. Of greater significance for mathematics,
however, was his De Triangulis Omnimodis, a systematic account of the
methods for solving triangles that marked the rebirth of trigonometry.
Humanists, who insisted on elegance and purity in their classical

languages, welcomed new translations in the sciences, as well as the
humanities, because they abhorred the barbarous medieval Latin, as well
as the Arabic from which it often was derived. Regiomontanus shared
the Humanists’ love of classical learning, but unlike most of them, he
respected the traditions of Scholastic and Islamic scholarship, as well as
the practical innovations of mathematical practitioners.

Trigonometry

The first book of De Triangulis, composed about 1464, opens with
fundamental notions, derived largely from Euclid, on magnitudes and
ratios; then there are more than fifty propositions on the solution of
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triangles, using the properties of right triangles. Book II begins with a
clear statement and proof of the law of sines and then includes problems
on determining sides, angles, and areas of plane triangles when given
determinate conditions. Among the problems, for example, is the fol-
lowing: if the base of a triangle and the angle opposite are known, and if
either the altitude to the base or the area is given, then the sides can be
found. Book III contains theorems of the sort found in ancient Greek
texts on “spherics” before the use of trigonometry; Book IV is on
spherical trigonometry, including the spherical law of sines.
The use of area “formulas,” written out in words, was among

the novelties in Regiomontanus’s De Triangulis, but in the avoidance
of the tangent function, the work falls short of al-Tusi’s (Nasir Eddin’s)
treatment. The tangent function nevertheless was included in another
trigonometric treatise by Regiomontanus—Tabulae Directionum.
Revisions of Ptolemy had suggested the need for new tables, and these

were supplied by a number of fifteenth-century astronomers, of whom
Regiomontanus was one. In order to avoid fractions, it was customary to
adopt a large value for the radius of the circle, or the sinus totus. For one
of his sine tables, Regiomontanus followed his immediate predecessors
in using a radius of 600,000; for others, he adopted 10,000,000 or
600,000,000. For his tangent table in Tabulae Directionum, he chose
100,000. He does not call the function “tangent” but uses only the word
“numerus” for the entries, degree by degree, in a tabulation headed
“Tabula fecunda” (“Productive Table”). The entry for 89� is 5,729,796,
and for 90� it is simply infinite.
The sudden death of Regiomontanus occurred before his two trigono-

metric works were published, and this considerably delayed their effect.
The Tabulae Directionum was published in 1490, but the more important
treatise, De Triangulis, appeared in print only in 1533 (and again in 1561).
Nevertheless, the works were known in manuscript form to the circle of
mathematicians in Nuremberg, where Regiomontanus was working, and it
is very likely that they influenced work of the early sixteenth century.

Algebra

A general study of triangles led Regiomontanus to consider problems
of geometric construction somewhat reminiscent of Euclid’s Division of
Figures. For example, one is asked to construct a triangle given one side,
the altitude to this side, and the ratio of the other two sides. Here, however,
we find a striking departure from ancient customs: whereas Euclid’s
problems invariably had been given in terms of general quantities,
Regiomontanus gave his lines specific numerical values, even where
he intended that his methods should be general. This enabled him to make
use of the algorithmic methods developed by Arabic algebraists and
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transmitted to Europe in twelfth-century translations. In the example cited,
one of the unknown sides can be expressed as a root of a quadratic equation
with known numerical coefficients, and this root is constructible by
devices familiar from Euclid’s Elements or al-Khwarizmi’s Algebra. (As
Regiomontanus expressed it, he let one part be the “thing” and then solved
by the rule of “thing” and “square”—that is, through quadratic equations.)
Another problem in which Regiomontanus called for the construction of a
cyclic quadrilateral, given the four sides, can be handled similarly.
The influence ofRegiomontanus in algebrawas restricted not only by his

adherence to the rhetorical form of expression and by his early death; his
manuscripts, on his death, came into the hands of his Nuremberg patron,
who failed to make the work effectively accessible to posterity. Europe
learned its algebra painfully and slowly from the thin Greek, Arabic, and
Latin traditions that trickled down through the universities, the church
scribes, rising mercantile activities, and scholars from other fields.

Nicolas Chuquet’s Triparty

It was Germany and Italy that provided most of the early Renaissance
mathematicians, but in France in 1484 a manuscript was composed that in
level and significance was perhaps the most outstanding algebra since the
Liber abaci of Fibonacci almost three centuries earlier and that, like
the Liber abaci, was not printed until the nineteenth century. This work,
titled Triparty en la science des nombres, was by Nicolas Chuquet
(1445 1488), about whom we know virtually nothing except that he was
born in Paris, attained his bachelor’s degree in medicine, and practiced in
Lyons. The Triparty does not closely resemble any earlier work in
arithmetic or algebra, and the only writers the author mentions are
Boethius and Campanus. There is evidence of Italian influence, which
possibly resulted from acquaintance with Fibonacci’s Liber abaci.
The first of the “Three Parts” concerns the rational arithmetic operations

on numbers, including an explanation of the Hindu-Arabic numerals. Of
these, Chuquet said that “the tenth figure does not have or signify a value,
and hence it is called cipher or nothing or figure of no value.” The work is
essentially rhetorical, the four fundamental operations being indicated by
the words and the phrases plus, moins, multiplier par, and partyr par, the
first two sometimes abbreviated in the medieval manner as p and m.
In connection with the computation of averages, Chuquet gave a regle des
nombres moyens, according to which (a1 c) / (b1 d ) lies between a / b and
c / d if a, b, c, d are positive numbers. In the second part, concerning roots
of numbers, there is some syncopation, so that the modern expression
142 180

pp
appears in the not very dissimilar form R)2.14.m.R)2180.

The last and by far the most important part of the Triparty concerns the
“Regle des premiers,” that is, the rule of the unknown, or what we should
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call algebra. During the fifteenth and sixteenth centuries, there were var-
ious names for the unknown thing, such as res (in Latin) or chose (in
French) or cosa (in Italian) or coss (in German); Chuquet’s word “premier”
is unusual in this connection. The second power he called champs (whereas
the Latin had been census), the third cubiez, and the fourth champs de
champ. For multiples of these, Chuquet invented an exponential notation of
great significance. The denomination or power of the unknown quantity
was indicated by an exponent associated with the coefficient of the term, so
that our modern expressions 5x and 6x2 and l0x3 appeared in the Triparty as
.5.1 and .6.2 and .10.3. Moreover, zero and negative exponents take their
place along with the positive integral powers, so that our 9x0 became .9.0,
and 9x 2 was written as .9.2.m, meaning .9. seconds moins. Such a notation
laid bare the laws of exponents, with which Chuquet may have become
familiar through the work of Oresme on proportions. Chuquet wrote, for
example, that .72.1 divided by .8.3 is .9.2.m—that is, 72x4 8x35 9x 2.
Related to these laws is his observation of the relationships between the
powers of the number 2 and the indices of these powers set out in a
table from 0 to 20, in which sums of the indices correspond to products of
the powers. Except for the magnitude of the gaps between entries, this
constituted a miniature table of logarithms to the base 2. Observations
similar to those of Chuquet were to be repeated several times during the
next century, and these undoubtedly played a role in the ultimate invention
of logarithms.
The second half of the last part of the Triparty is devoted to the solution

of equations. Here are many of the problems that had appeared among his
predecessors’ works, but there is also at least one significant novelty. In
writing .4.1 egaulx am .2.0 (that is, 4x522), Chuquet was for the first time
expressing an isolated negative number in an algebraic equation. Gen-
erally, he rejected zero as a root of an equation, but on one occasion, he
remarked that the number sought was 0. In considering equations of
the form axm1 bxm1 n5 cx m1 2n (where the coefficients and the exponents
are specific positive integers), he found that some implied imaginary
solutions; in these cases, he simply added, “Tel nombre est ineperible.”
The Triparty of Chuquet, like the Collectio of Pappus, is a book in

which the extent of the author’s originality cannot be determined. Each
undoubtedly was indebted to his immediate predecessors, but we are
unable to identify any of them. Moreover, in the case of Chuquet, we
cannot determine his influence on later writers. The Triparty was not
printed until 1880 and probably was known to few mathematicians, but
one of those into whose hands it fell used so much of the material that by
modern standards, he might be charged with plagiarism, even though he
mentioned Chuquet’s name. The Larismethique nouvellement composee,
published in Lyons by Etienne de la Roche in 1520 and again in 1538,
depended heavily, as we now know, on Chuquet; hence, it is safe to say
that the Triparty was not without effect.
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Title page of Gregor Reisch, Margarita Philosophica (1503). Around the
three headed figure in the center are grouped the seven liberal arts, with
arithmetic seated in the middle and holding a counting board.

Luca Pacioli’s Summa

The earliest Renaissance algebra, that of Chuquet, was the product of a
Frenchman, but the best-known algebra of that period was published ten
years later in Italy. In fact, the Summa de Arithmetica, Geometrica,
Proportioni et Proportionalita of the friar Luca Pacioli (1445 1514)
overshadowed the Triparty so thoroughly that older historical accounts
of algebra leap directly from the Liber abaci of 1202 to the Summa of
1494 without mentioning the work of Chuquet or other intermediaries.

Lu c a Pa c i o l i ’s Summa 251



The way for the Summa, however, had been prepared by a generation of
algebraists, for the algebra of al-Khwarizmi was translated into Italian at
least by 1464, the date of a manuscript copy in the Plimpton Collection
in New York; the writer of this manuscript stated that he based his work
on numerous predecessors in this field, naming some from the earlier
fourteenth century. The Renaissance in science is often assumed to have
been sparked by the recovery of ancient Greek works, but the Renais-
sance in mathematics was especially characterized by the rise of algebra,
and in this respect, it was but a continuation of the medieval tradition.
The Summa, thewriting ofwhich hadbeen completed by1487,wasmore

influential than it was original. It is an impressive compilation (with
sources of information not generally indicated) of material in four fields:
arithmetic, algebra, very elementary Euclidean geometry, and double-
entry bookkeeping. Pacioli (also known as Luca di Borgo) for a time had
been a tutor to the sons of a wealthy merchant in Venice, and he was
undoubtedly familiar with the rising importance of commercial arithmetic
in Italy. The earliest printed arithmetic, appearing anonymously at
Treviso in 1478, had featured the fundamental operations, the rules of two
and three, and business applications. Several more technical commercial
arithmetics appeared shortly thereafter, and Pacioli borrowed freely from
them. One of these, the Compendia de lo abaco of Francesco Pellos
(fl. 1450 1500), which was published at Torino in the year Columbus
discovered America, made use of a dot to denote the division of an integer
by a power of 10, thus adumbrating our decimal point.
The Summa, which like the Triparty was written in the vernacular, was

a summing up of unpublished works that the author had composed
earlier, as well as of general knowledge at the time. The portion on
arithmetic is much concerned with devices for multiplication and for
finding square roots; the section on algebra includes the standard solu-
tion of linear and quadratic equations. Although it lacks the exponential
notation of Chuquet, there is increased use of syncopation through
abbreviations. The letters p and m were by this time widely used in Italy
for addition and subtraction, and Pacioli used co, ce, and ae for cosa (the
unknown), censo (the square of the unknown), and aequalis, respec-
tively. For the fourth power of the unknown, he naturally used cece (for
square-square). Echoing a sentiment of Omar Khayyam, he believed that
cubic equations could not be solved algebraically.
Pacioli’s work in geometry in the Summa was not significant, although

some of his geometric problems remind one of the geometry of Regio-
montanus, specific numerical cases being employed. Although Pacioli’s
geometry did not attract much attention, so popular did the commercial
aspect of the book become that the author is generally regarded as the
father of double-entry bookkeeping.
Pacioli, the first mathematician of whom we have an authentic portrait, in

1509 tried his hand twice more at geometry, publishing an undistinguished
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edition of Euclid and a work with the impressive title De Divina Pro-
portione. The latter concerns regular polygons and solids and the ratio later
known as “the golden section.” It is noteworthy for the excellence of the
figures, which have been attributed to Leonardo da Vinci (1452 1519).
Leonardo is frequently thought of as a mathematician. In his notebooks, we
find quadratures of lunes, constructions of regular polygons, and thoughts
on centers of gravity and on curves of double curvature, but he is best
known for his application of mathematics to science and the theory of
perspective. Hundreds of years later, Renaissance notions on mathematical
perspective were to blossom into a new branch of geometry, but these
developments were not perceptibly influenced by the thoughts that the left-
handed Leonardo entrusted to his notebooks in the form of mirror-written
entries. Da Vinci is pictured as the typical all-round Renaissance man, and
in fields other than mathematics, there is much to support such a view.
Leonardo was a genius of bold and original thought, a man of action as well
as contemplation, at once an artist and an engineer. Yet he appears not to
have been in close touch with the chief mathematical trend of the time—the
development of algebra.

German Algebras and Arithmetics

Theword “Renaissance” inevitably brings tomind Italian literary, artistic,
and scientific treasures, for renewed interest in art and learning became
apparent in Italy earlier than in other parts of Europe. There, in a rough-
and-tumble conflict of ideas, men learned to put greater trust in indepen-
dent observations of nature and judgments of the mind. Moreover, Italy
had been one of the two chief avenues along which Arabic learning,
including algorism and algebra, had entered Europe. Nevertheless, other
parts of Europe did not remain far behind, as the work of Regiomontanus
andChuquet shows. InGermany, for example, books on algebra became so
numerous that for a time, the Germanic word “coss” for the unknown
triumphed in other parts of Europe, and the subject became known as the
“cossic art.”Moreover, theGermanic symbols for addition and subtraction
ultimately displaced the Italian p andm. In 1489, before the publication of
Pacioli’s Summa, a German lecturer (“Master in the Liberal Arts”) at
Leipzig, Johann Widman (1462 1498), had published a commercial
arithmetic,Behende und hübsche Rechnung auff allen Kauffmanschafften,
the oldest book inwhich our familiar1 and2 signs appear in print. At first
used to indicate excess and deficiency in warehouse measures, they later
became symbols of the familiar arithmetic operations. Widman, inciden-
tally, possessed amanuscript copy of theAlgebra of al-Khwarizmi, a work
well known to other German mathematicians.
Among the numerous Germanic algebras wasDie Coss, written in 1524

by Germany’s celebrated Rechenmeister Adam Riese (1492 1559). The
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author was the most influential German writer in the move to replace
the old computation (in terms of counters and Roman numerals) with the
newer method (using the pen and Hindu-Arabic numerals). So effective
were his numerous arithmetic books that the phrase “nach Adam Riese”
still survives in Germany as a tribute to accuracy in arithmetic processes.
Riese, in his Coss, mentions the Algebra of al-Khwarizmi and refers to a
number of Germanic predecessors in the field.
The first half of the sixteenth century saw a flurry of German algebras,

among the most important of which were the Coss (1525) of Christoph
Rudolff (ca. 15002ca. 1545), a tutor of mathematics in Vienna; the
Rechnung (1527) of Peter Apian (1495 1552); and theArithmetica Integra
(1544) ofMichael Stifel (ca. 1487 1567). The first is especially significant
as one of the earliest printedworks tomake use of decimal fractions, as well
as of the modern symbol for roots; the second is worth recalling for the fact
that here, in a commercial arithmetic, the so-called Pascal triangle was
printed on the title page, almost a century before Pascal was born. The third
work, Stifel’s Arithmetica Integra, was the most important of all of the
sixteenth-century German algebras. It, too, includes the Pascal triangle, but

Title page of an edition (1529) of one of the Rechenbucher of Adam Riese, the
Rechenmeister. It depicts a contest between an algorist and an abacist.
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it is more significant for its treatment of negative numbers, radicals, and
powers. Through the use of negative coefficients in equations, Stifel was
able to reduce the multiplicity of cases of quadratic equations to what
appeared to bea single form, but hehad to explain, under a special rule,when
to use1 and when2. Moreover, even he failed to admit negative numbers
as roots of an equation. Stifel, a onetime monk turned itinerant Lutheran
preacher and for a time professor of mathematics at Jena, was one of the
many writers who popularized the “German” symbols 1 and 2 at the
expense of the “Italian” p andm notation. He was thoroughly familiar with
the properties of negative numbers, despite the fact that he called them
“numeri absurdi.” About irrational numbers he was somewhat hesitant,
saying that they are “hidden under some sort of cloud of infinitude.” Again
calling attention to the relations between arithmetic and geometric pro-
gressions, as had Chuquet for powers of 2 from 0 to 20, Stifel extended the
table to include 2�1 5 1

2 and 2�2 5 1
4 and 2�3 5 1

8 (without, however, using
exponential notation). For powers of the unknown quantity in algebra, Stifel
in Arithmetica Integra used abbreviations for the German words “coss,”
“zensus,” “cubus,” and “zenzizensus,” but in a later treatise,De Algorithmi
Numerorum Cossicorum, he proposed using a single letter for the unknown
and repeating the letter for higher powers of the unknown, a scheme later
employed by Thomas Harriot (1560 1621).

Cardan’s Ars Magna

The Arithmetica Integra was as thorough a treatment of algebra as was
generally known up to 1544, yet by the following year, it was in a sense
quite outmoded. Stifel gave many examples that led to quadratic equa-
tions, but none of his problems led tomixed cubic equations, for the simple
reason that he knew no more about the algebraic solution of the cubic than
did Pacioli or Omar Khayyam. In 1545, however, the solution not only of
the cubic, but also of the quartic, became common knowledge through the
publication of the Ars Magna of Geronimo Cardano (1501 1576). Such a
striking and unanticipated development made so strong an impact on
algebraists that the year 1545 is frequently taken to mark the beginning of
the modern period in mathematics. It must immediately be pointed out,
however, that Cardano (or Cardan) was not the original discoverer of the
solution of either the cubic or the quartic. He himself candidly admitted
this in his book. The hint for solving the cubic, he averred, he had obtained
from Niccolo Tartaglia (ca. 1500 1557); the solution of the quartic was
first discovered by Cardan’s quondam amanuensis, Ludovico Ferrari
(1522 1565). What Cardan failed to mention in Ars Magna is the solemn
oath he had sworn to Tartaglia that he would not disclose the secret, for the
latter intended to make his reputation by publishing the solution of
the cubic as the crowning part of his treatise on algebra.

C ar dan’s A r s Magna 255



Lest one feel undue sympathy for Tartaglia, it may be noted that
he had published an Archimedean translation (1543), derived from
Moerbeke, leaving the impression that it was his own, and in his Quesiti
et Inventioni Diverse (Venice, 1546), he gave the law of the inclined
plane, presumably derived from Jordanus Nemorarius, without proper
credit. It is, in fact, possible that Tartaglia himself had received a hint
concerning the solution of the cubic from an earlier source. Whatever
may be the truth in a rather complicated and sordid controversy between
proponents of Cardan and Tartaglia, it is clear that neither of the prin-
cipals was the first to make the discovery. The hero in the case evidently
was one whose name is scarcely remembered today—Scipione del Ferro
(ca. 1465 1526), a professor of mathematics at Bologna, one of the
oldest of the medieval universities and a school with a strong mathe-
matical tradition. How or when del Ferro made his wonderful discovery
is not known. He did not publish the solution, but before his death he
disclosed it to a student, Antonio Maria Fior (or Floridus in Latin).
Word of the existence of an algebraic solution of the cubic seems to

have gotten around, and Tartaglia told us that knowledge of the possi-
bility of solving the equation inspired him to devote his time to dis-
covering the method for himself. Whether independently or on the basis
of a hint, Tartaglia did indeed learn, by 1541, how to solve cubic
equations. When news of this spread, a mathematical contest between
Fior and Tartaglia was arranged. Each contestant proposed thirty ques-
tions for the other to solve within a stated time interval. When the day
for the decision had arrived, Tartaglia had solved all questions posed by
Fior, whereas the unfortunate Fior had not solved a single one set by his
opponent. The explanation is relatively simple. Today we think of cubic
equations as all essentially of one type and as amenable to a single
unified method of solution. At that time, however, when negative
coefficients were virtually unused, there were as many types of cubics as
there are possibilities in positive or negative signs for coefficients. Fior
was able to solve only equations of the type in which cubes and roots
equal a number, that is, those of the type x31 px5 q, although at that
time only specific numerical (positive) coefficients were used. Tartaglia,
meanwhile, had also learned how to solve equations of the form where
cubes and squares equal a number. It is likely that Tartaglia had learned
how to reduce this case to Fior’s by removing the squared term, for it
became known by this time that if the leading coefficient is unity, then
the coefficient of the squared term, when it appears on the other side of
the equality sign, is the sum of the roots.
News of Tartaglia’s triumph reached Cardan, who promptly invited the

winner to his home, with a hint that he would arrange to have him meet a
prospective patron. Tartaglia had been without a substantial source of
support, partly perhaps because of a speech impediment. As a child, he had
received a saber cut in the fall of Brescia to the French in 1512, which
impaired his speech. This earned him the nickname “Tartaglia,” or
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“stammerer,” a name that he thereafter used instead of the name “Niccolo
Fontana” that had been given him at birth. Cardan, in contrast to Tartaglia,
had achieved worldly success as a physician. So great was his fame that
he was once called to Scotland to diagnose an ailment of the Arch-
bishop of St. Andrews (evidently, a case of asthma). By birth illegiti-
mate and by habit an astrologer, a gambler, and a heretic, Cardan was
nevertheless a respected professor at Bologna and Milan, and, ulti-
mately, he was granted a pension by the pope. One of his sons poisoned
his own wife, the other son was a scoundrel, and Cardan’s secretary
Ferrari probably died of poison at the hands of his own sister. Despite
such distractions, Cardan was a prolific writer on topics ranging from
his own life and praise of gout to science and mathematics.
In his chief scientific work, a ponderous volume with the title De

Subtilitate, Cardan is clearly a child of his age, interminably discussing
the Aristotelian physics handed down through Scholastic philosophy,
while at the same time waxing enthusiastic about the new discoveries of
the then recent times. Much the same can be said of his mathematics, for

Jerome Cardan
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this, too, was typical of the day. He knew little of Archimedes and less of
Apollonius, but he was thoroughly familiar with algebra and trigono-
metry. He had already published a Practica Arithmetice in 1539, which
included, among other things, the rationalization of denominators con-
taining cube roots. By the time he published the Ars Magna, half a dozen
years later, he was probably the ablest algebraist in Europe. Never-
theless, the Ars Magna makes dull reading today. Case after case of the
cubic equation is laboriously worked out in detail, according as terms of
the various degrees appear on the same or on opposite sides of the
equality, for coefficients were necessarily positive. Despite the fact that
he was dealing with equations on numbers, he followed al-Khwarizmi in
thinking geometrically, so that we might refer to his method as “com-
pleting the cube.” There are, of course, certain advantages in such an
approach. For instance, because x3 is a volume, 6x, in Cardan’s following
equation, must also be thought of as a volume. Hence, the number 6 must
have the dimensionality of an area, suggesting the type of substitution
that Cardan used, as we shall shortly see.
Cardan used little syncopation, being a true disciple of al-Khwarizmi,

and, like the Arabs, he thought of his equations with specific numerical
coefficients as representative of general categories. For example, when he
wrote, “Let the cube and six times the side be equal to 20” (or x31 6x5 20),
heobviously thought of this equation as typical ofallof those having “a cube
and thing equal to a number”—that is, of the form x31 px5 q. The solution
of this equation covers a couple of pages of rhetoric that we should now
put in symbols as follows: Substitute u2 v for x and let u and v be related so
that their product (thought of as an area) is one-third the x coefficient in the
cubic equation—that is, uv5 2. On substitution in the equation, the
result is u32 v35 20, and, on eliminating v, we have u65 20u31 8, a qua-
dratic in u3. Hence, u3 is known to be 108

p
1 10. From the relationship

u32 v35 20, we see that v3 5 108
p

2 10: hence, from x5 u2 v, we have

x5 108
p

1 10
3
p

2 108
p

2 10
3
p

. Having carried through the method for
this specific case, Cardan closed with a verbal formulation of the rule
equivalent to our modern solution of x31 px5 q as

x5 ðp=3Þ3 1 ðq=2Þ2
q

1 q=2
3

r
2 ðp=3Þ3 1 ðq=2Þ2

q
2 q=2

3

r

Cardan then went on to other cases, such as “cube equal to thing and
number.” Here, one makes the substitution x5 u1 v, instead of x5
u2 v, the rest of the method remaining essentially the same. In this
case, however, there is a difficulty. When the rule is applied to x35
15x1 4, for example, the result is x5 21 2 121

p
3
p

1 22 2 121
p

3
p

.
Cardan knew that therewas no square root of a negative number, yet he knew
x5 4 tobe a root.Hewasunable to understandhowhis rule couldmake sense
in this situation. He had toyed with square roots of negative numbers in
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another connection when he asked that one divide 10 into two parts such that
the product of the parts is 40. The usual rules of algebra lead to the answers
51 2 15

p
and 52 2 15

p
(or, in Cardan’s notation, 5p :Rm:15 and

5m :Rm:15. Cardan referred to these square roots of negative numbers as
“sophistic” and concluded that his result in this case was “as subtile as it is
useless.” Later writers were to show that such manipulations were indeed
subtle but far from useless. It is to Cardan’s credit that at least he paid some
attention to this puzzling situation.

Ferrari’s Solution of the Quartic Equation

Of the rule for solving quartic equations, Cardan in the Ars Magna wrote
that it “is due to Luigi Ferrari, who invented it at my request.” Again
separate cases, twenty in all, are considered in turn, but for the modern
reader, one case will suffice. Let square-square and square and number
be equal to side. (Cardan knew how to eliminate the cubic term by
increasing or diminishing the roots by one-fourth of the coefficient in the
cubic term.) Then, the steps in the solution of x41 6x21 365 60x are
expressed by Cardan essentially as follows:

1. First, add enough squares and numbers to both sides to make the left-
hand side a perfect square.

2. Now add to both sides of the equation terms involving a new
unknown y such that the left-hand side remains a perfect square.

3. The next, and crucial, step is to choose y so that the trinomial on the
right-hand side will be a perfect square. This is done, of course, by
setting the discriminant equal to zero, an ancient andwell-known rule.

4. The result of step 3 is a cubic equation in y: y31 15y21 36y5 450,
today known as the “resolvent cubic” for the given quartic equation.
This is now solved for y by the rules previously given for the solution
of cubic equations.

5. Substitute a value of y from step 4 into the equation for x in step 2
and take the square root of both sides.

6. The result of step 5 is a quadratic equation, which must now be
solved to find the value of x desired.

The solution of cubic and quartic equations was perhaps the greatest
contribution to algebra since the Babylonians, almost four millennia earlier,
had learned how to complete the square for quadratic equations. No other
discoveries had had quite the stimulus to algebraic development as did those
disclosed in the Ars Magna. The solutions of the cubic and the quartic
were in no sense the result of practical considerations, nor were they of any
value to engineers or mathematical practitioners. Approximate solutions of
some cubic equations had been known in antiquity, and al-Kashi a century
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before Cardan could have solved to any desired degree of accuracy any
cubic equation resulting from a practical problem. The Tartaglia-Cardan
formula is of great logical significance, but it is not nearly so useful for
applications as are methods of successive approximation.

Influence of the Ars Magna

The most important outcome of the discoveries published in the Ars
Magna was the tremendous stimulus they gave to algebraic research in
various directions. It was natural that study should be generalized and
that, in particular, a solution should be sought for the quintic. Here,
mathematicians were faced with an unsolvable algebraic problem com-
parable to the classical geometric problems of antiquity. Much good
mathematics, but only a negative conclusion, was the outcome.
Another immediate result of the solution of the cubic was the first

significant glance at a new kind of number. Irrational numbers had been
accepted by the time of Cardan, even though they were not soundly
based, for they are readily approximated by rational numbers. Negative
numbers afforded more difficulty because they are not readily approxi-
mated by positive numbers, but the notion of sense (or direction on a
line) made them plausible. Cardan used them even while calling them
numeri ficti. If an algebraist wished to deny the existence of irrational or
negative numbers, he would simply say, as had the ancient Greeks, that
the equations x25 2 and x1 25 0 are not solvable. In a similar way,
algebraists had been able to avoid imaginaries simply by saying that an
equation such as x21 15 0 is not solvable. There was no need for square
roots of negative numbers. With the solution of the cubic equation,
however, the situation became markedly different. Whenever the three
roots of a cubic equation are real and different from zero, the Cardan-
Tartaglia formula inevitably leads to square roots of negative numbers.
The goal was known to be a real number, but it could not be reached
without understanding something about imaginary numbers. The ima-
ginary now had to be reckoned with, even if one did agree to restrict
oneself to real roots.

Rafael Bombelli

At this stage, Rafael Bombelli (1526 1572), a largely self-taught Flor-
entine hydraulic engineer studying the algebraic publications of his time,
had what he called “a wild thought,” for the whole matter “seemed to rest
on sophistry.” The two radicands of the cube roots resulting from the
usual formula differ only in one sign. We have seen that the solution by
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formula of x35 15x1 4 leads to x5 21 2 121
p

3
p

1 22 2 121
p

3
p

,
whereas it is known by direct substitution that x5 4 is the only positive
root of the equation. (Cardan had noted that when all terms on one side of
the equality sign are of higher degree than the terms on the other side, the
equation has one and only one positive root—an anticipation, in a small
way, of part of Descartes’ rule of signs.) Bombelli had the happy thought
that the radicals themselves might be related in much the way that the
radicands are related; that, as we should now say, they are conjugate
imaginaries that lead to the real number 4. It is obvious that if the sum of
the real parts is 4, then the real part of each is 2, and if a number of the
form 21 b 2 1

p
is to be a cube root of 21 11 2 1

p
, then it is easy to see

that b must be 1. Hence, x5 21 1 2 1
p

1 2 21 2 1
p

, or 4.
Through his ingenious reasoning, Bombelli had shown the important

role that conjugate imaginary numbers were to play in the future. But at
that time, the observation was of no help in the actual work of solving
cubic equations, for Bombelli had had to know beforehand what one of
the roots is. In this case, the equation is already solved, and no formula is
needed; without such foreknowledge, Bombelli’s approach fails. Any
attempt to find algebraically the cube roots of the imaginary numbers
in the Cardan-Tartaglia rule leads to the very cubic in the solution of
which the cube roots arose in the first place, so that one is back where
one started from. Because this impasse arises whenever all three roots
are real, this is known as the “irreducible case.” Here, an expression for
the unknown is indeed provided by the formula, but the form in which
this appears is useless for most purposes.
Bombelli composed his Algebra in about 1560, but it was not printed

until 1572, about a year before he died, and then only in part. One of the
significant things about this book is that it contains symbolisms remi-
niscent of those of Chuquet. Bombelli sometimes wrote 1 Z p.5Rm.4
(that is, 1 zenus plus 5 res minus 4) for x21 5x2 4. But he also used
another form of expression, influenced perhaps by de la Roche’s
Larismethique, in which the power of the unknown quantity is repre-
sented simply as an Arabic numeral above a short circular arc. Books IV
and VI of his Algebra are full of problems in geometry that are solved
algebraically, somewhat in the manner of Regiomontanus but making
use of new symbolisms. In problems such as that of finding the side of a
square inscribed in a certain triangle, a highly symbolic algebra comes to
the aid of geometry, but Bombelli worked in the other direction, too. In
the Algebra, the algebraic solution of cubic equations is accompanied by
geometric demonstrations in terms of the subdivision of the cube.
Unfortunately for the future of geometry—and of mathematics in gen-
eral—the last books of Bombelli’s Algebra were not included in the
publication of 1572 but remained in manuscript until 1929.
The Algebra uses the standard Italian symbols p and m for addition

and subtraction, but Bombelli still had no symbol for equality. Our
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standard equality sign had been published before Bombelli wrote his
book; the symbol had appeared in England in 1557 in The Whetstone of
Witte of Robert Recorde (1510 1558).

Robert Recorde

Mathematics had not prospered in England during the period of almost
two centuries since the death of Bradwardine, and what little work was
done there in the early sixteenth century depended much on Italian
writers such as Pacioli. Recorde was, in fact, just about the only math-
ematician of any stature in England during the entire century. He was
born in Wales and studied and taught mathematics at both Oxford and
Cambridge. In 1545, he received his medical degree at Cambridge,
and thereafter he became the physician of Edward VI and Queen Mary.
Recorde virtually established the English mathematical school. Like
Chuquet and Pacioli before him and Galileo after him, he wrote in the
vernacular; this may have limited his effect on the Continent. Recorde’s
first extant mathematical work is the Grounde of Artes (1541), a popular
arithmetic containing computation by abacus and algorism, with com-
mercial applications. The level and style of this book, dedicated to
Edward VI and appearing in more than two dozen editions, may be
judged from the following problem:

Then what say you to this equation? If I sold unto you an horse having 4

shoes, and in every shoe 6 nayles, with this condition, that you shall pay

for the first nayle one ob: for the second nayle two ob: for the third nayle

foure ob: and so fourth, doubling untill the end of all the nayles, now I ask

you, how much would the price of the horse come unto?

His Castle of Knowledge, an astronomy in which the Copernican
system is cited with approval, and his Pathewaie to Knowledge, an
abridgement of the Elements and the first geometry to appear in English,
both appeared in 1551. The work of Recorde that is most often cited
is The Whetstone of Witte, published only a year before he died in prison.
The title Whetstone evidently was a play on the word “coss,” for “cos”
is the Latin for “whetstone,” and the book is devoted to “the cossike
practise” (that is, algebra). It did for England what Stifel had done for
Germany—with one addition. The well-known equality sign first
appeared in it, explained by Recorde in the quotation at the beginning of
this chapter. Yet it was to be a century or more before the sign triumphed
over rival notations. Recorde died in the year in which Queen Mary also
died, and no comparable English mathematical author appeared during
the long reign of Elizabeth I. It was France, rather than England,
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Germany, or Italy, that produced the outstanding mathematician of the
Elizabethan Age. But before we turn to his work, there are certain
aspects of the earlier sixteenth century that should be clarified.

Trigonometry

The direction of greatest progress in mathematics during the sixteenth
century was obviously in algebra, but developments in trigonometry
were not far behind, although they were not nearly so spectacular. The
construction of trigonometric tables is a dull task, but they are of great
usefulness to astronomers and mathematicians; here, early sixteenth-
century Poland and Germany were very helpful indeed. Most of us today
think of Nicholas Copernicus (1473 1543) as an astronomer who
revolutionized the worldview by successfully putting the earth in motion
about the sun (where Aristarchus had tried and failed), but an astronomer
is almost inevitably a trigonometer as well, and we owe to Copernicus a
mathematical obligation, as well as an astronomical debt.

Copernicus and Rheticus

During the lifetime of Regiomontanus, Poland had enjoyed a “Golden
Age” of learning, and the University of Cracow, where Copernicus
enrolled in 1491, had great prestige in mathematics and astronomy. After
further studies in law, medicine, and astronomy at Bologna, Padua, and
Ferrara and after some teaching at Rome, Copernicus returned to Poland
in 1510 to become Canon of Frauenburg. Despite multitudinous
administrative obligations, including currency reform and the curbing
of the Teutonic Order, Copernicus completed the celebrated treatise
De Revolutionibus Orbium Coelestium, which was published in 1543,
the year he died. This contains substantial sections on trigonometry that
had been separately published in the previous year under the title
De Lateribus et Angulis Triangulorum. The trigonometric material
is similar to that in Regiomontanus’s De Triangulis, published in
Nuremberg only a decade earlier, but Copernicus’s trigonometric ideas
seem to date from before 1533, at which time he probably did not know
of the work of Regiomontanus. It is quite likely, nevertheless, that the
final form of Copernicus’s trigonometry was in part derived from
Regiomontanus, for in 1539 he received as a student Georg Joachim
Rheticus (or Rhaeticus, 1514 1576), a professor at Wittenberg, who had
visited in Nuremberg. Rheticus worked with Copernicus for some three
years, and it was he who, with his teacher’s approval, published the first
short account of Copernican astronomy in a work titled Narratio Prima
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(1540) and who made the first arrangements, completed by Andreas
Osiander, for the printing of the celebrated De Revolutionibus. It is
likely, therefore, that the trigonometry in the classic work of Copernicus
is closely related, through Rheticus, to that of Regiomontanus.
We see the thorough trigonometric capabilities of Copernicus not only

in the theorems included in De Revolutionibus, but also in a proposition
originally included by the author in an earlier manuscript version of the
book but not in the printed work. The deleted proposition is a general-
ization of the theorem of Nasir Eddin (which does appear in the book) on
the rectilinear motion resulting from the compounding of two circular
motions. The theorem of Copernicus is as follows: if a smaller circle rolls
without slipping along the inside of a larger circle with a diameter twice as
great, then the locus of a point that is not on the circumference of the
smaller circle, but that is fixed with respect to this smaller circle, is an
ellipse. Cardan, incidentally, knew of the Nasir Eddin theorem but not of
the Copernican locus, a theorem rediscovered in the seventeenth century.
Through the trigonometric theorems in De Revolutionibus, Copernicus

spread the influence of Regiomontanus, but his student Rheticus went
further. He combined the ideas of Regiomontanus and Copernicus, to-
gether with views of his own, in the most elaborate trigonometric treatise
composed up to that time: the two-volumeOpus Palatinum de Triangulis.
Here, trigonometry really cameof age. The author discarded the traditional
consideration of the functionswith respect to the arc of a circle and focused
instead on the lines in a right triangle. Moreover, all six trigonometric
functions now came into full use, for Rheticus calculated elaborate tables
of all of them. Decimal fractions still had not come into common use;
hence, for the sine and cosine functions he used a hypotenuse (radius) of
10,000,000 and for the other four functions a base (or adjacent sideor radius)
of 10,000,000 parts, for intervals in the angle of 10v. He began tables of
tangents and secantswith a base of 1015 parts, but he did not live tofinish them,
and the treatise was completed and edited, with additions, by his pupil
Valentin Otho (ca. 1550 1605) in 1596.

Geometry

Pure geometry in the sixteenth century presented fewer conspicuous
advances than algebra or trigonometry did, but it was not entirely
without representatives. Contributions were made in Germany by
Johannes Werner (1468 1522) and Albrecht Dürer (1471 1528) and in
Italy by Francesco Maurolico (1494 1575) and Pacioli. Once more, we
note the preeminence of these two countries in contributions to mathe-
matics during the Renaissance. Werner had aided in preserving the tri-
gonometry of Regiomontanus, but of more geometric significance was
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his Latin work, in twenty-two books, on the Elements of Conics, printed
in Nuremberg in 1522. Although this cannot be favorably compared
with the Conics of Apollonius, which was almost entirely unknown in
Werner’s day, it marks the renewal of interest in the curves for almost
the first time since Pappus. Because the author was primarily concerned
with the duplication of the cube, he concentrated on the parabola and the
hyperbola, deriving the standard plane equations stereometrically from
the cone, as had his predecessors in Greece, but there seems to be an
element of originality in his plane method for plotting points on a
parabola with compasses and straightedge. One first draws a pencil of
circles tangent to each other and intersecting the common normal in
points c, d, e, f, g, . . . (Fig. 13.1). Then, along the common normal, one
marks off a distance ab equal to a desired parameter. At b one erects the
line bG perpendicular to ab and cutting the circles in points C, D, E, F,
G, . . . respectively. Then, at c one erects line segments cCuand cCv per-
pendicular to ab and equal to bC; at d one erects perpendicular segments
dDu and dDv equal to bD; at e one erects segments eEu and eEv equal to
bE; and so on. Then, Cu, Cv, Du, Dv, Eu, Ev, . . . will all lie on the parabola
with vertex b, axis along ab, and having ab as the magnitude of the
parameter—as is readily seen from the relationships

ðcCuÞ2 5 ab � be; ðdDuÞ2 5 ab � bd; and so on:

The Theory of Perspective

Werner’s work is closely related to ancient studies of conics, but
meanwhile, in Italy and Germany, a relatively novel relationship
between mathematics and art was developing. One important respect in
which Renaissance art differed from art in the Middle Ages was in the
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use of perspective in the plane representation of objects in three-
dimensional space. The Florentine architect Filippo Brunelleschi
(1377 1446) is said to have given much attention to this problem, but
the first formal account of some of the problems was given by Leon
Battista Alberti (1404 1472) in a treatise of 1435 (printed in 1511)
titled Della pittura. Alberti opens with a general discussion of the
principles of foreshortening and then describes a method he invented for
representing in a vertical “picture plane” a set of squares in a horizontal
“ground plane.” Let the eye be at a “station point” S that is h units above
the ground plane and k units in front of the picture plane. The inter-
section of the ground plane and the picture plane is called the
“groundline,” the foot V of the perpendicular from S to the picture plane
is called the “center of vision” (or the principal vanishing point), the line
through V parallel to the groundline is known as the “vanishing line” (or
horizon line), and the points P and Q on this line, which are k units from
V, are called the “distance points.” If we take points A, B, C, D, E, F, G
marking off equal distances along the groundline RT (Fig. 13.2), where
D is the intersection of this line with the vertical plane through S and V,
and if we draw lines connecting these points with V, then the projection
of these last lines, with S as a center, on the ground plane will be a set of
parallel and equidistant lines. If P (or Q) is connected with the points B,
C, D, E, F, G to form another set of lines intersecting AV in points H, I,
J, K, L, M, and if through the latter points parallels are drawn to the
groundline RT, then the set of trapezoids in the picture plane will cor-
respond to a set of squares in the ground plane.
A further step in the development of perspective was taken by the

Italian painter of frescoes Piero della Francesca (ca. 1415 1492), in
De prospectiva pingendi (ca. 1478). Where Alberti had concentrated on
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representing on the picture plane figures in the ground plane, Piero
handled the more complicated problem of depicting on the picture plane
objects in three dimensions as seen from a given station point. He also
wrote De Corporibus Regularibus, where he noted the “divine propor-
tion” in which diagonals of a regular pentagon cut each other and where
he found the volume common to two equal circular cylinders whose axes
cut each other at right angles (unaware of Archimedes’ Method, which
was unknown at the time). The connection between art and mathematics
was also strong in the work of Leonardo da Vinci. He wrote a work, now
lost, on perspective; his Trattato della pittura opens with the admonition,
“Let no one who is not a mathematician read my works.” The same
combination of mathematical and artistic interests is seen in Albrecht
Dürer, a contemporary of Leonardo and a fellow townsman of Werner
at Nuremberg. In Dürer’s work, we also see the influence of Pacioli,
especially in the celebrated engraving of 1514 titled Melancholia. Here
the magic square figures prominently.

This is often regarded as the first use of a magic square in the West, but
Pacioli had left an unpublished manuscript, De viribus quantitatis, in
which interest in such squares is indicated.
Dürer’s interests in mathematics, however, were far more geometric

than arithmetic, as the title of his most important book indicates:
Investigation of the Measurement with Circles and Straight Lines of
Plane and Solid Figures. This work, which appeared in several German
and Latin editions from 1525 to 1538, contains some striking novelties,
of which the most important were his new curves. This is one direction
in which the Renaissance could easily have improved on the work of the
ancients, who had studied only a handful of types of curves. Dürer took
a fixed point on a circle and then allowed the circle to roll along the
circumference of another circle, generating an epicycloid, but, not
having the necessary algebraic tools, he did not study this analytically.
The same was true of other plane curves that he obtained by projecting
helical space curves onto a plane to form spirals. In Dürer’s work, we
find the Ptolemaic construction of the regular pentagon, which is exact,
as well as another original construction that is only an approximation.
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For the heptagon and the enneagon, he also gave ingenious but, of
course, inexact constructions. Dürer’s construction of an approximately
regular nonagon is as follows: Let O be the center of a circle ABC in
which A, B, and C are vertices of the inscribed equilateral triangle
(Fig. 13.3). Through A, O, and C draw a circular arc; draw similar arcs
through B, O, and C and through B, O, and A. Let AO be trisected at

Albrecht Dürer’s Melancholia (the British Museum). Note the four celled magic
square in the upper right hand corner.

268 T he Eur op e an Rena i s s anc e



points D and E, and through E draw a circle with center at O and cutting
arcs AFO and AGO in points F and G, respectively. Then, the straight
line segment FG will be very nearly equal to the side of the regular
nonagon inscribed in this smaller circle, the angle FOG differing from
40� by less than 1�. The relation of art and geometry might have been
very productive indeed, had it gained the attention of professionally
minded mathematicians, but in this respect, it failed for more than a
century after Dürer’s time.

Cartography

Projections of various sorts are essential to cartographers. Geographical
explorations had widened horizons and created a need for better maps, but
Scholasticism and Humanism were of little help here because new dis-
coveries had outmoded medieval and ancient maps. One of the most
important of the innovators was the German mathematician and astron-
omer Peter Apian (or Bienewitz). In 1520, he published perhaps the
earliest map of the Old World and the New World in which the name
“America” was used; in 1527, he issued the business arithmetic in which,
on the title page, the arithmetic, or Pascal, triangle appeared in print for
the first time. The maps of Apian were well done, but they followed
Ptolemy closely wherever possible. For the novelty that is thought to be so
characteristic of the Renaissance, it is better to look instead to a Flemish
geographer, Gerard Mercator (or Gerhard Kremer, 1512 1594), who was
for a time associated with the court of Charles V in Brussels. Mercator
may be said to have broken with Ptolemy in geography as Copernicus had
revolted against Ptolemaic astronomy.
For the first half of his life, Mercator depended heavily on Ptolemy, but

by 1554, he had emancipated himself sufficiently to cut down the Ptole-
maic estimate of the width of the Mediterranean from 62� to 53�. (Actu-
ally, it is close to 40�.) More important, in 1569 he published the first map,
Nova et aucta orbis terrae descriptio, drawn up on a new principle. Maps

C B

A

D

O

F G
E

FIG. 13.3

Geome t r y 269



in common use in Mercator’s day were usually based on a rectangular grid
made up of two sets of equidistant parallel lines, one set for latitudes, the
other for longitudes. The length of a degree of longitude, however, varies
with the parallel of latitude along which it is measured, an inequality
disregarded in common practice and resulting in a distortion of shape and
in errors of direction on the part of navigators, who based a course on the
straight line drawn between two points on the map. The Ptolemaic ste-
reographic projection preserved shapes, but it did not use the common grid

The Pascal triangle as first printed. Title page of the arithmetic of
Petrus Apianus, Ingolstadt, 1527, more than a century before Pascal
investigated the properties of the triangle.
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of lines. To bring theory and practice into some accord, Mercator intro-
duced the projection that bears his name and that, with later improvement,
has been basic in cartography ever since. The first step in the Mercator
projection is to think of a spherical earth inscribed within an indefinitely
long right circular cylinder touching the earth along the equator (or some
other great circle), and to project, from the center of the earth, points on the
surface of the earth onto the cylinder. If the cylinder is then cut along an
element and flattened out, the meridians and the parallels on the earth will
have been transformed into a rectangular network of lines. Distances
between successive meridian lines will be equal, but not distances between
successive lines of latitude. In fact, the latter distances increase so rapidly,
as one moves away from the equator, that distortions of shape and direction
occur, but Mercator found that through an empirically determined mod-
ification of these distances, preservation of direction and shape (although
not of size) was possible. In 1599, Edward Wright (1558 1615)—a fellow
at Cambridge, a tutor to Henry, Prince of Wales, and a good sailor—
developed the theoretical basis of the Mercator projection by computing
the functional relationship D5 a ln tan(φ / 21 45�) between map distance
D from the equator and latitudeφ.

Renaissance Trends

Several characteristics of the period under review stand out: the diversity
of occupations engaging the men we have considered, the variety of
languages in which mathematical works became available, and the
growth of mathematical applications. Whereas most medieval con-
tributors to mathematics received institutional support from the Church,
Renaissance mathematicians such as Regiomontanus gradually shifted
their support base to the growing commercial interests of the time.
An increasing number found employment from heads of states or
municipal institutions that needed calculators or teachers, mapmakers or
engineers. A considerable number were physicians or professors of
medicine. Most mathematical works at the beginning of the period were
available in Latin, or, as we have noted, if they had originally been
produced in Greek, Arabic, or Hebrew, were translated into Latin. By the
late sixteenth century, original works were available in English, German,
French, Italian, and Dutch.
Mathematics during the Renaissance had been widely applied to

bookkeeping, mechanics, surveying, art, cartography, and optics, and
numerous books were devoted to the practical arts. No one encouraged
the burgeoning emphasis on applications more strongly than Pierre de la
Ramée, or Ramus (1515 1572), a man who contributed to mathematics
in a pedagogical sense. At the Collège de Navarre, he had in 1536
defended, for his master’s degree, the audacious thesis that everything
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Aristotle had said was wrong—at a time when Peripateticism was the
same as orthodoxy. Ramus was at odds with his age in many ways;
banned from teaching philosophy in France, he proposed revisions in the
university curricula so that logic and mathematics should receive more
attention. Not satisfied even with the Elements of Euclid, Ramus edited
this with revisions. Yet his competence in geometry was limited. Ramus
had more confidence in practical elementary mathematics than in
speculative higher algebra and geometry. His logic enjoyed considerable
popularity in Protestant countries, in part because he died a martyr in the
St. Bartholomew massacre. This brings to our attention the fact that in
this first century of the Reformation, most works written in the vulgate
and intended for the mathematical practitioner were created in the
Protestant areas of Europe, whereas most of the traditional classical
treatises were studied and commented on in the Catholic parts.
Interest in the classical works of antiquity remained strong, as we see

in the case of Maurolico, a priest of Greek parentage who was born,
lived, and died in Sicily. Maurolico was a scholar who did much to
revive interest in the more advanced of the antique works. Geometry in
the first half of the sixteenth century had been heavily dependent on the
elementary properties found in Euclid. With the exception of Werner, few
were really familiar with the geometry of Archimedes, Apollonius, or
Pappus. The reason for this was simple: Latin translations of these did not
become generally available until the middle of the century. In this process
of translation, Maurolico was joined by an Italian scholar, Federigo
Commandino. We have mentioned Tartaglia’s borrowed translation of
Archimedes that was printed in 1543; this was followed by a Greek edi-
tion of 1544 and a Latin translation by Commandino at Venice in 1558.
Four books of the Conics of Apollonius had survived in Greek, and

these had been translated into Latin and printed in Venice in 1537.
Maurolico’s translation, completed in 1548, was not published for
more than a century, appearing in 1654, but another translation by
Commandino was printed in Bologna in 1566. The Mathematical
Collection of Pappus had been virtually unknown to the Arabs and the
medieval Europeans, but this, too, was translated by the indefatigable
Commandino, although it was not printed until 1588. Maurolico was
acquainted with the vast treasures of ancient geometry that were
becoming available, for he read Greek, as well as Latin. In fact, from
some indications in Pappus of Apollonius’s work on maxima and
minima—that is, on normals to the conic sections—Maurolico tried his
hand at a reconstruction of the then lost Book V of the Conics. In this
respect, he represented a vogue that was to be one of the chief stimuli
to geometry before Descartes: the reconstruction of lost works in
general and of the last four books of the Conics in particular. During
the interval from Maurolico’s death in 1575 to the publication of La
géométrie by Descartes in 1637, geometry was marking time until
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developments in algebra had reached a level that made algebraic
geometry possible. The Renaissance could well have developed pure
geometry in the direction suggested by art and perspective, but the
possibility went unheeded until almost precisely the same time that
algebraic geometry was created.
By 1575, Western Europe had recovered most of the major mathe-

matical works of antiquity that are now extant. Arabic algebra had been
mastered and improved on, both through the solution of the cubic and the
quartic and through a partial use of symbolism, and trigonometry had
become an independent discipline. A central figure in the transition to
the seventeenth century was the Frenchman François Viète.

François Viète

Viète (1540 1603) was not a mathematician by vocation. As a young
man, he studied and practiced law, becoming a member of the Bretagne
parliament; later he became a member of the king’s council, serving first
under Henry III and later under Henry IV. It was during his service with
the latter, Henry of Navarre, that Viète became so successful in deci-
phering cryptic enemy messages that the Spanish accused him of being
in league with the devil. Only Viète’s leisure time was devoted to
mathematics, yet he made contributions to arithmetic, algebra, trigo-
nometry, and geometry. There was a period of almost half a dozen
years, before the accession of Henry IV, during which Viète was out of
favor, and these years he spent largely on mathematical studies. In
arithmetic, he should be remembered for his plea for the use of decimal,
rather than sexagesimal, fractions. In one of his earliest works, the
Canon Mathematicus of 1579, he wrote:

Sexagesimals and sixties are to be used sparingly or never in mathe-

matics, and thousandths and thousands, hundredths and hundreds, tenths

and tens, and similar progressions, ascending and descending, are to be

used frequently or exclusively.

In the tables and the computations, he adhered to his word and used
decimal fractions. The sides of the squares inscribed in and circum-
scribed about a circle of diameter 200,000 he wrote as 141,421,

356;24
and

200,000,
000;00

, and their mean as 177,245
385;09

. A few pages further on, he
wrote the semi-circumference as 314,159,

265;35
1;000;00, and still later this figure

appeared as 314,159,265,36, with the integral portion in boldface type.
Occasionally, he used a vertical stroke to separate the integral and
fractional portions, as when writing the apothem of the 96-sided regular
polygon, in a circle of diameter 200,000, as about 99,9469458,75.
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The Analytic Art

Without doubt, it was in algebra that Viète made his most estimable
contributions, for it was here that he came closest to modern views.
Mathematics is a form of reasoning and not a bag of tricks. There could
be little advance in algebraic theory so long as the chief preoccupation
was with finding “the thing” in an equation with specific numerical
coefficients. Symbols and abbreviations for an unknown and for powers
of the unknown, as well as for operations and for the relationship of
equality, had been developed. Stifel had gone so far as to write AAAA
for the fourth power of an unknown quantity, yet he had no scheme for
writing an equation that might represent any one of a whole class of
equations—of all quadratics, say, or of all cubics. A geometer, by means
of a diagram, could let ABC represent all triangles, but an algebraist had
no counterpart for writing down all equations of the second degree.
Letters had indeed been used to represent magnitudes, known or
unknown, since the days of Euclid, and Jordanus had done this freely,
but there had been no way of distinguishing magnitudes assumed to be
known from those unknown quantities that are to be found. Here, Viète
introduced a convention as simple as it was fruitful. He used a vowel to
represent the quantity in algebra that was assumed to be unknown or
undetermined and a consonant to represent a magnitude or a number
assumed to be known or given. Here we find for the first time in algebra
a clear-cut distinction between the important concept of a parameter
and the idea of an unknown quantity. Had Viète adopted other symbo-
lisms extant in his day, he might have written all quadratic equations in
the single form BA21CA1D5 0, where A is the unknown and B, C,
and D are parameters, but unfortunately, he was modern only in some
ways and ancient and medieval in others. Although he wisely adopted
the Germanic symbols for addition and subtraction and, still more
wisely, used differing symbols for parameters and unknowns, the re-
mainder of his algebra consisted of words and abbreviations. The third
power of the unknown quantity was not A3 or even AAA, but A cubus,
and the second power was A quadratus. Multiplication was signified by
the Latin word “in,” division was indicated by the fraction line, and for
equality Viète used an abbreviation for the Latin aequalis. It is not given
for one man to make the whole of a given change; it must come in steps.
One of the steps beyond the work of Viète was taken by Harriot when

he revived the idea Stifel had had of writing the cube of the unknown as
AAA. This notation was used systematically by Harriot in his post-
humous book titled Artis Analyticae Praxis and printed in 1631. Its title
had been suggested by the earlier work of Viète, who had disliked the
Arabic name “algebra.” In looking for a substitute, Viète noted that in
problems involving the “cosa,” or unknown quantity, one generally
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proceeds in a manner that Pappus and the ancients had described as
analysis. That is, instead of reasoning from what is known to what was to
be demonstrated, algebraists invariably reasoned from the assumption
that the unknown was given and deduced a necessary conclusion from
which the unknown can be determined. In modern symbols, if we wish to
solve x22 3x1 25 0, for example, we proceed on the premise that
there is a value of x satisfying this equation; from this assumption, we
draw the necessary conclusion that (x2 2)(x2 1)5 0, so that either
x2 25 0 or x2 15 0 (or both) is satisfied, hence that x necessarily is 2
or 1. Yet, this does not mean that one or both of these numbers will satisfy
the equation unless we can reverse the steps in the reasoning process. That
is, the analysis must be followed by the synthetic demonstration.
In view of the type of reasoning so frequently used in algebra, Viète

called the subject “the analytic art.” Moreover, he had a clear awareness
of the broad scope of the subject, realizing that the unknown quantity
need not be either a number or a geometric line. Algebra reasons about
“types” or species, hence Viète contrasted logistica speciosa with
logistica numerosa. His algebra was presented in the Isagoge (or
Introduction), printed in 1591, but his several other algebraic works did
not appear until many years after his death. In all of these, he maintained
a principle of homogeneity in equations, so that in an equation such
as x31 3ax5 b, the a is designated as planum and the b as solidum. This
suggests a certain inflexibility, which Descartes removed a generation
later, but homogeneity also has certain advantages, as Viète undoubt-
edly saw.
The algebra of Viète is noteworthy for the generality of its expression,

but there are also other novel aspects. For one thing, Viète suggested a
new approach to the solution of the cubic. Having reduced it to the
standard form equivalent to x31 3ax5 b, he introduced a new unknown
quantity, y, that was related to x through the equation in y3, for which the
solution is readily obtained. Moreover, Viète was aware of some of
the relations between roots and coefficients of an equation, although here
he was hampered by his failure to allow the coefficients and roots to be
negative. He realized, for example, that if x31 b 5 3ax has two positive
roots, x1 and x2, then, 3a5 x121 x1x21 x22 and b5 x1x221 x2x12. This is, of
course, a special case of our theorem that the coefficient of the term in x,
in a cubic with leading coefficient unity, is the sum of the products of the
roots taken two at a time, and the constant term is the negative of the
product of the roots. Viète, in other words, was close to the subject of
symmetric functions of the roots in the theory of equations. It remained
for Albert Girard (1595 1632) in 1629, in Invention nouvelle en
l’algèbre, to state clearly the relations between roots and coefficients, for
he allowed for negative and imaginary roots, whereas Viète had recog-
nized only the positive roots. In a general way, Girard realized that
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negative roots are directed in a sense opposite to that for positive num-
bers, thus anticipating the idea of the number line. “The negative in
geometry indicates a retrogression,” he said, “where the positive is an
advance.” To him also seems to be largely due the realization that
an equation can have as many roots as is indicated by the degree of the
equation. Girard retained imaginary roots of equations because they show
the general principles in the formation of an equation from its roots.
Discoveries much like those of Girard had been made even earlier by

Thomas Harriot, but these did not appear in print until ten years after
Harriot had died of cancer in 1621. Harriot had been hampered in
publication by conflicting political currents during the closing years of
the reign of Queen Elizabeth I. He had been sent by Sir Walter Raleigh
as a surveyor on the latter’s expeditions to the New World in 1585, thus
becoming the first substantial mathematician to set foot in North
America. (Brother Juan Diaz, a young chaplain with some mathematical
training, had earlier joined Cortes on an expedition to Yucatan in 1518.)
On his return, Harriot published A Briefe and True Report of the New-
found Land of Virginia (1586). When his patron lost favor with the
queen and was executed, Harriot was granted a pension of d300 a year
by Henry, Earl of Northumberland, but in 1606, the earl was committed
to the Tower by James I, Elizabeth’s successor. Harriot continued to
meet with Henry in the Tower, and distractions and poor health con-
tributed to his failure to publish results.
Harriot knew of relationships between roots and coefficients and

between roots and factors, but like Viète, he was hampered by failure to
take note of negative and imaginary roots. In notations, however, he
advanced the use of symbolism, being responsible for the signs. and, for
“greater than” and “less than.” It was also partly his use of Recorde’s
equality sign that led to its ultimate adoption. Harriot showed much more
moderation in the use of new notations than did his younger contemporary
William Oughtred. The latter published his Clavis mathematicae in the
same year, 1631, in which Harriot’s Praxis was printed. In the Clavis, the
notation for powers was a step back toward Viète, for where Harriot had
written AAAAAAA, for example, Oughtred used Aqqc (that is, A squared
squared cubed). Of all of Oughtred’s new notations, only one is now
widely used—the cross 3 for multiplication.
The homogeneous form of his equations shows that Viète’s thought

was always close to geometry, but his geometry was not on the elementary
level of so many of his predecessors’; it was on the higher level of
Apollonius’s and Pappus’s. Interpreting the fundamental algebraic opera-
tions geometrically, Viète realized that straightedge and compasses suffice
up through square roots. If, however, one permits the interpolation of two
geometric means between two magnitudes, one can construct cube roots,
or, a fortiori, geometrically solve any cubic equation. In this case, one can,
Viète showed, construct the regular heptagon, for this construction leads to
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a cubic of the form x35 ax1 a. In fact, every cubic or quartic equation
is solvable by angle trisections and the insertion of two geometric means
between two magnitudes. Here we clearly see a very significant trend—the
association of the new higher algebra with the ancient higher geometry.
Analytic geometry could not, then, be far away, and Viète might have
discovered this branch had he not avoided the geometric study of inde-
terminate equations. The mathematical interests of Viète were unusually
broad; hence, he had read Diophantus’s Arithmetica. Yet when a geometric
problem led Viète to a final equation in two unknown quantities, he dis-
missed it with the casual observation that the problem was indeterminate.
One wishes that with his general point of view, he had inquired into the
geometric properties of the indeterminacy.

The Approximate Solution of Equations

In many respects, the work of Viète is greatly undervalued, but in one
case, it is possible that he has been given undue credit for a method
known much earlier in China. In one of his later works, the De Numerosa
Potestatum . . . Resolutione (1600), he gave a method for the approximate
solution of equations, which is virtually that known today as Horner’s
method.

Trigonometry

The trigonometry of Viète, like his algebra, was characterized by a
heightened emphasis on generality and a breadth of view. As Viète was
the effective founder of a literal algebra, so he may with some justifi-
cation be called the father of a generalized analytic approach to trigo-
nometry that is sometimes known as goniometry. Here, too, of course,
Viète started from the work of his predecessors—notably, Regio-
montanus and Rheticus. Like the former, he thought of trigonometry as
an independent branch of mathematics; like the latter, he generally
worked without direct reference to half chords in a circle. Viète, in the
Canon Mathematicus (1579), prepared extensive tables of all six func-
tions for angles to the nearest minute. We have seen that he had urged
the use of decimal, rather than sexagesimal, fractions, but to avoid all
fractions as much as possible, Viète chose a “sinus totus” or hypotenuse
of 100,000 parts for the sine and cosine table and a “basis” or “per-
pendiculum” of 100,000 parts for the tangent, cotangent, secant, and
cosecant tables. (Except for the sine function, he did not, however, use
these names.)
In solving oblique triangles, Viète in the Canon Mathematicus broke

them down into right triangles, but in another work a few years later,
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Variorum de Rebus Mathematicis (1593), there is a statement equivalent
to our law of tangents:

ða1 bÞ
2

ða2 bÞ
2

5
tan

A1B

2

tan
A2B

2

Though Viète may have been the first to use this formula, it was
first published by the German physician and professor of mathematics
Thomas Finck (1561 1656) in 1583, in Geometriae Rotundi Libri XIV.
Trigonometric identities of various sorts were appearing about this time

in all parts of Europe, resulting in reduced emphasis on computation in
the solution of triangles and more on analytic functional relationships.
Among these were a group of formulas known as the prosthaphaeretic
rules—that is, formulas that would convert a product of functions into a
sum or difference (hence the name “prosthaphaeresis,” a Greek word
meaning “addition and subtraction”). From the following type of dia-
gram, for example, Viète derived the formula

sin x1 sin y5 2 sin
x1 y

2
cos

x2 y

2
:

Let sin x5AB (Fig. 13.4) and sin y5CD. Then

sin x1 sin y5AB1CD5AE5AC cos
x2 y

2
5 2 sin

x1 y

2
cos

x2 y

2
:

On making the substitutions (x1 y) / 25A and (x2 y) / 25B, we have
the more useful form sin (A1B)1 sin (A2B)5 2 sinA cos B. In a similar
manner, one derives sin (A1B)2 sin (A2B)5 2 cos A sin B by placing
the angles x and y on the same side of the radius OD. The formulas
2 cosA cosB5 cos (A1B)1 cos (A2B) and 2 sinA sinB5 cos (A2B)2
cos (A1B) are somewhat similarly derived.

O

C

D

x

y

x – y

E

B

F

A

FIG. 13.4
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The previous rules sometimes bear the name “formulas of Werner,”
for they seem to have been used by Werner to simplify astronomical
calculations. At least one of these, that converting a product of cosines to
a sum of cosines, had been known to the Arabs in the time of ibn-Yunus,
but it was only in the sixteenth century, and more particularly near the
end of the century, that the method of prosthaphaeresis came to be
widely used. If, for example, one wished to multiply 98,436 by 79,253,
one could let cos A5 49,218 (that is, 98,436 / 2) and cos B5 79,253.
(In modern notation, we would place a decimal point, temporarily,
before each of the numbers and adjust the decimal point in the answer.)
Then, from the table of trigonometric functions one reads off angles A
and B, and from the table one looks up cos (A1B) and cos (A2B), the
sum of these being the product desired. Note that the product is found
without any multiplication having been performed. In our example of
prosthaphaeretic multiplication, there is not a great saving of time and
energy, but when we recall that at that time, trigonometric tables of a
dozen or fifteen significant figures were not uncommon, the laborsaving
possibilities of prosthaphaeresis become more pronounced. The device
was adopted at major astronomical observatories, including that of
Tycho Brahe (1546 1601) in Denmark, from where word of it was
carried to Napier in Scotland. Quotients are handled in the same manner
by using a table of secants and cosecants.
Perhaps nowhere is Viète’s generalization of trigonometry into gonio-

metrymore pronounced than in connectionwith hismultiple-angle formulas.
The double-angle formulas for the sine and the cosine had, of course, been
known to Ptolemy, and the triple-angle formulas are then easily derived from
Ptolemy’s formulas for the sine and the cosine of the sum of two angles. By
continuing to use the Ptolemy formulas recursively, a formula for sin nx or
cos nx can be derived, but only with great effort. Viète used an ingenious
manipulation of right triangles and the well-known identity

(a21 b2)(c21 d2)5 (ad1 bc)21 (bd2 ac)2

5 (ad2 bc)21 (bd1 ac)2

to arrive at formulas for multiple angles equivalent to what we should
now write as

cos nx5 cosnx2
nðn2 1Þ
1U2

cosn�2x sin2x

1
nðn2 1Þðn2 2Þðn2 3Þ

1U2U3U4
cosn�4x sin4 x2 � � �

and

sin nx5 n cosn�1x sin x2
nðn2 1Þðn2 2Þ

1U2U3
cosn�3x sin3x1 � � �;
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where the signs alternate and the coefficients are in magnitude the
alternate numbers in the appropriate line of the arithmetic triangle. Here
we see a striking link between trigonometry and the theory of numbers.

Trigonometric Solution of Equations

Viète also noted an important link between his formulas and the solution
of the cubic equation. Trigonometry could serve as a handmaid to algebra
where the latter had run up against a stone wall—in the irreducible case of
the cubic. This evidently occurred to Viète when he noticed that the angle
trisection problem led to a cubic equation. If in the equation x31 3px1
q5 0 one substitutes mx5 y (to obtain a degree of freedom in the later
selection of a value for m), the result is y31 3m2py1m3q5 0. Comparing
this with the formula cos3 θ2 3

4 cos θ2 1
4 cos 3θ5 0, one notes that if

y5 cos θ, and if 3m2p523
4, then2

1
4 cos 3θ5m3q. Because p is given, m is

now known (and will be real whenever the three roots are real). Hence, 3θ
is readily determined, because q is known; hence, cos θ is known. There-
fore, y, and from it x, will be known. Moreover, by considering all possible
angles satisfying the conditions, all three real roots will be found. This
trigonometric solution of the irreducible case of the cubic, suggested by
Viète, was later carried out in detail by Girard in 1629 in Invention nouvelle
en l’algèbre.
In 1593, Viète found an unusual opportunity to use his multiple-angle

formulas. The Belgian mathematician and professor of medicine Adriaen
van Roomen (1561 1615) had issued a public challenge to anyone to
solve an equation of the forty-fifth degree:

x45 45x431 945x41 � � � 3795x31 45x5K.

The ambassador from the Low Countries to the court of Henry IV
boasted that France had no mathematician capable of solving the pro-
blem proposed by his countryman. Viète, called on to defend the honor
of France, noted that the proposed equation was one that arises in
expressing K5 sin 45θ in terms of x5 2 sin θ, and he promptly found the
positive roots. The achievement so impressed van Roomen that he paid
Viète a special visit; this resulted in their frequently communicating and
challenging each other with problems. When Viète sent van Roomen the
Apollonian problem of constructing a circle tangent to three given cir-
cles, the latter solved it with the use of hyperbolas.
In applying trigonometry to arithmetic and algebraic problems, Viète was

broadening the scope of the subject. Moreover, his multiple-angle formulas
should have disclosed the periodicity of the goniometric functions, but it
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was probably his hesitancy with respect to negative numbers that prevented
him—or his contemporaries—from going as far as this. There was con-
siderable enthusiasm for trigonometry in the late sixteenth and early
seventeenth centuries, but this primarily took the form of synthesis and
textbooks. It was during this period that the name “trigonometry” came to
be attached to the subject. It was used as the title of an exposition by
Bartholomaeus Pitiscus (1561 1613), the successor to Valentin Otho at
Heidelberg; this was first published in 1595 as a supplement to a book on
spherics and again independently in 1600, 1606, and 1612. Coincidentally,
the development of logarithms, ever since a close ally of trigonometry, was
also taking place during these years.
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14

EarlyModern Problem
Solvers

In mathematics I can report no deficiency, except it be that men do not

sufficiently understand the excellent use of the Pure Mathematics.

Francis Bacon

Accessibility of Computation

During the late sixteenth and early seventeenth centuries, a growing
number of merchants, estate holders, scientists, and mathematical practi-
tioners were impressed by the need for means to simplify arithmetic
computations and geometricmeasurements and to enable a population that
was largely illiterate and numerically challenged to participate in the
commercial transactions of the day.
Among those seeking more effective aids for solving mathematical

problems were numerous well-known individuals. A few of the more in-
fluential of these, scattered over Western Europe, we shall now consider.
Galileo Galilei (1564 1642) came from Italy; several more, such as
Henry Briggs (1561 1639), Edmund Gunter (1581 1626), and William
Oughtred (1574 1660), were English; Simon Stevin (1548 1620) was
Flemish; John Napier (1550 1617), Scottish; Jobst Bürgi (1552 1632),

282



Swiss; and Johann Kepler (1571 1630), German. Bürgi was a clock and
instrument maker, Galileo was a physical scientist, and Stevin was an
engineer. We have seen that the work of Viète grew out of two factors in
particular: (1) the recovery of ancient Greek classics and (2) the relatively
new developments in medieval and early modern algebra. Throughout the
sixteenth and early seventeenth centuries, both professional and amateur
theoretical mathematicians showed concern for the practical techniques of
computation, which contrasted strongly with the dichotomy emphasized
two millennia earlier by Plato.

Decimal Fractions

In 1579, Viète had urged the replacement of sexagesimal fractions with
decimal fractions. In 1585, an even stronger plea for the use of the ten-
scale for fractions, as well as for integers, was made by the leading
mathematician in the Low Countries, Simon Stevin of Bruges. Under
Prince Maurice of Nassau he served as quartermaster and as commissioner
of public works, and for a time he tutored the prince in mathematics.
In the history of science, as well as in mathematics, Stevin is an

important figure. He and a friend dropped two spheres of lead, one ten
times the weight of the other, from a height of thirty feet onto a board and
found the sounds of their striking the board to be almost simultaneous.
But Stevin’s published report (in Flemish in 1586) of the experiment has
received far less notice than the similar and later experiment attributed,
on very doubtful evidence, to Galileo. On the other hand, Stevin usually
receives credit for the discovery of the law of the inclined plane, justified
by his familiar “wreath of spheres” diagram, whereas this law had been
given earlier by Jordanus Nemorarius.
Although Stevin was a great admirer of the theoretical treatises of

Archimedes, there runs through the works of the Flemish engineer a strain
of practicality that is more characteristic of the Renaissance period. Thus,
Stevin was largely responsible for the introduction into the Low Countries
of double-entry bookkeeping fashioned after that of Pacioli in Italy almost
a century earlier. Of far more widespread influence in economic practice,
in engineering, and in mathematical notations was Stevin’s little book
with the Flemish title De thiende (The Tenth), published in Leyden in
1585. A French version titled La disme appeared in the same year and
increased the popularity of the book.
It is clear that Stevin was in no sense the inventor of decimal fractions,

nor was he the first systematic user of them. As we have noted, more than
incidental use of decimal fractions is found in ancient China, in medieval
Arabia, and in Renaissance Europe; by the time of Viète’s forthright
advocacy of decimal fractions in 1579, they were generally accepted by
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mathematicians on the frontiers of research. Among the common people,
however, and even among mathematical practitioners, decimal fractions
became widely known only when Stevin undertook to explain the system
in full and elementary detail. He wished to teach everyone “how to per-
form with an ease, unheard of, all computations necessary between men
by integers without fractions.” He did not write his decimal expressions
with denominators, as Viète had; instead, in a circle above or after each

A page from Stevin’s work (1634 edition) showing Stevin’s notations
for decimal fractions
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digit he wrote the power of ten assumed as a divisor. Thus, the value of π,
approximately, appeared as

Instead of the words “tenth,” “hundredth,” and so on, he used “prime,”
“second,” and so on, somewhat as we still designate the places in sex-
agesimal fractions.

Notation

Stevin was a practical-minded mathematician who saw little point in the
more speculative aspects of the subject. Of imaginary numbers, he wrote,
“There are enough legitimate things to work on without need to get busy
on uncertain matter.” Nevertheless, he was not narrow-minded, and his
reading of Diophantus impressed him with the importance of appropriate
notations as an aid to thought. Although he followed the custom of Viète
and other contemporaries in writing out some words, such as that for
equality, he preferred a purely symbolic notation for powers. Carrying
over to algebra his positional notation for decimal fractions, he wrote
instead of Q (or square), for C (or cube), for QQ (or square-square),
and so on. This notation may well have been suggested by Bombelli’s
Algebra. It also paralleled a notation of Bürgi, who indicated powers of
an unknown by placing Roman numerals over the coefficients. Thus,
x41 3x22 7x, for example, would be written by Bürgi as

iv ii i

1 1 3 2 7

and by Stevin as

Stevinwent further thanBombelli orBürgi in proposing that such notations
be extended to fractional powers. (It is interesting to note that although
Oresme had used both fractional-power indices and coordinate methods in
geometry, these seem to have had only a very indirect influence, if any, on
the progress of mathematics in the Low Countries and France in the early
seventeenth century.) Even though Stevin had no occasion to use the
fractional index notation, he clearly stated that 1

2 in a circle would mean
square root and that 3

2 in a circle would indicate the square root of the cube.
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A little later, Albert Girard, the editor of Stevin’s works, adopted the
circled-numerical notation for powers, and he, too, indicated that this could
be used for roots instead of such symbols as

p
and

3
p

. Symbolic algebra
was developing apace, and it reached its maturity, only eight years after
Girard’s Invention nouvelle, in Descartes’ La géométrie.
The use of a decimal point separatrix is generally attributed either to

G. A. Magini (1555 1617), the cartographer who assumed the chair for
mathematics at his alma mater in Bologna in 1588, in his De planis
triangulis of 1592, or to Christopher Clavius (1537 1612), in a table of
sines of 1593. Clavius, born in Bamberg, joined the Jesuit Order before
age eighteen; received his education, including early studies at the
University of Coimbra in Portugal, within the order; and spent most of
his life teaching at the Collegio Romano in Rome. He was the author
of many widely read textbooks, and it is safe to assume that this helped
promote the use of the decimal point. But the decimal point did not
become popular until Napier used it more than twenty years later. In the
1616 English translation of Napier’s Descriptio, decimal fractions
appear as today, with a decimal point separating the integral and frac-
tional portions. In 1617, in the Rhabdologia, in which he described
computation using his rods, Napier referred to Stevin’s decimal arith-
metic and proposed a point or a comma as the decimal separatrix. In the
Napierian Constructio of 1619, the decimal point became standard in
England, but many European countries continue to this day to use the
decimal comma.

Logarithms

John Napier (or Neper), who published his description of logarithms in
1614, was a Scottish laird, the Baron of Merchiston, who managed his
large estates, championed Protestantism, and wrote on varied topics.
He was interested only in certain aspects of mathematics, chiefly those
relating to computation and trigonometry. “Napier’s rods” or “bones”
were sticks on which multiplication tables were carved in a form ready to
be applied to lattice multiplication; “Napier’s analogies” and “Napier’s
rule of circular parts” were devices to aid the memory in connection with
spherical trigonometry.
Napier tells us that he had been working on his invention of logarithms

for twenty years before he published his results, a statement that would
place the origin of his ideas about 1594. He evidently had been thinking
of the sequences, which had been published now and then, of successive
powers of a given number—as in Stifel’s Arithmetica Integra fifty years
earlier and as in the works of Archimedes. In such sequences, it was
obvious that sums and differences of indices of the powers corresponded
to products and quotients of the powers themselves, but a sequence of
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integral powers of a base, such as two, could not be used for compu-
tational purposes because the large gaps between successive terms made
interpolation too inaccurate. While Napier was pondering the matter,
Dr. John Craig, a physician to James VI of Scotland, called on him and
told him of prosthaphaeresis being used in Tycho Brahe’s observatory in
Denmark. Word of this encouraged Napier to redouble his efforts and
ultimately to publish in 1614 the Mirifici Logarithmorum Canonis
Descriptio (A Description of the Marvelous Rule of Logarithms).
The key to Napier’s work can be explained very simply. To keep the

terms in a geometric progression of integral powers of a given number
close together, it is necessary to take as the given number something
quite close to 1. Napier therefore chose to use 12 10 7 (or .9999999) as
his given number. Now the terms in the progression of increasing powers
are indeed close together—too close, in fact. To achieve a balance and to
avoid decimals, Napier multiplied each power by 107. That is, if
N5 107(12 1 / 107)L, then L is Napier’s “logarithm” of the number N.
Thus, his logarithm of 107 is 0, his logarithm of 107(12 1 / 107)5 9999999
is 1, and so on. If his numbers and his logarithms were to be divided by
107, one would virtually have a system of logarithms to the base 1 / e, for
(12 1 / 107)10

7

is close to limn-N(12 1 / n)n5 1 / e. Itmust be remembered,
however, thatNapier had no concept of a base for a systemof logarithms, for
his definition was different from ours. The principles of his work were
explained in geometric terms as follows. Let a line segment AB and a half
line or ray CDE . . . be given (Fig. 14.1). Let a point P start from A and
move along ABwith variable speed decreasing in proportion to its distance
from B; during the same time, let a point Q start from C and move along
CDE . . . with uniform speed equal to the rate with which point P began
its motion. Napier called this variable distance CQ the logarithm of the
distance PB.
Napier’s geometric definition is, of course, in agreement with the

numerical description given earlier. To show this, let PB5 x and
CQ 5 y. If AB is taken as 107, and if the initial speed of P is also taken
as 107, then in modern calculus notations we have dx / dt52x and
dy / dt5 107, x05 107, y05 0. Then, dy / dx52107 / x, or y52107 ln cx,
where c is found from the initial boundary conditions to be 10 7. Hence,
y52107 ln (x / l07) or y / 1075 log1/e(x / 107). That is, if the distances PB
and CQ were divided by 107, Napier’s definition would lead precisely to
a system of logarithms to the base 1 / e, as mentioned earlier. Needless
to say, Napier built up his tables numerically, rather than geometrically,
as the word “logarithm,” which he coined, implies. At first, he called his
power indices “artificial numbers,” but later he made up the compound
of the two Greek words Logos (or ratio) and arithmos (or number).
Napier did not think of a base for his system, but his tables never-

theless were compiled through repeated multiplications, equivalent to
powers of .9999999. Obviously, the power (or number) decreases as the
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index (or logarithm) increases. This is to be expected, because he was
essentially using a base 1 / e, which is less than 1. A more striking
difference between his logarithms and ours lies in the fact that his
logarithm of a product (or a quotient) generally was not equal to the
sum (or difference) of the logarithms. If L15Log N1 and L25Log N2,
then N15 107ð12 10 7ÞL1 and N25 107ð12 10 7ÞL2 , whence N1N2=10

75
107ð12 10 7ÞL1 1 L2 so that the sum of Napier’s logarithms will be the
logarithm not of N1N2 but of N1N2 / 107. Similar modifications hold, of
course, for logarithms of quotients, powers, and roots. If L 5Log N, for
instance, then nL5Log Nn / 107(n 1). These differences are not too sig-
nificant, for they merely involve shifting a decimal point. That Napier
was thoroughly familiar with rules for products and powers is seen in his
remark that all numbers (he called them “sines”) in the ratio of 2 to 1
have differences of 6,931,469.22 in logarithms, and all of those in the
proportion of 10 to 1 have differences of 23,025,842.34 in logarithms. In
these differences we see, if we shift the decimal point, the natural
logarithms of the numbers 2 and 10. Hence, it is not unreasonable to use
the name “Napierian” for natural logarithms, even though these loga-
rithms are not strictly the ones that Napier had in mind.
The concept of the logarithmic function is implied in Napier’s defi-

nition and in all of his work with logarithms, but this relationship was
not uppermost in his mind. He had laboriously built up his system for
one purpose—the simplification of computations, especially of products
and quotients. Moreover, that he had trigonometric computations in view
is made clear by the fact that what we, for simplification of exposition,
referred to as Napier’s logarithm of a number, he actually called the
logarithm of a sine. In Fig. 14.1, the line CQ was called the logarithm of
the sine PB. This makes no real difference either in theory or in practice.

Henry Briggs

The publication in 1614 of the system of logarithms was greeted with
prompt recognition, and among the most enthusiastic admirers was
Henry Briggs, the first Savilian professor of geometry at Oxford and the
first Gresham College professor of geometry. In 1615, he visited Napier
at his home in Scotland, and there they discussed possible modifications
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in the method of logarithms. Briggs proposed that powers of 10 should
be used, and Napier said he had thought of this and was in agreement.
Napier at one time had proposed a table using log 15 0 and log
105 1010 (to avoid fractions). The two men finally concluded that the
logarithm of 1 should be zero and that the logarithm of 10 should be 1.
Napier, however, no longer had the energy to put their ideas into prac-
tice. He died in 1617, the year in which his Rhabdologia, with its
description of his rods, appeared. The second of his classic treatises on
logarithms, the Mirifici Logarithmorum Canonis Constructio, in which
he gave a full account of the methods he used in building up his tables,
appeared posthumously in 1619. To Briggs, therefore, fell the task
of making up the first table of common, or Briggsian, logarithms.
Instead of taking powers of a number close to 1, as had Napier, Briggs
began with log 105 1 and then found other logarithms by taking suc-
cessive roots. By finding 10

p
5 3:162277, for example, Briggs had log

3.1622775 .5000000, and from 103=2 5 31:62277
p

5 5:623413 he had
log 5.6234135 .7500000. Continuing in this manner, he computed other
common logarithms. In the year of Napier’s death, 1617, Briggs pub-
lished his Logarithmorum chilias prima—that is, the logarithms of
numbers from 1 to 1,000, each carried out to fourteen places. In 1624, in
Arithmetica logarithmica, Briggs extended the table to include common
logarithms of numbers from 1 to 20,000 and from 90,000 to 100,000,
again to fourteen places. The complete ten-place table of logarithms
from 1 to 100,000 was published three years later by two Dutchmen, the
surveyor Ezechiel DeDecker and the book publisher Adriaan Vlacq; with
added corrections, it remained the standard for more than three centuries.
Work with logarithms now could be carried out just as it is today, for all
of the usual laws of logarithms applied in connection with Briggs’s
tables. Incidentally, it is from Briggs’s book of 1624 that our words
“mantissa” and “characteristic” are derived. While Briggs was working
out tables of common logarithms, a contemporary mathematics teacher,
John Speidell, drew up natural logarithms of trigonometric functions and
published these in his New Logarithmes of 1619. A few natural loga-
rithms had, in fact, appeared earlier in 1616 in an English translation by
Edward Wright (1559 1615) of Napier’s first work on logarithms
designed for the use of navigators. Seldom has a new discovery “caught
on” so rapidly as did the invention of logarithms, and the result was
the prompt appearance of tables of logarithms.

Jobst Bürgi

Napier was the first one to publish a work on logarithms, but very similar
ideas were developed independently in Switzerland by Jobst Bürgi at
about the same time. In fact, it is possible that the idea of logarithms had
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occurred to Bürgi as early as 1588, which would be half a dozen years
before Napier began work in the same direction. Yet Bürgi printed his
results only in 1620, half a dozen years after Napier had published his
Descriptio. Bürgi’s work appeared at Prague in a book titled Arithme-
tische und geometrische Progress-Tabulen, and this indicates that the
influences leading to his work were similar to those operating in the case
of Napier. The differences between the work of the two men lie chiefly
in their terminology and in the numerical values they used; the funda-
mental principles were the same. Instead of proceeding from a number
a little less than 1 (as had Napier, who used 12 10 7), Bürgi chose a
number a little greater than 1—the number 11 10 4, and instead of
multiplying powers of this number by 107, Bürgi multiplied by 108.
There was one other minor difference: Bürgi multiplied all of his power
indices by 10 in his tabulation. That is, if N5 108(11 10 4)L, Bürgi
called 10L the “red” number corresponding to the “black” number N. If
in this scheme we were to divide all of the black numbers by 108 and all
of the red numbers by 105, we should virtually have a system of natural
logarithms. For instance, Bürgi gave for the black number 1,000,000,000
the red number 230,270.022, which, on shifting decimal points, is
equivalent to saying that ln 105 2.30270022. This is not a bad approx-
imation to the modern value, especially when we recall that ð1110 4Þ104
is not quite the same as limn-Nð111=nÞn, although the values agree to
four significant figures.
Bürgi must be regarded as an independent discoverer who lost credit

for the invention because of Napier’s priority in publication. In one
respect, his logarithms come closer to ours than do Napier’s, for as
Bürgi’s black numbers increase, so do the red numbers, but the two
systems share the disadvantage that the logarithm of a product or a
quotient is not the sum or the difference of the logarithms.

Mathematical Instruments

The invention of logarithms, as well as the spreading use of decimal
fractions, is closely linked to seventeenth-century efforts to invent math-
ematical instruments that would facilitate computation. Three groups of
devices merit our attention: those leading to the computing sector of the
eighteenth and early nineteenth centuries: theGunters scale and early slide
rules, and the first mechanical adding and calculating machines.

Computing Sectors

The first group of instruments originated with Thomas Hood and Galileo
Galilei. Galileo had originally intended to take a degree in medicine, but
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a taste for Euclid and Archimedes led him instead to become a professor
of mathematics, first at Pisa and later at Padua. This does not mean,
however, that he taught on the level of the authors he admired. Little
mathematics was included in university curricula of the time, and a
large proportion of what was taught in Galileo’s courses would now be
classified as physics or astronomy or engineering applications. More-
over, Galileo was not a “mathematician’s mathematician,” as was Viète;
he came close to being what we should call a mathematical practitioner.
Among his first inventions that may be called special-purpose computing
devices was a pulse measuring device. His interest in computational
techniques led him in 1597 to construct and market a better-known
device that he called his “geometric and military compasses.”
In a pamphlet of 1606 with the title Le operazioni del compasso geo-

metrico et militare, he described in detail theway inwhich the geometric and
military compass could be used to quickly performavariety of computations,
without pen or paper or an abacus. The theory behind this was extremely
elementary, and the degree of accuracy was very limited, but the financial
success of Galileo’s device shows that military engineers and other practi-
tioners found a need for such an aid in calculation. Bürgi had constructed a
similar device, but Galileo had a better entrepreneurial sense, one that gave
him an advantage. The Galilean compasses consisted of two arms pivoted as
in the ordinary compasses of today, but each of the arms was engraved with
graduated scales of varying types. Fig. 14.2 shows a reduced version
with only one arithmetic scale, the simple equi-spaced markings up to 250,
and only the simplest of the many possible computations, the first one
explained byGalileo, is describedhere. If, for instance, onewishes to divide a
given line segment into five equal parts, one opens a pair of ordinary com-
passes (or dividers) to the length of the line segment. Then, one opens the
geometric compasses so that the distance between the points of the dividers
just spans the distance between two markings, one on each arm of the geo-
metric compasses, which are simple integral multiples of five, say, the
number 200 on each scale. Then, if one holds the opening of the geometric
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compasses fixed and places the ends of the dividers on the mark for 40 on
each scale, the distance between the divider points will be the desired fifth of
the length of the original line segment. The instructionsGalileo providedwith
his compasses included many other operations, from changing the scale of
a drawing to computing amounts of money under compound interest.

Gunters Scale and Slide Rules

It was Edmund Gunter (1581 1626), a graduate of Christ Church,
Oxford, and the rector of two churches, who invented a widely used
computing device and the precursor of the logarithmic slide rule.
A friend of Henry Briggs’s and a frequent visitor of Briggs at Gresham
College, he was appointed professor of astronomy at Gresham in 1620.
Shortly thereafter, he published a Description and Use of the Sector, the
Crosse-staffe and Other Instruments. Here he described what came to be
known as “the gunter” or Gunters scale, consisting of a 2-foot-long
logarithmic scale used with a pair of dividers. This and his other con-
tributions to mathematical instrumentation were motivated by his
interest in assisting sailors, surveyors, and others not skilled in multi-
plication and other mathematical computational techniques. Other
devices that bear his name include the surveyor’s Gunters chain, a
portable chain 66 feet long consisting of 100 links (note that 1 acre is
43,560 or 663 663 10 square feet). He also contributed to navigation by
his studies of magnetic declination and his observation of the secular
variation.
In 1624, Edmund Wingate displayed a Gunters scale to a group of

scientists and engineers in Paris. This resulted in a French description
of the device being published that same year. Wingate called it a rule of
proportion, and the French description indicated that it included four
lines: a line of numbers; a line of tangents; a line of sines; and two 1-foot

A Butterfield sector (from the collections of the National Museum of American
History, Smithsonian Institution)
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lines, one divided into inches and tenths of inches, the other into tenths
and hundredths.
A major drawback of the device was its length. By midcentury,

Wingate had circumvented this by splitting the scales, adding additional
ones, and using both sides of the rule. A number of other British inno-
vators brought out improvements on the rule as well.
Meanwhile, in the early 1630s, several slide rules were publicized.

William Oughtred (1574 1660) invented a circular and a linear slide
rule. To do away with the dividers, he used two Gunter rules. Another
early deviser of slide rules was Richard Delamain, who claimed priority
over Oughtred’s invention by virtue of an earlier publication.
The interest aroused by the inventions, as well as the ensuing priority

disputes, led to the slide rule rapidly becoming a standard accessory for
people in occupations that involved computation on a regular basis.
Although the mathematical principles remained those linked to the dis-
coveries of the early seventeenth century, the form of the slide rule best
known in the twentieth century followed the 1850 design of the French
army officer Amédée Mannheim (1831 1906), who had a long affiliation
with the École Polytechnique.

Adding and Calculating Machines

Mechanical adding and calculating machines also appeared in the
seventeenth century. Their history was the converse of that of computing
scales and slide rules. Here, there were no new mathematical principles,
as was true in the case of the devices that used the concept of logarithms.
Yet their acceptance was long delayed, largely because of more complex

Pascal’s adding machine (from the collection of IBM)
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construction requirements and higher costs. We mention the three best
known. Wilhelm Schickard (1592 1635), a Lutheran minister who held
academic positions as professor of Hebrew and, later, as professor of
mathematics and astronomy, was a correspondent of Kepler’s who used
Schickard’s talents as an engraver and arithmetician. Schickard pro-
duced several designs of a mechanical device; the only one constructed
at the time was destroyed in a fire. Blaise Pascal designed an adding
machine to assist his father in tax and commercial computations, but
although he had several of his machines produced for sale and some
have even turned up in China, production was stopped after about ten
years. Leibniz, whose teacher Erhard Weigel had used an open meadow
to drill multitudes of adults in their multiplication tables, used the
principle of a movable carriage to emulate the concept of the carry in
multiplication, but his attempts to interest members of the leading sci-
entific societies in his machine were unsuccessful. The calculating
machine industry did not get off the ground until the nineteenth century,
when Charles X. Thomas of Colmar produced his so-called arithm-
ometer, a stepped-drum, movable-carriage machine.

Tables

The application of logarithms was most notably successful in the con-
struction and use of mathematical tables. From the seventeenth century,
when the first logarithmic tables appeared, to the end of the twentieth, when
electronic devices replaced most other aids to computation, tables were in
the pockets and on the desks of men, women, and children. Until the

Thomas’s first arithmometer (from the collections of the National Museum of American
History, Smithsonian Institution)
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electronic computer became established, the chief computing journal was
called Mathematical Tables and Other Aids to Computation.
Henry Briggs had already produced tables before he became aware of

Napier’s logarithms. In 1602, he had published “A Table to Find the
Height of the Pole, the Magnetic Declination Being Given,” and in 1610,
“Tables for the Improvement of Navigation.” After Briggs and Napier
first met, they frequently discussed tables of logarithms. We noted earlier
Briggs’s first publication on the subject of 1617 and his subsequent
Arithmetica Logarithmica. A posthumous English version, titled Trigo-
nometria Britannica, was issued by Gellibrand in 1633. In 1924, the
tercentenary of Briggs’s Arithmetica Logarithmica, the first part of a
table to 20 decimal places appeared.
Earlier, in 1620, Gunter, too, had published seven-figure tables

of logarithms of sines and tangents in Canon Triangulorum, or Table of
Artificial Sines and Tangents. Most subsequent tables of logarithmic
trigonometric functions did not exceed this number of decimal places,
although in 1911, Andoyer in Paris published a table to 14 decimal
places with differences for every ten sexagesimal seconds. By that time,
table computation had been mechanized. In the 1820s, Charles Babbage
had designed a “difference engine,” a machine designed to eliminate
errors in table computation by applying the method of differences,
performing simultaneous additions, and printing the results. The first
successfully operating difference engine was designed by the Swedes
Georg and his son Edvard Scheutz and performed a variety of specia-
lized table computations at the Dudley Observatory in Albany, New
York, in the late 1850s.

The Scheutz difference engine (from the collections of the National Museum of
American History, Smithsonian Institution)
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Infinitesimal Methods: Stevin

Being practical men, Stevin, Kepler, and Galileo all had need for
Archimedean methods, but they wished to avoid the logical niceties of
the method of exhaustion. It was largely the resulting modifications
of the ancient infinitesimal methods that ultimately led to the calculus,
and Stevin was one of the first to suggest changes. In his Statics of 1586,
almost exactly a century before Newton and Leibniz published their
calculus, the engineer of Bruges demonstrated as follows that the center of
gravity of a triangle lies on its median. In the triangle ABC inscribe a
number of parallelograms of equal height whose sides are pairwise parallel
to one side and to the median drawn to this side (Fig. 14.3). The center of
gravity of the inscribed figures will lie on the median, by the Archimedean
principle that bilaterally symmetrical figures are in equilibrium. We may
inscribe in the triangle an infinite number of such parallelograms, however,
and the greater the number of parallelograms, the smaller will be the
difference between the inscribed figure and the triangle. Inasmuch as
the difference can be made as small as one pleases, the center of gravity of
the triangle also lies on the median. In some of the propositions on fluid
pressure, Stevin supplemented this geometric approach with a “demon-
stration by numbers,” in which a sequence of numbers tended to a limiting
value, but the “Dutch Archimedes” had more confidence in a geometric
proof than in an arithmetic one.

Johannes Kepler

Whereas Stevin was interested in physical applications of infinitely
many infinitely small elements, Kepler had need for astronomical
applications, especially in connection with his elliptic orbits of 1609. As
early as 1604, Kepler had become involved with conic sections through
work in optics and the properties of parabolic mirrors. Whereas Apol-
lonius had been inclined to think of the conics as three distinct types of
curves—ellipses, parabolas, and hyperbolas—Kepler preferred to think
of five species of conics, all belonging to a single family or genus. With
a strong imagination and a Pythagorean feeling for mathematical

FIG. 14.3
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harmony, in 1604 Kepler developed for conics (in his Ad Vitellionem
Paralipomena—i.e., Introduction to Vitello’s Optics) what we call the
principle of continuity. From the conic section made up simply of two
intersecting lines, in which the two foci coincide at the point of inter-
section, we pass gradually through infinitely many hyperbolas as one
focus moves farther and farther from the other. When the one focus is
infinitely far away, we no longer have the double-branched hyperbola
but the parabola. As the moving focus passes beyond infinity and
approaches again from the other side, we pass through infinitely many
ellipses until, when the foci again coincide, we reach the circle.
The idea that a parabola has two foci, one at infinity, is due to Kepler,

as is also the word “focus” (Latin for “hearthside”); we find this bold
and fruitful speculation on “points at infinity” extended a generation
later in the geometry of Girard Desargues. Meanwhile, Kepler found a
useful approach to the problem of the infinitely small in astronomy.

Johannes Kepler
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In his Astronomia nova of 1609, he announced his first two laws of
astronomy: (1) the planets move about the sun in elliptical orbits with
the sun at one focus, and (2) the radius vector joining a planet to the sun
sweeps out equal areas in equal times.
In handling problems of areas such as these, Kepler thought of the area

as made up of infinitely small triangles with one vertex at the sun and the
other two vertices at points infinitely close together along the orbit. In
this way, he was able to use a crude type of integral calculus resembling
that of Oresme. The area of a circle, for example, is thereby found by
noting that the altitudes of the infinitely thin triangles (Fig. 14.4) are equal
to the radius. If we call the infinitely small bases, lying along the cir-
cumference, b1, b2, . . . , bn, . . . , then the area of the circle—that is, the sum
of the areas of the triangles—will be 1

2 b1r1
1
2 b2r1?1 1

2 bnr1? or
1
2 rðb11 b21?1 bn1?Þ. Inasmuch as the sum of the b’s is the cir-
cumference C, the area Awill be given by A5 1

2 rC, the well-known ancient
theorem that Archimedes had proved more carefully.
By analogous reasoning, Kepler knew the area of the ellipse, a result

of Archimedes’ that was not then extant. The ellipse can be obtained
from a circle of radius a through a transformation under which the
ordinate of the circle at each point is shortened according to a given
ratio, say b:a. Then, following Oresme, one can think of the area of the
ellipse and the area of the circle as made up of all of the ordinates for
points on the curves (Fig. 14.5), but inasmuch as the ratio of the com-
ponents of the areas is in the ratio b : a, the areas themselves must have
the same ratio. Yet the area of the circle is known to be πa2; hence, the
area of the ellipse x2 / a21 y2 / b25 1 must be πab. This result is correct,
but the best that Kepler could do for the circumference of the ellipse was
to give the approximate formula π(a1 b). Lengths of curves in general
and of the ellipse in particular were to elude mathematicians for another
half a century.
Kepler had worked with Tycho Brahe first in Denmark and later in

Prague, where, following Brahe’s death, Kepler became mathematician
to the emperor Rudolph II. One of his duties was the casting of

FIG. 14.4
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horoscopes. Mathematicians, whether in the service of emperors or at
universities, found various applications for their talents. The year 1612
had been a very good one for wine, and, while Kepler was in Linz, in
Austria, he began to meditate on the crude methods then in use for
estimating the volumes of wine casks. He compared these with Archi-
medes’ methods on the volumes of conoids and spheroids, and then he
proceeded to find the volumes of various solids of revolution not pre-
viously considered by Archimedes. For example, he revolved a segment
of a circle about its chord, calling the result a citron if the segment was
less than a semicircle and an apple if the segment exceeded a semicircle.
His volumetric method consisted of regarding the solids as composed of
infinitely many infinitesimal elements, and he proceeded much as we
have indicated earlier for areas. He dispensed with the Archimedean
double reductio ad absurdum, and in this, he was followed by most
mathematicians from that time to the present.
Kepler collected his volumetric thoughts in a book that appeared in

1615 under the title Stereometria Doliorum (Volume-Measurement of
Barrels). For a score of years, it seemed to have excited no great interest,
but in 1635, the Keplerian ideas were systematically expanded in a
celebrated book titled Geometria Indivisibilibus, written by Bonaventura
Cavalieri, a disciple of Galileo’s.

FIG. 14.5
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15

Analysis, Synthesis, the
Infinite, and Numbers

The eternal silence of these infinite spaces terrifies me.

Pascal

Galileo’s Two New Sciences

While Kepler had been studying wine barrels, Galileo was scanning the
heavens with his telescope and rolling balls down inclined planes.
The results of Galileo’s efforts were two famous treatises, one astro-
nomical and the other physical. They were both written in Italian, but
we shall refer to them in English as The Two Chief Systems (1632) and
The Two New Sciences (1638). The first was a dialogue concerning the
relative merits of the Ptolemaic and Copernican views of the universe,
carried on by three men: Salviati (a scientifically informed scholar),
Sagredo (an intelligent layman), and Simplicio (an obtuse Aristotelian).
In the dialogue, Galileo left little doubt about where his preferences lay,
and the consequences were his trial and detention. During the years of
his exile, he nevertheless prepared The Two New Sciences, a dialogue
concerning dynamics and the strength of materials, carried out by the
same three characters. Although neither of the two great Galilean
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treatises was in a strict sense mathematical, there are in both of them
many points at which appeal is made to mathematics, frequently to the
properties of the infinitely large and the infinitely small.
The infinitely small was of more immediate relevance to Galileo than the

infinitely large, for he found it essential in his dynamics. Galileo gave
the impression that dynamics was a totally new science created by him, and
all too many writers since have agreed with this claim. It is virtually
certain, however, that he was thoroughly familiar with the work of Oresme
on the latitude of forms, and several times in The Two New Sciences,
Galileo had occasion to use a diagram of velocities similar to the triangle
graph of Oresme’s. Nevertheless, Galileo organized Oresme’s ideas and
gave them a mathematical precision that had been lacking. Among the new
contributions to dynamics was Galileo’s analysis of projectile motion into a
uniform horizontal component and a uniformly accelerated vertical com-
ponent. As a result, he was able to show that the path of a projectile,
disregarding air resistance, is a parabola. It is a striking fact that the conic

Galileo Galilei
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sections had been studied for almost 2,000 years before two of them almost
simultaneously found applicability in science: the ellipse in astronomy and
the parabola in physics. Galileo mistakenly thought he had found a further
application of the parabola in the curve of suspension of a flexible rope or
wire or chain (catena), but mathematicians later in the century proved that
this curve, the catenary, not only is not a parabola, it is not even algebraic.
Galileo had noted the curve now known as the cycloid, traced out by a
point on the rim of a wheel as it rolls along a horizontal path, and he tried
to find the area under one arch of it. The best he could do was to trace the
curve on paper, cut out an arch, and weigh it; then he concluded that
the area was a little less than three times the area of the generating circle.
Galileo abandoned study of the curve, suggesting only that the cycloid
would make an attractive arch for a bridge.
A more important contribution to mathematics was made by Galileo in

the Two Chief Systems of 1632, at a point on the “third day” when Salviati
adumbrated the idea of an infinitesimal of higher order. Simplicio had
argued that an object on a rotating earth should be thrown off tangentially
by the motion, but Salviati argued that the distance QR through which an
object has to fall to remain on the earth, while the latter rotates through a
small angle θ (Fig. 15.1), is infinitely small compared with the tangential
distance PQ through which the object travels horizontally. Hence, even a
very small downward tendency, as compared with the forward impetus,
will be sufficient to hold the object on the earth. Galileo’s argument here is
equivalent to saying that PS5 vers θ is an infinitesimal of higher order
with respect to lines PQ or RS or arc PR.
From the infinite in geometry, Salviati led Simplicio to the infinite in

arithmetic, pointing out that a one-to-one correspondence can be set up
between all of the integers and the perfect squares, despite the fact
that the further one proceeds in the sequence of integers, the scarcer
the perfect squares become. Through the simple expedient of counting
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the perfect squares, a one-to-one correspondence is established in which
each integer inevitably is matched against a perfect square, and vice
versa. Even though there are many whole numbers that are not perfect
squares (and the proportion of these increases as we consider larger and
larger numbers), “we must say that there are as many squares as there are
numbers.” Galileo here was face-to-face with the fundamental property
of an infinite set—that a part of the set can be equal to the whole set—
but Galileo did not draw this conclusion. Although Salviati correctly
concluded that the number of perfect squares is not less than the number
of integers, he could not bring himself to make the statement that they
are equal. Instead, he simply concluded that “the attributes ‘equal,’
‘greater,’ and ‘less’ are not applicable to infinite, but only to finite
quantities.” He even asserted (incorrectly, we now know) that one
cannot say that one infinite number is greater than another infinite number
or even that an infinite number is greater than a finite number. Galileo, like
Moses, came within sight of the promised land, but he could not enter it.

Bonaventura Cavalieri

Galileo had intended to write a treatise on the infinite in mathematics, but
if he did, it has not been found. Meanwhile, his disciple Bonaventura
Cavalieri (1598 1647) was spurred by Kepler’s Stereometria, as well as
by ancient and medieval views and by Galileo’s encouragement, to
organize his thoughts on infinitesimals in the form of a book. Cavalieri
was a member of a religious order (a Jesuate, not a Jesuit, as is frequently
but incorrectly stated) who lived in Milan and Rome before becoming
professor of mathematics at Bologna in 1629. Characteristically for that
time, he wrote on many aspects of pure and applied mathematics—
geometry, trigonometry, astronomy, and optics—and he was the first
Italian writer to appreciate the value of logarithms. In his Directorium
Universale Uranometricum of 1632, he published tables of sines, tangents,
secants, and versed sines, together with their logarithms, to eight places;
but the world remembers him instead for one of the most influential books
of the early modern period, the Geometria Indivisibilibus Continuorum,
published in 1635.
The argument on which the book is based is essentially that implied by

Oresme, Kepler, and Galileo—that an area can be thought of as made up
of lines or “indivisibles” and that a solid volume can be regarded similarly
as composed of areas that are indivisible or quasi-atomic volumes.
Although Cavalieri at the time could scarcely have realized it, he was
following in very respectable footsteps indeed, for this is precisely the
type of reasoning that Archimedes had used in the Method, which at that
time had been lost. But Cavalieri, unlike Archimedes, felt no compunction
about the logical deficiencies behind such procedures.
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The general principle that in an equation involving infinitesimals,
those of higher order are to be discarded because they have no effect on
the final result is frequently erroneously attributed to Cavalieri’s
Geometria Indivisibilibus. The author undoubtedly was familiar with
such an idea, for it is implied in some of the work of Galileo, and it
appeared more specifically in results of contemporary French mathe-
maticians, but Cavalieri assumed almost the opposite of this principle.
There was in Cavalieri’s method no process of continued approximation
or any omission of terms, for he used a strict one-to-one pairing of the
elements in two configurations. No elements are discarded, no matter
what the dimension. The general approach and the specious plausibility
of the method of indivisibles are well illustrated by the proposition still
known in many solid geometry books as “the theorem of Cavalieri”:

If two solids have equal altitudes, and if sections made by planes parallel

to the bases and at equal distances from them are always in a given ratio,

then the volumes of the solids also are in this ratio (Smith 1959,

pp. 605�609).

Cavalieri concentrated on an extremely useful geometric theorem
equivalent to the modern statement in the calculusða

0
xndx5

an1 1

n1 1
:

The statement and the proof of the theorem are very different from those
with which a modern reader is familiar, for Cavalieri compared powers
of the lines in a parallelogram parallel to the base with the corresponding
powers of lines in either of the two triangles into which a diagonal divides
the parallelogram. Let the parallelogram AFDC be divided into two tri-
angles by the diagonal CF (Fig. 15.2) and let HE be an indivisible of
triangle CDF that is parallel to the base CD. Then, on taking BC5FE and
drawing BM parallel to CD, it is easy to show that the indivisible BM
in triangle ACF will be equal to HE. Hence, one can pair all of the
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indivisibles of triangle CDF with equal indivisibles in triangle ACF, and,
therefore, the two triangles are equal. Inasmuch as the parallelogram
is the sum of the indivisibles in the two triangles, it is clear that the sum of
the first powers of the lines in one of the constituent triangles is half of the
sum of the first powers of the lines in the parallelogram; in other words,

ða
0
x dx5

a2

2
:

Through a similar but considerably more involved argument, Cavalieri
showed that the sum of the squares of the lines in the triangle is one-third
the sum of the squares of the lines in the parallelogram. For the cubes
of the lines, he found the ratio to be 1 / 4. Later he carried the proof
to higher powers, finally asserting, in Exercitationes Geometricae Sex
(Six Geometrical Exercises) of 1647, the important generalization that
for the nth powers, the ratio will be 1 / (n1 1). This was known at the
same time to French mathematicians, but Cavalieri was first to publish
this theorem—one that was to open the way to many algorithms in
the calculus. Geometrica Indivisibilibus, which so greatly facilitated the
problem of quadratures, appeared again in a second edition in 1653, but
by that time, mathematicians had achieved remarkable results in new
directions that outmoded Cavalieri’s laborious geometric approach.
The most significant theorem by far in Cavalieri’s work was his

equivalent of

ða
0
xndx5

an1 1

n1 1
;

but another contribution would also lead to important results. The spiral
r5 aθ and the parabola x25 ay had been known since antiquity without
anyone’s having previously noted a relationship between them, until
Cavalieri thought of comparing straight-line indivisibles with curvilinear
indivisibles. If, for example, one were to twist the parabola x25 ay
(Fig. 15.3) around like a watch spring so that vertex O remains fixed
while point P becomes point Pu, then the ordinates of the parabola can be
thought of as transformed into radius vectors through the relationships
x5 r and y5 rθ between what we now call rectangular and polar
coordinates. The points on the Apollonian parabola x25 ay then will lie
on the Archimedean spiral r5 aθ. Cavalieri noted further that if PPu is
taken equal to the circumference of the circle of radius OPu, the area
within the first turn of the spiral is exactly equal to the area between the
parabolic arc OP and the radius vector OP. Here we see work that
amounts to analytic geometry and the calculus, yet Cavalieri was writing
before either of these subjects had been formally invented. As in other
parts of the history of mathematics, we see that great milestones do not
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appear suddenly but are merely the more clear-cut formulations along
the thorny path of uneven development.

Evangelista Torricelli

The year 1647 in which Cavalieri died also marked the death of another
disciple of Galileo’s, the young Evangelista Torricelli (1608 1647). But
in many ways, Torricelli represented the new generation of mathema-
ticians that was building rapidly on the infinitesimal foundation that
Cavalieri had sketched all too vaguely. Had Torricelli not died so pre-
maturely, Italy might have continued to share the lead in new devel-
opments; as it turned out, France was the undisputed mathematical
center during the second third of the seventeenth century.
Torricelli was trained in mathematics at several Jesuit institutions

before studying with Benedetto Castelli, whose secretary he was for six
years. He became interested in the cycloid, possibly on the suggestion
of Marin Mersenne, perhaps through Galileo, whom Torricelli, like
Mersenne, greatly admired. He had brought himself to Galileo’s atten-
tion while handling Castelli’s correspondence. In 1643, Torricelli sent
Mersenne the quadrature of the cycloid, and in 1644, he published a
work with the title De Dimensione Parabolae, to which he appended
both the quadrature of the cycloid and the construction of the tangent.
Torricelli made no mention of the fact that Gilles Persone de Roberval
had arrived at these results before him, and so in 1646, Roberval wrote a
letter accusing Torricelli of plagiarism from him and from Pierre de
Fermat (on maxima and minima). It is clear now that priority of dis-
covery belongs to Roberval, but priority in publication goes to Torricelli,
who probably rediscovered the area and the tangent independently.
Torricelli gave two quadratures, one making use of Cavalieri’s method
of indivisibles and the other of the ancient “method of exhaustion.” For
finding the tangent of the curve, he employed a composition of motions
reminiscent of Archimedes’ tangent to his spiral.

O P'

P

FIG. 15.3

306 Ana l y s i s , S y n t he s i s , t h e I n f in i t e, and Numb e r s



The idea of the composition of movements was not original with either
Torricelli or Roberval, for Archimedes, Galileo, Descartes, and others
had used it. Torricelli may have derived the idea from any one of these
men. Both Torricelli and Roberval applied the kinematic method to other
curves as well. A point on the parabola, for example, moves away from
the focus at the same rate at which it moves away from the directrix;
hence, the tangent will be the bisector of the angle between lines in these
two directions. Torricelli also made use of Fermat’s method of tangents
for the higher parabolas and extended Cavalieri’s comparison of the
parabola and the spiral by considering arc length, as well as area. In
the 1640s, they showed that the length of the first rotation of the spiral
r5 aθ is equal to the length of the parabola x25 2ay from x5 0 to
x5 2πa. Fermat, ever one to seek generalizations, introduced the higher
spirals rn5 aθ and compared the arcs of these with the lengths of his
higher parabolas xn 15 2ay. Torricelli studied spirals of various kinds,
discovering the rectification of the logarithmic spiral.
Problems involving infinitesimals were by far the most popular at the

time, and Torricelli in particular delighted in these. In the De Dimensione
Parabolae, for instance, Torricelli gave twenty-one different proofs of
the quadrature of the parabola, using approaches about evenly divided
between the use of indivisibles and the “method of exhaustion.” One in the
first category is almost identical with the mechanical quadrature given by
Archimedes in his Method, presumably not then extant. As might be
anticipated, one in the second category is virtually that given in Archi-
medes’ treatise On the Quadrature of the Parabola, extant and well
known at the time. Had Torricelli arithmetized his procedures in this
connection, he would have been very close to the modern limit concept,
but he remained under the heavily geometric influence of Cavalieri and his
other Italian contemporaries. Nevertheless, Torricelli far outdid them in
the flexible use of indivisibles to achieve new discoveries.
One novel result of 1641 that greatly pleased Torricelli was his proof

that if an infinite area, such as that bounded by the hyperbola xy5 a2, an
ordinate x2 b, and the axis of abscissas, is revolved about the x-axis, the
volume of the solid generated may be finite. Torricelli believed that he
was first to discover that a figure with infinite dimensions can have a
finite magnitude, but in this respect, he may have been anticipated by
Fermat’s work on the areas under the higher hyperbolas or possibly
by Roberval and certainly by Oresme in the fourteenth century.
Among the problems that Torricelli handled just before his premature

death in 1647 was one in which he sketched the curve whose equation
we should write as x5 log y, perhaps the first graph of a logarithmic
function, thirty years after the death of the discoverer of logarithms as a
computational device. Torricelli found the area bounded by the curve, its
asymptote, and an ordinate, as well as the volume of the solid obtained
on revolving the area about the x-axis.
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Torricelli was one of the most promising mathematicians of the
seventeenth century, which is often referred to as the century of genius.
Mersenne had made the work of Fermat, Descartes, and Roberval known
in Italy, both through correspondence with Galileo dating from 1635 and
during a pilgrimage to Rome in 1644. Torricelli promptly mastered the
new methods, although he always favored the geometric over the alge-
braic approach. Torricelli’s brief association with the blind and aged
Galileo in 1641 1642 had also aroused in the younger man an interest in
physical science, and today he is probably better recalled as the inventor
of the barometer than as a mathematician. He studied the parabolic
paths of projectiles fired from a point with fixed initial speeds but with
varying angles of elevation and found that the envelope of the parabolas
is another parabola. In going from an equation for distance in terms of
time to that for speed as a function of time, and inversely, Torricelli saw
the inverse character of quadrature and tangent problems. Had he
enjoyed the normal span of years, it is possible that he would have
become the inventor of the calculus, but a cruel malady cut short his life
in Florence only a few days after his thirty-ninth birthday.

Mersenne’s Communicants

France was the undisputed mathematical center during the second third
of the seventeenth century. The leading figures were René Descartes
(1596 1650) and Pierre de Fermat (1601 1665), but three other con-
temporary Frenchmen also made important contributions: Gilles Persone
de Roberval (1602 1675), Girard Desargues (1591 1661), and Blaise
Pascal (1623 1662). The rest of this chapter focuses attention on these
men. A second focal point is provided by the generation following
Descartes, whose members, active in the Low Countries, produced some
of the high points of Cartesian mathematics.
No professional mathematical organizations yet existed, but in Italy,

France, and England, there were loosely organized scientific groups: the
Accademia dei Lincei (to which Galileo belonged) and the Accademia
del Cimento in Italy, the Cabinet DuPuy in France, and the Invisible
College in England. There was in addition an individual who, during
the period we are now considering, served through correspondence as
a clearing house for mathematical information. This was the Minimite
friar Marin Mersenne (1588 1648), a close friend of Descartes’ and
Fermat’s, as of many another mathematician of the time. Had Mersenne
lived a century earlier, the delay in information concerning the solution
of the cubic might not have occurred, for when Mersenne knew
something, the whole of the “Republic of Letters” was shortly informed
about it.
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René Descartes

Descartes was born in La Haye and received a thorough education at the
Jesuit college at La Flèche, where the textbooks of Clavius were fun-
damental. Later he took a degree at Poitiers, where he had studied law,
without much enthusiasm. For a number of years, he traveled about in
conjunction with various military campaigns, first in Holland with
Maurice, Prince of Nassau; then with Duke Maximilian I of Bavaria; and
later still with the French army at the siege of La Rochelle. Descartes
was not really a professional soldier, and his brief periods of service in
connection with campaigns were separated by intervals of independent
travel and study, during which he met some of the leading scholars in
various parts of Europe. In Paris, he met Mersenne and a circle of sci-
entists who freely discussed criticisms of Peripatetic thought; from such
stimulation, Descartes went on to become the “father of modern

René Descartes
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philosophy,” to present a changed scientific worldview, and to establish
a new branch of mathematics. In his most celebrated treatise, the Dis-
cours de la méthode pour bien conduire sa raison et chercher la vérité
dans les sciences (Discourse on the Method of Reasoning Well and
Seeking Truth in the Sciences) of 1637, he announced his program for
philosophical research. In this he hoped, through systematic doubt, to
reach clear and distinct ideas from which it would then be possible to
deduce innumerably many valid conclusions. This approach to science
led him to assume that everything was explainable in terms of matter (or
extension) and motion. The entire universe, he postulated, was made up
of matter in ceaseless motion in vortices, and all phenomena were to be
explained mechanically in terms of forces exerted by contiguous matter.
Cartesian science enjoyed great popularity for almost a century, but it
then necessarily gave way to the mathematical reasoning of Newton.
Ironically, it was in large part the mathematics of Descartes that later
made possible the defeat of Cartesian science.

Invention of Analytic Geometry

The philosophy and the science of Descartes were almost revolutionary in
their break with the past; his mathematics, by contrast, was linked with
earlier traditions.
Descartes had become seriously interested in mathematics by the time

he spent the cold winter of 1619 with the Bavarian army, where he lay
abed until ten in the morning, thinking out problems. It was during this
early period in his life that he discovered the polyhedral formula that is
usually named for Leonhard Euler: v1 f5 e1 2, where v, f, and e are
the number of vertices, faces, and edges, respectively, of a simple
polyhedron. Nine years later, Descartes wrote to a friend in Holland that
he had made such strides in arithmetic and geometry that he had no more
to wish for. Just what the strides were is not known, for Descartes
had published nothing, but the direction of his thoughts is indicated in
a letter of 1628 to his Dutch friend, where he gave a rule for the
construction of the roots of any cubic or quartic equation by means of
a parabola. This is, of course, essentially the type of thing that
Menaechmus had done for the duplication of the cube some 2,000 years
earlier and that Omar Khayyam had carried out for cubics in general
around the year 1100.
Whether Descartes by 1628 was in full possession of his analytic

geometry is not clear, but the effective date for the invention of Carte-
sian geometry cannot be much later than that. At this time, Descartes left
France for Holland, where he spent the next twenty years. Three or four
years after he settled down there, another Dutch friend, a classicist,
called his attention to the three-and-four-line problem of Pappus. Under
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the mistaken impression that the ancients had been unable to solve this
problem, Descartes applied his new methods to it and succeeded without
difficulty. This made him aware of the power and generality of his point
of view, and he consequently wrote the well-known work La géométrie,
which made analytic geometry known to his contemporaries.

Arithmetization of Geometry

La géométrie was not presented to the world as a separate treatise, but as
one of three appendices to the Discours de la méthode, in which Descartes
thought to give illustrations of his general philosophical method. The
other two appendices were La dioptrique, containing the first publication
of the law of refraction (discovered earlier by Willebrord Snell), and Les
météores, which included, among other things, the first generally satis-
factory quantitative explanation of the rainbow. The original edition of the
Discours was published without the name of the author, but the authorship
of the work was generally known.
Cartesian geometry is now synonymous with analytic geometry, but

Descartes’ fundamental purpose was far removed from that of modern
textbooks. The theme is set by the opening sentence:

Any problem in geometry can easily be reduced to such terms that a

knowledge of the lengths of certain lines is sufficient for its construction.

As this statement indicates, the goal is generally a geometric construction
and not necessarily the reduction of geometry to algebra. The work of
Descartes is far too often described simply as the application of algebra to
geometry, whereas it actually could be characterized equally well as the
translation of the algebraic operations into the language of geometry.
The very first section of La géométrie is titled “How the Calculations of
Arithmetic Are Related to the Operations of Geometry.” The second section
describes “HowMultiplication, Division, and theExtraction of SquareRoots
Are PerformedGeometrically.” Here Descartes was doing what had to some
extent been done from the time of al-Khwarizmi to Oughtred—furnishing a
geometric background for the algebraic operations. The five arithmetic
operations are shown to correspond to simple constructionswith straightedge
and compasses, thus justifying the introduction of arithmetic terms in
geometry.
Descartes was more thorough in his symbolic algebra and in the geo-

metric interpretation of algebra than any of his predecessors. Formal algebra
had been advancing steadily since the Renaissance, and it found its cul-
mination in Descartes’ La géométrie, the earliest mathematical text that a
present-day student of algebra can follow without encountering difficulties
in notation. About the only archaic symbol in the book is the use of
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instead of 5 for equality. In one essential respect, he broke from Greek
tradition, for instead of considering x2 and x3, for example, as an area and a
volume, he also interpreted them as lines. This permitted him to abandon
the principle of homogeneity, at least explicitly, and yet retain geometric
meaning. Descartes could write an expression such as a2b22 b, for, as he
expressed it, one “must consider the quantity a2b2 divided once by unity
(that is, the unit line segment), and the quantity bmultiplied twice by unity.”
It is clear that Descartes substituted homogeneity in thought for homo-
geneity in form, a step that made his geometric algebra more flexible—so
flexible indeed that today we read xx as “x squared” without ever seeing a
square in our mind’s eye.

Geometric Algebra

Book I includes detailed instructions on the solution of quadratic
equations, not in the algebraic sense of the ancient Babylonians, but
geometrically, somewhat in the manner of the ancient Greeks. To solve
the equation z25 az1 b2, for example, Descartes proceeded as follows.
Draw a line segment LM of length b (Fig. 15.4) and at L erect a segment
NL equal to a / 2 and perpendicular to LM. With center N construct a
circle of radius a / 2 and draw the line through M and N intersecting
the circle at O and P. Then, z5OM is the line desired. (Descartes
ignored the root PM of the equation because it is “false,” that is,
negative.) Similar constructions are given for z25 az2 b2 and for
z21 az5 b2, the only other quadratic equations with positive roots.
Having shown how algebraic operations, including the solution of

quadratics, are interpreted geometrically, Descartes turned to the appli-
cation of algebra to determine geometric problems, formulating far more
clearly than the Renaissance cossists the general approach:

If, then, we wish to solve any problem, we first suppose the solution

already effected, and give names to all the lines that seem needful for its
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construction to those that are unknown as well as to those that are

known. Then, making no distinction between known and unknown lines,

we must unravel the difficulty in any way that shows most naturally

the relations between these lines, until we find it possible to express a

single quantity in two ways. This will constitute an equation (in a single

unknown), since the terms of the one of these two expressions are

together equal to the terms of the other.

Throughout Books I and III of La géométrie, Descartes is primarily
concerned with this type of geometric problem, in which the final
algebraic equation can contain only one unknown quantity. Descartes
was well aware that it was the degree of this resulting algebraic equation
that determined the geometric means by which the required geometric
construction can be carried out.

If it can be solved by ordinary geometry, that is, by the use of straight

lines and circles traced on a plane surface, when the last equation shall

have been entirely solved there will remain at most only the square of an

unknown quantity, equal to the product of its root by some known

quantity, increased or diminished by some other quantity also known.

Here we see a clear-cut statement that what the Greeks had called “plane
problems” lead to nothing worse than a quadratic equation. Because
Viète had already shown that the duplication of the cube and the tri-
section of the angle lead to cubic equations, Descartes stated, with
inadequate proof, that these cannot be solved with straightedge and
compasses. Of the three ancient problems, therefore, only the squaring of
the circle remained open to question.
The title La géométrie should not mislead one into thinking that

the treatise is primarily geometric. Already in the Discourse, to which the
Geometry had been appended, Descartes had discussed the relative
merits of algebra and geometry, without being partial to either. He
charged the latter with relying too heavily on diagrams that unne-
cessarily fatigue the imagination, and he stigmatized the former as being
a confused and obscure art that embarrasses the mind. The aim of his
method, therefore, was twofold: (1) through algebraic procedure to free
geometry from the use of diagrams and (2) to give meaning to the
operations of algebra through geometric interpretation. Descartes was
convinced that all mathematical sciences proceed from the same basic
principles, and he decided to use the best of each branch. His procedure
in La géométrie, then, was to begin with a geometric problem, to
convert it to the language of an algebraic equation, and then, having
simplified the equation as far as possible, to solve this equation
geometrically, in a manner similar to that which he had used for the
quadratics.
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Classification of Curves

Descartes wasmuch impressed by the power of his method in handling the
three- and four-line locus, so he moved on to generalizations of this pro-
blem—aproblem that runs like a thread ofAriadne through the three books
of La géométrie. He knew that Pappus had been unable to tell anything
about the loci when the number of lines was increased to six or eight or
more, so Descartes proceeded to study such cases. He was aware that for
five or six lines the locus is a cubic, for seven or eight it is a quartic, and so
on. But Descartes showed no real interest in the shapes of these loci, for he
was obsessed with the question of the means needed to construct geome-
trically the ordinates corresponding to given abscissas. For five lines, for
example, he remarked triumphantly that if they are not all parallel, then the
locus is elementary in the sense that given a value for x, the line repre-
senting y is constructible by ruler and compass alone. If four of the lines are
parallel and equal distances a apart and the fifth is perpendicular to the
others (Fig. 15.5), and if the constant of proportionality in the Pappus
problem is taken as this same constant a, then the locus is given by (a1 x)
(a2 x)(2a2 x)5 axy, a cubic that Newton later called the Cartesian para-
bola or trident: x32 2ax22 a2x1 2a35 axy. This curve comes up repeatedly
in La géométrie, yet Descartes at no point gave a complete sketch of it. His
interest in the curve was threefold: (1) deriving its equation as a Pappus
locus, (2) showing its generation through the motion of curves of lower
degree, and (3) using it in turn to construct the roots of equations of higher
degree.
Descartes considered the trident constructible by plane means alone,

inasmuch as, for each point x on the axis of abscissas, the ordinate y can
be drawn with only ruler and compass. This is not, in general, possible
for five or more lines taken at random in the Pappus problem. In the case
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of not more than eight lines, the locus is a polynomial in x and y such
that for a given point on the x-axis, the construction of the corresponding
ordinate y requires the geometric solution of a cubic or quartic equation,
which, as we have seen, usually calls for the use of conic sections.
For not more than twelve lines in the Pappus problem, the locus is a
polynomial in x and y of not more than the sixth degree, and the con-
struction in general requires curves beyond the conic sections. Here
Descartes made an important advance beyond the Greeks in problems of
geometric constructibility. The ancients had never really legitimized
constructions that made use of curves other than straight lines or circles,
although they sometimes reluctantly recognized, as Pappus did, the classes
that they called solid problems and linear problems. The second category
in particular was a catchall class of problems with no real standing.
Descartes now took the step of specifying an orthodox classification of

determinate geometric problems. Those that lead to quadratic equations,
and can therefore be constructed by lines and circles, he placed in class
one; those leading to cubic and quartic equations, the roots of which can
be constructed by means of conic sections, he placed in class two; those
leading to equations of degree five or six can be constructed by introducing
a cubic curve, such as the trident or the higher parabola y5 x3, and these
he placed in class three. Descartes continued in this manner, grouping
geometric problems and algebraic equations into classes, assuming that the
construction of the roots of an equation of degree 2n or 2n2 1 was a
problem of class n.
The Cartesian classification by pairs of degrees seemed to be confirmed

by algebraic considerations. It was known that the solution of the quartic
was reducible to that of the resolvent cubic, and Descartes extrapolated
prematurely to assume that the solution of an equation of degree 2n can be
reduced to that of a resolvent equation of degree 2n2 1. Many years
later, it was shown that Descartes’ tempting generalization does not
hold. But his work did have the salutary effect of encouraging the
relaxation of the rules on constructibility so that higher plane curves might
be used.

Rectification of Curves

It will be noted that the Cartesian classification of geometric problems
included some, but not all, of those that Pappus had lumped together as
“linear.” In introducing the new curves that he needed for geometric
constructions beyond the fourth degree, Descartes added to the usual
axioms of geometry one more axiom:

Two or more lines (or curves) can be moved, one upon the other,

determining by their intersection other curves.
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This in itself is not unlike what the Greeks had actually done in their
kinematic generation of curves such as the quadratrix, the cissoid, the
conchoid, and the spiral. But whereas the ancients had lumped these
together, Descartes now carefully distinguished between those, such as
the cissoid and the conchoid, that we should call algebraic, and others,
such as the quadratrix and the spiral, that are now known as transcen-
dental. To the first type, Descartes gave full-fledged geometric status,
along with the line, the circle, and the conics, calling all of these the
“geometric curves”; the second type he ruled out of geometry entirely,
stigmatizing them as “mechanical curves.” The basis on which Descartes
made this decision was “exactness of reasoning.” Mechanical curves, he
said, “must be conceived of as described by two separate movements
whose relation does not admit of exact determination”—such as the ratio
of circumference to diameter of a circle in the case of the motions
describing the quadratrix and the spiral. In other words, Descartes
thought of algebraic curves as exactly described and of transcendental
curves as inexactly described, for the latter are generally defined in terms
of arc lengths. On this matter he wrote, in La géométrie:

Geometry should not include lines (or curves) that are like strings, in that

they are sometimes straight and sometimes curved, since the ratios

between straight and curved lines are not known, and I believe cannot be

discovered by human minds, and therefore no conclusion based upon such

ratios can be accepted as rigorous and exact.

Descartes here is simply reiterating the dogma, suggested by Aristotle
and affirmed by Averroës (Ibn Rushd, 1126 1198), that no algebraic
curve can be exactly rectified. Interestingly enough, in 1638, the year after
the publication of La géométrie, Descartes ran across a “mechanical”
curve that turned out to be rectifiable. Through Mersenne, Galileo’s
representative in France, the question, raised in The Two New Sciences, of
the path of fall of an object on a rotating earth (assuming the earth
permeable) was widely discussed, and this led Descartes to the equian-
gular or logarithmic spiral r5 aebθ as the possible path. Had Descartes not
been so firm in his rejection of such nongeometric curves, he might have
anticipated Torricelli in discovering, in 1645, the first modern rectification
of a curve. Torricelli showed, by infinitesimal methods that he had learned
from Archimedes, Galileo, and Cavalieri, that the total length of the
logarithmic spiral from θ5 0 as it winds backward about the pole O is
exactly equal to the length of the polar tangent PT (Fig. 15.6) at the point
for which θ5 0. This striking result did not, of course, disprove the
Cartesian doctrine of the nonrectifiability of algebraic curves. In fact,
Descartes could have asserted not only that the curve was not exactly
determined, being mechanical, but also that the arc of the curve has an
asymptotic point at the pole, which it never reaches.
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Identification of Conics

Virtually the whole of La géométrie is devoted to a thoroughgoing
application of algebra to geometry and of geometry to algebra, but there
is little in the treatise that resembles what usually is thought of today as
analytic geometry. There is nothing systematic about rectangular coor-
dinates, for oblique ordinates are usually taken for granted; hence, there
are no formulas for distance, slope, point of division, angle between two
lines, or other similar introductory material. Moreover, in the whole of the
work there is not a single new curve plotted directly from its equation, and
the author took so little interest in curve sketching that he never fully
understood the meaning of negative coordinates. He knew in a general sort
of way that negative ordinates are directed in a sense opposite to that taken
as positive, but he never made use of negative abscissas. Moreover, the
fundamental principle of analytic geometry—the discovery that inde-
terminate equations in two unknowns correspond to loci—does not appear
until the second book, and then only somewhat incidentally.

The solution of any one of these problems of loci is nothing more than the

finding of a point for whose complete determination one condition is

wanting. . . . In every such case an equation can be obtained containing

two unknown quantities.

In one case only did Descartes examine a locus in detail, and this was
in connection with the three- and four-line locus problem of Pappus,
for which Descartes derived the equation y25 ay2 bxy1 cx2 dx2.
This is the general equation of a conic passing through the origin; even
though the literal coefficients are understood to be positive, this is by
far the most comprehensive approach ever made to the analysis of the
family of conic sections. Descartes indicated conditions on the coef-
ficients for which the conic is a straight line, a parabola, an ellipse, or a
hyperbola, the analysis being in a sense equivalent to a recognition of
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the characteristic of the equation of the conic. The author knew that by
a proper choice of the origin and the axes, the simplest form of the
equation is obtained, but he did not give any of the canonical forms.
The omission of much of the elementary detail made the work
exceedingly difficult for his contemporaries to follow. In concluding
remarks, Descartes sought to justify his inadequacy of exposition by
the incongruous assertion that he had left much unsaid in order not to
rob the reader of the joy of discovery.
Inadequate though the exposition is, it is Book II of La géometrié that

comes closest to modern views of analytic geometry. There is even a
statement of a fundamental principle of solid analytic geometry:

If two conditions for the determination of a point are lacking, the locus of

the point is a surface.

Yet, Descartes did not give any illustrations of such equations or
expand the brief hint of analytic geometry of three dimensions.

Normals and Tangents

Descartes was so fully aware of the significance of his work that he
regarded it as bearing to ancient geometry somewhat the same relationship
as the rhetoric of Cicero bears to the ABC’s of children. His mistake, from
our point of view, was in emphasizing determinate equations, rather than
indeterminate equations. He realized that all of the properties of a curve,
such as the magnitude of its area or the direction of its tangent, are fully
determined when an equation in two unknowns is given, but he did not
take full advantage of this recognition. He wrote,

I shall have given here a sufficient introduction to the study of curves

when I shall have given a general method of drawing a straight line

making right angles with a curve at an arbitrarily chosen point upon it.

And I dare say that this is not only the most useful and most general

problem in geometry that I know, but even that I have ever desired to

know.

Descartes was quite right that the problem of finding the normal (or the
tangent) to a curve was of great importance, but the method that
he published in La géométrie was less expeditious than that which
Fermat had developed at about the same time.
Book II of La géométrie also contains much material on the “ovals of

Descartes,” which are very useful in optics and are obtained by gen-
eralizing the “gardener’s method” for constructing an ellipse by means
of strings. If D1 and D2 are the distances of a variable point P from two
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fixed points F1 and F2, respectively, and if m and n are positive integers
and K is any positive constant, then the locus of P such that mD11
nD25K is now known as an oval of Descartes, but the author did not use
the equations of the curves. Descartes realized that his methods can be
extended to “all those curves which can be conceived of as generated by
the regular movement of the points of a body in three-dimensional
space,” but he did not carry out any details. The sentence with which
Book II concludes, “And so I think I have omitted nothing essential to
an understanding of curved lines,” is presumptuous indeed.
The third and last book of La géométrie resumes the topic of

Book I: the construction of the roots of determinate equations. Here the
author warns that in such constructions, “We should always choose with
care the simplest curve that can be used in the solution of a problem.”
This means, of course, that one must be fully aware of the nature of the
roots of the equation under consideration, and in particular one must
know whether the equation is reducible. For this reason, Book III is
virtually a course in the elementary theory of equations. It tells how to
discover rational roots, if any; how to depress the degree of the equation
when a root is known; how to increase and decrease the roots of an
equation by any amount or to multiply or divide them by a number; how
to eliminate the second term; how to determine the number of possible
“true” and “false” roots (that is, positive and negative roots) through the
well-known “Descartes’ rule of signs”; and how to find the algebraic
solution of cubic and quartic equations. In closing, the author reminds
the reader that he has given the simplest constructions possible for
problems in the various classes mentioned earlier. In particular, the
trisection of the angle and the duplication of the cube are in class two,
requiring more than circles and lines for their construction.

Descartes’ Geometric Concepts

Our account of Descartes’ analytic geometry should make clear how far
removed the author’s thought was from the practical considerations that
are now so often associated with the use of coordinates. He did not lay
down a coordinate frame to locate points as a surveyor or a geographer
might do, nor were his coordinates thought of as number pairs. In this
respect, the phrase “Cartesian product,” so often used today, is an
anachronism. La géométrie was in its day just as much a triumph of
impractical theory as was the Conics of Apollonius in antiquity, despite
the inordinately useful role that both were ultimately destined to play.
Moreover, the use of oblique coordinates was much the same in both
cases, thus confirming that the origin of modern analytic geometry lies in
antiquity, rather than in the medieval latitude of forms. The coordinates
of Oresme, which influenced Galileo, are closer, both in motive and in
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appearance, to the modern point of view than are those of Apollonius and
Descartes. Even if Descartes was familiar with Oresme’s graphical
representation of functions, and this is not evident, there is nothing in
Cartesian thought to indicate that he would have seen any similarity
between the purpose of the latitude of forms and his own classification of
geometric constructions. The theory of functions ultimately profited
greatly from the work of Descartes, but the notion of a form or a function
played no apparent role in leading to Cartesian geometry.
In terms of mathematical ability, Descartes was probably the most able

thinker of his day, but he was at heart not really a mathematician. His
geometry was only an episode in a life devoted to science and philo-
sophy, and although occasionally in later years he contributed to
mathematics through correspondence, he left no other great work in this
field. In 1649, he accepted an invitation from Queen Christina of Sweden
to instruct her in philosophy and to establish an academy of sciences in
Stockholm. Descartes had never enjoyed robust health, and the rigors of
a Scandinavian winter were too much for him; he died early in 1650.

Fermat’s Loci

If Descartes had a rival in mathematical ability, it was Fermat, but the
latter was in no sense a professional mathematician. Fermat studied law
at Toulouse, where he then served in the local parlement, first as a
lawyer and later as councilor. This meant that he was a busy man, yet he
seems to have had time to enjoy as an avocation a taste for classical
literature, science, and mathematics. The result was that by 1629, he
began to make discoveries of capital importance in mathematics. In this
year, he joined in one of the favorite sports of the time—the “restora-
tion” of lost works of antiquity on the basis of information found in
extant classical treatises. Fermat undertook to reconstruct the Plane Loci
of Apollonius, depending on allusions contained in the Mathematical
Collection of Pappus. A by-product of this effort was the discovery, at
least by 1636, of the fundamental principle of analytic geometry:

Whenever in a final equation two unknown quantities are found, we have

a locus, the extremity of one of these describing a line, straight or curved.

This profound statement, written a year before the appearance of Des-
cartes’ Geometry, seems to have grown out of Fermat’s application of the
analysis of Viète to the study of loci in Apollonius. In this case, as also in
that of Descartes, the use of coordinates did not arise from practical con-
siderations or from the medieval graphical representation of functions. It
came about through the application of Renaissance algebra to problems
from ancient geometry. Yet Fermat’s point of view was not entirely in
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conformity with that of Descartes, for Fermat emphasized the sketching of
solutions of indeterminate equations, instead of the geometric construction
of the roots of determinate algebraic equations. Moreover, where Des-
cartes had built hisGeometry around the difficult Pappus problem, Fermat
limited his exposition, in the short treatise titledAdLocosPlanos et Solidos
Isagoge (Introduction to Plane and Solid Loci), to the simplest loci only.
Where Descartes had begun with the three- and four-line locus, using one
of the lines as an axis of abscissas, Fermat began with the linear equation
and chose an arbitrary coordinate system on which to sketch it.
Using the notation of Viète, Fermat first sketched the simplest case of

a linear equation—given in Latin as “D in A aequetur B in E ” (that is,
Dx5By in modern symbolism). The graph is, of course, a straight line
through the origin of coordinates—or rather a half line with the origin as
end point, for Fermat, like Descartes, did not use negative abscissas. The
more general linear equation ax1 by5 c2 (for Fermat retained Viète’s
homogeneity) he sketched as a line segment in the first quadrant ter-
minated by the coordinate axes. Next, to show the power of his method
for handling loci, Fermat announced the following problem that he had
discovered by the new approach:

Given any number of fixed lines, in a plane, the locus of a point such that

the sum of any multiples of the segments drawn at given angles from the

point to the given lines is constant, is a straight line.

That is, of course, a simple corollary of the fact that the segments are
linear functions of the coordinates and of Fermat’s proposition that every
equation of the first degree represents a straight line.
Fermat next showed that xy5 k2 is a hyperbola and that an equation of

the form xy1 a25 bx1 cy can be reduced to one of the form xy5 k2 (by a
translation of axes). The equation x25 y2 he considered as a single straight
line (or ray), for he operated only in the first quadrant, and he reduced other
homogeneous equations of the second degree to this form. Then, he
showed that a26 x25 by is a parabola, that x21 y21 2ax1 2by5 c2 is a
circle, that a22 x25 ky2 is an ellipse, and that a21 x25 ky2 is a hyperbola
(forwhich he gave both branches). Tomore general quadratic equations, in
which the several second-degree terms appear, Fermat applied a rotation of
axes to reduce them to the earlier forms. As the “crowning point” of his
treatise, Fermat considered the following proposition:

Given any number of fixed lines, the locus of a point such that the sum of

the squares of the segments drawn at given angles from the point to the

lines is constant, is a solid locus.

This proposition is obvious in terms of Fermat’s exhaustive analysis of the
various cases of quadratic equations in two unknowns. As an appendix to
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the Introduction to Loci, Fermat added “The Solution of Solid Problems
by Means of Loci,” pointing out that determinate cubic and quartic
equations can be solved by conics, the theme that had loomed so large in
the geometry of Descartes.

Higher-Dimensional Analytic Geometry

Fermat’s Introduction to Loci was not published during the author’s life-
time; hence, analytic geometry in the minds of many was regarded as the
unique invention of Descartes. It is now clear that Fermat had discovered
essentially the samemethodwell before the appearance of La géométrie and
that his work circulated in manuscript form until its publication in 1679 in
Varia opera mathematica. It is a pity that Fermat published almost nothing
during his lifetime, for his exposition was much more systematic and
didactic than that of Descartes. Moreover, his analytic geometry was
somewhat closer to ours, in that ordinates are usually taken at right angles to
the line of abscissas. Like Descartes, Fermat was aware of an analytic
geometry of more than two dimensions, for in another connection he wrote,

There are certain problemswhich involve only one unknown, andwhich can

be called determinate, to distinguish them from the problems of loci. There

are certain others which involve two unknowns and which can never be

reduced to a single one; these are the problems of loci. In the first problems

we seek a unique point, in the latter a curve. But if the proposed problem

involves three unknowns, one has to find, to satisfy the equation, not only a

point or a curve, but an entire surface. In this way surface loci arise, etc.

Here in the final “etc.” there is a hint of geometry of more than three
dimensions, but if Fermat really had this in mind, he did not carry it
further. Even the geometry of three dimensions had to wait until the
eighteenth century for its effective development.

Fermat’s Differentiations

It is possible that Fermat was in possession of his analytic geometry as early
as 1629, for about this time he made two significant discoveries that are
closely related to his work on loci. The more important of these was
described a few years later in a treatise, again unpublished in his lifetime,
titledMethodof FindingMaximaandMinima. Fermat had been considering
loci given (inmodern notation) by equations of the form y5 xn; hence, today
they are often known as “parabolas of Fermat” if n is positive or “hyperbolas
of Fermat” if n is negative. Here we have an analytic geometry of higher
plane curves, but Fermat went further. For polynomial curves of the form
y5 f(x), he noted a very ingenious method of finding points at which the
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function takes on a maximum or a minimum value. He compared the value
of f(x) at a point with the value f(x1E ) at a neighboring point. Ordinarily,
these values will be distinctly different, but at the top or the bottom of a
smooth curve, the change will be almost imperceptible. Hence, to find
maximum and minimum points Fermat equated f(x) and f(x1E), realizing
that the values, although not exactly the same, are almost equal. The smaller
the interval E between the two points, the nearer the pseudoequality comes
to being a true equation, so Fermat, after dividing through by E, set E5 0.
The results gave him the abscissas of themaximumand theminimumpoints
of the polynomial. Here in essence is the process now called differentiation,
for the method of Fermat is equivalent to finding

lim
E-0

f ðx1EÞ2 f ðxÞ
E

and setting this equal to zero. Hence, it is appropriate to follow Laplace
in acclaiming Fermat as the discoverer of the differential calculus, as
well as a codiscoverer of analytic geometry. Fermat was not in pos-
session of the limit concept, but, otherwise, his method of maxima and
minima parallels that used in the calculus today.
During the very years in which Fermat was developing his analytic

geometry, he also discovered how to apply his neighborhood process to
find the tangent to an algebraic curve of the form y5 f(x). If P is a point
on the curve y5 f(x) at which the tangent is desired, and if the coordi-
nates of P are (a, b), then a neighboring point on the curve with
coordinates x2 a1E, y5 f(a1E) will lie so close to the tangent that
one can think of it as approximately on the tangent, as well as on the
curve. If, therefore, the subtangent at the point P is TQ5 c (Fig. 15.7),
the triangles TPQ and TPuQu can be taken as being virtually similar.
Hence, one has the proportion

b

c
5

f ða1EÞ
c1E

:

T O Q Q'

P
P'

FIG. 15.7
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On cross-multiplying, canceling like terms, recalling that b5 f(a), then
dividing through by E, and finally setting E5 0, the subtangent c is
readily found.
Fermat’s procedure amounts to saying that

lim
E-0

f ða1EÞ2 f ðaÞ
E

is the slope of the curve at x5 a, but Fermat did not explain his
procedure satisfactorily, saying simply that it was similar to his
method of maxima and minima. Descartes in particular, when the
method was reported to him in 1638 by Mersenne, attacked it as not
generally valid. He proposed as a challenge the curve ever since
known as the “folium of Descartes”: x31 y35 3axy. That mathemati-
cians of the time were quite unfamiliar with negative coordinates is
apparent, in that the curve was drawn as but a single folium or “leaf”
in the first quadrant—or sometimes as a four-leaf clover, with one leaf
in each quadrant! Ultimately, Descartes grudgingly conceded the
validity of Fermat’s tangent method, but Fermat was never accorded
the esteem to which he was entitled.

Fermat’s Integrations

Fermat not only had a method for finding the tangent to curves of the form
y5 xm, he also, some time after 1629, hit on a theorem on the area under
these curves—the theorem that Cavalieri published in 1635 and 1647. In
finding the area, Fermat at first seems to have used formulas for the sums
of powers of the integers, or inequalities of the form

1m 1 2m 1 3m 1 � � �1 nm .
nm1 1

m1 1
. 1m 1 2m 1 3m 1 � � �1 ðn2 1Þm

to establish the result for all positive integral values of m. This, in itself, was
an advance over the work of Cavalieri, who limited himself to the cases from
m5 1 to m5 9, but later Fermat developed a better method for handling the
problem, which was applicable to fractional, as well as integral, values of m.
Let the curve be y5 xn, and seek the area under the curve from x5 0 to
x5 a. Then Fermat subdivided the interval from x5 0 to x5 a into infinitely
many subintervals by taking the points with abscissas a, aE, aE2, aE3, . . . ,
where E is a quantity less than 1. At these points, he erected ordinates to the
curve and then approximated to the area under the curve by means of rec-
tangles (as indicated in Fig. 15.8). The areas of the successive approximating
circumscribed rectangles, beginning with the largest, are given by the terms
in geometric progression an(a2 aE), anEn(aE2 aE2), anE2n(aE22 aE3) . . . .
The sum to infinity of these terms is
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an1 1ð12EÞ
12En1 1

or
an1 1

11E1E2 1 � � �1En
:

As E tends toward 1—that is, as the rectangles become narrower—the
sum of the areas of the rectangles approaches the area under the curve.
On letting E 5 1 in the previous formula for the sum of the rectangles,
we obtain (an11) / (n1 1), the desired area under the curve y5 xn from
x5 0 to x5 a. To show that this also holds for rational fractional values,
p / q, let n5 p / q. The sum of the geometric progression then is

aðp1 qÞ=q 12Eq

12Epþq

� �
5 aðp1 qÞ=q 11E1E1 � � �1Eq 1

11E1E2 1 � � �1Ep1 q 1

� �
;

and, when E5 1, this becomes

q

p1 q
a
ðp1 qÞ=q

:

If, in modern notation, we wish to obtain
Ð b

a
xndx, it is only necessary to

observe that this is
Ð b

0
xndx2

Ð a

0
xndx.

For negative values of n (except n5 1) Fermat used a similar pro-
cedure, except that E is taken as greater than 1 and tends toward 1 from
above, the area found being that beneath the curve from x5 a to infinity.
To find

Ð b

a
x ndx, then, it was only necessary to note that this isÐN

a
x ndx2

ÐN

b
x ndx:

Gregory of St.Vincent

For n5 1 the procedure fails, but Fermat’s older contemporary Gregory
of St. Vincent (1584 1667) disposed of this case in his Opus Geome-
tricum Quadraturae Circuli et Sectionum Coni (Geometrical Work on the
Squaring of the Circle and of Conic Sections). Much of this work had been
completed before the time that Fermat was working on tangents and areas,
perhaps as early as 1622 1625, although it was not published until 1647.
Gregory of St. Vincent, born in Ghent, was a Jesuit teacher in Rome and
Prague and later became a tutor at the court of Philip IV of Spain. Through
his travels, he became separated from his papers, with the result that the

a0

FIG. 15.8
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appearance of the Opus Geometricum was long delayed. In this treatise,
Gregory had shown that if along the x-axis one marks off from x5 a
points the intervals between which are increasing in continued geometric
proportion, and if at these points ordinates are erected to the hyperbola
xy5 1, then the areas under the curve intercepted between successive
ordinates are equal. That is, as the abscissa increases geometrically, the
area under the curve increases arithmetically. Hence, the equivalent ofÐ b

a
x

1
dx5 ln b2 ln a was known to Gregory and his contemporaries.

Unfortunately, a faulty application of the method of indivisibles had led
Gregory of St. Vincent to believe that he had squared the circle, an error
that damaged his reputation.
Fermat had been concerned with many aspects of infinitesimal ana-

lysis—tangents, quadratures, volumes, lengths of curves, centers of
gravity. He could scarcely have failed to notice that in finding tangents
to y5 kxn, one multiplies the coefficient by the exponent and lowers the
exponent by 1, whereas in finding areas one raises the exponent and
divides by the new exponent. Could the inverse nature of these two
problems have escaped him? Although this seems unlikely, it never-
theless appears that he nowhere called attention to the relationship now
known as the fundamental theorem of the calculus.
The inverse relationship between area and tangent problems should

have been apparent from a comparison of Gregory of St. Vincent’s area
under the hyperbola and Descartes’ analysis of inverse tangent problems
proposed through Mersenne in 1638. The problems had been set by
Florimond Debeaune (1601 1652), a jurist at Blois who was also an
accomplished mathematician, for whom even Descartes expressed ad-
miration. One of the problems called for the determination of a curve
whose tangent had the property now expressed by the differential equation
a dy / dx5 x2 y. Descartes recognized the solution as nonalgebraic, but he
evidently just missed seeing that logarithms were involved.

The Theory of Numbers

Fermat’s contributions to analytic geometry and to infinitesimal analysis
were but two aspects of his work—and probably not his favorite topics.
In 1621, the Arithmetica of Diophantus had come to life again through
the Greek and Latin edition by Claude Gaspard de Bachet (1591 1639),
a member of an informal group of scientists in Paris. Diophantus’s
Arithmetica had not been unknown, for Regiomontanus had thought of
printing it; several translations had appeared in the sixteenth century,
with little result for the theory of numbers. Perhaps the work of Dio-
phantus was too impractical for the practitioners and too algorithmic for
the speculatively inclined, but it appealed strongly to Fermat, who
became the founder of the modern theory of numbers. Many aspects of
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the subject caught his fancy, including perfect and amicable numbers,
figurate numbers, magic squares, Pythagorean triads, divisibility, and,
above all, prime numbers. He proved some of his theorems by a method
that he called his “infinite descent”—a sort of inverted mathematical
induction, a process that Fermat was among the first to use. As an
illustration of his process of infinite descent, let us apply it to an old and
familiar problem—the proof that 3

p
is not rational. Let us assume that

3
p

5 a1=b1, where al and b1 are positive integers with a1. b1. Because

1

3
p

2 1
5

3
p

1 1

2
;

on replacing the first 3
p

by its equal a1 / b1, we have

3
p

5
3b1 2 a1

a1 2 b1

:

In view of the inequality 3
2 , a1=b1 , 2, it is clear that 3b12 a1 and

a12 b1 are positive integers, a2 and b2, each less than a1 and b1, respec-
tively, and such that 3

p
5 a2=b2. This reasoning can be repeated

indefinitely, leading to an infinite descent in which an and bn are ever
smaller integers such that 3

p
5 an=bn. This implies the false conclusion

that there is no smallest positive integer. Hence, the premise that 3
p

is a
quotient of integers must be false.
Using his method of infinite descent, Fermat was able to prove

Girard’s assertion that every prime number of the form 4n1 1 can be
written in one and only one way as the sum of two squares. He showed
that if 4n1 1 is not the sum of two squares, there is always a smaller
integer of this form that is not the sum of two squares. Using this
recursive relationship backward leads to the false conclusion that the
smallest integer of this type, 5, is not the sum of two squares (whereas
55 121 22). Hence, the general theorem is proved to be true. Because it
is easy to show that no integer of the form 4n2 1 can be the sum of two
squares and because all primes except 2 are of the form 4n1 1 or 4n2 1,
by Fermat’s theorem one can easily classify prime numbers into those that
are and those that are not the sum of two squares. The prime 23, for
example, cannot be so divided, whereas the prime 29 can be written as
221 52. Fermat knew that a prime of either form can be expressed as the
difference of two squares in one and only one way.

The Theorems of Fermat

Fermat used his method of infinite descent to prove that there is no cube
that is divisible into two cubes—that is, that there are no positive inte-
gers x, y, and z such that x31 y35 z3. Going further, Fermat stated the
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general proposition that for n, an integer greater than 2, there are no
positive integral values x, y, and z such that xn1 yn5 zn. He wrote in the
margin of his copy of Bachet’s Diophantus that he had a truly marvelous
proof of this celebrated theorem, which has since become known as
Fermat’s “last,” or “great,” theorem. Fermat, most unfortunately, did not
give his proof but only described it as one “which this margin is too
narrow to contain.” If Fermat did indeed have such a proof, it has
remained lost to this day. Despite all efforts to find a proof, once sti-
mulated by a pre2World War I prize offer of 100,000 marks for a
solution, the problem remained unsolved until the 1990s. Yet the search
for solutions has led to even more good mathematics than that which in
antiquity resulted from efforts to solve the three classical and unsolvable
geometric problems.
Perhaps two millennia before Fermat’s day, there had been a “Chinese

hypothesis” that held that n is prime if and only if 2n2 2 is divisible by n,
where n is an integer greater than 1.Half of this conjecture is now known to
be false, for 23412 2 is divisible by 341, and 3415 11 � 31 is composite, but
the other half is indeed valid, and Fermat’s “lesser” theorem is a gen-
eralization of this. A consideration of many cases of numbers of the
form ap 12 1, including 2362 1, suggested that whenever p is prime and
a is prime to p, then ap l2 1 is divisible by p. On the basis of an
induction from only five cases (n5 0, 1, 2, 3, and 4), Fermat formulated
a second conjecture—that integers of the form 2

2n

, now known as
“Fermat numbers,” are always prime. A century later, Euler showed
this conjecture to be false, for 2

2
5

1 1 is composite. In fact, it is now
known that 2

2n

1 1 is not prime for numerous ns above 5, and we begin
to wonder whether there is even one more prime Fermat number beyond
those that Fermat knew.
Fermat’s lesser theorem fared better than his conjecture on primeFermat

numbers. A proof of the theorem was left in manuscript by Leibniz, and
another elegant and elementary demonstration was published by Euler in
1736. The proof by Euler makes ingenious use of mathematical induction,
a device with which Fermat, as well as Pascal, was quite familiar. In
fact, mathematical induction, or reasoning by recurrence, is sometimes
referred to as “Fermatian induction,” to distinguish it from scientific, or
“Baconian,” induction.
Fermat was truly “the prince of amateurs” in mathematics. No profes-

sional mathematician of his day made greater discoveries or contributed
more to the subject, yet Fermat was so modest that he published virtually
nothing. He was content to write of his thoughts to Mersenne (whose
name, incidentally, is preserved in connection with the “Mersenne num-
bers,” that is, primes of the form 2p2 1) and thus lost priority credit for
much of his work. In this respect, he shared the fate of one of his most
capable friends and contemporaries—the unamiable professor Roberval, a
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member of the “Mersenne group” and the only truly professional math-
ematician among the Frenchmen whom we discuss in this chapter.

Gilles Persone de Roberval

Appointment to the chair of Ramus at the Collège Royal, which Roberval
held for some forty years, was determined every three years on the basis of a
competitive examination, the questions for which were set by the incum-
bent. In 1634,Robervalwon the contest, probably because he haddeveloped
a method of indivisibles similar to that of Cavalieri; by not disclosing his
method to others, he successfully retained his position in the chair until his
death in 1675. This meant, however, that he lost credit for most of his dis-
coveries and that he became embroiled in numerous quarrels with respect to
priority. The bitterest of these controversies concerned the cycloid, towhich
the phrase “the Helen of geometers” came to be applied because of the
frequency with which it provoked quarrels during the seventeenth century.
In 1615, Mersenne had called mathematicians’ attention to the cycloid,
perhaps having heard of the curve through Galileo; in 1628, when Roberval
arrived in Paris, Mersenne proposed to the young man that he study the
curve. By 1634, Roberval was able to show that the area under one arch of
the curve is exactly three times the area of the generating circle. By 1638, he
had found how to draw the tangent to the curve at any point (a problem also
solved at about the same time by Fermat and Descartes) and had found
the volumes generated when the area under an arch is revolved about the
baseline. Later still, he found the volumes generated by revolving the area
about the axis of symmetry or about the tangent at the vertex.
Roberval did not publish his discoveries concerning the cycloid (which he

named the “trochoid,” from the Greek word for “wheel”), for he may have
wished to set similar questions for prospective candidates for his chair. As
noted previously, this gave Torricelli the priority of publication. Roberval
thought of a point P on the cycloid as subject to two equal motions, one a
motionof translation, the other a rotarymotion.As the generating circle rolls
along the baseline AB (Fig. 15.9), P is carried horizontally, at the same time
rotating about O, the center of the circle. Through P, one therefore draws a
horizontal linePS, for the motion of translation, and a line PR tangent to the
generating circle, for the rotary component. Inasmuch as the motion of
translation is equal to that of rotation, the bisectorPT of the angle SPR is the
required tangent to the cycloid.
AmongRoberval’s other contributionswas thefirst sketch, in1635, ofhalf

of an arch of a sine curve. This was important as an indication that trigo-
nometry was gradually moving away from the computational emphasis that
had dominated thought in that branch toward a functional approach. By
means of his method of indivisibles, Roberval was able to show the
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equivalent of
Ð b

a
sin x dx5 cos a2 cos b; again indicating that area pro-

blems tended at that time to be easier to handle than tangent questions.

Girard Desargues and Projective Geometry

The great developments in mathematics during the days of Descartes and
Fermat were in analytic geometry and infinitesimal analysis. It is likely
that the very success in these branches made men of the time relatively
oblivious to other aspects of mathematics. We already have seen that
Fermat found no one to share his fascination with the theory of numbers;
pure geometry likewise suffered a wholly undeserved neglect in the
same period. The Conics of Apollonius had once been among Fermat’s
favorite works, but analytic methods redirected his views. Meanwhile,
the Conics had attracted the attention of a practical man with a very
impractical imagination—Girard Desargues, an architect and a military
engineer of Lyons. For some years, Desargues had been in Paris, where
he was part of the group of mathematicians that we have been con-
sidering, but his very unorthodox views on the role of perspective in
architecture and geometry met with little favor, and he returned to Lyons
to work out his new type of mathematics largely by himself. The result
was one of the most unsuccessful great books ever produced. Even the
ponderous title repelled—Brouillon projet d’une atteinte aux événemens
des rencontres d’un cone avec un plan (Paris, 1639). This may be
translated as Rough Draft of an Attempt to Deal with the Outcome of a
Meeting of a Cone with a Plane, the prolixity of which stands in sharp
contrast to the brevity and simplicity of Apollonius’s title Conics. The
thought on which Desargues’ work is based, nevertheless, is simplicity
itself—a thought derived from perspective in Renaissance art and from
Kepler’s principle of continuity. Everyone knows that a circle, when
viewed obliquely, looks like an ellipse or that the outline of the shadow
of a lampshade will be a circle or a hyperbola according as it is projected
on the ceiling or a wall. Shapes and sizes change according to the plane
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of incidence that cuts the cone of visual rays or of light rays, but certain
properties remain the same throughout such changes, and it is these
properties that Desargues studied. For one thing, a conic section remains
a conic section no matter how many times it undergoes a projection. The
conics form a single close-knit family, as Kepler had suggested for
somewhat different reasons. But in accepting this view, Desargues had to
assume, with Kepler, that the parabola has a focus “at infinity” and that
parallel lines meet at “a point at infinity.” The theory of perspective
makes such ideas plausible, for light from the sun is ordinarily con-
sidered to be made up of rays that are parallel—composing a cylinder or
a parallel pencil of rays—whereas rays from a terrestrial light source are
treated as a cone or a point pencil.
Desargues’ treatment of the conics is beautiful, although his language is

unconventional. He called a conic section a “coup de rouleau” (i.e., inci-
dence with a rolling pin). About the only one of his many new terms that
has survived is the word “involution”—that is, pairs of points on a line the
product ofwhose distances from a fixed point is a given constant. He called
points in harmonic division a four-point involution, and he showed that this
configuration is projectively invariant, a result known, under a different
point of view, to Pappus. Because of its harmonic properties, the complete
quadrangle played a large role in Desargues’ treatment, for he knew that
when such a quadrangle (asABCD in Fig. 15.10) is inscribed in a conic, the
line through two of the diagonal points (E, F, and G in Fig. 15.10) is the
polar line,with respect to the conic, of the third diagonal point. He knew, of
course, that the intersections with the conic of the polar of a point with
respect to the conic were the points of contact of the tangents from the
point to the conic, and instead of defining a diameter metrically, Desar-
gues introduced it as the polar of a point at infinity. There is a pleasing
unity in Desargues’ treatment of the conics through projective methods,
but it was too thorough a break with the past to meet with acceptance.
Desargues’ projective geometry had a tremendous advantage in gen-

erality over the metric geometry of Apollonius, Descartes, and Fermat,
for many special cases of a theorem blend into one all-inclusive
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statement. Yet mathematicians of the time not only failed to accept the
methods of the new geometry, they actively opposed them as dangerous
and unsound. So rare were copies of Desargues’ Brouillon projet that by
the end of the century, all copies had disappeared, for Desargues pub-
lished his works not to sell but to distribute to friends. The work was
completely lost until in 1847, a handwritten copy made by Philippe de
Lahire, one of Desargues’ few admirers, was found in a Paris library.
Even today, the name of Desargues is familiar not as that of the author of
the Brouillon projet but for a proposition that does not appear in the
book, the famous theorem of Desargues:

If two triangles are so situated that lines joining pairs of corresponding

vertices are concurrent, then the points of intersection of pairs of corre-

sponding sides are collinear, and conversely.

This theorem, which holds for either two or three dimensions, was first
published in 1648 by Desargues’ devoted friend and follower Abraham
Bosse (1602 1676), an engraver. It appears in a bookwith the titleManière
universelle de S. Desargues, pour pratiquer la perspective. The theorem,
which Bosse explicitly attributed to Desargues, became, in the nineteenth
century, one of the fundamental propositions of projective geometry. Note
that whereas in three dimensions the theorem is an easy consequence of
incidence axioms, the proof for two dimensions requires an additional
assumption.

Blaise Pascal

Desargues was the prophet of projective geometry, but he went without
honor in his day, largely because his most promising disciple, Blaise
Pascal, abandoned mathematics for theology. Pascal was a mathematical
prodigy. His father, too, was mathematically inclined, and the “limaçon
of Pascal” is named for the father, Étienne, rather than for the son,
Blaise. The limaçon r5 a1 b cos θ had been known to Jordanus
Nemorarius and possibly to the ancients as “the conchoid of the circle,”
but Étienne Pascal studied the curve so thoroughly that on the suggestion
of Roberval, it has ever since borne his name.
When he was fourteen, Blaise joined with his father in the informal

meetings of the Mersenne Academy at Paris. Here he became familiar
with the ideas of Desargues; two years later, in 1640, the young Pascal,
then sixteen years old, published an Essay pour les coniques. This
consisted of only a single printed page—but one of the most fruitful
pages in history. It contained the proposition described by the author
as mysterium hexagrammicum, which has ever since been known as
Pascal’s theorem. This states, in essence, that the opposite sides of a
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hexagon inscribed in a conic intersect in three collinear points. Pascal
did not state the theorem in this way, for it is not true unless, as in the
case of a regular hexagon inscribed in a circle, one resorts to the ideal
points and line of projective geometry. Instead, he followed the special
language of Desargues, saying that if A, B, C, D, E, and F are successive
vertices of a hexagon in a conic, and if P is the intersection point of AB
and DE and Q is the point of intersection of BC and EF (Fig. 15.11), then
PQ and CD and FA are lines “of the same order” (or, as we should say,
the lines are members of a pencil, whether a point pencil or a parallel
pencil). The young Pascal went on to say that he had deduced many
corollaries from this theorem, including the construction of the tangent
to a conic at a point on the conic. The inspiration for the little Essay was
candidly admitted, for, after citing a theorem of Desargues, the young
author wrote, “I should like to say that I owe the little that I have found
on this subject to his writings.”
The Essay was an auspicious opening for a mathematical career, but

Pascal’smathematical interestswere chameleonlike.He next turned,when
he was about eighteen, to plans for an adding machine, and within a few
years, he had built and sold some fifty machines (see the illustration on
page 293, chapter 14). Then, in 1648, Pascal became interested in
hydrostatics, and the results were the celebrated Puy-de-Dôme experiment
confirming the weight of the air and the experiments on fluid pressure that
clarified the hydrostatic paradox. In 1654, he returned again to mathe-
matics and worked on two unrelated projects. One of these was to be a
Complete Work on Conics, evidently a continuation of the little Essay he
had published when sixteen, but this larger work on conics was never
printed and is not nowextant. Leibniz sawamanuscript copy, and the notes
that he took are now all that we have of Pascal’s larger work on conics.
(Only two copies of the smaller work have survived.) According to
Leibniz’s notes, the Complete Work on Conics contained a section on the
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familiar three- and four-line locus and a section on themagna problema—
to place a given conic on a given cone of revolution.

Probability

While Pascal in 1654 was working on his Conics, his friend the Chevalier
de Méré raised with him questions such as the following: In eight throws
of a die, a player is to attempt to throw a 1, but after three unsuccessful
trials, the game is interrupted. How should he be indemnified? Pascal
wrote to Fermat on this, and their resulting correspondence became the
effective starting point for the modern theory of probability, the thoughts
of Cardan of a century earlier having been overlooked. Although neither
Pascal nor Fermat wrote up their results, Christiaan Huygens in 1657
published a little tract, De ratiociniis in ludo aleae (On Reasoning in
Games of Dice), that was prompted by the correspondence of the
Frenchmen. Pascal, meanwhile, had connected the study of probability
with the arithmetic triangle, carrying the discussion so far beyond the
work of Cardan that the triangular arrangement has ever since been known
as Pascal’s triangle. The triangle itself was more than 600 years old, but
Pascal disclosed some new properties, such as the following:

In every arithmetic triangle, if two cells are contiguous in the same base,

the upper is to the lower as the number of cells from the upper to the top

of the base is to the number of those from the lower to the bottom

inclusive.

(Pascal called positions in the same vertical column, in Fig. 15.12, “cells
of the same perpendicular rank,” and those in the same horizontal row
“cells of the same parallel rank”; cells in the same upward-sloping
diagonal he called “cells of the same base.”) The method of proof of this
property is of more significance than the property itself, for here in 1654
Pascal gave an eminently clear-cut explanation of the method of math-
ematical induction.
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Fermat hoped to interest Pascal in the theory of numbers, and in 1654,
he sent him a statement of one of his most beautiful theorems (unproved
until the nineteenth century):

Every integer is composed of one, two, or three triangular numbers, of one,

two, three, or four squares, of one, two, three, four, or five pentagons, of

one, two, three, four, five, or six hexagons, and thus to infinity.

Pascal, however, was a mathematical dilettante, as well as a virtuoso,
and did not pursue this problem.

The Cycloid

On the night of November 23, 1654, from ten thirty to about twelve
thirty, Pascal experienced a religious ecstasy that caused him to

Pascal’s triangle in Japan. From Murai Chuzen’s Sampo Doshi
mon (1781), also showing the sangi forms of the numerals.
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abandon science and mathematics for theology. The result was the
writing of the Lettres provinciales and the Pensées; for only one brief
period, in 1658 1659, did Pascal return to mathematics. One night in
1658, toothache or illness prevented him from falling asleep, and as a
distraction from the pain, he turned to the study of the cycloid.
Miraculously, the pain eased, and Pascal took this as a sign from God
that the study of mathematics was not displeasing to Him. Having
found certain areas, volumes, and centers of gravity associated with the
cycloid, Pascal proposed half a dozen such questions to the mathe-
maticians of his day, offering first and second prizes for their solu-
tion—and naming Roberval as one of the judges. Publicity and timing
were so poor that only two sets of solutions were submitted, and these
contained at least some errors in computation. Pascal therefore awar-
ded no prize, but he did publish his own solutions, along with other
results, all preceded by a Histoire de la roulette (the name usually used
for the curve in France), in a series of Lettres de A. Dettonville
(1658 1659). (The name Amos Dettonville was an anagram of Louis
de Montalte, the pseudonym used in the Lettres provinciales.) The
contest questions and the Lettres de A. Dettonville brought interest
in the cycloid to a focus, but they also stirred up a hornets’ nest of
controversy. The two finalists, Antoine de Lalouvère and John Wallis,
both capable mathematicians, were disgruntled that prizes were with-
held, and the Italian mathematicians were indignant that Pascal’s
History of the Cycloid gave virtually no credit to Torricelli, priority in
discovery being conceded only to Roberval.
Much of the material in the Lettres de A. Dettonville, such as the

equality of the arcs of spirals and parabolas, as well as the cycloid
contest questions, had been known to Roberval and Torricelli, but some
of this appeared in print for the first time. Among the new results was the
equality of the arc length of an arch of the generalized cycloid
x5 aKφ2 a sinφ, y5 a2 a cosφ and the semicircumference of the
ellipse x5 2a(11K) cosφ, y5 2a(l2K) sinφ. The theorem was ex-
pressed rhetorically, rather than symbolically, and it was demonstrated in
an essentially Archimedean manner, as were most of Pascal’s demon-
strations in 1658 1659.
In connection with an integration of the sine function in his 1658

Traité des sinus du quart de cercle (Treatise on the Sines of a Quadrant
of a Circle), Pascal came remarkably close to a discovery of the cal-
culus—so close that Leibniz later wrote that it was on reading this work
by Pascal that a light suddenly burst on him. Had Pascal not died, like
Torricelli, shortly after his thirty-ninth birthday, or had he been more
single-mindedly the mathematician or had he been more attracted by
algorithmic methods than by geometry and speculations on the philo-
sophy of mathematics, there is little doubt that he would have anticipated
Newton and Leibniz in their greatest discovery.
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Philippe de Lahire

With the death of Desargues in 1661, of Pascal in 1662, and of Fermat in
1665, a great period in French mathematics came to a close. It is true that
Roberval lived about another decade, but his contributions were no longer
significant, and his influence was limited by his refusal to publish. About
the only mathematician of stature in France at the time was Philippe de
Lahire (1640 1718), a disciple of Desargues and, like his master, an
architect. Pure geometry obviously appealed to him, and his first work on
conics in 1673was synthetic, but he did not breakwith the analyticwave of
the future. Lahire kept an eye out for a patron; hence, in his Nouveaux
élémens des sections coniques of 1679, dedicated to Jean Baptiste Colbert,
themethods ofDescartes came to the fore. The approach ismetric and two-
dimensional, proceeding, in the case of the ellipse and the hyperbola,
from the definitions in terms of the sum and the difference of focal radii
and, in the case of the parabola, from the equality of distances to focus and
directrix. But Lahire carried over into analytic geometry some of Desar-
gues’ language. Of his analytic language, only the term “origin” has sur-
vived. Perhaps it was because of his terminology that contemporaries did
not give proper weight to a significant point in his Nouveaux élémens—
Lahire provided one of the first examples of a surface given analytically
through an equation in three unknowns,whichwas the first real step toward
solid analytic geometry. He, like Fermat and Descartes, had only a single
reference point or originO on a single line of reference or axisOB, towhich
he now added the reference or coordinate plane OBA (Fig. 15.13). Lahire
found that then the equation of the locus of a point P such that its per-
pendicular distance PB from the axis shall exceed the distance OB (the
abscissa ofP) by a fixed quantity a, with respect to his coordinate system, is
a21 2ax1 x25 y21 v2 (where v is the coordinate that is now generally
designated by z). The locus is, of course, a cone.
In 1685, Lahire returned to synthetic methods in a book with the simple

title Sectiones Conicae. This might be described as a version by Lahire of
the Greek Conics of Apollonius translated into Latin from the French
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language of Desargues. The harmonic properties of the complete quad-
rangle, poles and polars, tangents and normals, and conjugate diameters
are among the familiar topics treated from a projective point of view.
Today, Lahire’s name is attached not to anything in his synthetic or

analytic treatises on conics, but to a theorem from a paper of 1706 on
“roulettes” in the Mémoires of the Académie des Sciences. Here he
showed that if a smaller circle rolls without slipping along the inside of a
larger circle with a diameter twice as great, then (1) the locus of a point
on the circumference of the smaller circle is a line segment (a diameter
of the larger circle), and (2) the locus of a point that is not on the cir-
cumference but that is fixed with respect to the smaller circle is an
ellipse. As we have seen, the first part of this theorem was known to
al-Tusi (Nasir Eddin) and the second to Copernicus. The name of Lahire
deserves to be remembered, but it is a pity that it should be attached to a
theorem that he was not first to discover.

Georg Mohr

Lahire was not the only geometer of the time to be unappreciated. In
1672, the Danish mathematician Georg Mohr (1640 1697) published an
unusual book titled Euclides danicus, in which he showed that
any pointwise construction that can be performed with compasses
and straightedge (i.e., any “plane” problem) can be carried out with
compasses alone. Despite all of the insistence by Pappus, Descartes,
and others on the principle of parsimony, many of the classical con-
structions were shown by Mohr to have violated this principle through
the use of two instruments where one would suffice! Obviously,
one cannot draw a straight line with compasses, but if one regards the line
as known whenever two distinct points on it are known, then the use of a
straightedge in Euclidean geometry is superfluous. So little attention did
mathematicians of the time pay to this amazing discovery that geometry
using compasses only, without the straightedge, bears the name not of
Mohr but of Lorenzo Mascheroni, who rediscovered the principle 125
years later. Mohr’s book disappeared so thoroughly that not until 1928,
when a copy was accidentally found by a mathematician browsing in a
Copenhagen bookstore, did it become known that Mascheroni had been
anticipated in proving the supererogation of the straightedge.

Pietro Mengoli

The year of Mohr’s stillborn Euclides danicus, 1672, marked the pub-
lication in Italy of yet another work on circle-squaring, Il problema
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della quadratura del circolo, by Pietro Mengoli (1625 1686), a third
unappreciated mathematician of the time. Mengoli, a clergyman, had
grown up under the influence of Cavalieri (whose successor he was at
Bologna), Torricelli, and Gregory of St. Vincent. Continuing their work
on indivisibles and the area under hyperbolas, Mengoli learned how to
handle such problems through a device the usefulness of which now
began to be apparent almost for the first time—the use of infinite series.
Mengoli saw, for example, that the sum of the alternating harmonic
series 1

1 2
1
2 1

1
3 2

1
4 1 � � �1 ð21nÞ=n1 � � � is ln 2. He had rediscovered

Oresme’s conclusion, arrived at by a grouping of terms, that the ordinary
harmonic series does not converge, a theorem usually attributed to
Jacques Bernoulli in 1689; he also showed the convergence of the
reciprocals of the triangular numbers, a result for which Huygens is
usually given credit.
We have considered three unappreciated mathematicians working in

the 1670s, and one reason they were not adequately recognized was
that the center of mathematics was not in their countries. France and
Italy, once the leaders, were mathematically in decline, and Denmark
remained outside the main current. During the period that we are con-
sidering—the interval between Descartes and Fermat, on the one hand,
and Newton and Leibniz, on the other—there were two regions in
particular where mathematics was thriving: Great Britain and the Low
Countries. Here we find not isolated figures, as in France, Italy, and
Denmark, but a handful of prominent Britons and another handful of
Dutch and Flemish mathematicians.

Frans van Schooten

We have already noted that Descartes had spent a score of years in
Holland, and his mathematical influence was decisive, in that analytic
geometry took root there more quickly than elsewhere in Europe. At
Leyden in 1646, Frans van Schooten (1615 1660) had succeeded his
father as professor of mathematics, and it was chiefly through the
younger Van Schooten and his pupils that the rapid development of
Cartesian geometry took place. Descartes’ La géométrie had not ori-
ginally been published in Latin, the universal language of scholars, and
the exposition had been far from clear; both of these handicaps were
overcome when Van Schooten printed a Latin version in 1649, together
with supplementary material. Van Schooten’s Geometria a Renato Des
Cartes (Geometry by René Descartes) appeared in a greatly expanded
two-volume version in 1659 1661, and additional editions were pub-
lished in 1683 and 1695. Thus, it is probably not too much to say that
although analytic geometry was introduced by Descartes, it was estab-
lished by Van Schooten.
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The need for explanatory introductions to Cartesian geometry had
been recognized so promptly that an anonymous “Introduction” to it had
been composed but not published by a “Dutch gentleman” within a year of
its appearance. In another year, Descartes received and approved a more
extensive commentary on the Geometry, this one by Florimond Debeaune
under the title Notae Breves. The ideas of Descartes were here explained,
with greater emphasis on loci represented by simple second-degree equa-
tions, much in the manner of Fermat’s Isagoge. Debeaune showed, for
example, that y25 xy1 bx, y252 2dy1 bx, and y25 bx2 x2 represent
hyperbolas, parabolas, and ellipses, respectively. This work by Debeaune
receivedwide publicity through its inclusion in the 1649Latin translation of
the Geometria, together with further commentary by Van Schooten.

Jan deWitt

A more extensive contribution to analytic geometry was composed in
1658 by one of Van Schooten’s associates, Jan De Witt (1629 1672),
the well-known Grand Pensionary of Holland. De Witt had studied law
at Leyden, but he had acquired a taste for mathematics while living
in Van Schooten’s house. He led a hectic life while directing the affairs
of the United Provinces through periods of war in which he opposed
the designs of Louis XIV. When in 1672 the French invaded the
Netherlands, De Witt was dismissed from office by the Orange Party
and seized by an infuriated mob that tore him to pieces. Although he
had been a man of action, he had found the time in his earlier years to
compose a work titled Elementa Curvarum. This is divided into two parts,
the first of which gives various kinematic and planimetric definitions of
the conic sections. Among these are the focus-directrix ratio definitions;
our word “directrix” is due to him. Another construction of the ellipse that
he gave is through the now familiar use of two concentric circles with the
eccentric angle as parameter. Here the treatment is largely synthetic, but
Book II, by contrast, makes such systematic use of coordinates that it has
been described, with some justification, as the first textbook on analytic
geometry. The purpose of De Witt’s work is to reduce all second-degree
equations in x and y to canonical form through translation and rotation of
axes. He knew how to recognize when such an equation represented an
ellipse, when a parabola, and when a hyperbola, based on whether the
so-called discriminant is negative, zero, or positive.
Only a year before his tragic death, De Witt combined the aims of the

statesman with the views of a mathematician in his A Treatise on Life
Annuities (1671), motivated perhaps by the little essay by Huygens on
probabilities. In this Treatise, De Witt expressed what now would be
described as the notion of mathematical expectation, and in his corre-
spondence with Hudde, he considered the problem of an annuity based
on the last survivor of two or more people.
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Johann Hudde

In 1656 1657, Van Schooten had published a work of his own, Exer-
citationes Mathematicae, in which he gave new results in the application
of algebra to geometry. Included are also discoveries made by his most
capable disciples, such as Johann Hudde (1629 1704), a patrician who
served for some thirty years as burgomaster of Amsterdam. Hudde
corresponded with Huygens and De Witt on the maintenance of canals
and on problems of probability and life expectancy; in 1672, he directed
the work of inundating Holland to obstruct the advance of the French
army. In 1656, Hudde had written on the quadrature of the hyperbola by
means of infinite series, as had Mengoli, but the manuscript has been
lost. In Van Schooten’s Exercitationes, there is a section by Hudde on a
study of coordinates of a fourth-degree surface, an anticipation of solid
analytic geometry antedating even that of Lahire, although less explicitly
described. Moreover, it appears that Hudde was the first mathematician to
permit a literal coefficient in an equation to represent any real number,
whether positive or negative. This final step in the process of generalizing
the notations of Viète in the theory of equations was made in a work by
Hudde titled De Reductione Aequationum, which also formed part of the
1659 1661 Van Schooten edition of Descartes’ La géométrie.
The two most popular subjects in Hudde’s day were analytic geometry

and mathematical analysis, and the burgomaster-to-be contributed to
both. In 1657 1658, Hudde had discovered two rules that pointed
clearly toward algorithms of the calculus:

1. If r is a double root of the polynomial equation

a0x
n 1 a1x

n 1 1 � � �1 an 1x1 an 5 0

and if b0, b1, . . . , bn 1, bn are numbers in arithmetic progression, then r is
also a root of

a0b0x
n 1 a1b1x

n 1 1 � � �1 an 1bn 1x1 anbn 5 0:

2. If for x5 a the polynomial

a0x
n 1 a1x

n 1 1 � � �1 an 1x1 an

takes on a relative maximum or minimum value, then a is a root of the
equation:

na0x
n 1 ðn2 1Þa1x

n 1 1 � � �1 2an 2x
2 1 an 1x5 0:

The first of these “Hudde’s rules” is a camouflaged form of the modern
theorem that if r is a double root of f(x)5 0, then r is also a root of
f u(x)5 0. The second is a slight modification of Fermat’s theorem that
today appears in the form that if f(a) is a relative maximum or minimum
value of a polynomial f(x), then f u(a)5 0.
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René François de Sluse

The rules of Hudde were widely known, for they were published by Van
Schooten in 1659 in Volume I of Geometria a Renato Des Cartes. A few
years earlier, a similar rule for tangents had been used by another repre-
sentative from the Low Countries, the canon René François de Sluse
(1622 1685), a native of Liège who came from a distinguished Walloon
family. He had studied in Lyons and Rome, where he may have become
familiar with the work of Italian mathematicians. Possibly through Tor-
ricelli, perhaps independently, in 1652 Sluse arrived at a routine for
finding the tangent to a curve whose equation is of the form f(x, y)5 0,
where f is a polynomial. The rule, not published until 1673, when it
appeared in the Philosophical Transactions of the Royal Society, may be
stated as follows: The subtangent will be the quotient obtained by placing
in the numerator all of the terms containing y, each multiplied by the
exponent of the power of y appearing in it, and placing in the denominator
all of the terms containing it, each multiplied by the exponent of the power
of x appearing in it and then divided by x. This is, of course, equivalent to
forming the quotient now written as yfy / fx, a result also known to Hudde in
about 1659. Such instances show how discoveries in the calculus were
crowding on one another even before the work of Newton.
Sluse, sharing in the tradition of the Low Countries, was also quite active

in promoting Cartesian geometry, even though he preferred the A and E of
Viète andFermat to the x and y ofDescartes. In 1659, he published a popular
book,Mesolabum (OfMeans), in which he pursued the familiar topic on the
geometric constructions of the roots of equations. He showed that given any
conic, one can construct the roots of any cubic or quartic equation through
the intersection of the conic and a circle. The name of Sluse is also attached
to a family of curves that he introduced in his correspondencewithHuygens
and Pascal in 1657 1658. These so-called pearls of Sluse, so named by
Pascal, are curves given by equations of the form ym5 kxn(a2 x)b. Sluse
mistakenly thought that such cases as y5 x2(a2 x) were pearl-shaped, for,
negative coordinates not then being understood, Sluse assumed symmetry
with respect to the axis (of abscissas); however, Christiaan Huygens
(1629 1695), who had the reputation of being Van Schooten’s best pupil,
found the maximum and minimum points and the point of inflection and
was able to sketch the curve correctly for both positive and negative coor-
dinates. Other points of inflectionhad also been found by severalmenbefore
Huygens, including Fermat and Roberval.

Christiaan Huygens

Christiaan Huygens, a member of a prominent Dutch family and the son
of the diplomat Constantin Huygens, was encouraged in mathematical
pursuits as a youngster by both Descartes and Mersenne, who were
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associates of his father’s. Christiaan became a scientist of international
reputation, who is recalled for the principle that bears his name in the
wave theory of light, the observation of the rings of Saturn, and
the effective invention of the pendulum clock. It was in connection with
his search for improvements in horology that he made his most impor-
tant mathematical discovery.

The Pendulum Clock

Huygens knew that the oscillations of a simple pendulum are not strictly
isochronous but depend on the magnitude of the swing. To phrase it
differently, if an object is placed on the side of a smooth hemispherical
bowl and released, the time it takes to reach the lowest point will be
almost, but not quite, independent of the height from which it is released.
Now it happened that Huygens invented the pendulum clock at just
about the time of the Pascal cycloid contest, in 1658, and it occurred to
him to consider what would happen if one were to replace the hemi-
spherical bowl with one whose cross-section is an inverted cycloidal
arch. Huygens was delighted to find that for such a bowl, the object will

Christiaan Huygens
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reach the lowest point in exactly the same time, no matter what height on
the inner surface of the bowl the object is released from. The cycloid
curve is truly a tautochrone—that is, on an inverted cycloidal arch an
object will slide from any point to the bottom in exactly the same time,
no matter what the starting point. But a big question remained: how does
one get a pendulum to oscillate in a cycloidal, rather than a circular, arc?
Here Huygens made a further beautiful discovery. If one suspends from
a point P at the cusp between two inverted cycloidal semiarches PQ and
PR (Fig. 15.14) a pendulum the length of which is equal to the length of
one of the semiarches, the pendulum bob will swing in an arc that is an
arch of a cycloid QSR of exactly the same size and shape as the
cycloid of which arcs PQ and PR are parts. In other words, if the pen-
dulum of the clock oscillates between cycloidal jaws, it will be truly
isochronous.

Diagrams from Huygens’s Horologium oscillatorium (1673). The one
labeled Fig. II shows the cycloidal jaws that caused the pendulum to
swing in a cycloidal arc.
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Huygens made some pendulum clocks with cycloidal jaws, but he
found that in operation, they were no more accurate than those
depending on the oscillations of an ordinary simple pendulum, which
are nearly isochronous for very small swings. Yet in this investigation,
Huygens had made a discovery of capital mathematical significance: the
involute of a cycloid is a similar cycloid, or, inversely, the evolute of a
cycloid is a similar cycloid. This theorem and further results on invo-
lutes and evolutes for other curves were proved by Huygens in an
essentially Archimedean and Fermatian manner by taking neighboring
points and noting the result when the interval vanishes. Descartes and
Fermat had used this device for normals and tangents to a curve, and
now Huygens applied it to find what we call the radius of curvature of a
plane curve. If at neighboring points P and Q on a curve (Fig. 15.15)
one finds the normals and their point of intersection I, then, as Q
approaches P along the curve, the variable point I tends toward a fixed
point O, which is called the center of curvature of the curve for the point
P, and the distance OP is known as the radius of curvature. The locus of
the centers of curvature O for points P on a given curve Ci lie on a
second curve Ce known as the evolute of C, and any curve Ci of which
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Ce is the evolute is called an involute of the curve Ce. It is clear that the
envelope of the normals to Ci, will be Ce, a curve tangent to each of
the normals. In Fig. 15.14, the curve QPR is the evolute of the curve
QSR and the curve QSR is an involute of the curve QPR. The positions
of the string, as the pendulum bob swings back and forth, are the nor-
mals to QSR and the tangents to QPR. As the pendulum bob moves
farther to one side, the string winds more and more about the cycloidal
jaw, and as the bob falls toward the lowest point S, the string unwinds.
Hence, Huygens described the cycloid QSR as ex evolutione descripta,
the cycloid QPR being the evoluta. (In French, the terms développante
and développée have since been adopted.)

Involutes and Evolutes

The concepts of radius of curvature and evolute had been adumbrated
in Apollonius’s purely theoretical work on Conics, but only with
Huygens’s interest in horology did the concepts find a permanent place
in mathematics. Analytic geometry had been a product of essentially
theoretical considerations, but Huygens’s development of the idea of
curvature was prompted by practical concerns. An interplay of the two
points of view, the theoretical and the practical, often proves to be
fruitful in mathematics, as the work of Huygens aptly illustrates. His
cycloidal pendulum presented him with an obvious rectification of the
cycloid, a result that Roberval had found earlier but had not published.
The fact that the arc QS (in Fig. 15.14) is formed as the pendulum string
winds about the curve QP shows that the length of the line PS is exactly
equal to the length of the arc QP. Inasmuch as the line PS is twice the
diameter of the circle that generates the cycloid QSR, the length of a
complete arch of the cycloid must be four times the diameter of the
generating circle. The theory of involutes and evolutes similarly led to
the rectification of many other curves, and the Peripatetic-Cartesian
dogma of the nonrectifiability of algebraic curves came more seriously
into question.
In 1658, one of Huygens’s associates, Heinrich van Heuraet

(1633 1660?), also a protégé of Van Schooten’s, discovered that the
semicubical parabola ay25 x3 can be rectified by Euclidean means, thus
ending the uncertainty. The disclosure appeared in 1659 as one of the
more important aspects of Van Schooten’s Geometria a Renato Des
Cartes. This result had been reached independently a little earlier by the
Englishman William Neil (1637 1670) and was known independently a
little later to Fermat in France, constituting another striking case of
virtual simultaneity of discovery. Of all of Fermat’s discoveries in
mathematics, it was only the rectification of the semicubical parabola,
usually known as Neil’s parabola, that was published by him. The
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solution appeared in 1660 as a supplement in the Veterum Geometria
Promota in Septem de Cycloide Libris (Geometry of the Ancients Pro-
moted in Seven Books on the Cycloid) by Antoine de Lalouvère
(1600 1664), the circle-squarer who had striven for Pascal’s prize.
The rectification of Fermat was found by comparing a small arc of
a curve with the circumscribed figure made up of tangents at the
extremities of the arc. Van Heuraet’s method was based on the rate
of change in the arc, expressed in modern notation by the equation
ds=dx5 11 ðy0Þ2

p
.

The rectification by Neil depended on the recognition, already noted by
Wallis in Arithmetica infinitorum, that a small arc is virtually the hypo-
tenuse of a right triangle whose sides are the increments in the abscissa
and the ordinate—that is, on the equivalent of the modern formula
ds5 dx2 1 dy2

p
. Neil’s rectification was published in 1659 by John

Wallis in a treatise titled Tractatus Duo, Prior de Cycloide, Posterior de
Cissoide (Two Treatises, the First on the Cycloid, the Second on the
Cissoid). This work followed by a few months the work of Pascal on
the cycloid, indicating the extent to which cycloid fever had seized
mathematicians just before the invention of the calculus.
Huygens’s work on involutes and evolutes was not published until

1673, when it appeared in his celebrated Horologium Oscillatorium.
This treatise on pendulum clocks is a classic that served as an intro-
duction to Newton’s Principia a little more than a decade later. It con-
tained the law of centripetal force for circular motion, Huygens’s law for
pendular motion, the principle of the conservation of kinetic energy, and
other important results in mechanics. During his entire life, he main-
tained a broad interest in all things mathematical but especially in higher
plane curves. He rectified the cissoid and studied the tractrix. Whereas
Galileo had thought that the catenary was a parabola, Huygens showed
that it is a nonalgebraic curve. In 1656, he had applied infinitesimal
analysis to the conics, reducing the rectification of the parabola to the
quadrature of the hyperbola (that is, to finding a logarithm). By the next
year, Huygens had become the first one to find the surface area of a
segment of a paraboloid of revolution (the “conoid” of Archimedes),
showing that the complanation can be achieved by elementary means.
Van Schooten died in 1660, the year in which the Royal Society was

founded in England, and the date can be taken as marking a new shift in
the mathematical center of the world. The Leyden group, gathered about
Van Schooten, was losing its momentum, and it suffered a further blow
when Huygens left for Paris in 1666. Meanwhile, a vigorous develop-
ment in mathematics had been taking place in Great Britain; this was
further encouraged by the formation of the Royal Society, which,
granted its charter in 1662, has run its prestigious course for 350 years.
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BritishTechniques and
Continental Methods

Mathematics the unshaken Foundation of Sciences, and the plentiful

Fountain of Advantage to human affairs.

Isaac Barrow

JohnWallis

One of the charter members of the Royal Society, JohnWallis (1616 1703)
was known among older contemporaries as a brilliant student ofmathematics
and among later historians as the most influential English predecessor of
Newton.Wallis, like Oughtred, entered Holy Orders, yet he spent most of his
time as a mathematician. Educated at Cambridge, he was appointed Savilian
professor of geometry at Oxford in 1649, holding the chair that had first been
filled by Briggs when it was established in 1619. Wallis was known to be a
Royalist, although the regime of Cromwell was not averse to using his ser-
vices in the deciphering of secret codes, and when Charles II was restored to
the throne, Wallis became the king’s chaplain. Earlier, in 1655, he had
published two very important books, one in analytic geometry, the other in
infinite analysis. These were the two leading branches of mathematics at the
time, and the genius of Wallis was well suited to advance them.
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On Conic Sections

The Tractatus de Sectionibus Conicis of Wallis did for analytic geometry
in England what De Witt’s Elementa Curvarum had done for the subject
on the Continent. Wallis complained, in fact, that De Witt’s work was an
imitation of his own Tractatus, but De Witt’s treatise, although pub-
lished four years after that of Wallis, had actually been composed before
1655. The books of both men may be described as the completion of
the arithmetization of conic sections that had been begun by Descartes.
Wallis, in particular, replaced geometric concepts by numerical ones
wherever possible. Even proportion, the stronghold of ancient geometry,
Wallis held to be an arithmetic concept.
The Conics of Wallis opened by paying lip service to the generation

of the curves as sections of a cone, yet the author deduced all of the
familiar properties through plane coordinate methods from the three
standard forms e25 ld2 ld 2 / t, p25 ld, and h25 ld1 ld 2 / t, where e, p,
and h are the ordinates of the ellipse, the parabola, and the hyperbola,
respectively, corresponding to abscissas d measured from a vertex at the
origin, and where l and t are the latus rectum and “diameter” or axis.
Later still, he took these equations as the definitions of the conic sec-
tions, considered “absolutely,” that is, without reference to the cone.
Here, he was even closer than Fermat to the modern definition of a conic
as the locus of points on a plane coordinate system whose coordinates
satisfy an equation of the second degree in two variables, a fact that
Descartes had been aware of but that he had not emphasized.

Arithmetica Infinitorum

Had Wallis’s Conics not appeared, the loss would not have been serious,
for De Witt’s work appeared only four years later. Yet there was no
substitute for the Arithmetica Infinitorum of Wallis, which was also
published in 1655. Here, Wallis arithmetized the Geometria indivisibi-
libus of Cavalieri, as he had arithmetized the Conics of Apollonius.
Whereas Cavalieri had arrived at the result

ða
0
xmdx5

am1 1

m1 1

through a laborious pairing of geometric indivisibles in a parallelogram
with those in one of the two triangles into which a diagonal divides it,
Wallis abandoned the geometric background after having associated the
infinitely many indivisibles in the figures with numerical values. If, for
example, one wishes to compare the squares of the indivisibles in the
triangle with the squares of the indivisibles in the parallelogram,

J ohn Wa l l i s 349



one takes the length of the first indivisible in the triangle as zero, the
second as 1, the third as 2, and so on, up to the last, of length n2 1, if
there are n indivisibles. The ratio of the squares of the indivisibles in the
two figures would then be

02 1 12

12 1 12
or

1

2
5

1

3
1

1

6

if there were only two indivisibles in each, or

02 1 12 1 22

22 1 22 1 22
5

5

12
5

1

3
1

1

12

if there were three, or

02 1 12 1 22 1 32

32 1 32 1 32 1 32
5

14

36
5

1

3
1

1

18

if there were four. For n1 1 indivisibles, the result is

02 1 12 1 22 1 � � �1 ðn2 1Þ2 1 n2

n2 1 n2 1 n2 1 � � �1 n2 1 n2
5
1

3
1

1

6n
;

and if n is infinite, the ratio obviously is 1
3 . (For n infinite, the remainder term

l / 6n becomes l /N, or zero. Here, Wallis was the first one to use the now
familiar “love knot” symbol for infinity.) This is, of course, the equivalent of
saying that

Ð 1
0
x2dx5 1

3; Wallis extended the same procedure to higher integral
powers of x. By incomplete induction, he concluded thatð1

0
xmdx5

1

m1 1

for all integral values of m.
Fermat rightly criticized Wallis’s induction, for it lacks the rigor of the

method of complete induction that Fermat and Pascal frequently used.
Moreover, Wallis followed a still more questionable principle of inter-
polation, under which he assumed that his result also held for fractional
values of m, as well as for negative values (except m5 1). He even
had the hardihood to assume that the formula held for irrational powers—
the earliest statement in the calculus concerning what now would be called
“a higher transcendental function.” The use of exponential notation for
fractional and negative powers was an important generalization of sug-
gestions made earlier, as by Oresme and Stevin, but Wallis did not give a
sound basis for his extension of the Cartesian exponentiation.
Wallis was a chauvinistic Englishman, and when he later (in 1685)

published his Treatise of Algebra, Both Historical and Practical, he
belittled the work of Descartes, arguing, very unfairly, that most of it
had been taken from Harriot’s Artis analyticae praxis. The fact that
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Wallis’s solutions of the Pascal contest questions had been rejected as
not worthy of the prize evidently did not ameliorate his anti-Gallic bias.
This bias, as well as his casual interpretation of the historical record, also
seems to explain why Wallis, a far better mathematician than historian,
equated algebra (or the analytics of Viète) with the ancient geometric
analysis.

Christopher Wren and William Neil

At the time that Wallis sent in his reply to the Pascal challenge,
Christopher Wren (1632 1723) sent Pascal his rectification of the
cycloid. Wren was educated at Oxford and later held there the Savilian
professorship in astronomy. He, too, was elected to the Royal Society,
of which he was president for a few years. Had not the great fire of
1666 destroyed much of London, Wren might now be known as a
mathematician, rather than as the architect of St. Paul’s Cathedral and
some fifty other churches. The mathematical circle to which Wren and
Wallis belonged in 1657 1658 evidently was applying the equivalent
of the formula for arc length ds25 dx21 dy2 to various curves and was
meeting with brilliant success. We mentioned earlier that William Neil,
when he was only twenty years old, first succeeded in rectifying his
curve, the semicubical parabola, in 1657. Wren found the length of the
cycloid a year later. The rectification by Neil depended on the recog-
nition, already noted by Wallis in Arithmetica Infinitorum, that a small
arc is virtually the hypotenuse of a right triangle whose sides are the
increments in the abscissa and the ordinate—that is, on the equivalent
of the modern formula ds5 dx2 1 dy2

p
. Both Neil’s and Wren’s dis-

coveries were incorporated, with due credit to the discoverers, by
Wallis in his Tractatus Duo of 1659, a book on infinitesimal problems
related to the cycloid and the cissoid. This work followed by a few
months the work of Pascal on the cycloid, indicating the extent to
which cycloid fever had seized mathematicians just before the inven-
tion of the calculus.
It is a pity that the geometry of surfaces and curves in three dimensions

was then attracting so little attention that almost a century later, solid
analytic geometry was still virtually undeveloped. Wallis, in his Algebra
of 1685, included a study of a surface that belonged to the class now
known as conoids (not, of course, in the Archimedean sense). Wallis’s
surface, which he called the “cono-cuneus” (or conical wedge), can be
described as follows: Let C be a circle, let L be a line parallel to the plane
of C, and let P be a plane perpendicular to L. Then, the cono-cuneus is
the totality of lines that are parallel to P and pass through points of L
and C. Wallis suggested other conoidal surfaces obtained by replacing
the circle C by a conic, and in his Mechanica of 1670, he had noted the
parabolic sections on Wren’s hyperboloid (or “hyperbolic cylindroid”).
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Yet Wallis did not give equations for the surfaces, nor did he arithmetize
geometry of three dimensions, as he had plane geometry.

Wallis’s Formulas

Wallis made his most important contributions in infinitesimal analysis.
Among these was one in which, while evaluating

Ð
1

0
x2 x2

p
dx, he

anticipated some of Euler’swork on the gammaor factorial function. From
the work of Cavalieri, Fermat, and others, Wallis knew that this integral
represents the area under the semicircle y5 x2 x2

p
and that this area

therefore is π / 8. But how can one obtain the answer through a direct
evaluation of the integral by infinitesimal devices?Wallis could not answer
this question, but his method of induction and interpolation produced an
interesting result. After an evaluation of

Ð
1

0
ðx2 x2Þndx for several positive

integral values of n, Wallis arrived by incomplete induction at the conclu-
sion that the value of this integral is (n!)2 / (2n1 1)! Assuming that the
formula holds for fractional values of n as well, Wallis concluded that

ð1
0

x2 x2
p

dx5 1
2!ð Þ2=2!

hence, π=85 1
2 ð12!Þ2 or 1

2!5 π
p

=2: This is a special case of the Eulerian
beta function, Bðm; nÞ5 Ð 1

0
xm�1ð12 xÞn�1

dx; where m5 3
2 and n5 3

2.
Among Wallis’s best-known results is the infinite product

2

π
5

1U3U3U5U5U7 � � �
2U2U4U4U6U6 � � � :

This expression can readily be obtained from the modern theorem

lim
n-N

ðπ=2
0

sinnx dxðπ=2
0

sinn1 1x dx

5 1

and the formulas ðπ=2
0

sinmx dx5
ðm2 1Þ!!

m!!

for m an odd integer andðπ=2
0

sinmx dx5
ðm2 1Þ!!

m!!

π
2
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for m even. (The symbol m!! represents the product m(m2 2)(m2 4) . . . ,
which terminates in 1 or 2, according as m is odd or even.) Hence, the
previous expressions for

Ð π=2
0
sinmxdx are known as Wallis’s formulas. Yet

the method that Wallis actually used to achieve his product for 2 /π was in
reality again based on his principles of induction and interpolation, applied
this time to

Ð
1

0
12 x2

p
dx, which he was unable to evaluate directly for lack

of the binomial theorem.

James Gregory

The binomial theorem for integral powers had been known in Europe at
least since 1527, but Wallis was unable, surprisingly, to apply his
method of interpolation here. It looks as though this result may have
been known to the young Scotsman James Gregory (1638 1675),
a predecessor of Newton who died when he was only thirty-six. Gregory
had evidently come in contact with the mathematics of several coun-
tries. His great-uncle Alexander Anderson (1582 1620?) had edited
Viète’s works, and James Gregory had studied mathematics not only at
school in Aberdeen, but also with his older brother, David Gregory
(1627 1720). A wealthy patron had introduced him to John Collins
(1625 1683), the librarian of the Royal Society. Collins was to British
mathematicians what Mersenne had been to the French a generation
earlier—the correspondent extraordinary. In 1663, Gregory went to
Italy, where the patron introduced him to the successors of Torricelli,
especially Stefano degli Angeli (1623 1697). The many works of
Angeli, a protégé of Cardinal Michelangelo Ricci (1619 1682) who
had been a close friend of Torricelli’s, were almost all on infinitesimal
methods, with emphasis on the quadrature of generalized spirals,
parabolas, and hyperbolas. It is likely that it was in Italy that Gregory
came to appreciate the power of infinite series expansions of functions
and of infinite processes in general.

Gregory’s Quadratures

In 1667, Gregory published in Padua a work titled Vera circuli et hyper-
bolae quadratura, which contained very significant results in infinitesimal
analysis. For one thing, Gregory extended the Archimedean algorithm to
the quadrature of ellipses and hyperbolas. He took an inscribed triangle of
area a0 and a circumscribed quadrilateral of area A0; by successively
doubling the number of sides of these figures, he formed the sequence a0,
A0, a1, A1, a2, A2, a3, A3, . . . and showed that an is the geometric mean of the
two terms immediately preceding and An the harmonic mean of the two
preceding terms. Thus, he had two sequences—that of the inscribed areas
and that of the circumscribed areas—both converging to the area of the
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conic; he used these to get very good approximations to elliptic and
hyperbolic sectors. Incidentally, the word “coverage” was here used
by Gregory in this sense for the first time. Through this infinite process,
Gregory sought, unsuccessfully, to prove the impossibility of squaring the
circle by algebraic means. Huygens, regarded as the leading mathematician
of the day, believed that π could be expressed algebraically, and a dispute
arose over the validity of Gregory’s methods. The question of π’s trans-
cendence was a difficult one, and it would be another two centuries before
it was resolved in Gregory’s favor.

Gregory’s Series

In 1668, Gregory published two more works, bringing together results
from France, Italy, Holland, and England, as well as new discoveries of
his own. One of these, Geometriae Pars Universalis (The Universal
Part of Geometry), was published in Padua; the other, Exercitationes
Geometricae (Geometrical Exercises), in London. As the title of the first
book implies, Gregory broke from the Cartesian distinction between
“geometrical” and “mechanical” curves. He preferred to divide mathe-
matics into “general” and “special” groups of theorems, rather than into
algebraic and transcendental functions. Gregory did not wish to distin-
guish even between algebraic and geometric methods, and, conse-
quently, his work appeared in an essentially geometric garb that is not
easy to follow. Had he expressed his work analytically, he might have
anticipated Newton in the invention of the calculus, for virtually all of
the fundamental elements were known to him by the end of 1668. He
was thoroughly familiar with quadratures and rectifications and probably
saw that these are the inverses of tangent problems. He even knew the
equivalent of

Ð
sec x dx5 ln (sec x 1 tan x). He had independently found

the binomial theorem for fractional powers, a result known earlier to
Newton (but as yet unpublished), and he had, through a process
equivalent to successive differentiation, discovered the Taylor series
more than forty years before Taylor published it. The Maclaurin series
for tan x and sec x and for arctan x and arcsec x were all known to him,
but only one of these, the series for arctan x, bears his name. He could
have learned in Italy that the area under the curve y5 1 / (11 x2), from
x5 0 to x5 x, is arctan x, and a simple long division converts
1 / (11 x2) to 12 x21 x42 x61 � � � . Hence, it is at once apparent from
Cavalieri’s formula that

ðx
0

dx

11 x2
5 arctan x5 x2

x3

3
1

x5

5
2

x7

7
1 � � � :

This result is still known as “Gregory’s series.”
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Nicolaus Mercator andWilliam Brouncker

A result somewhat analogous to Gregory’s series was derived at about the
same time by Nicolaus Mercator (1620 1687) and published in his
Logarithmotechnia of 1668. Mercator (real name Kaufmann) was born in
Holstein in Denmark, but he lived in London for a long time and became
one of the first members of the Royal Society. In 1683, he went to France
and designed the fountains at Versailles; he died in Paris four years later.
The first part of Mercator’s Logarithmotechnia is on the calculation of
logarithms by methods stemming from those of Napier and Briggs; the
second part contains various approximation formulas for logarithms, one
of which is essentially that now known as “Mercator’s series.” From the
work of Gregory of St. Vincent, it had been known that the area under the
hyperbola y5 1 / (11 x), from x 5 0 to x5 x, is ln(l1 x). Hence, using
JamesGregory’smethod of long division followed by integration,we haveðx

0

dx

11 x
5
ðx
0
ð12 x1 x2 2 x3 1 � � �Þ dx5 lnð11 xÞ

5
x

1
2

x2

2
1

x3

3
2

x4

4
1 � � � :

Mercator took over from Mengoli the name “natural logarithms” for
values that are derived by means of this series. Although the series bears
Mercator’s name, it appears that it was known earlier to both Hudde and
Newton, although not published by them.
During the 1650s and 1660s, a wide variety of infinite methods were

developed, including the infinite continued fraction method for π that
had been given by William Brouncker (1620? 1684), the first president
of the Royal Society. The first steps in continued fractions had been
taken many years prior to this in Italy, where Pietro Antonio Cataldi
(1548 1626) of Bologna had expressed square roots in this form. Such
expressions are easily obtained as follows: Let 2

p
be desired and let

x1 15 2
p

. Then, (x1 1)25 2 or x21 2x5 1 or x5 1 / (21 x). If, on the
right-hand side, one continues to replace x as often as it appears by
1 / (21 x), one finds that

x � 1 � √
–
2 � 1.

2 � 1
2 � 1

2 � . . .

Through manipulation of Wallis’s product for 2/π, Brouncker was led
somehow to the expression
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� 1 � 1
4
π

2 � 9
2 � 25

2 � 49
2 � . . .

In addition, Brouncker and Gregory found certain infinite series for
logarithms, but these were overshadowed by the greater simplicity of
the Mercator series. It is sad to report, however, that Gregory did not have
an influence commensurate with his achievement. He returned to Scotland
to become a professor ofmathematics, first at St. Andrews in 1668 and then
at Edinburgh in 1674, where he became blind and died a year later. After
his three treatises of 1667 1668 had appeared, he no longer published, and
many of his results had to be rediscovered by others.

Barrow’s Method of Tangents

Newton could have learned much from Gregory, but the young Cambridge
student evidently was not well acquainted with the work of the Scot.
Instead, it was two Englishmen, one at Oxford and the other at Cambridge,
who made a deeper impression on him. They were John Wallis and Isaac
Barrow (1630 1677). Barrow, like Wallis, entered Holy Orders but
taught mathematics. A mathematical conservative, Barrow disliked the
formalisms of algebra, and in this respect, his work is antithetical to that of
Wallis. He thought that algebra should be part of logic, rather than of
mathematics. An admirer of the ancients, he edited the works of Euclid,
Apollonius, and Archimedes, besides publishing his own Lectiones opti-
cae (1669) and Lectiones geometriae (1670), both of which Newton
assisted in editing. The date 1668 is important for the fact that Barrow was
giving his geometric lectures at the same time that Gregory’s Geometriae
Pars Universalis and Mercator’s Logarithmotechnia appeared, as well as a
revised edition of Sluse’s Mesolabum. Sluse’s book included a new sec-
tion dealing with infinitesimal problems and containing a method of
maxima and minima. Wishing his Lectiones Geometriae to take account
of the state of the subject at the time, Barrow included an especially full
account of the new discoveries. Tangent problems and quadratures were
all the rage, and they figure prominently in Barrow’s 1670 treatise. Here,
Barrow preferred the kinematic views of Torricelli to the static arithmetic
of Wallis, and he liked to think of geometric magnitudes as generated by a
steady flow of points. Time, he said, has many analogies with a line, yet he
viewed both as made up of indivisibles. Although his reasoning is much
more like Cavalieri’s than like Wallis’s or Fermat’s, there is one point at
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which algebraic analysis obtrudes prominently. At the end of Lecture X,
Barrow wrote,

Supplementary to this we add, in the form of appendices, a method for

finding tangents by calculation frequently used by us, although I hardly

know, after so many well-known and well-worn methods of the kind

above, whether there is any advantage in doing so. Yet I do so on the

advice of a friend [later shown to have been Newton]; and all the more

willingly because it seems to be more profitable and general than those

which I have discussed.

Then Barrow went on to explain a method of tangents that is virtually
identical with the one used in the differential calculus. It is much like
that of Fermat, but it makes use of two quantities—instead of Fermat’s
single letter E—quantities that are equivalent to the modern Δx and Δy.
Barrow explained his tangent rule essentially as follows. If M is a
point on a curve given (in modern notation) by a polynomial equation
f(x, y)5 0 and if T is the point of intersection of the desired tangent MT
with the x-axis, then Barrow marked off “an indefinitely small arc, MN,
of the curve.” He then drew the ordinates at M and N and through M a
line MR parallel to the x-axis (Fig. 16.1). Then, designating by m the
known ordinate at M, by t the desired subtangent PT, and by a and e
the vertical and horizontal sides of the triangleMRN, Barrow pointed out
that the ratio of a to e is equal to the ratio of m to t. As we should now
express it, the ratio of a to e for infinitely close points is the slope of the
curve. To find this ratio, Barrow proceeded much as Fermat had. He
replaced x and y in f(x, y)5 0 with x1 e and y1 a, respectively; then, in
the resulting equation, he disregarded all terms not containing a or e
(because these by themselves equal zero) and all terms of a degree
higher than the first degree in a and e, and, finally, he replaced a with m
and e with t. From this, the subtangent is found in terms of x and m, and
if x and m are known, the quantity t is determined. Barrow apparently did
not directly know of Fermat’s work, for he nowhere mentioned his name,
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but the men to whom he referred as sources of his ideas include Cava-
lieri, Huygens, Gregory of St. Vincent, James Gregory, and Wallis, and
it may be that Fermat’s method became known to Barrow through them.
Huygens and James Gregory, in particular, made frequent use of the
procedure, and Newton, with whom Barrow was working, recognized
that Barrow’s algorithm was only an improvement of Fermat’s.
Of all of the mathematicians who anticipated portions of the differ-

ential and the integral calculus, none approached more closely to the
new analysis than Barrow. He seems to have clearly recognized
the inverse relationship between tangent and quadrature problems. But
his conservative adherence to geometric methods evidently kept him
from making effective use of the relationship, and his contemporaries
found his Lectiones geometricae difficult to understand. Fortunately,
Barrow knew that at that very time, Newton himself was working on the
same problems, and the older man entreated his young associate
to collect and publish his own results. In 1669, Barrow was called to
London as chaplain to Charles II, and Newton, on Barrow’s suggestion,
succeeded him in the Lucasian chair at Cambridge. That the succession
was most felicitous will become apparent in the rest of this chapter.

Newton

Isaac Newton was born prematurely on Christmas Day of 1642, the year
of Galileo’s death. A maternal uncle who was a Cambridge graduate
recognized unusual ability in his nephew and persuaded Isaac’s mother
to enter the boy at Cambridge. Young Newton, therefore, enrolled at
Trinity College in 1661, probably with no thought of being a mathe-
matician, for he had made no particular study of the subject. Early in his
first year, however, he bought and studied a copy of Euclid, and, shortly
thereafter, he read Oughtred’s Clavis, the Van Schooten Geometria a
Renato Des Cartes, Kepler’s Optics, the works of Viète, and, perhaps
most important of all, Wallis’s Arithmetica Infinitorum. Moreover, to
this training we must add the lectures that Barrow gave as Lucasian
professor, which Newton attended, after 1663. Newton also became
acquainted with work of Galileo, Fermat, Huygens, and others.
It is no wonder that Newton later wrote to Robert Hooke, “If I have

seen farther than Descartes, it is because I have stood on the shoulders of
giants.”

Early Work

By the end of 1664, Newton seems to have reached the frontiers of
mathematical knowledge and was ready to make contributions of his
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own. His first discoveries, dating from the early months of 1665,
resulted from his ability to express functions in terms of infinite
series—the very thing that Gregory was doing in Italy at about that
time, although Newton could scarcely have known of this. In 1665,
Newton also began to think of the rate of change, or fluxion, of con-
tinuously varying quantities, or fluents, such as lengths, areas, volumes,
distances, and temperatures. From that time on, Newton linked together
these two problems—of infinite series and of rates of change—as “my
method.”
During much of 1665 1666, immediately after Newton had earned his

A.B. degree, Trinity College was closed because of the plague, and
Newton went home to live and think. The result was the most productive
period of mathematical discovery ever reported, for it was during these

Sir Isaac Newton
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months, Newton later averred, that he had made four of his chief dis-
coveries: (1) the binomial theorem, (2) the calculus, (3) the law of
gravitation, and (4) the nature of colors.

The Binomial Theorem

The binomial theorem seems so obvious to us now that it is difficult to see
why its discoverywas so longdelayed. ItwasonlywithWallis that fractional
exponents came into common use, and we have seen that even Wallis, the
great interpolator, was unable to write down an expansion for ðx2 x2Þ1=2 or
ð12 x2Þ1=2. It remained for Newton to supply the expansions as part of his
method of infinite series. Discovered in 1664 or 1665, the binomial the-
orem was described in two letters of 1676 from Newton to Henry Old-
enburg (1619? 1677), the secretary of the Royal Society, and published
byWallis (with credit toNewton) inWallis’sAlgebra of 1685. The form of
expression given by Newton (and Wallis) strikes the modern reader as
awkward, but it indicates that the discovery was not just a simple repla-
cement of an integral power with a fraction; it was the result of much trial
and error on Newton’s part, in connection with divisions and radicals
involving algebraic quantities. Finally, Newton discovered that

The Extractions of Roots are much shortened by the Theorem

P1PQ
m

n
5P

m

n
1

m

n
AQ1

m n

2n
BQ

1
m 2n

3n
CQ1

m 3n

4n
DQ1 etc:

where P1PQ stands for a Quantity whose Root or Power or whose Root

of a Power is to be found, P being the first term of that quantity, Q being

the remaining terms divided by the first term and m / n the numerical

Index of the powers of P1PQ . . . . Finally, in place of the terms that

occur in the course of the work in the Quotient, I shall use A, B, C, D, etc.

Thus A stands for the first term P(m / n); B for the second term (m / n)AQ;

and so on.

This theorem was first announced by Newton in a letter of June 13, 1676,
sent to Oldenburg but intended for Leibniz. In a second letter of October
24 of the same year, Newton explained in detail just how he had been led
to this binomial series. He wrote that toward the beginning of his study
of mathematics, he had happened on the work of Wallis on finding the
area (from x 5 0 to x5 x) under curves whose ordinates are of the form
(12 x2)n. On examining the areas for exponents n equal to 0, 1, 2, 3, and
so on, he found the first term always to be x, the second term to be 0

3 x3 or
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1
3 x3 or

2
3 x3 or

3
3 x3, according as the power of n is 0 or 1 or 2 or 3, and so on.

Hence, by Wallis’s principle of “intercalation,” Newton assumed that the
first two terms in the area for n5 1

2 should be

x2
1
2 x3

3
:

In the same fashion, proceeding by analogy, he found further terms, the
first five being

x2
1
2 x3

3
2

1
8 x5

5
2

1
16 x7

7
2

5
128 x9

9
:

He then realized that the same result could have been found by first
deriving ð12 x2Þ1=2 5 12 1

2 x2 2
1
8 x4 2

1
16 x6 2

5
128 x8 2 � � � , by interpolation

in the same manner, and then finding the area through integration of the
terms in this series. In other words, Newton did not proceed directly
from the Pascal triangle to the binomial theorem but indirectly from a
quadrature problem to the binomial theorem.

Infinite Series

It is likely that Newton’s indirect approach was fortunate for the future
of his work, for it made clear to him that one could operate with infinite
series in much the same way as with finite polynomial expressions. The
generality of this new infinite analysis was then confirmed for him when
he derived the same infinite series through the extraction of the square
root of 12 x2 by the usual algebraic process, finally verifying the result
by multiplying the infinite series by itself to recover the original radicand
12 x2. In the same way, Newton found that the result obtained for
(12 x2) 1 by interpolation (that is, the binomial theorem for n521)
agreed with the result found by long division. Through these examples,
Newton had discovered something far more important than the binomial
theorem; he had found that the analysis by infinite series had the
same inner consistency and was subject to the same general laws as
the algebra of finite quantities. Infinite series were no longer to be
regarded only as approximating devices; they were alternative forms
of the functions they represented.
Newton himself never published the binomial theorem, nor did he

prove it, but he wrote out and ultimately published several accounts
of his infinite analysis. The first of these, chronologically, was the
De analysi per aequationes numero terminorum infinitas, composed in
1669 on the basis of ideas acquired in 1665 1666 but not published until
1711. In this, he wrote,
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And whatever the common Analysis [that is, algebra] performs by

Means of Equations of a finite number of Terms (provided that can be

done) this new method can always perform the same by Means of

infinite Equations. So that I have not made any Question of giving this

the Name of Analysis likewise. For the Reasonings in this are no less

certain than in the other; nor the Equations less exact; albeit we Mortals

whose reasoning Powers are confined within narrow Limits, can neither

express, nor so conceive all the Terms of these Equations as to know

exactly from thence the Quantities we want. To conclude, we may justly

reckon that to belong to the Analytic Art, by the help of which the Areas

and Lengths, etc. of Curves may be exactly and geometrically

determined.

From then on, encouraged by Newton, men no longer tried to avoid
infinite processes, as had the Greeks, for these were now regarded as
legitimate in mathematics.
Newton’s De Analysi contained more, of course, than some work on

infinite series; it is also of great significance as the first systematic
account of Newton’s chief mathematical discovery—the calculus.
Barrow, the most important of Newton’s mentors, was primarily a
geometer, and Newton himself has often been described as an exponent
of pure geometry, but the earliest manuscript drafts of his thoughts show
that Newton made free use of algebra and a variety of algorithmic
devices and notations. He had not, by 1666, developed his notation of
fluxions, but he had formulated a systematic method of differentiation
that was not far removed from that published in 1670 by Barrow. It is
only necessary to replace Barrow’s a with Newton’s qo and Barrow’s e
with Newton’s po to arrive at Newton’s first form for the calculus.
Evidently, Newton regarded o as a very small interval of time and op and
oq as the small increments by which x and y change in this interval. The
ratio q / p, therefore, will be the ratio of the instantaneous rates of change
of y and x, that is, the slope of the curve f(x, y)5 0. The slope of the
curve yn5 xm, for example, is found from (y1 oq)n 5 (x1 op)m by
expanding both sides by the binomial theorem, dividing through by o,
and disregarding terms that still contain o, the result being

q

p
5

m

n

xm�1

yn�1
or

q

p
5

m

n
xm=n�1

:

Fractional powers no longer bothered Newton, for his method of infinite
series had given him a universal algorithm.
When dealing later with an explicit function of x alone, Newton

dropped his p and q and used o as a small change in the independent
variable, a notation that was also used by Gregory. In the De analysi,
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for example, Newton proved as follows that the area under the curve
y5 axm / n is given by

axðm=nÞ1 1

ðm=nÞ1 1
:

Let the area be z and assume that

z5
n

m1 n
axðm1 nÞ=n:

Let the moment or infinitesimal increase in the abscissa be o. Then the
new abscissa will be x1 o, and the augmented area will be

z1 oy5
n

m1 n
aðx1 oÞðm1 nÞ=n:

If here one applies the binomial theorem, cancels the equal term

z and
n

m1 n
axðm1 nÞ=n;

divides through by o, and discards the terms that still contain o, the result
will be y5 axm/n. Conversely, if the curve is y5 axm/n, then the area will be

z5
n

m1 n
axðm1 nÞ=n:

This seems to be the first time in the history of mathematics that an
area was found through the inverse of what we call differentiation,
although the possibility of such a procedure evidently was known to
Barrow and Gregory and perhaps also to Torricelli and Fermat. Newton
became the effective inventor of the calculus because he was able to
exploit the inverse relationship between slope and area through his new
infinite analysis. This is why in later years he frowned on any effort to
separate his calculus from his analysis by infinite series.

The Method of Fluxions

In Newton’s most popular presentation of his infinitesimal methods, he
looked on x and y as flowing quantities, or fluents, of which the quan-
tities p and q (above) were the fluxions or rates of change; when he wrote
up this view of the calculus in about 1671, he replaced p and q by
the “pricked letters”

:
x and

:
y. The quantities or fluents of which x and y

are the fluxions he designated by x
0
and y

0
. By doubling the dots and

dashes, he was able to represent fluxions of fluxions or fluents of fluents.
The title of the work, when published long afterward in 1742 (although
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an English translation appeared earlier in 1736), was not simply the
method of fluxions, but Methodus Fluxionum et Serierum Infinitorum.
In 1676, Newton wrote yet a third account of his calculus, under the

title De Quadratura Curvarum, and this time he sought to avoid both
infinitely small quantities and flowing quantities, replacing these with a
doctrine of “prime and ultimate ratios.” He found the “prime ratio of
nascent augments” or the “ultimate ratio of evanescent increments” as
follows. Let the ratio of the changes in x and xn be desired. Let o be the
increment in x and (x1 o)n2 xn the corresponding increment in xn. Then
the ratio of the increments will be

1 : nxn 1 1
nðn2 1Þ

2
oxn 2 1 � � �

� �
:

To find the prime and the ultimate ratio, one lets o vanish, obtaining the
ratio 1 : (nxn 1). Here, Newton is very close indeed to the limit concept,
the chief objection being the use of the word “vanish.” Is there really a
ratio between increments that have vanished? Newton did not clarify this
question, and it continued to distract mathematicians during the entire
eighteenth century.

The Principia

Newton discovered his method of infinite series and the calculus in
1665 1666, and within the next decade he wrote at least three sub-
stantial accounts of the new analysis. The De Analysi circulated
among friends, including John Collins (1625 1683) and Isaac Barrow,
and the infinite binomial expansion was sent to Oldenburg and Leib-
niz, but Newton made no move to publish his results, even though he
knew that Gregory and Mercator in 1668 had disclosed their work on
infinite series. The first account of the calculus that Newton put into
print appeared in 1687 in Philosophiae Naturalis Principia Mathe-
matica. This book is generally described as presenting the foundations
of physics and astronomy in the language of pure geometry. It is true
that a large part of the work is in synthetic form, but there is also a
large admixture of analytic passages. Section I of Book I is, in fact,
titled “The method of first and last ratios of quantities, by the help
of which we demonstrate the propositions that follow,” including
Lemma I:

Quantities, and the ratios of quantities, which in any finite time converge

continually to equality, and before the end of that time approach nearer to

each other than by any given difference, become ultimately equal.
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This is, of course, an attempt to define the limit of a function. Lemma
VII in Section I postulates that “the ultimate ratio of the arc, chord, and
tangent, any one to any other, is the ratio of equality.” Other lemmas in
that section assume the similarity of certain “evanescent triangles.”
Every now and then in Book I, the author has recourse to an infinite
series. Yet calculus algorithms do not appear until in Book II, Lemma II,
we come to the cryptic formulation

The moment of any genitum is equal to the moments of each of the

generating sides multiplied by the indices of the powers of those sides,

and by their coefficients continually.

Newton’s explanation shows that by the word “genitum,” he has in
mind what we call a “term,” and that by the “moment” of a genitum, he
means the infinitely small increment. Designating by a the moment of A
and by b the moment of B, Newton proves that the moment of AB is
aB1 bA, that the moment of An is naAn 1, and that the moment of 1 / A is
2a / (A2). Such expressions, which are the equivalents of the differential
of a product, a power, and a reciprocal, respectively, constitute Newton’s
first official pronouncement on the calculus, making it easy to under-
stand why so few mathematicians of the time mastered the new analysis
in terms of Newtonian language.
Newton was not the first one to differentiate or to integrate or to see

the relationship between these operations in the fundamental theorem
of the calculus. His discovery consisted of the consolidation of these ele-
ments into a general algorithm that is applicable to all functions, whether
algebraic or transcendental. This was emphasized in a scholium that
Newton published in the Principia immediately following Lemma II:

In a letter of mine to Mr. J. Collins, dated December 10, 1672, having

described a method of tangents, which I suspected to be the same with

Sluse’s method, which at that time was not made public, I added these

words: This is one particular, or rather a Corollary, of a general method,

which extends itself, without any troublesome calculation, not only to the

drawing of tangents to any curved lines whether geometrical or

mechanical . . . but also to the resolving other abstruser kinds of problems

about the crookedness, areas, lengths, centres of gravity of curves, etc.;

nor is it (as Hudden’s method de maximis et minimis) limited to equations

which are free from surd quantities. This method I have interwoven with

that other of working in equations by reducing them to infinite series.

In the first edition of the Principia, Newton admitted that Leibniz was
in possession of a similar method, but in the third edition of 1726, fol-
lowing the bitter quarrel between adherents of the two men concerning
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the independence and priority of the discovery of the calculus, Newton
deleted the reference to the calculus of Leibniz. It is now fairly clear
that Newton’s discovery antedated that of Leibniz by about ten years, but
that the discovery by Leibniz was independent of that of Newton.
Moreover, Leibniz is entitled to priority of publication, for he printed an
account of his calculus in 1684 in the Acta Eruditorum, a sort of “sci-
entific monthly” that had been established only two years earlier.
In the opening sections of the Principia, Newton had so generalized

and clarified Galileo’s ideas on motion that ever since, we refer to this
formulation as “Newton’s laws of motion.” Then Newton went on to
combine these laws with Kepler’s laws in astronomy and Huygens’s law
of centripetal force in circular motion to establish the great unifying
principle that any two particles in the universe, whether two planets or
two mustard seeds, or the sun and a mustard seed, attract each other
with a force that varies inversely as the square of the distance between
them. In the statement of this law, Newton had been anticipated by
others, including Robert Hooke (1638 1703), professor of geometry at
Gresham College and Oldenburg’s successor as secretary of the Royal
Society. But Newton was the first to convince the world of the truth of
the law because he was able to handle the mathematics required in the
proof.
For circular motion, the inverse square law is easily derived from

Newton’s f5ma, Huygens’s a5 v2 / r, and Kepler’s T 25Kr3 simply by
noting that T ~ r=v and then eliminating T and v from the equations,
to arrive at f ~ 1=r2. To prove the same thing for ellipses, however,
required considerably more mathematical skill. Moreover, to prove that
the distance is to be measured from the center of the bodies was so
difficult a task that it evidently was this integration problem that induced
Newton to lay the work on gravitation aside for almost twenty years
following his discovery of the law in the plague year of 1665 1666.
When, in 1684, his friend Edmund Halley (1656 1742), a mathemati-
cian of no mean ability who also had guessed at the inverse square law,
pressed Newton for a proof, the result was the exposition in the Prin-
cipia. So impressed was Halley with the quality of this book that he had
it published at his own expense.
The Principia, of course, contains far more than the calculus, the laws

of motion, and the law of gravitation. It includes, in science, such things
as the motions of bodies in resisting media and the proof that for iso-
thermal vibrations, the velocity of sound should be the speed with which
a body would strike the earth if falling without resistance through a
height that is half that of a uniform atmosphere having the density of air
at the surface of the earth and exerting the same pressure. Another of the
scientific conclusions in the Principia is a mathematical proof of
the invalidity of the prevailing cosmic scheme—the Cartesian theory
of vortices—for Newton showed, at the close of Book II, that according
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to the laws of mechanics, planets in vortical motion would move more
swiftly in aphelion than in perihelion, which contradicts the astronomy
of Kepler. Nevertheless, it took about forty years before the Newtonian
gravitational view of the universe displaced the Cartesian vortical cos-
mology in France.

Theorems on Conics

One who reads only the headings of the three books in the Principia will
get the erroneous impression that it contains nothing but physics and
astronomy, for the books are titled, respectively, I. The Motion of Bodies,
II. The Motion of Bodies (in Resisting Mediums), and III. The System of
the World. Yet the treatise also contains a great deal of pure mathematics,
especially concerning the conic sections. In Lemma XIX of Book I, for
example, the author solves the Pappus four-line-locus problem, adding
that his solution is “not an analytical calculus but a geometrical compo-
sition, such as the ancients required,” an oblique and pejorative reference,
apparently, to the treatment of the problem given by Descartes.
Throughout the Principia, Newton gave preference to a geometric

approach, but we have seen that where he found it expedient to do so,
he did not hesitate to appeal to his method of infinite series and the
calculus. Most of Section II of Book II, for example, is analytic. On the
other hand, Newton’s handling of the properties of conics is almost
exclusively synthetic, for here Newton had no need to resort to ana-
lysis. Following the Pappus problem, he gave a couple of organic
generations of conics through intersections of moving lines, and then
he used these in half a dozen succeeding propositions to show how to
construct a conic satisfying five conditions: passing through five points,
for example, or tangent to five lines or through two points and tangent
to three lines.

Optics and Curves

The Principia is the greatest monument to Newton, but it is by no
means the only one. His paper in the 1672 Philosophical Transactions
concerning the nature of color was of great importance to physics, for it
was here that Newton announced what he regarded as one of the oddest
of all of the operations of nature—that white light was merely a
combination of rays of varying color, each color having its own
characteristic index of refraction. Such a revolutionary view was not
easy for his contemporaries to accept, and the ensuing controversy
upset Newton. For fifteen years, he published nothing further until the
urging of Halley induced him to write and publish the Principia.
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Meanwhile, the three versions of his calculus that he had written from
1669 to 1676, as well as a treatise on optics that he had composed,
remained in manuscript form.
About fifteen years after the Principia appeared, Hooke died, and then,

finally, Newton’s aversion to publication seems to have abated some-
what. The Opticks appeared in 1704, and appended to it were two
mathematical works: the De Quadratura Curvarum, in which an intel-
ligible account of the Newtonian methods in the calculus finally
appeared in print, and a little treatise titled Enumeratio Curvarum Tertii
Ordinis (Enumeration of Curves of Third Degree). The Enumeratio had
also been composed by 1676, and it is the earliest instance of a work
devoted solely to graphs of higher plane curves in algebra. Newton noted
seventy-two species of cubics (half a dozen are omitted), and a curve of
each species is carefully drawn. For the first time, two axes are sys-
tematically used, and there is no hesitation about negative coordinates.
Among the interesting properties of cubics indicated in this treatise are
the fact that a third-degree curve can have not more than three asymp-
totes (as a conic can have no more than two) and that as all conics are
projections of the circle, so all cubics are projections of a “divergent
parabola” y25 ax31 bx21 cx1 d.

Polar and Other Coordinates

The Enumeratio was not Newton’s only contribution to analytic geometry.
In the Method of Fluxions, written in Latin about 1671, he had suggested
eight new types of coordinate system. One of these, Newton’s “Third
Manner” of determining a curve was through what now are called “bipolar
coordinates.” If x and y are the distances of a variable point from two fixed
points or poles, then the equations x1 y5 a and x2 y5 a represent
ellipses and hyperbolas, respectively, and ax1 by 5 c are ovals of Des-
cartes. This type of coordinate system is infrequently used today, but that
given by Newton as his “Seventh Manner; For Spirals” is now familiarly
known under the name of “polar coordinates.” Using x where we now
use 0 or φ and y where we use r or ρ, Newton found the subtangent to the
spiral of Archimedes by5 ax, as well as to other spirals. Having given
the formula for radius of curvature in rectangular coordinates,

R5 ð11 :
y2Þ 11

:
y2

p
:
z

;

where z5
:
y; he wrote the corresponding formula in polar coordinates as

R sinc5
y1 yzz

11 zz2
:
z
;
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where z5
:
y=y and c is the angle between the tangent and the radius

vector.
Newton also gave equations for the transformation from rectangular to

polar coordinates, expressing these as xx1 yy5 tt and tv5 y, where t is
the radius vector and v is a line representing the sine of the vectorial
angle associated with the point (x, y) in Cartesian coordinates.

Newton’s Method and Newton’s Parallelogram

In the Method of Fluxions, as well as in De Analysi, we find “Newton’s
method” for the approximate solution of equations. If the equation to be
solved is f(x)5 0, one first locates the desired root between two values
x5 a1 and x5 b1 such that in the interval (a1, b1) neither the first nor the
second derivative vanishes, or fails to exist. Then, for one of the values,
say, x5 a1, f(x) and fv(x) will have the same sign. In this case, the value
x5 a2 will be a better approximation if

a2 5 a1 2
f ða1Þ
f 0ða1Þ

;

and this procedure can be applied iteratively to obtain as precise an
approximation an as may be desired. If f(x) is of the form x22 a2, the
successive approximations in the Newton method are the same as those
found in the Old Babylonian square-root algorithm; hence, this ancient
procedure is sometimes unwarrantedly called “Newton’s algorithm.” If
f(x) is a polynomial, Newton’s method is in essence the same as the
Chinese-Arabic method named for Horner, but the great advantage of the
Newtonian method is that it applies equally to equations involving
transcendental functions.
The Method of Fluxions also contained a diagram that later became

known as “Newton’s parallelogram,” useful in developments in infinite
series and in the sketching of curves. For a polynomial equation
f(x, y)5 0, one forms a grid or a lattice the intersection points of which
are to correspond to terms of all possible degrees in the equation
f(x, y)5 0. On this “parallelogram,” one connects by straight-line
segments those intersections that correspond to terms actually
appearing in the equation and then forms a portion of a polygon
convex toward the point of zero degree. In Fig. 16.2, we have drawn
the diagram for the folium of Descartes, x31 y32 3axy5 0. Then, the
equations that are obtained by equating to zero in turn the totality of
terms from the given equation whose lattice points lie on each of the
segments will be approximating equations for branches of the curve
through the origin. In the case of the folium of Descartes, the
approximating curves are x32 3axy5 0 (or the parabola x25 3ay) and
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y3 2 3axy5 0 (or the parabola y25 3ax). The graphing of portions of
these parabolas near the origin will aid in the rapid sketching of the
given equation f(x, y)5 0.

The Arithmetica Universalis

The three Newtonian books that are best known today are the Princi-
pia, the Method of Fluxions, and the Opticks; there is also a fourth
work that in the eighteenth century appeared in a greater number of
editions than did the other three, and it, too, contained valuable con-
tributions. This was the Arithmetica Universalis, a work composed
between 1673 and 1683, perhaps for Newton’s lectures at Cambridge,
and first published in 1707. This influential treatise contains the for-
mulas, usually known as “Newton’s identities,” for the sums of the
powers of the roots of a polynomial equation. Cardan had known that
the sum of the roots of xn1 a1xn 1 � � � 1 an 1x1 an 5 0 is 2a1, and
Viète had carried the relations between roots and coefficients somewhat
further. In 1629, Girard had shown how to find the sum of the squares
of the roots or the sum of the cubes or of the fourth powers, but it was
Newton who generalized this work to cover all powers. If K# n, the
relationships

SK 1 a1SK�1 1 � � �1 aKK5 0 and

SK 1 a1SK�1 1 � � �1 aKS0 1 aK1 1S�1 1 � � �1 anSK�n 5 0

both hold; if K. n, the relationship

SK 1 a1SK�1 1 � � �1 an�1SK�n1 1 1 anSK n 5 0

y3

y2

y

0 x x2 x3

FIG. 16.2
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holds, where Si is the sum of the ith powers of the roots. Using these
relationships recursively, the sums of the powers of the roots can readily
be found for any integral power. In the Arithmetica Universalis, there is
also a theorem generalizing Descartes’ rule of signs to determine the
number of imaginary roots of a polynomial, as well as a rule for an upper
bound for the positive roots.
The longest section in the Arithmetica Universalis is that on the reso-

lution of geometric questions. Here the solution of cubic equations is
carried out with the help of a given conic section, for Newton regarded
geometric constructions through curves other than the line and the circle
as part of algebra, rather than of geometry:

Equations are Expressions of Arithmetical Computation and properly

have no place in Geometry. Therefore the conic sections and all other

Figures must be cast out of plane Geometry, except the right Line and the

Circle. Therefore all these descriptions of the Conicks in piano, which

the Moderns are so fond of, are foreign to Geometry.

Newton’s conservatism here is in sharp contrast with his radical views
in analysis—and with pedagogical views of the mid-twentieth century.

Later Years

The Principia was the first of Newton’s mathematical treatises to be
published, but it was the last in order of composition. Fame had come to
him relatively promptly, for he had been elected to the Royal Society in
1672, four years after he had constructed his reflecting telescope (the idea
for which had also occurred to Gregory even earlier). The Principia met
with enthusiastic approval, and in 1689, Newton was elected to represent
Cambridge in the British Parliament. Despite the generous recognition he
received, Newton became depressed and suffered a nervous breakdown in
1692. He accepted an appointment as Warden of the Mint in 1696,
becoming Master of the Mint three years later. Newton retained his
extraordinary mathematical ability to the very last; when Leibniz in 1716
(the last year of his life) challenged Newton to find the orthogonal tra-
jectories of a one-parameter family of plane curves, Newton solved the
problem within a few hours and gave a method for finding trajectories in
general. (Earlier, in 1696, Newton had been challenged to find the bra-
chistochrone, or curve of quickest descent, and the day after receiving the
problem he gave the solution, showing the curve to be a cycloid.)
Honors were heaped on Newton in his later years. In 1699, he was

elected a foreign associate of the Académie des Sciences; in 1703, he
became president of the Royal Society, holding the post for the rest of
his life; and in 1705, he was knighted by Queen Anne. Nevertheless, one
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event cast a cloud over Newton’s life after 1695. In that year, Wallis told
him that in Holland, the calculus was regarded as the discovery of
Leibniz. In 1699, Nicolas Fatio de Duillier (1664 1753), an obscure
Swiss mathematician who had moved to England, implied in a paper to
the Royal Society that Leibniz may have taken his ideas on the calculus
from Newton. At this affront, Leibniz, in the Acta Eruditorum for 1704,
insisted that he was entitled to priority in publication and protested to the
Royal Society against the imputation of plagiarism. In 1705, Newton’s
De Quadratura Curvarum was unfavorably reviewed (by Leibniz?) in
the Acta Eruditorum, and in 1708, John Keill (1671 1721), an Oxford
professor, vigorously supported Newton’s claims against those of
Leibniz in a paper in the Philosophical Transactions. Leibniz’s repeated
appeals to the Royal Society for justice finally led the Society to appoint
a committee to study the matter and to report on it. The committee’s
report, under the title Commercium epistolicum, was published in 1712,
but it left matters unimproved. It reached the banal conclusion that
Newton was the first inventor, a point that had not been questioned
seriously in the first place. Implications of plagiarism were supported by
the committee in terms of documents that they assumed Leibniz had
seen, but that we now know he had not received. The bitterness of
national feeling reached such a point that in 1726, a decade after Leibniz
had died, Newton deleted from the third edition of the Principia all
reference to the fact that Leibniz had possessed a method in the calculus
similar to the Newtonian.
As a consequence to the disgraceful priority dispute, British mathemati-

cians were to some extent alienated from workers on the Continent during
much of the eighteenth century. On his death, Newton was buried in
WestminsterAbbeywith such pomp that Voltaire,who attended the funeral,
said later, “I have seen a professor of mathematics, only because he was
great in his vocation, buried like a king who had done good to his subjects.”

Abraham DeMoivre

British mathematics boasted an impressive number of capable con-
tributors during the earlier part of the eighteenth century. Abraham
De Moivre (1667 1754) had been born a French Huguenot, but shortly
after the revocation of the Edict of Nantes, he went to England, where
he made the acquaintance of Newton and Halley and became a private
teacher of mathematics. In 1697, he was elected to the Royal Society and
subsequently to the Academies of Paris and Berlin. He hoped to obtain a
university position in mathematics, but this he never secured, partly
because of his non-British origin, and Leibniz tried in vain to secure a
professional position for him in Germany. Nevertheless, despite the long
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hours of tutoring that were necessary to support himself, De Moivre
produced a considerable quantity of research.

Probability

The theory of probability had many devotees during the early eighteenth
century, and De Moivre was one of the most important of these. In 1711,
he contributed to the Philosophical Transactions a long memoir on
the laws of chance, and this he expanded into a celebrated volume,
the Doctrine of Chances, that appeared in 1718 (and in later editions). The
memoir and the volume contained numerous questions on dice, the pro-
blem of points (with unequal chances of winning), drawing balls of var-
ious colors from a bag, and other games. Some of the problems had
appeared in Jacques Bernoulli’s Ars Conjectandi, the publication of which
was earlier than the Doctrine of Chances but later than De Moivre’s
memoir. In the preface to the Doctrine of Chances, the author referred
to the work on probability of Jacques, Jean, and Nicolaus Bernoulli.
The various editions of the volume contain more than fifty problems on
probability, as well as questions relating to life annuities. In general,
De Moivre derived the theory of permutations and combinations from the
principles of probability, whereas now it is customary to reverse the roles.
For example, to find the number of permutations of two letters chosen
from the six letters a, b, c, d, e, and f, he argued that the probability that a
particular letter will be first is 1

6 and the probability that another specific
letter will be second is 1

5. Hence, the probability that these two letters will
appear in that order is 1

6 U
1
5

1
30, from which one concludes that the number

of all possible permutations, two at a time, is 30. De Moivre is often
credited with the principle, published in the Doctrine of Chances, that the
probability of a compound event is the product of the probabilities of its
components, but this had been implied in earlier works.
De Moivre was especially interested in developing for probability

general procedures and notations that he thought of as a new “algebra.”
A generalization of a problem given earlier by Huygens usually is
appropriately called De Moivre’s problem: to find the probability of
throwing a given number on a throw of n dice, each having m faces.
Some of his contributions to probability were published in a further
volume, the Miscellanea Analytica of 1730. In a supplement to this
work, De Moivre included some results that also appeared in the
Methodus Differentialis of James Stirling (1692 1770), published in
the same year as the Miscellanea Analytica. Among these is the
approximation n! � 2πn

p ðn=eÞn, which is usually known as Stirling’s
formula, although it was known earlier to De Moivre, and a series, also
named for Stirling, relating ln n! and the Bernoulli numbers.
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De Moivre apparently was the first one to work with the probability
formula ðN

0
e2 x2dx5

π
p
2

;

a result that unobtrusively appeared in a privately printed pamphlet of
1733 titled Approximatio ad summam terminorum binomii (a1 b)n

in seriem expansi. This work, representing the first appearance of the law
of errors or the distribution curve, was translated by De Moivre and was
included in the second edition (1738) of his Doctrine of Chances. In his
work on Annuities upon Lives, which formed a part of the Doctrine of
Chances and was separately reprinted in more than half a dozen editions,
he adopted a rough-and-ready rule, known as “De Moivre’s hypothesis
of equal decrements,” that annuities can be computed on the assumption
that the number of a given group that die is the same during each year.

De Moivre’s Theorem

The Miscellanea Analytica is important not only in probability but also
in the development of the analytic side of trigonometry. The well-known
De Moivre’s theorem, ðcos θ1 i sin θÞn5 cos nθ1 isinnθ, is not expli-
citly given, but it is clear from the work on cyclometry and other con-
texts that the author was quite familiar with this relationship, probably as
early as 1707. In a paper in the Philosophical Transactions for 1707, De
Moivre wrote that

1

2
ðsin nθ1 2 1

p
cos nθÞ1=n 1 1

2
ðsin nθ2 2 1

p
cos nθÞ1=n 5 sin θ:

In his Miscellanea Analytica of 1730, he expressed the equivalent of

ðcos θ6 i sin θÞ1=n 5 cos
2Kπ6 θ

n
6 i sin

2Kπ6 θ
n

;

which he used to factor x2n1 2x cos nθ1 1 into quadratic factors of the
form x21 2x cos θ1 1. Again in a Philosophical Transactions paper of
1739, he found the nth roots of the “impossible binomial” a1 2 b

p
through the procedure that we now use in taking the nth root of the
modulus, dividing the amplitude by n, and adding multiples of 2π / n.
De Moivre, dealing with imaginary numbers and the circular func-

tions in Miscellanea Analytica, came close to recognizing the hyper-
bolic functions in extending theorems on sectors of circles to
analogous results on sectors of the rectangular hyperbola. In view of
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the breadth and depth of his results, it was natural that Newton in his
later years should have told those who came to him with questions
on mathematics, “Go to Mr. De Moivre; he knows these things better
than I do.”
In the Philosophical Transactions for 1697 1698, De Moivre had

written on the “infinitonome,” that is, an infinite polynomial or infinite
series, including the process of finding a root of such an expression, and
it was largely in recognition of this paper that he had been elected a
member of the Royal Society. De Moivre’s interest in infinite series and
probability is reminiscent of the Bernoullis’. De Moivre carried on an
extensive and cordial correspondence with Jean Bernoulli during the
decade 1704 to 1714, and it was the former who proposed the latter for
election to the Royal Society in 1712.

Roger Cotes

One of the motives that had led De Moivre to be concerned with the
factoring of x2n1 axn1 1 into quadratic factors was the desire to complete
some of the work of Roger Cotes (1682 1716) on the integration of
rational fractions through decompositions into partial fractions. The life of
Cotes is another tragic instance of a very promising career cut short by
premature death. As Newton remarked, “If Cotes had lived, we might
have known something.” A student and later a professor at Cambridge,
the young man had spent much of the time from 1709 to 1713 preparing
the second edition of Newton’s Principia. Three years later he died,
leaving behind him some significant but uncompleted work. Much
of this was collected and published posthumously in 1722 under the
title Harmonia Mensurarum. The title is derived from the following
theorem:

If through a fixed point O a variable straight line is drawn cutting an

algebraic curve in points Q1, Q2, . . . , Qn, and if a point P is taken on the

line such that the reciprocal of OP is the arithmetic mean of the reci-

procals of OQ1, OQ2, . . . , OQn, then the locus of P is a straight line.

Most of the treatise, however, is devoted to the integration of rational
fractions, including decomposition into quadratic factors of xn2 1,
work later completed by De Moivre. The Harmonia Mensurarum is
among the early works to recognize the periodicity of the trigono-
metric functions, cycles of the tangent and secant functions appearing
here in print for perhaps the first time. It is one of the earliest books
with a thorough treatment of the calculus as applied to the logarithmic
and circular functions, including a table of integrals that depends
on these. In this connection, the author gave what is known in
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trigonometry books as “Cotes’s property of the circle,” a result closely
related to De Moivre’s theorem, which allows one to write such
expressions as

x2n 1 15

�
x2 2 2x cos

π
2n

1 1

��
x2 2 2x cos

3π
2n

1 1

�
� � �

2

�
x2 2 2x cos

ð2n2 1Þπ
2n

1 1

�
:

This result is readily confirmed if, having plotted on the unit circle the
roots of 21 of order 2n, one forms the products of conjugate imaginary
pairs. Cotes apparently was among the earliest of mathematicians to
anticipate the relationship ln (cos θ1 i sin θ)5 i θ, an equivalent of which
had been given by him in a Philosophical Transactions article in 1714 and
which was reprinted in the Harmonia Mensurarum. This theorem is
usually attributed to Euler, who first gave it in modern exponential form.

James Stirling

Stirling, a Jacobite who had studied at Oxford, published in 1717 a work
titled Lineae Tertii Ordinis Neutonianae, in which he completed the
classification of cubic curves, drawn up by Newton in 1704, by adding
some cubics that Newton missed and by adding demonstrations that had
been lacking in the original Enumeratio. Stirling showed, among other
things, that if the y-axis is an asymptote of a curve of order n, the
equation of the curve cannot contain a term in yn and an asymptote
cannot cut the curve in more than n2 2 points. For graphs of rational
functions y5 f(x) / g(x), he found the vertical asymptotes by equating
g(x) to zero. For conic sections, Stirling gave a full treatment in which
the axes, vertices, and asymptotes are found analytically from the gen-
eral second-degree equation with respect to oblique coordinates.
His Methodus Differentialis of 1730 contained significant contribu-

tions to the study of convergence of infinite series, interpolation, and
special functions defined by series; he is best known, however, for the
approximation formula for n! mentioned previously.

Colin Maclaurin

Colin Maclaurin (1698 1746), perhaps the outstanding British mathe-
matician of the generation after Newton, was born in Scotland and edu-
cated at the University of Glasgow. He became a professor of mathematics
at Aberdeen when he was nineteen and half a dozen years later taught at
the University of Edinburgh. In Great Britain, Switzerland, and the Low
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Countries, the leading mathematicians in the seventeenth and eighteenth
centuries were connected with universities, whereas in France, Germany,
and Russia, they were more likely to be associated with the academies
established by the absolute rulers.
Maclaurin had begun to contribute papers to the Philosophical

Transactions before he was twenty-one, and in 1720, he published two
treatises on curves: Geometrica Organica and De Linearum Geome-
tricarum proprietatibus. The former, in particular, was a well-known
work that extended the results of Newton and Stirling on conics, cubics,
and higher algebraic curves. Among the propositions is one often known
as the theorem of Bézout (in honor of the man who later gave an
imperfect proof): a curve of order m intersects a curve of order n in
general in mn points. In connection with this theorem, Maclaurin noticed
a difficulty that is usually known as Cramer’s paradox, in honor of a later
rediscoverer. A curve of order n is generally determined, as Stirling had
indicated, by n(n1 3) / 2 points. Thus, a conic is uniquely determined by
five points and a cubic should be determined by nine points. By the
Maclaurin-Bézout theorem, however, two curves of degree n intersect in
n2 points, so that two different cubics intersect in nine points. Hence, it is
obvious that n(n1 3) / 2 points do not always uniquely determine a
single curve of order n. The answer to the paradox did not appear until a
century later, when it was explained in the work of Julius Plücker.

Taylor’s Series

In view of Maclaurin’s striking results in geometry, it is ironic that today
his name is recalled almost exclusively in connection with the so-called
Maclaurin series, which appeared in his Treatise of Fluxions of 1742 but
is only a special case of the more general Taylor series, published by
Brook Taylor (1685 1731) in 1715 in his Methodus Incrementorum
Directa et Inversa. Taylor was a Cambridge graduate, an enthusiastic
admirer of Newton, and secretary of the Royal Society. He was much
interested in perspective; on this subject he published two books in 1715
and 1719, in the second of which he gave the first general statement of
the principle of vanishing points. Yet today his name is recalled almost
exclusively in connection with the series

f ðx1 aÞ5 f ðaÞ1 f 0ðaÞx1 f nðaÞ x
2

2!

1 f 000ðaÞ x
3

3!
1 � � �1 f ðnÞðaÞ x

n

n!
1 � � �

which appeared in the Methodus Incrementorum. The series becomes the
familiar Maclaurin series on substituting zero for a. The general Taylor
series had been known many years prior to James Gregory and also, in
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essence, to Jean Bernoulli, but Taylor was unaware of this. Moreover, the
Maclaurin series had appeared in Stirling’s Methodus Differentialis more
than a dozen years before it was published by Maclaurin. Clio, the muse of
history, is often fickle in the matter of attaching names to theorems!

The Analyst Controversy

The Methodus Incrementorum also contained a number of other familiar
parts of the calculus, such as formulas relating the derivative of a function
to the derivative of the inverse function—for example, d2x / dy252d2y /
dx2 / (dy / dx)3—singular solutions of differential equations, and an attempt
to find an equation for a vibrating string. After 1719, Taylor gave up the
pursuit of mathematics, but the young Maclaurin was then just beginning
his fruitful career. His Treatise of Fluxions was not merely another book
on the techniques of the calculus, but was an effort to establish the subject
on a sound basis, similar to that of the geometry of Archimedes. The
motive here was to defend the subject from attacks that had been laun-
ched, especially by Bishop George Berkeley (1685 1753) in a 1734 tract
titled The Analyst. Berkeley did not deny the utility of the techniques of
fluxions or the validity of the results obtained by using these, but he had
been nettled on having a sick friend refuse spiritual consolation because
Halley had convinced the friend of the untenable nature of Christian
doctrine. Hence, the subtitle of the Analyst reads,

Or a Discourse Addressed to an Infidel Mathematician [presumably

Halley]. Wherein It Is Examined Whether the Object, Principles, and

Inferences of the Modern Analysis are More Distinctly Conceived, or

More Evidently Deduced, than Religious Mysteries and Points of Faith.

“First Cast the Beam Out of Thine Own Eye; and Then Shalt Thou See

Clearly to Cast Out the Mote Out of Thy Brother’s Eye.”

Berkeley’s account of the method of fluxions was quite fair, and his
criticisms were well taken. He pointed out that in finding either fluxions
or the ratios of differentials, mathematicians first assume that increments
are given to the variables and then take the increments away by
assuming them to be zero. The calculus, as then explained, seemed
to Berkeley to be only a compensation of errors. Thus, “by virtue of a
twofold mistake you arrive, though not at science, yet at the truth.” Even
Newton’s explanation of fluxions in terms of prime and ultimate ratios
was condemned by Berkeley, who denied the possibility of a literally
“instantaneous” velocity in which distance and time increments have
vanished to leave the meaningless quotient 0 / 0. As he expressed it,

And what are these fluxions? The velocities of evanescent increments.

And what are these same evanescent increments? They are neither finite
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quantities, nor quantities infinitely small, nor yet nothing. May we not call

them ghosts of departed quantities?

It was to answer such criticisms that Maclaurin wrote his Treatise of
Fluxions in the rigorous manner of the ancients, but in doing so, he used
a geometric approach that is less suggestive of the new developments
that were to feature the analysis of Continental Europe. Perhaps this is
not unrelated to the fact that Maclaurin was almost the last significant
mathematician in Great Britain during the eighteenth century, a time
when analysis, rather than geometry, was on the crest of the wave.
Nevertheless, the Treatise of Fluxions contained a number of relatively
new results, including the integral test for convergence of infinite series
(given earlier by Euler in 1732 but generally overlooked).
After Maclaurin and De Moivre died, British mathematics suffered an

eclipse, so that despite the recognition accorded mathematical achieve-
ment in England up to that time, development of mathematics there
failed to match the rapid strides taken elsewhere in Europe during the
eighteenth century.

Cramer’s Rule

If today the name of Maclaurin is recalled in connection with a series of
which he was not the first discoverer, this is compensated for by the fact
that a contribution he made bears the name of someone else who dis-
covered and printed it later. The well-known Cramer’s rule, published in
1750 by Gabriel Cramer (1704 1752), was probably known toMaclaurin
as early as 1729, the time when he was composing an algebra intended as
commentary on Newton’s Arithmetica Universalis. The Maclaurin Trea-
tise of Algebrawas published in 1748, two years after the author had died,
and in it, the rule for solving simultaneous equations by determinants
appeared, two years earlier than in Cramer’s Introduction à l’analyse des
lignes courbes algébriques. The solution for y in the system

ax1 by5 c

dx1 ey5 f

�
is given as

y5
af 2 dc

ae2 db
:

The solution for z in the system

ax1 by1 cz5m

dx1 ey1 fz5 n

gx1 hy1 kz5 p

8<
:
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is expressed as

z5
aep2 ahn1 dhm2 dbp1 gbn2 gem

aek2 ahf 1 dhc2 dbk1 gbf 2 gec
:

Maclaurin explained that the denominator consists, in the former case,
of “the Difference of the Products of the opposite Coefficients taken
from the Orders that involve the two unknown Quantities” and, in the
latter case, “of all the Products that can be made of the three opposite
Coefficients taken from the Orders that involve the three unknown
Quantities.” The numerators in Maclaurin’s patterns differ from the
denominators merely in the substitution in the former of the constant
terms for the coefficients of the terms in the unknown sought. He
explained how to write out the solution similarly for four equations in
four unknowns, “prefixing contrary signs to those that involve the Pro-
ducts of two opposite Coefficients.” This statement shows that Maclaurin
had in mind a rule for alternations in sign akin to that now ordinarily
described in terms of the inversion principle.
Maclaurin’s posthumous Treatise of Algebra enjoyed an even wider

popularity than his other works, with a sixth edition appearing in London
in 1796. The world nevertheless seems to have learned of the solution of
simultaneous equations by determinantsmore through Cramer than through
Maclaurin, mainly, we suspect, because of the superiority of Cramer’s
notation, in which superscripts were attached to literal coefficients to
facilitate the determination of signs. Another possible factor is the pre-
viously mentioned alienation of British from Continental mathematicians.

Textbooks

Maclaurin and others had composed good textbooks on an elementary
level. Maclaurin’s Treatise of Algebra went through half a dozen editions
from 1748 to 1796. A rival Treatise of Algebra by Thomas Simpson
(1710 1761) boasted at least eight editions in London from 1745 to 1809;
another, Elements of Algebra, by Nicholas Saunderson (1682 1739),
enjoyed five editions between 1740 and 1792.
Simpson was a self-taught genius who won election to the Royal Society

in 1745, but whose turbulent life ended in failure half a dozen years later.
His name nevertheless is preserved in the so-called Simpson’s rule,
published in his Mathematical Dissertations on Physical and Analytical
Subjects (1743), for approximate quadratures using parabolic arcs, but this
result had appeared in somewhat different form in 1668 in the Exercita-
tiones geometricae of James Gregory. Saunderson’s life, by contrast, was
an example of personal triumph over an enormous handicap—total
blindness from the age of one, resulting from an attack of smallpox.
Algebra textbooks of the eighteenth century illustrate a tendency

toward increasingly algorithmic emphasis, while at the same time there
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remained considerable uncertainty about the logical bases for the sub-
ject. Most authors felt it necessary to dwell at length on the rules gov-
erning multiplications of negative numbers, and some categorically
rejected the possibility of multiplying two negative numbers. The cen-
tury was, par excellence, a textbook age in mathematics, and never
before had so many books appeared in so many editions. Simpson’s
Algebra had a companion volume, Elements of Plane Geometry, which
went through five editions from 1747 to 1800. But among the host of
textbooks of the time, few achieved quite the record of the edition by
Robert Simson (1687 1768) of the Elements of Euclid. This work, by a
man trained in medicine who became a professor in mathematics at the
University of Glasgow, first appeared in 1756, and by 1834, it boasted a
twenty-fourth English edition, not to mention translations into other
languages or geometries more or less derived from it, for most modern
English versions of Euclid are heavily indebted to it.

Rigor and Progress

Simson sought to revive ancient Greek geometry, and in this connection,
he published “restorations” of lost works, such as Euclid’s Porisms and
the Determinate Sections of Apollonius. England during the eighteenth
century remained a stronghold of synthetic geometry, and analytic
methods made little headway in geometry.
It is customary to place much of the blame for the backwardness in

analysis on the supposedly clumsy method of fluxions, as compared with
that of the differential calculus, but such a view is not easily justified.
Fluxional notations even today are conveniently used by physicists, and
they are readily adapted to analytic geometry, but no calculus, whether
differential or fluxional, is appropriately wedded to synthetic geometry.
Hence, the British predilection for pure geometry seems to have been a
far more effective deterrent to research in analysis than was the notation
of fluxions. Nor is it fair to place the blame for British geometric con-
servatism largely on the shoulders of Newton. After all, Newton’s
Method of Fluxions was replete with analytic geometry, and even the
Principia contained more analysis than is generally recognized. Perhaps
it was an excessive insistence on logical precision that had led the British
into a narrow geometric view. We previously noted Berkeley’s argu-
ments against mathematicians, and Maclaurin had felt that the most
effective way to meet these on a rational basis was to return to the rigor
of classical geometry. On the Continent, on the other hand, the feeling
was akin to the advice that Jean Le Rond d’Alembert is said to have
given to a hesitating mathematical friend: “Just go on ahead, and faith
will soon return.”
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Leibniz

Gottfried Wilhelm Leibniz (1646 1716) was born in Leipzig, where he
studied theology, law, philosophy, and mathematics at the university. By
the time he was twenty, he was prepared for the degree of doctor of laws,
but this was refused because of his youth. He thereupon left Leipzig and
took his doctorate at the University of Altdorf in Nuremberg. He then
entered the diplomatic service, first for the elector of Mainz, then for the
Brunswick family, and finally for the Hanoverians, whom he served for
forty years. Among the electors of Hanover whom Leibniz served was
the future (1714) King George I of England. As an influential govern-
mental representative, Leibniz traveled widely.
In 1672, he went to Paris, where he met Huygens, who suggested that

if he wished to become a mathematician, he should read Pascal’s trea-
tises of 1658 1659.
In 1673, a political mission took him to London, where he bought a

copy of Barrow’s Lectiones geometricae, met Oldenburg and Collins,
and became a member of the Royal Society. It is largely around this visit
that the later quarrel over priority centered, for Leibniz could have seen
Newton’s De Analysi in manuscript. It is doubtful, however, that at this

Gottfried Wilhelm Leibniz
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stage he would have derived much from it, for Leibniz was not yet
well prepared in geometry or analysis. In 1676, Leibniz again visited
London, bringing with him his calculating machine; it was during these
years between his two London visits that the differential calculus had
taken shape.

Infinite Series

As was the case with Newton, infinite series played a large role in the
early work of Leibniz. Huygens had set him the problem of finding
the sum of the reciprocals of the triangular numbers, that is, 2 / n(n1 1).
Leibniz cleverly wrote each term as the sum of two fractions, using

2

nðn1 1Þ 5 2
1

n
2

1

n1 1

� �

from which it is obvious, on writing out a few terms, that the sum of the
first n terms is

2
1

1
2

1

n1 1

� �
;

hence that the sum of the infinite series is 2. From this success, he
ingenuously concluded that he would be able to find the sum of almost
any infinite series.
The summation of series again came up in the harmonic triangle,

whose analogies with the arithmetic (Pascal) triangle fascinated Leibniz.

In the arithmetic triangle, each element (that is not in the first column)
is the difference of the two terms directly below it and to the left; in
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the harmonic triangle, each term (that is not in the first row) is the
difference of the two terms directly above it and to the right. Moreover,
in the arithmetic triangle, each element (not in the first row or column) is
the sum of all of the terms in the line above it and to the left, whereas
in the harmonic triangle, each element is the sum of all of the terms in the
line below it and to the right. The series in the first line is the harmonic
series, which diverges; for all other lines, the series converge. The num-
bers in the second line are one-half the reciprocals of the triangular
numbers, and Leibniz knew that the sum of this series is 1. The numbers in
the third line are one-third the reciprocals of the pyramidal numbers

nðn1 1Þðn1 2Þ
1U2U3

;

and the harmonic triangle indicates that the sum of this series is 1
2; and so

on, for the succeeding rows in the harmonic triangle. The numbers in the
nth diagonal row in this triangle are the reciprocals of the numbers in
the corresponding nth diagonal row of the arithmetic triangle divided
by n.
From his studies on infinite series and the harmonic triangle, Leibniz

turned to reading Pascal’s works on the cycloid and other aspects of
infinitesimal analysis. In particular, it was on reading the letter of
Amos Dettonville on Traité des sinus du quart de cercle that Leibniz
reported that a light burst on him. He then realized, in about 1673, that
the determination of the tangent to a curve depended on the ratio of the
differences in the ordinates and the abscissas, as these became infinitely
small, and that quadratures depended on the sum of the ordinates or
infinitely thin rectangles making up the area. Just as in the arithmetic and
harmonic triangles the processes of summing and differencing are
oppositely related, so also in geometry the quadrature and tangent pro-
blems, depending on sums and differences, respectively, are inverses of
each other. The connecting link seemed to be through the infinitesimal or
“characteristic” triangle, for where Pascal had used it to find the quad-
rature of sines, Barrow had applied it to the tangent problem. A com-
parison of the triangle in Barrow’s diagram (Fig. 16.1) with that in
Pascal’s figure (Fig. 16.3) will disclose the marked similarity that evi-
dently struck Leibniz so forcibly. If EDE is tangent at D to the unit
quarter circle BDC (Fig. 16.3), then, Pascal saw,AD is toDI asEE is toRR
or EK. For a very small interval RR, the line EE can be considered
to be virtually the same as the arc of the circle intercepted between the
ordinates ER. Hence, in the notation that Leibniz developed a few years
later, we have 1/sin θ5 dθ / dx, where θ is the angle DAC. Because
sin θ5 12 cos2θ

p
and cos θ5 x, we have dθ5 dx= 12 x2

p
. By the

square-root algorithm and long division (or by the binomial theorem that
Newton communicated to Leibniz, through Oldenburg, in 1676), it is
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a simple matter to find dθ5 ð11 x2=21 3
8 x4 1

5
16 x6 1 � � �Þdx. By use of

the usual method of quadratures, as found in Gregory and Mercator, one
obtains arcsin x5 x1 x3 / 61 3x5 / 401 5x7 / 1121 � � � (or, allowing for
the negative slope and the constant of integration, arccos x5π / 22
x2 x3 / 62 3x5 / 402 5x7 / 1122 � � �). Newton, too, had arrived at this
result earlier and by a similar method. From this, it was possible to find the
series for sin x by the process known as reversion, a scheme apparently first
used by Newton but rediscovered by Leibniz. If we let y5 arcsin x
or x5 sin y and for x assume a power series of the form
x5 a1y1 a2y21 a3y31 � � �1 anyn1 � � � , then, on replacing each x in the
power series for arcsin x by this series in y, we have an identity in y. From
this, the quantities a1, a2, a3, . . . , an, . . . are determined by equating coef-
ficients of terms of like degree. The resulting series, sin y5 y2 y3 / 3!1
y5 / 5!2 � � � , was therefore known to both Newton and Leibniz, and
through sin2 y1 cos2 y5 1, the series for cos y was obtained. The quotient
of the sine and cosine series provides the tangent series, and their reci-
procals give the other three trigonometric functions as infinite series. In the
same way, through reversion of Mercator’s series, Newton and Leibniz
found the series for ex.

The Differential Calculus

By 1676, Leibniz had arrived at the same conclusion that Newton had
reached several years earlier, namely, that he was in possession of a
method that was highly important because of its generality. Whether
a function was rational or irrational, algebraic or transcendental (a word
that Leibniz coined), his operations of finding sums and differences
could always be applied. It therefore was incumbent on him to develop
an appropriate language and notation for the new subject. Leibniz
always had a keen appreciation of the importance of good notations as
a help to thought, and his choice in the case of the calculus was
especially happy. After some trial and error, he fixed on dx and dy for
the smallest possible differences (differentials) in x and y, although,
initially, he had used instead x / d and y / d to indicate the lowering of

E
D

K

B 

ARIRC

E

FIG. 16.3

L e ibn i z 385



the degree. At first, he wrote simply omn. y (or “all y’s”) for the sum
of the ordinates under a curve, but later he used the symbol

Ð
y and still

later
Ð
y dx, the integral sign being an enlarged letter s for sum. Finding

tangents called for the use of the calculus differentialis, and finding
quadratures required the calculus summatorius or the calculus inte-
gralis; from these phrases arose our words “differential calculus” and
“integral calculus.”
The first account of the differential calculus was published by Leibniz in

1684 under the long but significant title of NovaMethodus pro Maximis et
Minimis, itemque Tangentibus, qua nec Irrationales Quantitates Moratur
(A New Method for Maxima and Minima, and Also for Tangents, which
Is Not Obstructed by Irrational Quantities). Here Leibniz gave the
formulas dxy5 x dy1 y dx, d(x / y)5 (y dx2 x dy) / y2, and dxn5 nxn 1 dx
for products, quotients, and powers (or roots), together with geometric
applications. These formulas were derived by neglecting infinitesimals of
higher order. If, for example, the smallest differences in x and y are dx and
dy, respectively, then dxy or the smallest difference in xy is (x1 dx)
(y1 dy)2 xy. Inasmuch as dx and dy are infinitely small, the term dx dy
is infinitely infinitely small and can be disregarded, giving the result
dxy5 x dy1 y dx.
Two years later, again in the Acta Eruditorum, Leibniz published

an explanation of the integral calculus in which quadratures are shown
to be special cases of the inverse method of tangents. Here Leibniz
emphasized the inverse relationship between differentiation and inte-
gration in the fundamental theorem of the calculus; he pointed out that
in the integration of familiar functions “is included the greatest part of
all transcendental geometry.” Where Descartes’ geometry had once
excluded all nonalgebraic curves, the calculus of Newton and Leibniz
showed how essential is the role of these in their new analysis. Were
one to exclude transcendental functions from the new analysis, there
would be no integrals of such algebraic functions as 1 / x or 1 / (11 x2).
Moreover, Leibniz seems to have appreciated, as did Newton, that the
operations in the new analysis can be applied to infinite series, as well
as to finite algebraic expressions. In this respect, Leibniz was less
cautious than Newton, for he argued that the infinite series
l2 l1 l2 l1 12 � � � is equal to 1

2. In the light of recent work on
divergent series, we cannot say that it is necessarily “wrong” to assign
the “sum” 1

2 in this case. It is nevertheless clear that Leibniz allowed
himself to be carried away by the very success of his algorithms and
was not deterred by uncertainty over concepts. Newton’s reasoning was
far closer to the modern foundations of the calculus than was that of
Leibniz, but the plausibility of the Leibnizian view and the effective-
ness of the differential notation made for a readier acceptance of dif-
ferentials than of fluxions.
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Newton and Leibniz both developed their new analysis rapidly to
include differentials and fluxions of higher order, as in the case of the
formula for curvature of a curve at a point. It probably was lack of clarity
on Leibniz’s part about higher orders of infinitesimals that led him to
the mistaken conclusion that an osculating circle has four “consecutive”
or coincident points of contact with a curve, rather than the three
that determine the circle of curvature.
The formula for the nth derivative (to use the modern language) of

a product, (uv)(n)5 u(n)v(0)1 nu(n 1)v(1)1 � � �1 nu(1)v(n 1)1 u(0)v(n), a
development paralleling the binomial expansion of (u1 v)n, bears the
name of Leibniz. (In the Leibnizian theorem, the exponents in par-
entheses indicate orders of differentiation, rather than powers.) Also
named for Leibniz is the rule, given in a memoir of 1692, for finding
the envelope of a one-parameter family of plane curves f(x, y, c)5 0
through the elimination of c from the simultaneous equations f5 0
and fc 5 0, where fc is the result of differentiating f partially with
respect to c.
The name of Leibniz is also usually attached to the infinite series

π=45 1
1 2 1

3 1
1
5 2

1
7 1 � � � , one of his first discoveries in mathematics.

This series, which arose in his quadrature of the circle, is only a special
case of the arctangent expansion that had been given earlier by Gregory.
The fact that Leibniz was virtually self-taught in mathematics accounts
in part for the frequent cases of rediscovery that appear in his work.

Determinants, Notations, and Imaginary Numbers

Leibniz’s great contribution to mathematics was the calculus, but other
aspects of his work deserve mention. The generalization of the bino-
mial theorem to the multinomial theorem—the expansion of such
expressions as (x1 y1 z)n—is attributed to him, as is also the first
reference in the Western world to the method of determinants. In
Leibniz’s letters to G. F. A. de L’Hospital in 1693, he wrote that he
occasionally used numbers indicating rows and columns in a set of
simultaneous equations:

101 11x1 12y5 0 10 1 11x1 12y5 0

201 21x1 22y5 0 or 20 1 21x1 22y5 0

301 31x1 32y5 0 30 1 31x1 32y5 0:

We would write this as
a1 1 b1x1 c1y5 0

a2 1 b2x1 c2y5 0

a3 1 b3x1 c3y5 0:
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If the equations are consistent, then

10U21U32 10U22U31

11U22U30 5 11U20U32

12U20U31 12U21U30;

which is equivalent to the modern statement that

a1 b1 c1
a2 b2 c2
a3 b3 c3

������
������5 0:

Leibniz’s anticipation of determinants went unpublished until 1850 and
had to be rediscovered more than half a century later.
Leibniz was very conscious of the power in analysis of “characteristic”

or notation that properly displays the elements of a given situation.
Evidently, he thought highly of this contribution to notation because of
its easy generalization, and he boasted that he showed that “Viète and
Descartes hadn’t yet discovered all the mysteries” of analysis. Leibniz
was, in fact, one of the greatest of all notation builders, being second
only to Euler in this respect. It was in large part due to Leibniz and
Newton that the 5 sign of Recorde triumphed over the symbol of
Descartes. To Leibniz, we also owe the symbols B for “is similar to”
and ’ for “is congruent to.” Nevertheless, Leibniz’s symbols for
differentials and integrals remain his greatest triumphs in the field of
notation.
Among relatively minor contributions by Leibniz were his comments

on complex numbers, at a time when they were almost forgotten, and his
noting of the binary system of numeration. He factored x41 a4 into

ðx1 a 2 1
pp Þðx 2 a 2 1

pp Þðx1 a 2 2 1
pp

Þðx2 a 2 2 1
pp

Þ

and he showed that 6
p

5 11 2 3
pp

1 12 2 3
pp

, an imaginary
decomposition of a positive real number that surprised his contemporaries.
Yet Leibniz did not write the square roots of complex numbers in
standard complex form, nor was he able to prove his conjecture that
fðx1 2 1

p
yÞ1 fðx 2 2 1

p
yÞ is real if f(z) is a real polynomial. The

ambivalent status of complex numbers is well illustrated by the remark of
Leibniz, who was also a prominent theologian, that imaginary numbers are
a sort of amphibian, halfway between existence and nonexistence, resem-
bling in this respect the Holy Ghost in Christian theology. His theology
obtruded itself again in his view of the binary system in arithmetic (in which
only two symbols, unity and zero, are used) as a symbol of the creation in
which God, represented by unity, drew all things from nothingness. He was
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so pleased with the idea that he wrote about it to the Jesuits, who had
missionaries in China, hoping that they might use the analogy to convert the
scientifically inclined Chinese emperor to Christianity.

The Algebra of Logic

Leibniz was a philosopher, as well as a mathematician; his most sig-
nificant mathematical contribution, other than the calculus, was in logic.
In the calculus, it was the element of universality that impressed him,
and so it was with his other efforts. He hoped to reduce all things to
order. To reduce logical discussions to systematic form, he wished
to develop a universal characteristic that would serve as a sort of algebra
of logic. His first mathematical paper had been a thesis on combinatorial
analysis in 1666, and even at this early date, he had visions of a formal
symbolic logic. Universal symbols or ideograms were to be introduced
for the small number of fundamental concepts needed in thought, and
composite ideas were to be made up from this “alphabet” of human
thoughts, just as formulas are developed in mathematics. The syllogism
itself was to be reduced to a sort of calculus expressed in a universal
symbolism intelligible in all languages. Truth and error would then be
simply a matter of correct or erroneous calculation within the system,
and there would be an end to philosophical controversies. Moreover,
new discoveries could be derived through correct but more or less
routine operations on the symbols, according to the rules of the logical
calculus. Leibniz was justifiably proud of this idea, but his own enthu-
siasm for it was not matched by that of others. Leibniz’s optimism today
appears to have been unwarranted, but his suggestion of an algebra of
logic developed in his own thinking over the years and was revived in
the nineteenth century. Since then, it has played a very significant role in
mathematics.

Leibniz as Scientist and Supporter of Science

Leibniz was also a scientist, and he and Huygens developed the notion of
kinetic energy, which ultimately, in the nineteenth century, became part
of the broader concept of energy in general—one that Leibniz would
most certainly have applauded for its universality. Among his general
contributions to the progress of science and mathematics in the eight-
eenth century, his impact on the establishment of two major scientific
academies of Europe cannot be underrated. These were the Prussian
Academy of Science, founded in Berlin in 1710, and the Russian
Academy, founded during the decade after Leibniz’s death.
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The Bernoulli Family

The discoveries of a great mathematician do not automatically
become part of the mathematical tradition. They may be lost to the
world unless other scholars understand them and take enough interest
to look at them from various points of view, clarify and generalize
them, and point out their implications. Newton, unfortunately, was
hypersensitive and did not communicate freely, and, consequently, the
method of fluxions was not well known outside of England. Leibniz,
on the other hand, appeared to take pleasure in alerting others to the
power of his methods and found devoted disciples who were eager to
learn about the differential and the integral calculus and to transmit
the knowledge further. Foremost among the enthusiasts were two
Swiss brothers, Jacques Bernoulli (1654 1705) and Jean Bernoulli
(1667 1748), who were often also known by the Anglicized forms of
their names, James and John (or by the German equivalents Jakob and
Johann); each was as quick to offend as to feel offended. No family in
the history of mathematics has produced as many celebrated mathe-
maticians as did the Bernoulli family, which, unnerved by the Spanish
Fury in 1576, had fled to Basel from the Catholic Spanish Netherlands
in 1583. Some dozen members of the family (see the genealogical
chart further on) achieved distinction in mathematics and physics, and
four of them were elected foreign associates of the Académie des
Sciences.
The first to attain prominence in mathematics was Jacques Bernoulli.

He was born and died in Basel, but he traveled widely to meet scholars
in other countries. His interest had been directed toward infinitesimals
by works of Wallis and Barrow, and the papers of Leibniz in
1684 1686 enabled him to master the new methods. By 1690, when
he suggested the name “integral” to Leibniz, Jacques Bernoulli was
himself contributing papers on the subject to the Acta Eruditorum.
Among other things, he pointed out that at a maximum or minimum
point, the derivative of the function need not vanish but can take on an
“infinite value” or assume an indeterminate form. Early on, he was
interested in infinite series, and in his first paper on the subject in 1689,
he gave the well-known “Bernoulli inequality” (11 x)n. 11 nx,
where x is real and x.21 and x 6¼ 0 and n is an integer greater than 1,
but this can be found earlier in the seventh lecture of Barrow’s Lec-
tiones geometriae of 1670. To him is frequently also attributed the
demonstration that the harmonic series is divergent, for most men were
unaware of anticipations by Oresme and Mengoli. Jacques Bernoulli
believed, in fact, that his brother had been the first to observe the
divergence of the harmonic series.

390 B r i t i s h Te c hn i que s and Con t in en t a l Me t ho d s



Nicolaus
(1623–1708)

Jacques I
(1654–1705)

Nicolaus I
(1662–1716)

Nicolaus II
(1687–1759)

Nicolaus III
(1695–1726)

Daniel I
(1700–1782)

Jean II
(1710–1790)

Jean I
(1667–1748)

Jean III
(1746–1807)

Daniel II
(1751–1834)

Jacques II
(1759–1789)

Christoph
(1782–1863)

Jean Gustave
(1811–1863)

The mathematical Bernoullis: a genealogical chart

Jacques Bernoulli was fascinated by the series of reciprocals of the
figurate numbers, and although he knew that the series of reciprocals of
the perfect squares is convergent, he was unable to find the sum of the
series. Inasmuch as the terms of

1

12
1

1

22
1

1

32
1 � � � 1 1

n2
1 � � �

are, term for term, less than or equal to those of

1

1
1

1

1U2
1

1

2U3
1

1

3U4
1 � � � 1 1

nðn2 1Þ 1 � � �

and the latter series was known to converge to 2, it was clear to Bernoulli
that the former must converge.
A frequent correspondent with other mathematicians of the day,

Jacques Bernoulli was au courant with the popular problems, many of
which he solved independently. Among these were finding the equa-
tions of the catenary, the tractrix, and the isochrone, all of which had
been treated by Huygens and Leibniz. The isochrone called for the
equation of a plane curve along which an object would fall with

The B e r nou l l i F ami l y 391



uniform vertical velocity, and Bernoulli showed that the required curve
is the semicubical parabola. It was in connection with such problems
that the Bernoulli brothers discovered the power of the calculus, and
they remained in touch with Leibniz on all aspects of the new subject.
Jacques Bernoulli, in his work on the isochrone in the Acta Eruditorum
for 1690, used the word “integral,” and a few years later, Leibniz
agreed that calculus integralis would be a better name than calculus
summatorius for the inverse of the calculus differentialis. To differ-
ential equations, Jacques Bernoulli contributed the study of the
“Bernoulli equation” yu1P(x)y5Q(x)yn that he and Leibniz and Jean
Bernoulli solved—Jean by reducing it to a linear equation through the
substitution z5 y1 n. Leibniz and the Bernoullis were seeking a solu-
tion to the brachistochrone problem. Jean had first found an incorrect
proof that the curve is a cycloid, but after he challenged his brother to
discover the required curve, Jacques correctly proved that the curve
sought is a cycloid.

The Logarithmic Spiral

Jacques Bernoulli was fascinated by curves and the calculus, and one
curve bears his name—the “lemniscate of Bernoulli,” given by the polar
equation r25 a cos 2θ. The curve was described in the Acta Eruditorum of
1694 as resembling a figure eight or a knotted ribbon (lemniscus). Yet the
curve that most caught his fancy was the logarithmic spiral. Bernoulli
showed that it had several striking properties not noted earlier: (1) the
evolute of a logarithmic spiral is an equal logarithmic spiral; (2) the pedal
curve of a logarithmic spiral with respect to its pole (that is, the locus of
the projections of the pole on the tangents to the given curve) is an equal
logarithmic spiral; (3) the caustic by reflection for rays emanating from the
pole (that is, the envelope of the rays reflected at points on the given
curve) is an equal logarithmic spiral; and (4) the caustic by refraction for
rays emanating from the pole (that is, the envelope of rays refracted at
points on the curve) is an equal logarithmic spiral. These properties led
him to request that the spira mirabilis be engraved on his tombstone,
together with the inscription “Eadem mutata resurgo” (“Though changed,
I arise again the same”).
Jacques Bernoulli had been led to spirals of a different type when he

repeated Cavalieri’s procedure in bending half of the parabola x25 ay about
the origin to produce a spiral of Archimedes, but whereas Cavalieri had
studied the transformation by essentially synthetic methods, Bernoulli used
rectangular and polar coordinates. Newton had used polar coordinates ear-
lier—perhaps as early as 1671—but priority in publication seems to go to
Bernoulli, who in the Acta Eruditorum for 1691 proposed measuring
abscissas along the arc of a fixed circle and ordinates radially along the
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normals. Three years later, in the same journal, he proposed a modification
that agreed with the system of Newton. The coordinate y nowwas the length
of the radius vector of the point, and xwas the arc cut off by the sides of the
vectorial angle on a circle of radius a described about the pole as center.
These coordinates are essentially what we would now write as (r, aθ).
Bernoulli, likeNewton,was interestedprimarily in applications of the system
to the calculus; hence, he, too, derived formulas for arc length and radius of
curvature in polar coordinates.

Probability and Infinite Series

The mathematical contributions of the Bernoullis, like those of Leib-
niz, are found chiefly in articles in journals, especially the Acta Eru-
ditorum, but Jacques Bernoulli also wrote a classical treatise titled Ars
Conjectandi (or Art of Conjecturing), published in 1713, eight years
after the author’s death. This is the earliest substantial volume on the
theory of probability, for Huygens’s De Ludo Aleae had been only a
brief introduction. The treatise of Huygens is, in fact, reproduced as
the first of the four parts of the Ars Conjectandi, together with a
commentary by Bernoulli. The second part of the Ars Conjectandi
includes a general theory of permutations and combinations, facilitated
by the binomial and multinomial theorems. Here we find the first
adequate proof of the binomial theorem for positive integral powers.
The proof is by mathematical induction, a method of approach that
Bernoulli had rediscovered while reading the Arithmetica Infinitorum
of Wallis and that he had published in the Acta Eruditorum in 1686.
He gave Pascal credit for the binomial theorem with general exponent,
but this attribution appears to be gratuitous. Newton seems to have first
stated the theorem in general form for any rational exponent, although
he gave no proof, this being supplied later by Euler. In connection
with the expansion of (11 1/n)n, Jacques Bernoulli proposed the
problem of the continuous compounding of interest, that is, finding
limn-Nð11 1=nÞn, because

11
1

n

 !n
, 11

1

1
1

1

1U2
1 � � � 1 1

1U2 . . . n

,11 11
1

2
1

1

22
1

1

2n�1
, 3

it was clear to him that the limit existed.
The second part of the Ars Conjectandi also contains the “Bernoulli

numbers.” These arose as coefficients in a recursion formula for the
sums of the powers of the integers, and they now find many
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applications in other connections. The formula was written by Ber-
noulli as follows:ð

nc 5
1

c1 1
nc1 1 1

1

2
nc 1

c

2
Anc�1 1

cðc 2 1Þðc 2 2Þ
2U3U4

Bnc�3

1
cðc 2 1Þðc 2 2Þðc 2 3Þðc 2 4Þ

2 U 3 U 4 U 5 U 6
Cnc�5 � � � ;

where
Ð
nc means the sum of the cth powers of the first n positive integers

and the letters A, B, C, . . . (the Bernoulli numbers) are the coefficients of
the term in n (the last term) in the corresponding expressions for

Ð
n2,
Ð
n4,Ð

n6, . . . (The numbers can also be defined as n! times the coefficients of the
even-powered terms in the Maclaurin expansion of the function
x / (ex2 1).) The Bernoulli numbers are useful in writing the infinite series
expansions of trigonometric and hyperbolic functions. The first three of
the numbers are readily verified as A5 1

6, B52 1
30, and C5 1

42.
The third and fourth parts of the Ars Conjectandi are devoted primarily

to problems illustrating the theory of probability. The fourth and last part
contains the celebrated theorem that now bears the author’s name and on
which Bernoulli and Leibniz had corresponded: the so-called law of
large numbers. This states that if p is the probability of an event, if m is
the number of occurrences of the event in n trials, if ε is an arbitrarily
small positive number, and if P is the probability that the inequality
jm=n2 pj, ε is satisfied, then limn-NP5 1.
Appended to the Ars Conjectandi is a long memoir on infinite series.

Besides the harmonic series and the sum of the reciprocals of the perfect
squares, Bernoulli considered the series

1

1
p 1

1

2
p 1

1

3
p 1

1

4
p 1 � � � :

He knew (by comparing the terms with those in the harmonic series) that
this diverges, and he pointed to the paradox that the ratio of the “sum” of
all of the odd terms to the “sum” of all of the even terms is as 2

p
2 1 is

to 1, from which the sum of all of the odd terms appears to be less than
the sum of all of the even terms, but this is impossible because, term for
term, the former are larger than the latter.

L’Hospital’s Rule

While Jean Bernoulli was in Paris in 1692, he instructed a young French
marquis, G. F. A. de L’Hospital (1661 1704), in the new Leibnizian
discipline, and Jean Bernoulli signed a pact under which, in return for a
regular salary, he agreed to send L’Hospital his discoveries in mathe-
matics, to be used as the marquis might wish. The result was that one of
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Bernoulli’s chief contributions, dating from 1694, has ever since been
known as L’Hospital’s rule on indeterminate forms. Jean Bernoulli had
found that if f(x) and g(x) are functions differentiable at x5 a such that
f(a)5 0 and g(a)5 0 and

lim
x-a

f 0ðxÞ
g0ðxÞ

exists, then

lim
x-a

f ðxÞ
gðxÞ 5 lim

x-a

f 0ðxÞ
g0ðxÞ :

This well-known rule was incorporated by L’Hospital in the first text-
book on the differential calculus to appear in print—Analyse des infi-
niment petits, published in Paris in 1696. This book, the influence of
which dominated most of the eighteenth century, is based on two pos-
tulates: (1) that one can take as equal two quantities that differ only by an
infinitely small quantity; and (2) that a curve can be considered as made
up of infinitely small straight line segments that determine, by the angles
they make with each other, the curvature of the curve. These would
today scarcely be regarded as acceptable, but L’Hospital considered
them “so self-evident as not to leave the least scruple about their truth
and certainty on the mind of an attentive reader.” The basic differential
formulas for algebraic functions are derived in the manner of Leibniz,
and applications are made to tangents, maxima and minima, points of
inflection, curvature, caustics, and indeterminate forms. L’Hospital was
an exceptionally effective writer, for his Traité analytique des sections
coniques, published posthumously in 1707, did for analytic geometry of
the eighteenth century what the Analyse did for the calculus.

Exponential Calculus

The recent publication of the Bernoulli-L’Hospital correspondence
indicates that much of the work evidently was due to Bernoulli.
Nevertheless, some of the material in the Analyse was undoubtedly the
result of L’Hospital’s independent work, for he was a capable mathe-
matician. The rectification of the logarithmic curve, for example, seems
to have appeared for the first time in 1692 in a letter from L’Hospital to
Leibniz. Bernoulli did not publish his own textbook on the differential
calculus (which was finally printed in 1924), and the text on the integral
calculus appeared fifty years after it had been written—in his Opera
Omnia of 1742. In the interval, Jean Bernoulli wrote prolifically on many
advanced aspects of analysis—the isochrone, solids of least resistance,
the catenary, the tractrix, trajectories, caustic curves, isoperimetric
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problems—achieving a reputation that led to his being called to Basel in
1705 to fill the chair left vacant by his brother’s death. He is frequently
regarded as the inventor of the calculus of variations, because of his
proposal in 1696 1697 of the problem of the brachistochrone, and he
contributed to differential geometry through his work on geodesic lines
on a surface. To him is also often ascribed the exponential calculus, for
he studied not only the simple exponential curves y5 ax, but general
exponentials such as y5 xx. For the area under the curve y5 xx from
x5 0 to x5 1, he found the striking infinite series representation

1

11
2

1

22
1

1

33
2

1

44
1 � � � :

This result he obtained by writing xx5 ex ln x, expanding this in the
exponential series, and integrating term by term, using integration by
parts.

Logarithms of Negative Numbers

Jean and Jacques Bernoulli rediscovered the series for sin nθ and cos nθ,
in terms of sin θ and cos θ, which Viète had known, and they extended
them, uncritically, to include fractional values of n. Jean was also aware of
relationships between inverse trigonometric functions and imaginary
logarithms, discovering in 1702, through differential equations, the rela-
tionship

arc tan z5
1

i
ln

11 iz

12 iz
:

r

He corresponded with other mathematicians on the logarithms of
negative numbers, but here he mistakenly believed that log (2n)5 log n.
He tended to develop trigonometry and the theory of logarithms from an
analytic point of view, and he experimented with several notations for a
function of x, the one nearest to the modern being φ x. His vague notion
of a function was expressed as “a quantity composed in any manner of a
variable and any constants.” Among his numerous controversies was one
with British mathematicians over whether the well-known series of
Brook Taylor (1685 1731), published in the Methodus incrementorum
of 1715, was a plagiarism of the Bernoulli seriesð

y dx5 yx 2
x2

2!

dy

dx
1

x3

3!

d2y

dx2
2 � � � :

Neither Bernoulli nor Taylor was aware that both had been anticipated
by Gregory in the discovery of “Taylor’s series.”
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Petersburg Paradox

Jean Bernoulli maintained a zeal for mathematics as lively as was his
persistence in controversy. Moreover, he was the father of three sons,
Nicolaus (1695 1726), Daniel (1700 1782), and Jean II (1710 1790),
all of whom at some stage filled a position as professor of mathematics:
Nicolaus and Daniel at St. Petersburg and Daniel and Jean II at Basel.
(Another Nicolaus (1687 1759), a cousin of the one mentioned pre-
viously, for a time held the chair in mathematics at Padua that Galileo
once had filled.) There were still other Bernoullis who attained some
eminence in mathematics, but of these, none achieved fame comparable
to that of the original two brothers, Jacques and Jean. The most cele-
brated of the younger generation was Daniel, whose work in hydro-
dynamics is recalled in “Bernoulli’s principle.” In mathematics, he is
best known for his distinction, in the theory of probability, between
mathematical expectation and “moral expectation,” or between “physical
fortune” and “moral fortune.” He assumed that a small increase in a
person’s material means causes an increase in satisfaction that is inversely
proportional to the means. In the form of an equation, dm5K(dp / p),
where m is the moral fortune, p is the physical fortune, and K is a constant
of proportionality. This leads to the conclusion that as the physical fortune
increases geometrically, the moral fortune increases arithmetically. In
1734, he and his father shared the prize offered by the Académie des
Sciences for an essay on probabilities related to the inclinations of the
orbital planes of the planets; in 1760, he read to the Paris Académie a
paper on the application of probability theory to the question of the
advantage of inoculation against smallpox.
When Daniel Bernoulli went to St. Petersburg in 1725, his older

brother was also called there as professor of mathematics; in the dis-
cussions of the two men, there arose a problem that has come to be
known as the “Petersburg paradox,” probably because it first appeared in
the Commentarii of the Academy there. The problem is as follows:
Suppose that Peter and Paul agree to play a game based on the toss of a
coin. If a head is thrown on the first toss, Paul will give Peter one crown;
if the first toss is a tail, but a head appears on the second toss, Paul will
give Peter two crowns; if a head appears for the first time on the third
toss, Paul will give Peter four crowns, and so on, the amount to be paid if
head appears for the first time on the nth toss being 2n 1 crowns. What
should Peter pay Paul for the privilege of playing the game? Peter’s
mathematical expectation, given by

1

2
U11

1

22
U21

1

23
U22 1 � � �1 1

2n
U2n�1 1 � � � ;

evidently is infinite, yet common sense suggests a very modest finite
sum. When Georges Louis Leclerc, Comte de Buffon (1707 1788),
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made an empirical test of the matter, he found that in 2084 games Paul
would have paid Peter 10,057 crowns. This indicates that for any one
game, Paul’s expectation, instead of being infinite, is actually something
less than 5 crowns! The paradox raised in the Petersburg problem was
widely discussed during the eighteenth century, with differing expla-
nations being given. Daniel Bernoulli sought to resolve it through his
principle of moral expectation, in accordance with which he replaced the
amounts 1, 2, 22, 23, . . . 2n, . . . by 11=2; 21=4; 41=8; 81=16; . . . . Others preferred,
as a solution of the paradox, to point out that the problem is inherently
impossible in view of the fact that Paul’s fortune is necessarily finite;
hence, he could not pay the unlimited sums that might be required in the
case of a long delay in the appearance of a head.

Tschirnhaus Transformations

Continental Europe had not escaped controversy over the foundations of
the calculus, but there the effect was felt less than in England. As early as
in Leibniz’s day, objections to the new analysis had been raised by a Saxon
nobleman, Count Ehrenfried Walter von Tschirnhaus (1651 1708). His
name is still perpetuated in the “Tschirnhaus transformations” in algebra,
by which he hoped to find a general method for solving equations of
higher degree. A Tschirnhaus transformation of a polynomial equation
f(x)5 0 is one of the form y5 g(x) / h(x), where g and h are polynomials
and h does not vanish for a root of f(x)5 0. The transformations by
which Cardan and Viète solved the cubic were special cases of such
transformations. In the Acta Eruditorum of 1683, Tschirnhaus (or
Tschirnhausen) showed that a polynomial of degree n. 2 can be
reduced by his transformations to a form in which the coefficients of the
terms of degrees n2 1 and n2 2 are both zero; for the cubic, he found a
transformation of the form y5 x21 ax1 b, which reduced the general
cubic to the form y35K.
Another such transformation reduced the quartic to y41 py21 q5 0,

thus adding new methods of solving the cubic and the quartic.
Tschirnhaus hoped to develop similar algorithms that would reduce

the general equation of nth degree to a “pure” equation of nth degree
containing only the terms of degree n and degree zero. His transfor-
mations constituted the most promising contribution to the solution of
equations during the seventeenth century, but his elimination of the
second and third coefficients by means of such transformations was far
from adequate for the solution of the quintic. Even when the Swedish
mathematician E. S. Bring (1736 1798) showed in 1786 that a
Tschirnhaus transformation can be found that reduces the general quintic
to the form y51 py1 q5 0, the solution still remained elusive. In 1834,
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G. B. Jerrard (1804 1863), a Briton, showed that a Tschirnhaus trans-
formation can be found that will eliminate the terms of degrees n2 1 and
n2 2 and n2 3 from any polynomial equation of degree n. 3, but the
power of the method is limited by the fact that equations of the fifth and
higher degree are not solvable algebraically. Jerrard’s belief that he
could solve all algebraic equations was illusory.
Tschirnhaus is noted as the discoverer of caustics by reflection

(catacaustics), which bear his name. It was his report on these curves, the
envelopes of a family of rays from a point source and reflected in a
curve, that resulted in his election in 1682 to the Paris Académie des
Sciences, and interest in caustics and similar families was continued by
Leibniz, L’Hospital, Jacques and Jean Bernoulli, and others. His name is
also attached to the “Tschirnhaus cubic” a5 r cos3θ / 3, a form later
generalized by Maclaurin to rn5 a cos nθ for n rational.
Tschirnhaus had been in touch with Oldenburg and Leibniz during the

formative years of the calculus, and he had also contributed many
mathematical articles to the Acta Eruditorum after its establishment in
1682. Some of Tschirnhaus’s work, however, was hastily composed and
published prematurely, and the Bernoulli brothers and others pointed out
errors. At one point, Tschirnhaus rejected the basic concepts of the
calculus and of infinite series, insisting that algebraic methods would
suffice. In Holland, objections to the calculus of Leibniz had been raised
in 1694 1696 by the physician and geometer Bernard Nieuwentijt
(1654 1718). In three separate treatises published during these years in
Amsterdam, he admitted the correctness of the results, but he criticized
the vagueness of Newton’s evanescent quantities and the lack of clear
definition in Leibniz’s differentials of higher order.

Solid Analytic Geometry

In 1695, Leibniz had defended himself in the Acta Eruditorum from
his “overprecise” critic, and in 1701, a more detailed refutation of
Nieuwentijt came from Switzerland from the pen of Jacob Hermann
(1678 1733), a devoted pupil of Jacques Bernoulli. Illustrating the
mobility of mathematicians during the early eighteenth century, Her-
mann taught mathematics at the Universities of Padua, Frankfort on the
Oder, and St. Petersburg before concluding his career at the University
of Basel, his hometown. In the Commentarii Academiae Petropolitanae
for the years 1729 1733, Hermann made contributions to solid analytic
geometry and to polar coordinates in continuation of results made by the
older Bernoulli brothers. Where Jacques Bernoulli had rather hesitantly
applied polar coordinates to spirals, Hermann gave polar equations of
algebraic curves as well, together with equations of transformation from
rectangular to polar coordinates. Hermann’s use of space coordinates
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was also bolder than that of Jean Bernoulli, who as early as 1692 had
first referred to the use of coordinates as “Cartesian geometry.” Bernoulli
had rather timidly suggested an extension of Cartesian geometry to
three dimensions, but Hermann effectively applied space coordinates
to planes and several types of quadratic surfaces. He made a beginning
in the use of direction angles by showing that the sine of the angle
that the plane az1 by1 cx5 c2 makes with the xy-plane is given by
b2 1 c2

p
= a2 1 b2 1 c2
p

.

Michel Rolle and PierreVarignon

In France, as well as in England, Germany, and Holland, there was a
group in the Académie des Sciences, especially shortly after 1700, that
questioned the validity of the new infinitesimal methods as presented by
L’Hospital. Among these was Michel Rolle (1652 1719), whose name
is recalled in connection with Rolle’s theorem, published in 1691 in an
obscure book on geometry and algebra titled Méthode pour résoudre
les égalitéz: If a function is differentiable in the interval from a to b, and
if f(a)5 05 f(b), then f u(x)5 0 has at least one real root between a and b.
The theorem, now so important in the calculus, was given only incidentally
by Rolle in connection with an approximate solution of equations.
Rolle’s attack on the calculus, which he described as a collection of

ingenious fallacies, was answered vigorously by Pierre Varignon
(1654 1722), Jean Bernoulli’s “best friend in France” and one who had
also been corresponding with Leibniz. Bernoulli simply told Rolle that
he did not understand the subject, but Varignon sought to clarify the
situation by showing indirectly that the infinitesimal methods could be
reconciled with the geometry of Euclid. Most of the group opposing the
calculus were admirers of the ancient synthetic geometry, and the con-
troversy in the Académie des Sciences reminds one of the then con-
temporary literary controversy on “ancients vs. moderns.”
Varignon, like the Bernoullis, had not at first expected to be a math-

ematician, being intended for the church, but when he accidentally came
across a copy of Euclid’s Elements, he changed his mind and held
professorships in mathematics in Paris, becoming a member of the
Académie. In the Memoirs of the Académie des Sciences for 1704, he
continued and extended Jacques Bernoulli’s use of polar coordinates,
including an elaborate classification of spirals obtained from algebraic
curves, such as the parabolas and the hyperbolas of Fermat, by inter-
preting the ordinate as a radius vector and the abscissa as a vectorial arc.
Varignon, one of the first French scholars to appreciate the calculus, had
prepared a commentary on L’Hospital’s Analyse, but this appeared only
in 1725, after both men had died, under the title Eclaircissemens sur
l’analyse des infiniments petits. Varignon was a more careful writer than
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L’Hospital, and he warned that infinite series were not to be used without
investigation of the remainder term. Hence, he had been rather worried
about the attacks on the calculus, and in 1701, he had written to Leibniz
about his differences with Rolle:

The Abbé Galloys, who is really behind the whole thing, is spreading the

report here [in Paris] that you have explained that you mean by

the “differential” or the “infinitely small” a very small, but nevertheless

constant and definite, quantity. . . . I, on the other hand, have called a thing

infinitely small, or the differential of a quantity, if that quantity is inex-

haustible in comparison with the thing.

The view that Varignon expressed here is far from clear, but at least he
recognized that a differential is a variable, rather than a constant.
Leibniz’s reply from Hanover in 1702 seeks to avoid metaphysical
quarrels, but his use of the phrase “incomparably small quantities” for
differentials was scarcely more satisfactory than Varignon’s explanation.
Varignon’s defense of the calculus nevertheless seems to have won
Rolle’s approval.
Rolle had also raised embarrassing questions about analytic geometry,

especially concerning the Cartesian graphical solution of equations, so
popular at the time. To solve f(x)5 0, for example, one arbitrarily chose
a curve g(x, y)5 0 and, on combining it with f(x)5 0, obtained a new
curve h(x, y)5 0 the intersections of which with g(x, y)5 0 furnish the
solutions of f(x)5 0. Rolle saw that extraneous solutions may be intro-
duced through this procedure. In his best-known work, the Traité d’al-
gèbre of 1690, Rolle seems to have been first to state that there are n
values for the nth root of a number, but he was able to prove this only for
n5 3, for he died before the relevant works of Cotes and De Moivre
appeared.
Rolle was the most capable mathematician in the group from the

Académie des Sciences that criticized the calculus. When he was con-
vinced by Varignon of the essential soundness of the new analysis,
opposition collapsed, and the subject entered a century of unimpeded and
rapid development on the continent of Europe. An outstanding example of
how much a talented and dedicated member of a later generation could
achieve using the new methods is provided by Alexis Clairaut.

The Clairauts

Alexis Claude Clairaut (1713 1765) was one of the most precocious
of mathematicians, outdoing even Blaise Pascal in this respect. At the
age of ten, he was reading the textbooks of L’Hospital on conics and
the calculus; when he was thirteen, he read a paper on geometry to the
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Académie des Sciences; and when only eighteen, he was admitted,
through special dispensation with respect to age requirements, to
membership in the Académie. In the year of his election, Clairaut
published a celebrated treatise, Recherches sur les courbes à double
courbure, the substance of which had been presented to the Académie
two years earlier. Like the Géométrie of Descartes, the Recherches of
Clairaut appeared without the name of the author on the title page,
although in this case, too, the authorship was generally known. The
treatise of Clairaut carried out for space curves the program that Des-
cartes had suggested almost a century earlier—their study through pro-
jections on two coordinate planes. It was, in fact, this method that
suggested the name given by Clairaut to gauche or twisted curves,
inasmuch as their curvature is determined by the curvatures of the two
projections. In the Recherches, numerous space curves are determined
through intersections of various surfaces, distance formulas for two
and three dimensions are explicitly given, an intercept form of the plane
is included, and tangent lines to space curves are found. This book by the
teenage Clairaut constitutes the first treatise on solid analytic geometry.
He observed that the mixed second-order partial derivatives fxy and fyx of
a function f(x, y) are in general equal (we know now that this holds if
these derivatives are continuous at the point in question), and he used
this fact in the test My � Nx, familiar in differential equations, for
exactness of the differential expression M(x, y)dx1N(x, y)dy. In cele-
brated works on applied mathematics, such as Théorie de la figure de la
terre (1743) and Théorie de la lune (1752), he made use of potential
theory. His textbooks, Eléments de géométrie and Eléments d’algèbre,
were part of a plan, reminiscent of those of our own day, to improve the
teaching of mathematics.
Incidentally, Clairaut had a younger brother who rivaled him in pre-

cocity, for at the age of fifteen, the brother, known to history only as “le
cadet Clairaut,” published in 1731 (the same year as that in which the
older brother’s Recherches had appeared) a book on calculus titled
Traité de quadratures circulaires et hyperboliques. This virtually
unknown genius died tragically of smallpox during the next year. The
father of the two Clairaut brothers was himself a capable mathematician,
but today he is recalled primarily through the work of his sons.

Mathematics in Italy

While the Bernoullis and their associates were defending and espousing
developments in analytic geometry, the calculus, and probability,
mathematics in Italy flowed along more or less unobtrusively with some
preference for geometry. No outstanding figure appeared there, although
several men left results important enough to be noted. Giovanni Ceva
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(1648 1734) is recalled today for the theorem that bears his name: A
necessary and sufficient condition that lines from the vertices A, B, C of
a triangle to points X, Y, Z on the opposite sides be concurrent is that

AZUBXUCY
ZBUXCUYA

5 1 1:

This is closely related to the theorem of Menelaus, which had been
forgotten but was rediscovered and also published by Ceva in 1678.
More closely related to the interests of the Bernoullis were the con-

tributions of Jacopo Riccati (1676 1754), who made Newton’s work
known in Italy. Riccati is especially remembered for his extensive study
of the differential equation dy / dx5A(x)1B(x)y1C(x)y2, now bearing
his name, although Jacques Bernoulli had earlier studied the special case
dy / dx5 x21 y2. Riccati may have known of this study, for Nicolaus
Bernoulli taught at Padua, where Riccati had been a student of Angeli’s
and where Riccati came in contact with both Nicolaus Bernoulli and
Hermann. The work of the Bernoullis was well known in Italy. Count
G. C. Fagnano (1682 1766) followed up work on the lemniscate of
Bernoulli to show, around 1717 1718, that the rectification of this curve
leads to an elliptic integral, as does the arc length of the ellipse, although
certain arcs are rectifiable by elementary means. Fagnano’s name is still
attached to the ellipse x21 2y25 1, which presents certain analogies to
the equilateral or rectangular hyperbola. The eccentricity of this ellipse,
for example, is 1= 2

p
, whereas the eccentricity of the rectangular

hyperbola is 2
p

.

The Parallel Postulate

Italian mathematicians during the eighteenth century made few, if any,
fundamental discoveries. The nearest approach to such a discovery
undoubtedly was that of Girolamo Saccheri (1667 1733), a Jesuit who
taught at colleges of his order in Italy. In the very year in which he
died, he published a book titled Euclides ab Omni Naevo Vindicatus
(Euclid Cleared of Every Flaw), in which he made an elaborate effort
to prove the parallel postulate. Saccheri had known of Nasir Eddin
al-Tusi’s efforts to prove the postulate almost half a millennium earlier,
and he determined to apply the method of reductio ad absurdum to the
problem. He began with a birectangular isosceles quadrilateral, now
known as a “Saccheri quadrilateral”—one having sides AD and BC
equal to each other and both perpendicular to the base AB. Without
using the parallel postulate, he easily showed that the “summit” angles
C and D are equal and that there are, then, just three possibilities for
these angles, described by Saccheri as (1) the hypothesis of the acute
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angle, (2) the hypothesis of the right angle, and (3) the hypothesis of the
obtuse angle. By showing that hypotheses 1 and 3 lead to absurdities, he
thought by indirect reasoning to establish hypothesis 2 as a necessary
consequence of Euclid’s postulates other than the parallel postulate.
Saccheri had little trouble disposing of hypothesis 3, for he implicitly
assumed a straight line to be infinitely long. From hypothesis 1, he
derived theorem after theorem without encountering difficulty.
Although we know now that he was here building up a perfectly con-
sistent non-Euclidean geometry, Saccheri was so thoroughly imbued
with the conviction that Euclid’s was the only valid geometry that he
permitted this preconception to interfere with his logic. Where no
contradiction existed, he twisted his reasoning until he thought that
hypothesis 1 led to an absurdity. Hence, he lost credit for what would
undoubtedly have been the most significant discovery of the eighteenth
century—non-Euclidean geometry. As it was, his name remained
unsung for another century, for the importance of his work was over-
looked by those who followed him.

Divergent Series

Saccheri had as his student another Italian mathematician who deserves
brief mention—Guido Grandi (1671 1742), whose name is remembered
in the rose-petal curves so familiar in polar coordinates through the
equations r5 a cos nθ and r5 a sin nθ. These are known as “roses of
Grandi,” in recognition of his study of them. Grandi is also recalled as
one who had corresponded with Leibniz on the question of whether
the sum of the alternating infinite series 12 11 12 11 12 11 � � � can
be taken to be 1

2. This is suggested not only as the arithmetic mean of
the two values of the partial sums of the first n terms, but also as the
value when x 51 1 of the generating function 1 / (11 x) from which
the series 12 x1 x22 x31 x42 � � � is obtained through division. In
this correspondence, Grandi suggested that here, one has a paradox
comparable to the mysteries of Christianity, for on grouping terms in
pairs, one reaches the result

12 11 12 11 12 � � �5 01 01 01 � � �5 1

2
;

which parallels the creation of the world out of nothing.
Continuing such uncritical ideas to the integral of the generating

function 1 / (11 x), Leibniz and Jean Bernoulli had corresponded on the
nature of the logarithms of negative numbers. The series ln (11 x)5
x2 x2 / 21 x3 / 32 x4 / 41 � � � , however, is of little help here, because the
series diverges for x, 1. Leibniz argued that negative numbers do not
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have real logarithms, but Bernoulli, believing the logarithmic curve to be
symmetric with respect to the function axis, held that ln (2x)5 ln (x), a
view that seems to be confirmed by the fact that d / dx ln (2x)5 d / dx
ln (1x)5 1 / x. The question of the nature of logarithms of negative
numbers was not definitively resolved by either of the correspondents, but
rather by Bernoulli’s most brilliant student. Jean Bernoulli had continued
to exert an encouraging enthusiasm, through his correspondence, during
the first half of the eighteenth century, for he outlived his older brother
by forty-three years. Nevertheless, long before his death in 1748, as an
octogenarian, his influence had become far less felt than that of his famous
pupil Euler, whose contributions to analysis, including the logarithms of
negative numbers, were the essential core of mathematical developments
during the middle years of the eighteenth century.
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17

Euler

Algebra is generous; she often gives more than is asked of her.

D’Alembert

The Life of Euler

Switzerland was the birthplace of many of the leading figures in the
mathematics of the early eighteenth century, and the most significant
mathematician to come from Switzerland during that time—or any
time—was Leonhard Euler (1707 1783).
Euler’s father was a clergyman who, like Jacques Bernoulli’s father,

hoped that his son would enter the ministry. The young man, however,
studied under Jean Bernoulli and associated with his sons, Nicolaus and
Daniel, and through them discovered his vocation. Euler was broadly
trained, for to the study of mathematics he added theology, medicine,
astronomy, physics, and oriental languages. This breadth stood him in
good stead when, in 1727, he heard from Russia that there was an
opening in medicine in the St. Petersburg Academy, where the young
Bernoullis had gone as professors of mathematics. On the recommen-
dation of the Bernoullis, two of the brightest luminaries in the early days
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of the Academy, Euler was called to be a member of the section on
medicine and physiology.
In 1730, Euler found himself in the chair of natural philosophy, rather

than in the medical section. His friend Nicolaus Bernoulli had died, by
drowning, in St. Petersburg the year before Euler arrived, and in 1733,
Daniel Bernoulli left Russia to occupy the chair in mathematics at Basel.
Thereupon Euler, at the age of twenty-six, became the Academy’s chief
mathematician. The St. Petersburg Academy had established a research
journal, the Commentarii Academiae Scientiarum Imperialis Petropoli-
tanae, and almost from the start, Euler contributed a spate of mathe-
matical articles. It was said by the French academician François Arago
that Euler could calculate without any apparent effort, “just as men
breathe, as eagles sustain themselves in the air.” As a result, Euler
composed mathematical memoirs while playing with his children. In
1735, he had lost the sight of his right eye, but this misfortune in no way
diminished the rate of output of his research. He is supposed to have said
that his pencil seemed to surpass him in intelligence, so easily did
memoirs flow. He published more than 500 books and papers during
his lifetime. For almost half a century after his death, works by Euler
continued to appear in the publications of the St. Petersburg Academy. A
bibliographical list of Euler’s works, including posthumous items, con-
tains 886 entries, and it is anticipated that his collected works (including
his correspondence), now being published under Swiss auspices, will run
to 82 substantial volumes. His mathematical research averaged about
800 pages a year; no mathematician has ever exceeded the output of this
man whom Arago characterized as “Analysis Incarnate.”
Early on, Euler acquired an international reputation. Even before

leaving Basel, he had received an honorable mention from the Parisian
Académie des Sciences for an essay on the masting of ships. In later years,
he frequently entered essays in the contests set by the Académie, and
twelve times he won the coveted biennial prize. The topics ranged widely,
and on one occasion, in 1724, Euler snared with Maclaurin and Daniel
Bernoulli a prize for an essay on the tides. (The Paris prize was won twice
by Jean Bernoulli and ten times by Daniel Bernoulli.) Euler was never
guilty of false pride, and he wrote works on all levels, including textbook
material for use in the Russian schools. He generally wrote in Latin and
sometimes in French, although German was his native tongue. Euler had
unusual language facility, as one should expect of a person with a Swiss
background. This was fortunate, for one of the distinguishing marks of
eighteenth-century mathematics was the readiness with which scholars
moved from one country to another, and here Euler encountered no lan-
guage problems. In 1741, Euler was invited by Frederick the Great to join
the Berlin Academy, and the invitation was accepted. Euler spent twenty-
five years at Frederick’s court, and he submitted numerous papers to the
St. Petersburg Academy, as well as to the Prussian Academy.

The L i f e o f Eu l e r 407



Euler spent almost all of the last seventeen years of his life in total
darkness due to cataracts. Even this tragedy failed to stem the flood of
his research and publication, which continued unabated until in 1783,
at the age of seventy-six, he suddenly died while sipping tea and
enjoying the company of one of his grandchildren.

Notation

From 1727 to 1783, the pen of Euler had been busy adding to knowledge
in virtually every branch of pure and applied mathematics, from the most
elementary to the most advanced. Moreover, in most respects Euler, the
most successful notation builder of all times, wrote in the language and
the notations we use today. On his arrival in Russia in 1727, he had been
engaged in experiments in the firing of cannons, and in a manuscript
account of his results, written probably in 1727 or 1728, Euler had used
the letter emore than a dozen times to represent the base of the system of
natural logarithms. The concept behind this number had been well
known ever since the invention of logarithms more than a century ear-
lier, yet no standard notation for it had become common. In a letter to
Goldbach in 1731, Euler again used his letter e for “that number whose
hyperbolic logarithm5 1.” It appeared in print for the first time in
Euler’s Mechanica of 1736, a book in which Newtonian dynamics is
presented for the first time in analytic form. This notation, suggested
perhaps by the first letter of the word “exponential,” soon became
standard. The definitive use of the Greek letter π for the ratio of cir-
cumference to diameter in a circle is also largely due to Euler, although a
prior occurrence is found in 1706, the year before Euler was born—in
the Synopsis Palmariorum Matheseos, or A New Introduction to the
Mathematics, by William Jones (1675 1749). It was Euler’s adoption of
the symbol π in 1737 and later in his many popular textbooks that made
it widely known and used. The symbol i for 2 1

p
is another notation

first used by Euler, although in this case the adoption came near the end
of his life, in 1777. This use probably came so late because in his earlier
works, he had used i to represent an “infinite number,” somewhat as
Wallis had used N. Thus, Euler wrote ex5 (11 x / i)i where we should
prefer ex 5 limh-Nð11 x=hÞh: The three symbols e, π, and i, for which
Euler was in large measure responsible, can be combined with the two
most important integers, 0 and 1, in the celebrated equality eπi 1 15 0,
which contains the five most significant numbers (as well as the most
important relation and the most important operation) in all of mathe-
matics. The equivalent of this equality, in generalized form, had been
included by Euler in 1748 in his best-known textbook, Introductio in
Analysin Infinitorum. The so-called Eulerian constant, often represented
by the Greek letter γ, is a sixth important mathematical constant, the
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number defined as limn-Nð11 1
2 1

1
3 1 � � �1 1=n2 ln nÞ; a well-known

number that has been calculated to hundreds of decimal places, of which
the first ten are 0.5772156649.
It is not only in connection with designations for important numbers

that today we use notations introduced by Euler. In geometry, algebra,
trigonometry, and analysis, we find ubiquitous use of Eulerian symbols,
terminology, and ideas. The use of the small letters a, b, and c for the
sides of a triangle and of the corresponding capitals A, B, and C for
the opposite angles stems from Euler, as does the application of the
letters r, R, and s for the radius of the inscribed and circumscribed circles
and the semiperimeter of the triangle, respectively. The beautiful for-
mula 4rRs5 abc relating the six lengths is also one of the many ele-
mentary results attributed to him, although equivalents of this result are
implied by ancient geometry. The designation lx for logarithm of x,
the use of the now-familiar Σ to indicate a summation, and, perhaps
most important of all, the notation f(x) for a function of x (used in the
Petersburg Commentaries for 1734 1735) are other Eulerian notations
related to ours.

Foundation of Analysis

In evaluating developments in mathematics, we must always bear in
mind that the ideas behind the notations are by far the better half; in this
respect also, the work of Euler was epoch-making. It may fairly be said
that Euler did for the infinite analysis of Newton and Leibniz what
Euclid had done for the geometry of Eudoxus and Theaetetus, or
what Viète had done for the algebra of al-Khwarizmi and Cardan. Euler
took the differential calculus and the method of fluxions and made them
part of a more general branch of mathematics that ever since has been
known as “analysis”—the study of infinite processes. Euler’s Introductio
in Analysin Infinitorum served as a fountainhead for the burgeoning
developments in mathematics during the second half of the eighteenth
century. From this time onward, the idea of “function” became funda-
mental in analysis. It had been adumbrated in the medieval latitude of
forms, and it had been implicit in the analytic geometry of Fermat and
Descartes, as well as in the calculus of Newton and Leibniz. The fourth
paragraph of the Introductio defines function of a variable quantity as
“any analytic expression whatsoever made up from that variable quantity
and from numbers or constant quantities.” Today such a definition is
unacceptable, for it fails to explain what an “analytic expression” is.
Euler presumably had in mind primarily the algebraic functions and the
elementary transcendental functions; the strictly analytic treatment of
the trigonometric functions was, in fact, in large measure established by
the Introductio. The sine, for example, was no longer a line segment; it
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was simply a number or a ratio—the ordinate of a point on a unit circle,
or the number defined by the series z2 z3 / 3!1 z5 / 5!2 � � � for some
value of z. From the infinite series for ex, sin x, and cos x, it was a short
step to the “Euler identities”

sin x5
e 1
p

x2 e� 1
p

x

2 2 1
p ;

cos x5
e 1
p

x1 e� 1
p

x

2
;

and

e 1
p

x5 cos x1 2 1
p

sin x;

relationships that had in essence been known to Cotes and De Moivre but
that in Euler’s hands became familiar tools of analysis.
In 1740, Euler had used imaginary exponents in a letter to Jean

Bernoulli, in which he wrote ex 1
p

1 e2 x 1
p

5 2 cos x; the familiar Euler
identities appeared in the influential Introductio of 1748. The elementary
transcendental functions—trigonometric, logarithmic, inverse trigono-
metric, and exponential—were written and thought of in much the form
that they are treated today. The abbreviations sin., cos., tang., cot., sec.,
and cosec. that were used by Euler in the Latin Introductio are closer to
the present English forms than are the corresponding abbreviations in the
Romance languages. Moreover, Euler was among the first to treat loga-
rithms as exponents, in the manner now so familiar.

Infinite Series

The first volume of the Introductio is concerned from start to finish
with infinite processes—infinite products and infinite continued frac-
tions, as well as innumerable infinite series. In this respect, the work is
the natural generalization of the views of Newton, Leibniz, and the
Bernoullis, all of whom were fond of infinite series. Yet Euler was
surprisingly unrestrained in his use of such series. Although on occa-
sion he warned against the risk in working with divergent series, he
himself used the binomial series 1 / (12 x)5 11 x1 x21 x31 � � � for
values of x$ 1. In fact, by combining the two series x / (12 x)5
x1 x21 x31 � � � and x / (x2 1)5 11 1 / x1 1 / x21 � � �, Euler concluded
that � � � 1 / x21 1 / x1 11 x1 x21 x31 � � �5 0.
Despite his hardihood, through manipulations of infinite series Euler

achieved results that had baffled his predecessors. Among these was
the summation of the reciprocals of the perfect squares: 1 / 121 1 / 221
1 / 321 1 / 421 � � � . Oldenburg, in a letter to Leibniz in 1673, had asked
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for the sum of this series, but Leibniz failed to answer; in 1689, Jacques
Bernoulli had admitted his own inability to find the sum. Euler began with
the familiar series sin z5 z2 z3 / 3!1 z5 / 5!2 z7 / 7!1 � � �. Then, sin z5 0
can be thought of as the infinite polynomial equation 05 12 z2 / 3!1 z4 / 5!
2 z6 / 7!1 � � � (obtained by dividing through by z), or, if z2 is replaced with
w, as the equation 05 12w / 3!1w2 / 5!2w3 / 7! 1 � � �. From the theory
of algebraic equations it is known, if the constant term is 1, that the sum of
the reciprocals of the roots is the negative of the coefficient of the linear
term, in this case 1 / 3!.Moreover, the roots of the equation in z are known to
be π, 2π, 3π, and so on; hence, the roots of the equation in w are π2, (2π)2,
(3π)2, and so on. Therefore,

1

6
5

1

π2
1

1

ð2πÞ2 1
1

ð3πÞ2 1 � � � or
π2

6
5

1

12
1

1

22
1

1

32
1 � � � :

Through this carefree application to polynomials of infinite degree of
algebraic rules valid for the finite case, Euler had achieved a result that
had baffled the older Bernoulli brothers; in later years, Euler repeatedly
made discoveries in similar fashion.
Euler’s summation of the reciprocals of the squares of the integers

seems to date from about 1736, and it is likely that it was to Daniel
Bernoulli that he promptly communicated the result. His interest in such
series always was strong, and in later years, he published the sums of the
reciprocals of other powers of the integers. Using the cosine series
instead of the sine series, Euler similarly found the result

π2

8
5

1

12
1

1

32
1

1

52
1 � � � ;

hence the corollary summation

π2

12
5

1

12
2

1

22
1

1

32
2

1

42
1 � � � :

Many of these results also appeared in the Introductio of 1748, including
the sums of reciprocals of even powers from n5 2 through n5 26. The
series of reciprocals of odd powers are so intractable that it is still not
known whether the sum of the reciprocals of the cubes of the positive
integers is a rational multiple of π3, whereas Euler knew that for the 26th
power, the sum of the reciprocals is

224U76977927π26

1U2U3 � � � 27 :
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Convergent and Divergent Series

Euler’s imaginative treatment of series led him to some striking rela-
tionships between analysis and the theory of numbers. He showed, in a
relatively easy proof, that the divergence of the harmonic series implies
the Euclidean theorem on the infinitude of primes. If there were only K
primes, that is, p1, p2, . . . , pK, then every number n would be of the form
n5 pα1

1
pα2

2
. . . pαK

K
. Let α be the greatest of the exponents αi for the number

n and form the product

P5 11
1

p1

1
1

p2
1

1 � � � 1 1

pα
1

 !
11

1

p2

1
1

p2
2

1 � � � 1

pα
2

 !
� � �

11
1

pK

1
1

p2
K

1 � � � 1 1

pα
K

 !
:

In this product, the terms 1
1 ,

1
2 , � � � , 1

n are bound to appear, as well as
others, hence the product P cannot be smaller than 1

1 1
1
2 1 � � � 1 1

n.
From the formula for the sum of a geometric progression, we see that the
factors in the product are respectively smaller than

1

12 1=p1

;
1

12 1=p2

;
1

12 1=p3

;

and so on. Hence,

1

1
1

1

2
1

1

3
1 � � � 1 1

n
,

p1

p1 2 1
U

p2

p2 2 1
U

p3

p3 2 1
� � � pK

pK 2 1

for all values of n. Therefore, if K, the number of primes, were finite, the
harmonic series would necessarily be convergent. In a considerably
more involved analysis, Euler showed that the infinite series made up of
the reciprocals of the primes is itself divergent, the sum Sn being
asymptotic to ln ln n for increasing values of the integer n.
Euler delighted in relationships between the theory of numbers and his

rough-and-ready manipulations of infinite series. Heedless of the dangers
lurking in alternating series, he found such results as π5 11 1

2 1
1
3 1

1
4 2

1
5 1

1
6 1

1
7 1

1
8 1

1
9 2

1
10 1 � � � : Here the sign of a term, after the first two, is

determined as follows: If the denominator is a prime of form 4m1 1, a
minus sign is used; if the denominator is a prime of form 4m2 1, a plus sign
is used; and if the denominator is a composite number, the sign indicated by
the product of the signs of its components is used. Operations on infinite
series were handled with great abandon. From the result ln 1 / (12 x)5
x1 x2 / 21 x3 / 31 x4 / 41 � � �, Euler concluded that lnN5 11 1

2 1
1
3 1

1
4 1 � � � , hence that 1=lnN5 05 12 1

2 2
1
3 2

1
5 1

1
6 2

1
7 1

1
10 2 � � � ;
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where the last series is made up of all of the reciprocals of primes (in which
case, the terms are taken as negative) and reciprocals of products of two
distinct primes (in which case, the terms are positive). The Introductio
is replete with such series and with related infinite products, such
as 05 1

2 U 2
3 U 4

5 U 6
7 U 10

11 U 12
13 U 16

17 U 18
19 � � � and N5 2

1 U 3
2 U 5

4 U 7
6 U 11

10 U 13
12 U 17

16 U 19
18 � � � .

The symbolN is freely regarded as denoting the reciprocal of the number 0.

Logarithms and the Euler Identities

To the subject of logarithms, Euler contributed not only the definition in
terms of exponents thatwe use today, but also the correct viewwith respect to
the logarithms of negative numbers. The notion that log(2x)5 log(1 x) was
upheld by Jean Le Rond d’Alembert, the leading mathematician in France
during the mid-eighteenth century. By 1747, Euler was able to write to
d’Alembert correctly explaining the status of logarithms of negative num-
bers. The result should really have been apparent to JeanBernoulli and others
who were more or less familiar with the formula eiθ 5 cos θ1 i sin θ even
before Euler clearly enunciated it. This identity holds for all angles (in radian
measure); in particular, it leads, for θ5π, to eiπ521, that is, to the statement
that ln(21)5πi. Logarithms of negative numbers therefore are not real, as
Jean Bernoulli and d’Alembert had thought, but pure imaginaries.
Euler also called attention to another property of logarithms that

became apparent from his identity. Any number, positive or negative,
has not one logarithm but infinitely many. From the relationship
eiðθ62KπÞ 5 cos θ1 i sin θ, one sees that if ln a5 c, then c6 2Kπi are also
natural logarithms of a. Moreover, from Euler’s identity one sees that
logarithms of complex numbers, real or imaginary, are also complex
numbers. If, for example, one wishes a natural logarithm of a1 bi, one
writes a1 bi5 ex1iy. One obtains ex � eiy5 a1 bi5 ex(cos y1 i sin y).
The solution of the simultaneous equations ex cos y5 a and ex sin y5 b
(obtained by equating real and imaginary parts of the complex equation)
yields the values y5 arctanb /a and x5 ln(b csc arctanb /a) [or x5
ln(a sec arctanb / a)].
D’Alembert wished to show that the result of any algebraic operation

performed on a complex number is in turn a complex number. In a sense,
Euler did for elementary transcendental operations what d’Alembert tried to
do for algebraic operations. Through the Euler identities, it is not difficult
to find, for example, such quantities as sin (11 i) or arccos i, expressed in
standard complex-number form. In the former case, one writes

sinð11 iÞ5 eið11 iÞ 2 e2 ið11 iÞ

2i
;
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from which one finds that sin(11 i)5 a1 bi, where a5 [(11 e2) sin 1] /
2e and b5 [(e22 1) cos 1] / 2e. In the latter case, one writes arccos
i5 x1 iy or i5 cos(x1 iy) or

i5
eiðx1 iyÞ 1 e2iðx1 iyÞ

2
5

11 e2y

2ey
cos x1 i

ð12 e2yÞ
2ey

sin x:

Equating real and imaginary parts, one sees that cos x5 0 and x56 π / 2.
Hence,

12 e2y

2ey
561 or ey 5716 2

p
:

Inasmuch as both x and y must be real, we see that x56π=2 and
y5 lnð711 2

p
). In a similar manner, one can carry out other elementary

transcendental operations on complex numbers, the results being complex
numbers. That is, the work of Euler showed that the system of com-
plex numbers is closed under the elementary transcendental operations.
Euler similarly showed that, surprisingly, an imaginary power of an

imaginary number can be a real number. In a letter to Christian Goldbach
(1690 1764) in 1746, he gave the remarkable result ii 5 e2π=2. From
eiθ5 cos θ1 i sin θ we have, for θ5π / 2, eπi / 25 i; hence,

ðeπi=2Þi 5 eπi
2=2 5 e2π=2:

There are, in fact, infinitely many real values for ii, as Euler later
showed, given by e2π=26 2Kπ, where K is an integer. In the Memoirs of the
Berlin Academy for 1749, Euler showed that any complex power of a
complex number, (a1 bi)c1 di, can be written as a complex number
p1 qi. This aspect of Euler’s work was overlooked, and the real values
of ii had to be rediscovered in the nineteenth century.

Differential Equations

Euler was, without any doubt, the individual most responsible for
methods used today in introductory college courses in the solution of
differential equations, and even many of the specific problems appearing
in current textbooks can be traced back to the great treatises Euler wrote
on the calculus—Institutiones Calculi Differentialis (Petersburg, 1755)
and Institutiones Calculi Integralis (Petersburg, 1768 1770, 3 vols.).
The use of integrating factors, the systematic methods of solving linear
equations of higher order with constant coefficients, and the distinction
between linear homogeneous and nonhomogeneous equations and
between particular and general solutions are among his contributions to

414 Eu l e r



the subject, although on some points credit must be shared with others.
Daniel Bernoulli, for example, had solved the equation yv1Ky5 f(x)
independently of Euler and at about the same time in 1739 1740, and
d’Alembert, as well as Euler, had general methods, in about 1747, for
solving complete linear equations.
The solution of ordinary differential equations had, in a sense, begun as

soon as the inverse relationship between differentiation and integration
had been recognized. But most differential equations cannot easily be
reduced to simple quadratures, requiring instead ingenious substitutions or
algorithms for their solution. One of the achievements of the eighteenth
century was the discovery of groups of differential equations that are
solvable by means of fairly simple devices. One of the interesting dif-
ferential equations of the eighteenth century is the so-called Riccati
equation: yu5 p(x)y21 q(x)y1 r(x). It was Euler who first called attention
to the fact that if a particular solution v5 f(x) is known, then the sub-
stitution y5 v1 1 / z converts the Riccati equation into a linear differential
equation in z, so that a general solution can be found. In the Petersburg
Commentarii for 1760 1763, Euler also pointed out that if two particular
solutions are known, then a general solution is expressible in terms of a
simple quadrature. To some extent, our ubiquitous indebtedness to Euler
in the field of differential equations is betokened in the fact that a type of
linear equation with variable coefficients bears his name. The Euler
equation xny(n)1 a1xn 1y(n 1)1 � � �1 any(0)5 f(x) (where exponents included
within parentheses indicate orders of differentiation) is easily reduced,
through the substitution x5 eu, to a linear equation having constant
coefficients. Euler also made progress in partial differential equations,
which were still a field for pioneers, by giving for the equation
@2u=@t2 5 a2ð@2u=@x2Þ the solution u5 f(x1 at)1 g(x2 at).
Euler’s four volumes of Institutiones contain by far the most

exhaustive treatment of the calculus up to that time. Besides the ele-
ments of the subject and the solution of differential equations, we find
such things as “Euler’s theorem on homogeneous functions,” namely, if f
(x, y) is homogeneous of order n, then xfx1 yfy5 nf; a development of
the calculus of finite differences; standard forms for elliptic integrals;
and the theory of the beta and gamma (or factorial) functions based on
the “Eulerian integrals” ΓðpÞ5 ÐN

0
x p2 1e2 xdx and Bðm; nÞ5 Ð 1

0
xm�1

ð12 xÞn�1
dx and related through such formulas as Bðm; nÞ5ΓðmÞΓðnÞ=

Γðm1 nÞ: Wallis had anticipated some of the properties of these inte-
grals, but through Euler’s organization, these higher transcendental
functions became an essential part of advanced calculus and of applied
mathematics. About a century later, the integral in the beta function was
generalized by Pafnuty L. Chebyshev (1821 1894), who demonstrated
that the “Chebyshev integral”

Ð
xp(12 x)q dx is a higher transcendental

function unless p or q or p1 q is an integer.
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Probability

One characteristic of the Age of Enlightenment was the tendency to
apply to all aspects of society the quantitative methods that had been
so successful in the physical sciences. In this respect, it is not surprising
to find both Euler and d’Alembert writing on problems of life expec-
tancy, the value of an annuity, lotteries, and other aspects of social
science. Probability, after all, had been among the chief interests of
Euler’s friends Daniel and Nicolaus Bernoulli. Among the lottery pro-
blems that he published in the Berlin Academy Memoirs for 1765, the
following is one of the simplest. Let n tickets be numbered consecutively
from 1 to n and let three tickets be drawn at random. Then, the prob-
ability that a sequence of three consecutive numbers will be drawn is

2U3
nðn2 1Þ ;

the probability that two consecutive numbers (but not three) will be
drawn is

2U3ðn 2 3Þ
nðn 2 1Þ ;

and the probability that no consecutive numbers will be drawn is

ðn 2 3Þðn 2 4Þ
nðn 2 1Þ :

No new concepts are required for the solution, but, as we might
anticipate, Euler contributed to notations here as he had elsewhere. He
wrote that he found it useful to represent the expression

pðp 2 1Þ � � � ðp 2 q1 1Þ
1U2 � � � q

by

p

q

� �
;

a form essentially equivalent to the modern notation

p

q

� �
:
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The Theory of Numbers

The theory of numbers has held strong attraction for many of the greatest
mathematicians, such as Fermat and Euler, but no appeal for others—for
example, Newton and d’Alembert. Euler did not publish a treatise on the
subject, but he wrote letters and articles on various aspects of the theory
of numbers. It will be recalled that Fermat had asserted, among other
things, (1) that numbers of the form 22n1 1 apparently are always prime;
and (2) that if p is prime and a is an integer not divisible by p, then
ap 12 1 is divisible by p. Euler exploded the first of these conjectures
in 1732 through his uncanny ability for computation, showing that
225

1 15 4; 294; 967; 297 is factorable into 6,700,4173 641. Today the
Fermat conjecture has been so thoroughly deflated that mathematicians
incline to the contrary opinion—that there are no prime Fermat numbers
beyond the number 65,537 corresponding to n5 4.
Just as Euler, by means of a counterexample, had upset one of

Fermat’s conjectures, so a suggestion made by Euler was disproved in
1966. If n is greater than 2, Euler believed, at least n nth powers are
required to provide a sum that is itself an nth power. But it was shown
that the sum of only four fifth powers can be a fifth power, for
2751 8451 11051 13355 1445. It should be noted, however, that in the
latter case, it required two centuries and the services of a high-speed
computing device to provide the counterexample.
For the second of Fermat’s conjectures, known as Fermat’s lesser

theorem, Euler was the first one to publish a proof (although Leibniz had
left an earlier demonstration in manuscript). Euler’s proof, which
appeared in the Petersburg Commentarii for 1736, is so surprisingly
elementary that we describe it here. The proof depends on an induction
on a. If a5 1, the theorem obviously holds. We now show that if the
theorem holds for any positive integral value of a, such as a5 k, then it
necessarily holds for a5 k1 1. To show this, we use the binomial theorem
to write (k1 1) p as kp1mp1 1, where m is an integer. On subtracting
k1 1 from both sides, we see that (k1 1) p2 (k1 1)5mp1 (kp2 k).
Inasmuch as the last term on the right is divisible by p, by hypothesis the
right-hand side of the equation, hence also the left-hand side, is obviously
divisible by p. The theorem therefore holds, through mathematical
induction, for all values of a, provided that a is prime to p.
Having proved Fermat’s lesser theorem, Euler demonstrated a somewhat

more general statement in which he used what has been called “Euler’s
φ-function.” If m is a positive integer greater than 1, the φ(m) is defined as
the number of integers less than m that are prime to m (but including the
integer 1 in each case). It is customary to define φ(1) as 1; for n5 2, 3, and
4, for example, the values of φ(n) are 1, 2, and 2, respectively. If p is a
prime, then clearly φ(p)5 p2 1. It can be proved that
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1
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� �
;

where p1, p2,� � � pr are the distinct prime factors of m. Using this result,
Euler showed that aφ(m)2 1 is divisible by m if a is relatively prime to m.
Euler settled two of Fermat’s conjectures but did not dispose

of “Fermat’s last theorem,” although he did prove the impossibility of
integer solutions of xn1 yn5 zn for the case n5 3.
In 1747, Euler added to the three pairs of amicable numbers known to

Fermat, bringing the list up to thirty pairs; later, he increased this to more
than sixty. Euler also gave a proof that all even perfect numbers are
of the form given by Euclid: 2n 1 (2n2 1), where 2n2 1 is prime. Whe-
ther there can be an odd perfect number remains an open question.
Also unresolved to this day is a question raised in correspondence by

Christian Goldbach (1690 1764). In writing to Euler in 1742, Goldbach
said that every even integer (.2) is the sum of two primes. This so-
called Goldbach’s theorem appeared in print (without proof) in 1770
in England in the Meditationes Algebraicae of Edward Waring
(1734 1793).
Among other unproved assertions is one known as Waring’s theorem,

or Waring’s problem. Euler had proved that every positive integer is the
sum of not more than four squares; Waring surmised that every positive
integer is the sum of not more than nine cubes or the sum of not more
than nineteen fourth powers. The first half of this bold guess was proved
in the early twentieth century; the second part is still unproved. Waring
also published in the Meditationes Algebraicae a theorem named for
his friend and pupil John Wilson (1741 1793)—if p is a prime, then
(p2 1)!1 1 is a multiple of p.

Textbooks

The leading Continental mathematicians of the mid-eighteenth century
were primarily analysts, but we have seen that their contributions were
not limited to analysis. Euler not only contributed to the theory of
numbers but also composed a popular algebra textbook that appeared
in German and Russian editions at the St. Petersburg Academy in
1770 1772, in French (under the auspices of d’Alembert) in 1774, and in
numerous other versions, including American editions in English. The
exceptionally didactic quality of Euler’s Algebra is attributed to the fact
that it was dictated by the blind author through a relatively untutored
domestic.
Synthetic geometry was not entirely forgotten on the Continent.

Euler contributed little to the field, despite the fact that today the line
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containing the circumcenter, the orthocenter, and the barycenter of a
triangle is known as the Euler line of the triangle. That these centers of
a triangle are collinear seems to have been known earlier to Simson,
whose name has been attached to another line related to a triangle. Such
minor additions to pure geometry pale into insignificance, however,
when compared to Continental contributions to analytic geometry during
the mid-eighteenth century.

Analytic Geometry

We have described the analytic geometry of Clairaut, especially in
connection with developments in three dimensions, but the material
in the second volume of Euler’s Introductio was more extensive, more
systematic, and more effective. As early as 1728, Euler contributed to
the Petersburg Commentarii papers on the use of coordinate geometry in
three-space, giving general equations for three broad classes of surfaces:
cylinders, cones, and surfaces of revolution. He recognized that the
equation of a cone with its vertex at the origin is necessarily homo-
geneous. He also showed that the shortest curve (geodesic) between two
points on a conical surface would become the straight line between these
points if the surface were flattened out into the form of a plane—one of
the earliest theorems concerning developable surfaces.
Euler’s awareness of the significance of making work as general as

possible is especially seen in the second volume of his Introductio. This
book did more than any other to make the use of coordinates, in both two
and three dimensions, the basis of a systematic study of curves and
surfaces. Instead of concentrating on the conic sections, Euler gave a
theory of curves in general, based on the function concept that had been
central in the first volume. Transcendental curves are not given short
shrift, as had been customary, so that here, practically for the first time,
graphical study of trigonometric functions formed a part of analytic
geometry.
The Introductio also includes two accounts of polar coordinates that

are so thorough and systematic that the system frequently, but erro-
neously, is attributed to Euler. Whole classes of curves, both algebraic
and transcendental, are considered; for the first time, the equations for
transformations from rectangular to polar coordinates appear in strictly
modern trigonometric form. Moreover, Euler made use of the general
vectorial angle and of negative values for the radius vector, so that the
spiral of Archimedes, for example, appeared in its dual form, symmetric
with respect to the 90� axis. D’Alembert evidently was influenced by this
work when he wrote the article on “Géométrie” for the Encyclopédie.
Euler’s Introductio was also chiefly responsible for the systematic use of
what is called the parametric representation of curves, that is, an
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expression of each of the Cartesian coordinates as a function of an
auxiliary independent variable. For the cycloid, for example, Euler used
the form

x5 b 2 b cos
z

a

y5 z1 b sin
z

a
:

A long and systematic appendix to the Introductio is perhaps Euler’s
most significant contribution to geometry, for it represents virtually the
first textbook exposition of solid analytic geometry. Surfaces, both
algebraic and transcendental, are considered in general and then are
subdivided into categories. Here we find, evidently for the first time,
the notion that surfaces of the second degree constitute a family of
quadrics in space analogous to the conic sections in plane geometry.
Beginning with the general ten-term quadratic equation f(x, y, z)5 0,
Euler noted that the aggregate of terms of the second degree, when
equated to zero, gives the equation of the asymptotic cone, real or ima-
ginary. More important, he used the equations for translation and rotation
of axes (in the form that, incidentally, still bears Euler’s name) to reduce
the equation of a nonsingular quadric surface to one of the canonical
forms corresponding to the five fundamental types: the real ellipsoid, the
hyperboloids of one and two sheets, and the elliptic and hyperbolic
paraboloids. The work of Euler comes closer to modern textbooks than did
any other book before the French Revolution.

The Parallel Postulate: Lambert

Many mathematicians, including Euler, have also fancied themselves
philosophers. Euler missed an opportunity that another philosophically
inclined Swiss mathematician tried to exploit. This was Johann Heinrich
Lambert (1728 1777), a Swiss-German writer on a wide variety of
mathematical and nonmathematical themes, who for a couple of years
was an associate of Euler’s at the Berlin Academy. It is said that when
Frederick the Great asked him which science he was most proficient in,
Lambert curtly replied, “All.”
We have seen that Saccheri had believed that he had demolished the

possibilities that the sum of the angles of a plane triangle might be more
or less than two right angles. Lambert called attention to the well-known
fact that on the surface of a sphere, the angle sum of a triangle is indeed
more than two right angles, and he suggested that a surface might be
found on which the triangle angle sum falls short of two right angles. In
trying to complete what Saccheri had attempted—a proof that denial of
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Euclid’s parallel postulate leads to a contradiction—Lambert, in 1766,
wrote Die Theorie der Parallellinien, although this appeared, post-
humously, only in 1786. Instead of beginning with a Saccheri quad-
rilateral, he adopted as his starting point a quadrilateral having three
right angles (now known as a Lambert quadrilateral) and then considered
for the fourth angle the three possibilities, namely, that it might be acute,
right, or obtuse. Corresponding to these three cases, he showed, in the
manner of Saccheri, that the angle sum of a triangle would be respec-
tively less than, equal to, or greater than two right angles. Going beyond
Saccheri, he demonstrated that the extent to which the sum falls short of,
or exceeds, two right angles is proportional to the area of the triangle. In
the obtuse-angled case, this situation is similar to a classical theorem
in spherical geometry—that the area of a triangle is proportional to its
spherical excess—and Lambert speculated that the hypothesis of the
acute angle might correspond to a geometry on a novel surface, such as a
sphere of imaginary radius. In 1868, it was shown by Eugenio Beltrami
(1835 1900) that Lambert had indeed been correct in his conjecture of
the existence of some such surface. It turned out to be, however, not a
sphere with an imaginary radius but a real surface known as a pseudo-
sphere, that is, a surface of constant negative curvature generated by
revolving the tractrix above its axis.
Although Lambert, like Saccheri, tried to prove the parallel postulate,

he seems to have been aware of his lack of success. He wrote,

Proofs of the Euclidean postulate can be developed to such an extent that

apparently a mere trifle remains. But a careful analysis shows that in this

seeming trifle lies the crux of the matter; usually it contains either the

proposition that is being proved or a postulate equivalent to it.

No one else came so close to the truth without actually discovering
non-Euclidean geometry.
Lambert is also known today for other contributions. One of these is the

first proof, presented to the Berlin Academy in 1761, that π is an irrational
number. (In 1737, Euler had shown that e is irrational.) Lambert showed
that if x is a nonzero rational number, then tan x cannot be rational.
Inasmuch as tan π / 45 1, a rational number, it follows that π / 4 cannot be
a rational number, hence neither can π. This did not, of course, dispose of
the circle-squaring question, for quadratic irrationalities are constructible.
At about this time, circle-squarers had become so numerous that the
Academy in Paris passed a resolution in 1775 that no purported solutions
of the quadrature problem would be officially examined.
As another of Lambert’s contributions to mathematics, we should

recall that he did for the hyperbolic functions what Euler had done for
the circular functions, providing the modern view and notation. Com-
parisons of the ordinates of the circle x21 y25 1 and of the hyperbola
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x22 y25 1 had fascinated mathematicians for a century, and by 1757,
Vincenzo Riccati had suggested a development of hyperbolic functions.
It remained for Lambert to introduce the notations sinh x, cosh x, and
tanh x for the hyperbolic equivalents of the circular functions of ordinary
trigonometry and to popularize the new hyperbolic trigonometry that
modern science finds so useful. Corresponding to Euler’s three identities
for sin x, cos x, and eix, there are three similar relationships for the
hyperbolic functions expressed by the equations

sinh x5
ex 2 e�x

2
; cosh x5

ex 1 e�x

2

and
ex 5 cosh x1 sinh x:

Lambert also wrote on cosmography, descriptive geometry, map
making, logic, and the philosophy of mathematics, but his influence did
not match that of Euler or of d’Alembert, whose work we shall consider
in the next chapter.
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18

Pre- to Postrevolutionary
France

The advancement and perfection of mathematics are intimately connected

with the prosperity of the State.

Napoleon I

Men and Institutions

Mathematicians of France at the time of the revolution not only con-
tributed handsomely to the fund of knowledge but they were in large
measure responsible for the chief lines of development in the explosive
proliferation of mathematics during the succeeding century. Of six men
whom we may name as mathematical leaders during the revolution, all
had produced abundantly before 1789; not one of the six expressed
regret later when the old order passed away. They were Gaspard Monge,
Joseph-Louis Lagrange, Pierre Simon Laplace, Adrien Marie Legendre,
Lazare Carnot, and Nicolas Condorcet; they were to be in the midst of
the turmoil, and one of them fell victim to it.
Two mathematicians, Jean Le Rond d’Alembert and Condorcet, were

among the heralds of the French Revolution. Only Condorcet lived to see
the fall of the Bastille, and he succumbed as a result.
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The chief scientific institution in France supporting mathematical
research through publications, meetings, and prizes during most of
the eighteenth century was the Royal Academy of Sciences. In 1793, the
Revolutionary Convention shut down operation of the Academy of
Sciences, along with that of four other major academies. Two years
later, the Directory established the Institut National des Sciences et des
Arts, composed of three classes: physical and mathematical sciences,
moral and political sciences, literature and fine arts. Various reorgani-
zations and name changes followed, initially at the behest of Napoleon,
who had joined the Institut in 1797. Only in 1816 could the classes
resume under the name “Academy,” which had been considered reac-
tionary. During the early years of this strife-torn period, mathematical
activities of the Academy were greatly diminished; the one project that
survived the political gyrations was the reform of weights and measures.
The year 1793 marked the shutting down not only of the academies but

also of the activities of most of the colleges making up the University of
Paris. Universities had not been the mathematical foci that they are
today. Most French mathematicians of the eighteenth century who were
active before the revolution were associated not with the universities, but
with either the church or the military; others found royal patronage or
became private teachers.
Within a few years of the fall of the Bastille in 1789, the system of

higher education in France was to undergo a drastic revision as a result
of the upheaval produced by the French Revolution. During this short
but significant period, France once more became the mathematical
center of the world, as it had been during the middle of the seventeenth
century.

The Committee onWeights and Measures

The reform of the system of weights and measures is an especially
appropriate example of the way in which mathematicians patiently
persisted in their efforts despite confusion and political difficulties. As
early in the revolution as 1790, Talleyrand proposed the reform of
weights and measures. The problem was referred to the Académie des
Sciences, in which a committee that had Lagrange and Condorcet as
two of its members was established to draw up a proposal.
The committee considered two alternatives for the basic length in the

new system. One was the length of the pendulum that should beat sec-
onds. The equation for the pendulum being T 5 2π l=g

p
; this would

make the standard length g=π2 But the committee was so impressed by
the accuracy with which Legendre and others had measured the length of
a terrestrial meridian that in the end, the meter was defined to be the ten-
millionth part of the distance between the equator and the pole. The
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resulting metric system was ready in most respects in 1791, but there
was confusion and delay in establishing it.
The closing of the Académie in 1793 was a blow to mathematics, but the

convention continued the Committee on Weights and Measures, although
it purged the committee of some members, such as A. L. Lavoisier, and
enlarged it by adding others, including Monge. At one point, Lagrange
was very nearly lost to the committee, for the Convention had banned
foreigners from France, but Lagrange was specifically exempted from
the decree and remained to serve as head of the committee. Still later, the
committee was made responsible to the Institut national; Lagrange,
Laplace, Legendre, and Monge all served on the committee at this stage.
By 1799, the work of the committee had been completed, and the metric
system, as we have it today, became a reality. The metric system is, of
course, one of the more tangible mathematical results of the revolution, but
in terms of the development of our subject, it cannot be compared in
significance with other contributions.

D’Alembert

Like Euler and the Bernoullis, Jean Le Rond d’Alembert (1717 1783),
too, was broadly educated—in law, medicine, science, and mathe-
matics—a background that served him well when, from 1751 to 1772, he
collaborated with Denis Diderot (1713 1784) in the twenty-eight
volumes of the celebrated Encyclopédie or Dictionnaire raisonné des
sciences, des arts, et des métiers. For the Encyclopédie, d’Alembert
wrote the much-admired “Discours preliminaire,” as well as most of
the mathematical and scientific articles. The Encyclopédie, despite
d’Alembert’s Jansenist education, showed strong tendencies toward the
secularization of learning so characteristic of the Enlightenment, and it
met with strong attack from Jesuits. Through his defense of the project,
d’Alembert became known as “the fox of the Encyclopedia” and inci-
dentally played a significant role in the expulsion of the Jesuit order from
France. As a result of his activities and his friendships with Voltaire and
others among the Philosophes, he was one of those who paved the way
for the French Revolution. At the early age of twenty-four, he had been
elected to the Académie des Sciences, and in 1754, he became its
secrétaire perpetuel, and as such, perhaps the most influential scientist in
France.
While Euler was busy with mathematical research in Berlin, d’Alembert

was active in Paris. Until 1757, when controversy over the problem of
vibrating strings brought estrangement, correspondence between the two
was frequent and cordial, for their interests weremuch the same. Statements
such as log(21)25 log(11)2, equivalent to 2 log(21)5 2 log(11) or to
log(2l)5 log(1l), had puzzled the best mathematicians of the earlier part
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of the eighteenth century, but, as noted in the previous chapter, by 1747,
Euler was able to write to d’Alembert correctly explaining the status of
logarithms of negative numbers.
D’Alembert had spent much of his time and effort attempting to prove

the theorem conjectured by Girard and known today as the fundamental
theorem of algebra—that every polynomial equation f(x)5 0, having
complex coefficients and of degree n$ 1, has at least one complex root.
So earnest were his efforts to prove the theorem (especially in a prize
essay on “The General Cause of Winds,” published in the Memoirs of
the Berlin Academy for 1746) that in France today, the theorem is
widely known as the theorem of d’Alembert. If we think of the solution
of such a polynomial equation as a generalization of the explicit alge-
braic operations, we can say that in essence, d’Alembert wished to show
that the result of any algebraic operation performed on a complex
number is in turn a complex number. In a paper of 1752 on the resistance
of fluids, he arrived at the so-called Cauchy-Riemann equations that
loom so large in complex analysis.

Limits

D’Alembert was an unusual combination of caution and boldness in his
view of mathematical developments. He regarded Euler’s use of diver-
gent series as open to suspicion (1768), despite the successes achieved.
Moreover, d’Alembert objected to the Eulerian assumption that differ-
entials are symbols for quantities that are zero and yet qualitatively
different. Inasmuch as Euler restricted himself to well-behaved func-
tions, he had not become involved in the subtle difficulties that later
were to make his naive position untenable. Meanwhile, d’Alembert
believed that the “true metaphysics” of the calculus was to be found in
the idea of a limit. In the article on the “differential” that he wrote for the
Encyclopédie, d’Alembert stated that “the differentiation of equations
consists simply in finding the limits of the ratio of finite differences of
two variables included in the equation.” Opposing the views of Leibniz
and Euler, d’Alembert insisted that “a quantity is something or nothing;
if it is something, it has not yet vanished; if it is nothing, it has literally
vanished. The supposition that there is an intermediate state between
these two is a chimera.” This view would rule out the vague notion
of differentials as infinitely small magnitudes, and d’Alembert held that
the differential notation is merely a convenient manner of speaking that
depends for its justification on the language of limits. His Encyclopédie
article on the differential referred to Newton’s De Quadratura Cur-
varum, but d’Alembert interpreted Newton’s phrase “prime and ultimate
ratio” as a limit, rather than as a first or last ratio of two quantities
just springing into being. In the article on “Limit” that he composed
for the Encyclopédie, he called one quantity the limit of a second
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(variable) quantity if the second can approach the first nearer than by any
given quantity (without actually coinciding with it). The imprecision in this
definitionwas removed in theworks of nineteenth-centurymathematicians.
Euler had thought of an infinitely large quantity as the reciprocal of an

infinitely small magnitude, but d’Alembert, having outlawed the infini-
tesimal, defined the indefinitely large in terms of limits. A line, for
example, is said to be infinite with respect to another if their ratio is
greater than any given number. He went on to define indefinitely large
quantities of higher order in a manner similar to that used by mathe-
maticians today in speaking of orders of infinity with respect to func-
tions. D’Alembert denied the existence of the actually infinite, for he
was thinking of geometric magnitudes, rather than of the theory of
aggregates proposed a century later.

Differential Equations

D’Alembert, a man of wide interests, is perhaps best known today for
what is referred to as d’Alembert’s principle: the internal actions and
reactions of a system of rigid bodies in motion are in equilibrium. This
appeared in 1743 in his celebrated treatise Traité de dynamique. Other
treatises by d’Alembert concerned music, the three-body problem, the
precession of the equinoxes, motion in resisting media, and lunar per-
turbations. In studying the problem of vibrating strings, he was led
to the partial differential equation @2u=@t2 5 @2u=@x2, for which in
1747 he gave (in the Memoirs of the Berlin Academy) the solution u5
f(x1 t)1 g(x2 t), where f and g are arbitrary functions. D’Alembert also
found the singular solution of the differential equation y5 xf(yu)1 g(yu);
hence, this is known as d’Alembert’s equation.

Bézout

The year 1783, when d’Alembert and Euler died, was also the year of Éti-
enne Bézout’s (1730 1783) death. The son and grandson of magistrates
in Nemours, inspired by exposure to works of Euler, he chose a
mathematical career and published his first papers in the 1750s. One
was a memoir on dynamics, which was followed by two papers on
integration. He was appointed to the Académie des Sciences, first as an
adjoint in mechanics, then an associé and, in 1770, a pensionnaire. In
1763, as royal censor, he was appointed examiner of the Gardes de la
Marine. In this position, he was expected to provide textbooks, an
assignment that resulted in a series of widely adopted works. The first
was a four-volume Cours de mathématiques à l’usage des Gardes du
Pavillon et de la Marine, which appeared between 1764 and 1767. In
1768, the examiner for the artillery died, and Bézout was appointed to
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succeed him, becoming examiner of the Corps d’Artillerie. This
resulted in his producing an even more expansive and successful text-
book, the Cours complet de mathématiques à l’usage de la marine et de
l’artillerie, a six-volume work that appeared between 1770 and 1782.
For decades, it was this Cours that students studied when preparing to
enter advanced scientific schools. He took into account that he was
writing for beginners and attempted to build on subjects familiar to
them, such as elementary geometry, conveying a sense of the range of
usefulness of the subject, rather than stressing fine points of rigor.
Judging from repeated editions, his was the most successful of the
late-eighteenth-century Cours that covered the subject matter of
mathematics from the lowest to the highest level. His textbooks were
translated into English and in the early decades of the nineteenth cen-
tury were still used at West Point, as well as at Harvard and other
institutions; in 1826, the first American textbook in analytic geometry
was derived from Bézout’s Cours. The fourth part of Bézout’s Cours—
the principles of mechanics—is the raison d’être of the program. The
mathematical preeminence of France (and, indeed, of Continental
Europe as a whole) in the eighteenth century was based in large mea-
sure on the application of analysis to mechanics as taught in technical
schools, and it was under this influence that the mathematicians of
the French Revolution had been brought up. The emphasis given to
mechanics and to the closing section on navigation is in keeping with
the use of the Cours de mathématiques as a text in a military academy
such as the one at Mezières, which both Monge and Carnot attended. It
was through such compilations, rather than through the original works
of the authors themselves, that the mathematical advances of Euler and
d’Alembert became widely known.
Bézout’s name is familiar today in connection with the use of deter-

minants in algebraic elimination. In a memoir of the Paris Academy for
1764 and more extensively in a treatise of 1779 titled Théorie générale
des équations algébriques, Bézout gave rules, similar to Cramer’s, for
solving n simultaneous linear equations in n unknowns. He is best
known for an extension of these to a system of equations in one or more
unknowns, in which it is required to find the condition on the coeffi-
cients necessary for the equations to have a common solution. To take a
very simple case, one might ask for the condition that the equations
a1x1 b1y1 c1 5 0, a2x1 b2y1 c25 0, a3x1 b3y1 c35 0 have a common
solution. The necessary condition is that the eliminant

a1 b1 c1
a2 b2 c2
a3 b3 c3

������
������;
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here a special case of the “Bézoutiant,” should be 0. Somewhat more
complicated eliminants arise when conditions are sought for two poly-
nomial equations of unequal degree to have a common solution. Bézout
was also the first one to give a satisfactory proof of the theorem, known
to Maclaurin and Cramer, that two algebraic curves of degrees m and n,
respectively, intersect in general in m � n points; hence, this is often
called Bézout’s theorem. Euler had contributed to the theory of elim-
ination as well, but less extensively than did Bézout.

Condorcet

Marie Jean Antoine Nicolas de Caritat Condorcet (1743 1794), a
physiocrat, a Philosophe, and an encyclopedist, belonged to the circle of
Voltaire and d’Alembert. The family of Condorcet included influential
members in the cavalry and the church; hence, his education presented
no problem. At Jesuit schools and later at the Collège de Navarre, he
made an enviable reputation in mathematics, but instead of becoming a
captain of cavalry, as his family had hoped, he lived the life of a scholar
in much the same sense as Voltaire, Diderot, and d’Alembert.
He was a capable mathematician who had published books on prob-

ability and the integral calculus, but he was also a restless visionary and
an idealist who was interested in anything related to the welfare of
mankind. He, like Voltaire, had a passionate hatred of injustice; although
he held the title of marquis, he saw so many inequalities in the ancien
régime that he wrote and worked toward reform. With implicit faith
in the perfectibility of mankind and believing that education would
eliminate vice, he argued for free public education, an admirably forward-
looking view, especially for those days. Condorcet is perhaps best
remembered mathematically as a pioneer in social mathematics, especially
through the application of probability and statistics to social problems.
When, for example, conservative elements (including the Faculty of
Medicine and the Faculty of Theology) attacked those who advocated
inoculation against smallpox, Condorcet (together with Voltaire and Daniel
Bernoulli) came to the defense of variolation.
With the opening of the revolution, Condorcet’s thoughts turned from

mathematics to administrative and political problems. The educational
system had collapsed under the effervescence of the revolution, and
Condorcet saw that this was the time to try to introduce the reforms he had
in mind. He presented his plan to the Legislative Assembly, of which he
became president, but agitation over other matters precluded serious
consideration of it. Condorcet published his scheme in 1792, but the
provision for free education became a target of attack. Not until years after
his death did France achieve Condorcet’s ideal of free public instruction.
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Condorcet, who had been sympathetic to the moderate Gironde wing of
the revolution, had had high hopes for the revolution—until extremists
seized control. He then boldly denounced the Septembrists and was
ordered arrested for his pains. He sought hiding, and during the long
months of concealment, he composed the celebrated Sketch for a His-
torical Picture of the Progress of the Human Mind, indicating nine steps
in the rise of mankind from a tribal stage to the founding of the French
Republic, with a prediction of the bright tenth stage that he believed
the revolution was about to usher in. Shortly after completing this work
(in 1794) and believing that his presence endangered the lives of his hosts,
he left his hiding place. Promptly recognized as an aristocrat, he was
arrested. The following morning, he was found dead on the floor of his
prison.
Condorcet, who is interesting because of the breadth of his interests,

had published De calcul integral as early as 1765 and Essai sur
l’application de l’analyse à la probabilité des décisions rendues à la
pluralité des voix in 1785. Condorcet was the only one of our six leading
mathematicians at the time of the revolution who can be said to have
played an anticipatory role in the events leading to 1789, and he was the
only one to lose his life through it.

Lagrange

Educated in Turin, as a young man Joseph-Louis Lagrange (1736
1813) became a professor of mathematics in the military academy of
Turin, but later he found successive royal patrons in Frederick the Great
of Prussia and Louis XVI of France.
If Carnot and Legendre were disciples of clear and rigorous thought,

Lagrange was the high priest of the cult. He had published his Mécanique
analytique (1788), as well as frequent papers on algebra, analysis, and
geometry, before the revolution. At the height of the Terror, Lagrange
had thought seriously of leaving France, but just at this critical juncture,
the École Normale and the École Polytechnique were established, and
Lagrange was invited to lecture on analysis. Lagrange seems to have
welcomed the opportunity to teach. The new curriculum called for new
lecture notes, and these Lagrange supplied for various levels. For stu-
dents at the École Normale in 1795, he prepared and delivered lectures
that today would be appropriate for a high school class in advanced
algebra or for a course in college algebra; the material in these notes
enjoyed a popularity that extended to America, where they were pub-
lished as Lectures on Elementary Mathematics. For scholars on the
higher level of the École Polytechnique, Lagrange lectured on analysis
and prepared what has ever since been regarded as a classic in mathe-
matics. The results, in his Théorie des fonctions analytiques, appeared in
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the same year as Carnot’s Réflexions, and together they make 1797 a
banner year for the rise of rigor.

Theory of Functions

Lagrange’s function theory, which developed some ideas that he had
presented in a paper about twenty-five years earlier, certainly was not
useful in the narrower sense, for the notation of the differential was far
more expeditious and suggestive than the Lagrangian “derived func-
tion,” from which our name “derivative” comes. The whole motive of
the work was not to try to make the calculus more utilitarian but to make
it more logically satisfying. The key idea is easy to describe. The
function f(x)5 1 / (12 x), when expanded by long division, yields the
infinite series 11 1x1 1x21 1x31 � � �1 1xn1 � � �. If the coefficient of xn
is multiplied by n!, Lagrange called the result the value of the nth
derived function of f(x) for the point x5 0, with suitable modification for
expansions of functions about other points. To this work by Lagrange,
we owe the commonly used notation for derivatives of various orders,
f u(x), f v(x), . . . , f (n)(x) . . . . Lagrange thought that through the use of this
device, he had eliminated the need for limits or infinitesimals, although
he continued to use the latter side by side with his derived functions. But,
alas, there are flaws in his fine new scheme. Not every function can be so
expanded, for there were lapses in Lagrange’s putative proof of the
expandability; moreover, the question of the convergence of the infinite
series brings back the need for the limit concept. Yet the work of
Lagrange during the revolution can be said to have had a broader
influence through the initiation of a new subject that has ever since been
a center of attention in mathematics—the theory of functions of a real
variable.

Calculus of Variations

Lagrange’s first and perhaps his greatest contribution is the calculus of
variations. This was a new branch of mathematics, the name of which
originated from notations used by Lagrange from about 1760 on. In its
simplest form, the subject seeks to determine a functional relationship
y5 f(x) such that an integral

Ð b
agðx; yÞdx shall be a maximum or a

minimum. Problems of isoperimetry or of quickest descent are special
cases in the calculus of variations. In 1755, Lagrange had written to
Euler about the general methods that he had developed for handling
problems of this type, and Euler generously held up publication of
somewhat related work of his own, in order that the younger man should
receive full credit for the newer methods that Euler regarded as superior.

L a grange 431



From the time of his first publications in the Miscellanea of the Turin
Academy in 1759 1761, the reputation of Lagrange was established.
When, in 1766, Euler and d’Alembert advised Frederick the Great on
Euler’s successor at the Berlin Academy, they both urged the appoint-
ment of Lagrange. Frederick then presumptuously wrote to Lagrange
that it was necessary that the greatest geometer of Europe should live
near the greatest of kings. Lagrange assented; he remained in Berlin for
twenty years, leaving only after Frederick’s death, three years before the
start of the French Revolution.

Algebra

It was during his days at the Berlin Academy that Lagrange published
important memoirs on mechanics, the three-body problem, his early
ideas on derived functions, and influential work on the theory of equa-
tions. In 1767, he published a memoir on the approximation of roots of
polynomial equations by means of continued fractions; in another paper
in 1770, he considered the solvability of equations in terms of permu-
tations on their roots. The latter work would lead to the enormously
successful theory of groups and to the proofs by Évariste Galois and
Niels Henrik Abel of the insolvability, in the usual terms, of equations of
a degree greater than four. Today the name of Lagrange is attached to
what is perhaps the most important theorem of group theory: if o is the
order of a subgroup g of a group G of order O, then o is a factor of O.
Finding that a resolvent of a quintic equation, far from being of a degree
less than five, as one should have expected, was a sextic, Lagrange
conjectured that polynomial equations above the fourth degree are not
solvable in the usual sense.

Lagrange Multipliers

Ever on the lookout for generality and elegance in the treatment
of problems, Lagrange was responsible for the method of variation of
parameters in the solution of nonhomogeneous linear differential equa-
tions. That is, if c1u11 c2u2 is a general solution of yv1 a1yu1 a2y5 0
(where u1 and u2 are functions of x), he replaced the parameters c1 and c2
with undetermined variables v1 and v2 (functions of x) and determined the
latter so that v1u11 v2u2, should be a solution of yv1 a1yu1 a2y5 f(x).
In the determination of maxima and minima of a function such as f(x, y,
z, w) subject to constraints g(x, y, z, w)5 0 and h(x, y, z, w)5 0, he
suggested the use of Lagrange multipliers to provide an elegant and
symmetric algorithm. Under this method, one introduces two unde-
termined constants λ and μ; forms the function F5 f1λg1μh from the
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six equations Fx5 0, Fy5 0, FZ5 0, Fw5 0, g5 0, and h5 0; eliminates
the multipliers λ and μ; and solves for the desired values of x, y, z, and w.

The Theory of Numbers

Like many leading modern mathematicians, Lagrange had a deep
interest in the theory of numbers. Although he did not use the language
of congruences, Lagrange showed, in 1768, the equivalent of the state-
ment that for a prime modulus p the congruence f(x)� 0 can have not
more than n distinct solutions, where n is the degree (except for the
trivial case in which all coefficients of f(x) are divisible by p). Two years
later, he published a demonstration of the theorem, for which Fermat
claimed to have had a proof, that every positive integer is the sum of at
most four perfect squares; hence, this theorem is often known as
Lagrange’s four-square theorem. At the same time, he also gave the first
proof of a result known as Wilson’s theorem, which had appeared in
Waring’s Meditationes Algebraicae of the same year—for any prime p,
the integer (p2 1)!1 1 is divisible by p.
Lagrange also contributed to the theory of probability, but in this

branch, he took second place to Laplace, who was younger.

Monge

Gaspard Monge (1746 1818) was the son of a poor tradesman. Through
the influence of a lieutenant colonel who had been struck by the boy’s
ability, however, Monge was permitted to attend some courses at the
École Militaire de Mezières; he so impressed those in authority that he
soon became a member of the teaching staff—the only one of our group
of six who was primarily a teacher, perhaps one of the most influential
mathematics teachers since the days of Euclid.
Monge contributed numerous mathematical articles to theMémoires of

the Académie des Sciences. Inasmuch as he succeeded Bézout as
examiner for the School of the Navy, Monge was more urged by those in
authority to do what Bézout had done—write a Cours de mathématiques
for the use of candidates. Monge, however, was more interested in teaching
and research, and he completed only one volume of the project: Traité
elementaire de statique (Paris, 1788). He was attracted not only to both
pure and applied mathematics but also to physics and chemistry. In
particular, he participated with Lavoisier in experiments, including those
on the composition of water, which led to the chemical revolution of
1789. At the time of the revolution, Monge had become one of the best
known of French scientists, but his geometry had not been properly
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appreciated. His chief work, the Géométrie descriptive, had not been
published because his superiors felt that it was in the interests of national
defense to keep it confidential.
Monge made efforts after the crisis of foreign invasion had subsided

to establish a school for the preparation of engineers. As Condorcet had
been the guiding spirit in the Committee on Instruction, so Monge was
the leading advocate of institutions of higher learning. He was an active
member of the Commission of Public Works, charged with the estab-
lishment of an appropriate institution in 1794. The school was the
famous École Polytechnique, which took form so rapidly that students
were admitted in the following year. At all stages of its creation, Monge’s
role was essential, both as administrator and as teacher. It is gratifying to
note that the two functions are not incompatible, for Monge was eminently
successful in both. He was even able to overcome his reluctance about
writing textbooks, for in the reform of the mathematics curriculum, the
need for suitable books was acute.

Descriptive and Analytic Geometry

Monge found himself lecturing on two subjects that were both essen-
tially new to a university curriculum. The first of these was known as
stereotomy, now more commonly called descriptive geometry. Monge
gave a concentrated course in the subject to 400 students, and a manu-
script outline of the syllabus survives. This shows that the course was of
wider scope, both on the pure and the applied side, than is now usual.
Besides the study of shadow, perspective, and topography, attention was
paid to the properties of surfaces, including normal lines and tangent
planes, and to the theory of machines. Among the problems set by
Monge, for example, was that of determining the curve of intersection of
two surfaces, each of which is generated by a line that moves so as to
intersect three skew lines in space. Another was the determination of a
point in space equidistant from four lines.
Such problems point up a change in mathematical education that was

sponsored primarily by the French Revolution. As long ago as the
Golden Age of Greece, Plato had pointed out that the state of solid
geometry was deplorable, and the medieval decline in mathematics had
hit solid geometry harder than it had plane geometry. One who could not
cross the pons asinorum could scarcely be expected to reach the study of
three dimensions. Descartes and Fermat had been well aware of the
fundamental principle of solid analytic geometry that every equation in
three unknowns represents a surface, and conversely, but they had not
taken steps to develop it. Whereas the seventeenth century was the century
of curves—the cycloid; the limaçon; the catenary; the lemniscate; the
equiangular spiral; the hyperbolas, parabolas, and spirals of Fermat;
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the pearls of Sluse; and many others—the eighteenth was the century that
really began the study of surfaces. It was Euler who called attention to the
quadric surfaces as a family analogous to the conics, and his Introductio,
in a sense, established the subject of solid analytic geometry (although
Clairaut was a precursor). Lagrange, perhaps influenced by his calculus of
variations, manifested interest in problems in three dimensions and
emphasized their analytic solution. He was the first, for example, to give
the formula

D5
ap1 bq1 cr 2 d

a2 1 b2 1 c2
p

for the distance D from a point (p, q, r) to the plane ax1 by1 cz5 d.
But Lagrange did not have a geometer’s heart, nor did he have enthu-
siastic disciples. Monge, by contrast, was a specialist in geometry as well
as a superior teacher and a curriculum builder. Consequently, the rise of
solid geometry was due in part to the mathematical and revolutionary
activities of Gaspard Monge. Had he not been politically active, the
École Polytechnique might never have come into being; had he not been
an inspiring teacher, the revival of geometry in three dimensions might
not have taken place.
The École Polytechnique was not the only school created at the time.

The École Normale had been hastily opened to some 1,400 or 1,500
students, less carefully selected than those at the École Polytechnique,
and it boasted a mathematical faculty of high caliber, Monge, Lagrange,
Legendre, and Laplace being among the instructors. Due to adminis-
trative difficulties, however the school was short-lived. It was the lec-
tures of Monge at the École Normale in 1794 1795 that were finally
published as his Géométrie descriptive.
The idea behind the new descriptive geometry, or method of double

orthographic projection, is essentially very easy to understand. One simply
takes two planes at right angles to each other, one vertical, the other
horizontal, and then projects the figure to be represented orthogonally on
these planes, the projections of all edges and vertices being clearly indi-
cated. The projection on the vertical plane is known as the “elevation,” the
other projection is called the “plan.” Finally, the vertical plane is folded
or rotated about the line of intersection of the two planes until it also is
horizontal. The elevation and the plan thus provide one with a diagram in
two dimensions of the three-dimensional object. This simple procedure,
now so common in mechanical drawing, almost produced a revolution in
military engineering design in the days of Monge.
Descriptive geometry was not Monge’s only contribution to three-

dimensional mathematics, for at the École Polytechnique he also taught
a course in “application of analysis to geometry.” Just as the abbreviated
title “analytic geometry” had not yet come into general use, there was also
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no “differential geometry,” but the course given by Monge was essentially
an introduction to this field. Here, too, no textbook was available, so
Monge found himself compelled to compose and print his Feuilles
d’analyse (1795) for the use of students. Here the analytic geometry of
three dimensions really came into its own; it was this course, required
of all students at the École Polytechnique, that formed the prototype of
the present program in solid analytic geometry. Students, however,
evidently found the course difficult, for the lectures skimmed very
rapidly over the elementary forms of the line and the plane, the bulk
of the material being on the applications of the calculus to the study of
curves and surfaces in three dimensions. Monge was ever reluctant to
write textbooks on the elementary level or to organize material that was
not primarily his own. Yet he found collaborators who were ready to
edit material that he included in his course, and so, in 1802, there
appeared in the Journal de l’École Polytechnique an extensive memoir
by Monge and Jean-Nicolas-Pierre Hachette (1769 1834) on “Appli-
cation d’algèbre à la géométrie.” Its first theorem is typical of a more
elementary approach to the subject. It is the well-known eighteenth-
century generalization of the Pythagorean theorem: the sum of the
squares of the projections of a plane figure on three mutually perpen-
dicular planes is equal to the square of the area of the figure. Monge and
Hachette proved the theorem just as in modern courses; in fact, the
whole volume could serve without difficulty as a text in the twenty-first
century. Equations for transformations of axes, the usual treatment of
lines and planes, and the determination of the principal planes of a
quadric are treated fully. It is in the analytic geometry of Monge that we
first find a systematic study of the straight line in three dimensions.
Most of Monge’s results on the analytic geometry of the line and the

plane were given in memoirs dating from 1771. In his systematic
arrangement of the material in the Feuilles d’analyse of 1795 and
especially in the 1802 memoir with Hachette, we find most of the solid
analytic geometry and the elementary differential geometry that are
included in undergraduate college textbooks. One thing that might
be missed is the explicit use of determinants, for this was the work of the
nineteenth century. Nevertheless, we might, as in the case of Lagrange,
look on Monge’s use of symmetric notations as an anticipation of
determinants but without the now customary arrangement (due to Arthur
Cayley).
Among the new results given by Monge are two theorems that bear his

name: (1) The planes drawn through the midpoints of the edges of a
tetrahedron perpendicular to the opposite edges meet at a pointM (which
has since been called the “Monge point” of the tetrahedron); M turns out
to be the midpoint of the segment joining the centroid and the cir-
cumcenter. (2) The locus of the vertices of the trirectangular angle whose
faces are tangent to a given quadric surface is a sphere, known as the
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“Monge sphere,” or director sphere, of the quadric. The equivalent of
this locus in two dimensions leads to what is called the “Monge circle”
of a conic, even though the locus had been given a century earlier in
synthetic form by Lahire. In 1809, Monge proved in various ways that
the centroid of a tetrahedron is the point of concurrency of the lines
joining the midpoints of opposite edges; he also gave the analogue of the
Euler line in three-space, showing that for the orthocentric tetrahedron,
the centroid is twice as far from the orthocenter as from the cir-
cumcenter. Lagrange was so impressed by the work of Monge that he is
said to have exclaimed, “With his application of analysis to geometry,
this devil of a man will make himself immortal.”

Textbooks

Monge was a capable administrator, an imaginative research mathe-
matician, and an inspiring teacher. The pupils of Monge let loose a
spate of elementary textbooks on analytic geometry such as has never
been equaled—not even in our own day. If we judge from the sudden
appearance of so many analytic geometries beginning in 1798, a revo-
lution had taken place in mathematical instruction. Analytic geometry,
which for a century and more had been overshadowed by the calculus,
suddenly achieved a recognized place in the schools. This “analytical
revolution” can be credited primarily to Monge. Between the years 1798
and 1802, four elementary analytic geometries appeared from the
pens of Sylvestre François Lacroix (1765 1843), Jean-Baptiste Biot
(1774 1862), Louis Puissant (1769 1843), and F. L. Lefrançois, all
directly inspired by the lectures at the École Polytechnique. Poly-
technicians were responsible for as many books again in the next decade.
Most of these were eminently successful texts, appearing in numerous
editions. The volume by Biot achieved a fifth edition in less than a dozen
years; that by Lacroix, a student and colleague of Monge’s, appeared in
twenty-five editions within ninety-nine years! Perhaps we should speak
instead of the “textbook revolution,” for Lacroix’s other textbooks were
almost as spectacularly successful, his Arithmetic and his Geometry
appearing in 1848 in the twentieth and sixteenth editions, respectively. The
twentieth edition of his Algebra was published in 1859, and the ninth
edition of his Calculus in 1881.

Lacroix on Analytic Geometry

Monge is known to most readers as a founder of modern synthetic geo-
metry. But there is an aspect of Monge’s work that is less well known.
Virtually without exception, the textbook writers in analytic geometry
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ascribe the inspiration for their work to Monge, although Lagrange is
occasionally mentioned as well. Lacroix most clearly expressed the point
of view as follows:

In carefully avoiding all geometric constructions, I would have the reader

realize that there exists a way of looking at geometry which one might

call analytic geometry, and which consists in deducing the properties of

extension from the smallest possible number of principles by purely

analytic methods, as Lagrange has done in his mechanics with regard to

the properties of equilibrium and movement.

Lacroix held that algebra and geometry “should be treated separately,
as far apart as they can be; and that the results in each should serve for
mutual clarification, corresponding, so to speak, to the text of a book and
its translation.” Lacroix believed that Monge “was the first one to think
of presenting in this form the application of algebra to geometry.”
Lacroix admitted that his own section on solid analytic geometry was
almost entirely the work of Monge.
The phrase “analytic geometry” seems to have first been used as the

title of a textbook by Lefrançois in the second edition of his Essais de
géométrie analytiques of 1804 and by Biot in an 1805 edition of his
Essais de géométrie analytique, the latter of which, translated into
English as well as other languages, was used for many years at West
Point.

Carnot

Monge was an outstanding figure of the revolution, yet the mathemati-
cian whose name was on the tongue of every Frenchman during the
revolution was not Monge but Carnot. Lazare Carnot (1753 1823), was
sufficiently above bourgeois standing to be permitted to attend the École
Militaire at Mezières, where Monge was one of his teachers. On gra-
duation, Carnot entered the army, although, lacking a title, he could not,
under the ancien régime, aspire to a rank above that of captain. The
proverb arose at examination time that “the competent were not noble
and the noble were not competent.”
It was Lazare Carnot who, when the success of the revolution was

threatened by confusion within and invasion from without, organized
the armies and led them to victory. As ardent a republican as Monge,
Carnot nevertheless shunned all political cliques. Having a high sense of
intellectual honesty, he tried to be impartial in reaching decisions. After
investigation, he absolved the royalists of the infamous charge that they
had mixed powdered glass in flour intended for the revolutionary armies,
but he felt bound by conscience to vote for the death of the king.
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Reasoned impartiality, however, is difficult to maintain in times of crisis,
and Robespierre, whom Carnot had antagonized, threatened that Carnot
would lose his head at the first military disaster. But Carnot had won
the admiration of his countrymen for his remarkable military successes,
and when a voice in the Convention proposed his arrest, the deputies
spontaneously rose to his defense, acclaiming him the “Organizer of
Victory.” It was instead the head of Robespierre that fell, and Carnot
survived to take an active part in the formation of the École Poly-
technique. Carnot was greatly interested in education at all levels, even
though he seems never to have taught a class. His son Hippolyte served
as minister of public instruction in 1848. (Another son, Sadi, became a
celebrated physicist, and a grandson, also named Sadi, became the fourth
president of the Third French Republic.)
Carnot led a charmed political life until 1797. He had gone from the

National Assembly to the Legislative Assembly, to the National Con-
vention, to the powerful Committee of Public Safety, to the Council of
Five Hundred and the Directorate. In 1797, however, he refused to join
a partisan coup d’état and was promptly ordered deported. His name was
stricken from the roles of the Institut, and his chair of geometry
was voted unanimously to General Bonaparte. Even Monge, a fellow
republican and mathematician, approved the intellectual outrage. Monge
seems to have been mesmerized by Napoleon. Monge followed his idol
through thick and thin, his devotion being such that he literally became
sick every time Napoleon lost a battle. This is in contrast to Carnot, who
was responsible for Bonaparte’s rise to power through his appointment
to the Italian campaign, but who did not hesitate to oppose him.
Mathematically, Carnot’s proscription turned out to be a good thing,

for it gave him an opportunity, while in exile, to complete a work that
had been on his mind for some time. By 1786, he had published a second
edition of his Essai sur les machines en general, as well as some verses
and a work on fortifications. But the work that Carnot had been planning
during his politically busy days was, mirabile dictu, the Réflexions sur la
métaphysique du calcul infinitésimal, which appeared in 1797. This was
not a work on applied mathematics; it came closer to philosophy than to
physics, and in this respect, it adumbrated the period of rigor and con-
cern for foundations that was so typical of the next century.

Metaphysics of the Calculus and Geometry

During the second half of the eighteenth century, there was enthusiasm for
the results of the calculus but confusion about its basic principles. Not one
of the usual approaches, whether by the fluxions of Newton, the differ-
entials of Leibniz, or the limits of d’Alembert, seemed to be satisfying.
Hence, Carnot, considering the conflicting interpretations, sought to show
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“in what the veritable spirit” of the new analysis consisted. In his selection
of the unifying principle, however, he made a most deplorable choice. He
concluded that “the true metaphysical principles” are “the principles of
the compensation of errors.” Infinitesimals, he argued, are “quantités
inappréciables,” which, like imaginary numbers, are introduced only to
facilitate the computation and are eliminated in reaching the final result.
“Imperfect equations” are made “perfectly exact,” in the calculus, by
eliminating the quantities, such as infinitesimals of higher order, the
presence of which occasioned the errors. To the objection that vanishing
quantities either are or are not zero, Carnot responded that “what are
called infinitely small quantities are not simply any null quantities at all,
but rather null quantities assigned by a law of continuity which determines
the relationship”—an argument that is strongly reminiscent of Leibniz.
The diverse approaches to the calculus, he claimed, were nothing but
simplifications of the ancient method of exhaustion, reducing this in
various ways to a convenient algorithm. Carnot’s Réflexions enjoyed a
wide popularity, appearing in many languages and editions. Unsuccessful
though its synthesis of views was, it undoubtedly helped make mathe-
maticians dissatisfied with the “abominable little zeros” of the eighteenth
century and helped lead toward the age of rigor in the nineteenth. Carnot’s
reputation today, however, depends primarily on other works.
In 1801, he published De la correlation des figures de géometrie, again

a work characterized by its high degree of generality. In it, Carnot sought
to establish for pure geometry a universality comparable to that enjoyed
by analytic geometry. He showed that several of Euclid’s theorems can
be regarded as specific instances of a more inclusive theorem for which
a single demonstration suffices. We find in the Elements, for instance,
the theorem that if two chords AD and BC in a circle intersect in a point
K, the product of AK by KD is equal to the product of BK by KC
(Fig. 18.1). Later, we run across the theorem that if KDA and KCB are
secants to a circle, the product of AK by KD is equal to the product of BK
by KC. These two theorems Carnot would regard merely as special cases,
correlated through the use of negative quantities, of a general property of
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lines and circles. If we note that for the chords CK5CB2BK, whereas
for the secants CK5BK2CB, the relationship AK �KD5CK �KB can
be carried over from the one case to the other simply by a change of sign.
And tangency is only another case in which B and C, say, coincide, so
that BC5 0. Although the graphical representation of complex numbers
had not yet come into general use, Carnot did not hesitate to also suggest
a correlation of figures through imaginary numbers. He cited as an
example the fact that the circle y25 a22 x2 is related to the hyperbola
y25 x22 a2 through the identity x2 2 a2 5 ð 2 1

p Þ2ða2 2 x2Þ.

Géométrie de Position

Carnot greatly expanded his correlation of figures in his Géométrie de
position in 1803, a book that placed him beside Monge as a founder of
modern pure geometry. The development of mathematics has been char-
acterized by a striving for ever higher and higher degrees of generality, and
it is this quality that gives significance to the work of Carnot. His penchant
for generalization led him to beautiful analogues of well-known theorems
of plane geometry. The equivalent of the familiar law of cosines in tri-
gonometry, a25 b21 c22 2bc cos A, had been known at least as far back
as the days of Euclid; Carnot extended this ancient theorem to an
equivalent form, a25 b21 c21 d22 2cd cos B2 2bd cos C2 2bc cos D,
for a tetrahedron, where a, b, c, and d are the areas of the four faces and B,
C, and D are the angles between the faces of areas c and d, b and d, and b
and c, respectively. The passion for generality that is found in his work has
been the driving force of modern mathematics.
The Géométrie de position is a classic in pure geometry, but it also

contains significant contributions to analysis. Although analytic geo-
metry had completely overshadowed synthetic geometry for more than a
century, its supremacy had been won in terms of two coordinate systems,
rectangular and polar. In the rectangular system, the coordinates of a
point P in a plane are the distances of P from two mutually perpendicular
lines or axes; in the polar system, one of the coordinates of P is the
distance of P from a fixed point O (the pole), and the other is the angle
that line OP makes with a fixed line (polar axis) through O. Carnot
saw that coordinate systems could be modified in many ways. For
example, the coordinates of P may be the distances of P from two fixed
points O and Q, or one coordinate may be the distance OP and the other
the area of the triangle OPQ. In such generalizations, Carnot simply
rediscovered and extended a suggestion that Newton had made but
that had been generally overlooked; however, Carnot’s thought char-
acteristically carried him further. In all of the cases so far considered, the
equation of a curve depends on the particular coordinate frame of
reference that is used, yet the properties of a curve are not bound to any
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one choice of pole or axes. It should be possible, Carnot reasoned, to find
coordinates that do not “depend on any particular hypothesis or on any
basis of comparison taken in absolute space.” Thus, he initiated the
search for what are now known as intrinsic coordinates. One of these
he found in the familiar radius of curvature of a curve at a point. For the
other, he introduced a quantity to which he gave no name but that has
since come to be called aberrancy, or angle of deviation. This is an
extension of the ideas of tangency and curvature. The tangent to a curve
at a point P is the limiting position of a secant line PQ as Q approaches
P along the curve; the circle of curvature is the limiting position of
the circle through the points P, Q, and R as Q and R approach P along the
curve. If, now, one passes a parabola through points P, Q, R, and S and
finds the limiting position of this parabola as the points Q, R, and S
approach P along the curve, the aberrancy at P is the angle between the
axis of this parabola and the normal to the curve. Aberrancy is related to
the third derivative of a function, in much the same sense that slope and
curvature are related to the first and second derivatives, respectively.

Transversals

Carnot’s name is known among mathematicians for a theorem that bears his
name, which appeared in 1806 in an Essai sur la théorie des transversales.
This, again, is an extension of an ancient result. Menelaus of Alexandria
had shown that if a straight line intersects the sides AB, BC, and CA of a
triangle (or these sides extended) in points P, Q, and R, respectively, and if
au5AP, bu5BQ, cu5CR and av5AR, bv5BP, cv5CQ, then
aubucu5 avbvcv (Fig. 18.2). Carnot showed that if the straight line in the
theorem of Menelaus is replaced by a curve of order n that intersects AB in
the (real or imaginary) points P1, P2, P3, . . . , Pn, BC in the points Q1, Q2,
Q3, . . . , Qn, and CA in the points R1, R2, R3, . . . , Rn, then the theorem of
Menelaus holds if one takes au as the product of the n distances AP1, AP2,
AP3, . . . , APn, with similar definitions for bu and cu and analogous definitions
for av, bv, and cv (Fig. 18.3). The theory of transversals is only a small part
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Q
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of a work that contains other interesting generalizations. From the familiar
formula of Heron of Alexandria for the area of a triangle in terms of its
three sides, Carnot went on to a corresponding result for the volume of the
tetrahedron in terms of its six edges; finally, he derived a formula, con-
sisting of 130 terms, for finding the tenth of the ten segments joining five
points at random in space if the other nine are known.

Laplace

Pierre Simon Laplace (1749 1827) was also born without wealth; like
Monge, he found influential friends who saw that he obtained an edu-
cation, again in a military academy. Laplace took virtually no part in
revolutionary activities. He seems to have had a strong sense of intel-
lectual honesty in science, but in politics he was without convictions.
This does not mean that he was timid, for he seems to have associated
freely with those of his scientific colleagues who were suspect during the
period of crisis. It has been said that he, too, would have been in danger
of the guillotine except for his contributions to science, but this state-
ment seems to be questionable, because he often appeared to be a brazen
opportunist. His publications were primarily on celestial mechanics, in
which he stands preeminent in the period since Newton.

Probability

The theory of probability owes more to Laplace than to any other math-
ematician. From 1774 on, he wrote many memoirs on the subject, the
results of which he embodied in the classic Théorie analytique des
probabilités of 1812. He considered the theory from all aspects and at all
levels, and his Essai philosophique des probabilité of 1814 is an intro-
ductory account for the general reader. Laplace wrote that “at the bottom
the theory of probabilities is only common sense expressed in numbers,”
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but his Théorie analytique shows the hand of a master analyst who knows
his advanced calculus. It is replete with integrals involving beta and
gamma functions, and Laplace was among the earliest to show thatÐN

2Ne
2 x2dx, the area under the probability curve is π

p
. Although the

method by which he achieved this result was somewhat artificial, it is not
far removed from the modern device of transformingðN

0

e�x2dx U
ðN

0

e�y2dy5
ðN

0

ðN

0

e�ðx2þy2Þdxdy

to polar coordinates as ðπ=2

0

ðN

0

re�r2drdθ;

which is easily evaluated and leads toðN

0

e�x2dx5
π

p
2

:

Among the many things to which Laplace called attention in his Théorie
analytiquewas the calculation of n throughBuffon’s needle problem,which
had been all but forgotten for thirty-five years. This is sometimes known as
the Buffon-Laplace needle problem, inasmuch as Laplace extended the
original problem to a crisscross of two mutually perpendicular sets of
equidistant parallel lines. If the distances are a and b, the probability that a
needle of length l (less than a and b) will fall on one of the lines is

p5
2lða1 bÞ2 l2

πab
:

Laplace also rescued from oblivion the work of the Reverend Thomas
Bayes (1761) on inverse probability. Furthermore, we find in Laplace’s
book the theory of least squares, invented by Legendre, together with a
formal proof that Legendre had failed to give. The Théorie analytique
also contains the Laplace transform, which is so useful in differential
equations. If f ðxÞ5 ÐN

0
e�xtgðtÞdt; the function f(x) is said to be the

Laplace transform of the function g(x).

Celestial Mechanics and Operators

The works of Laplace involve a considerable application of higher mathe-
matical analysis. Typical was his study of the conditions for the equilibrium
of a rotating fluid mass, a subject that he had considered in connection with
the nebular hypothesis of the origin of the solar system. In 1796, the
hypothesis had been presented in a popular form inExposition du systèmedu
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monde, a book that bears the same relation to the Mécanique céleste
(1799 1825, 5 vols.) as does the Essai philosophique des probabilités to
theThéorie analytique. According to the theory of Laplace, the solar system
evolved from an incandescent gas rotating about an axis. As it cooled, the
gas contracted, causing ever more rapid rotation, according to the con-
servation of angular momentum, until successive rings broke off from
the outer edge to condense and form planets. The rotating sun constitutes the
remaining central core of the nebula. The idea behind this hypothesis was
not entirely original with Laplace, for it had been proposed in qualitative
skeletal form by Thomas Wright and Immanuel Kant, but the quantitative
fleshing out of the theory forms part of the multivolumeMécanique céleste.
It is also in this classic that we find, in connection with the attraction of a
spheroid on a particle, the Laplacian use of the idea of potential and the
Laplace equation. In a highly technical paper of 1782 on “Théorie des
attractions des sphéroı̈des et de la figure des planètes,” also included in the
Mécanique céleste, Laplace developed the veryuseful concept of potential—
a function whose directional derivative at every point is equal to the com-
ponent of the field intensity in the given direction. Also of fundamental
importance in astronomy and mathematical physics is the so-called Lapla-
cian of a function u5 f(x, y, z). This is simply the sum of the second-order
partial derivatives of u, namely, uxx1 uvv1 uzz, often abbreviated r2u
(“del-square”), where r2 is called Laplace’s operator. The function r2u is
independent of the particular coordinate system that is used; under certain
conditions, gravitational, electrical, and other potentials satisfy the Laplace
equation uxx1 uyy1 uzz5 0. Euler had run across this equation somewhat
incidentally in 1752 in studies on hydrodynamics, but Laplace made it a
standard part of mathematical physics.
The publication of the Mécanique céleste of Laplace is commonly

regarded as marking the culmination of the Newtonian view of gravitation.
Accounting for all of the perturbations in the solar system, Laplace showed
the motions to be secular, so that the system could be regarded as stable.
There no longer appeared to be any need for occasional divine intervention.
Napoleon is said to have commented to Laplace on the latter’s failure to
mention God in his monumental work, whereupon Laplace is reported
to have replied, “I have no need for that hypothesis.” Lagrange, being told
about this, is quoted as saying, “Ah, but it is a beautiful hypothesis.”
Laplace completed not only the gravitational portion of Newton’s Prin-

cipiabut also somepoints in thephysics.Newtonhad computeda velocity of
soundon purely theoretical grounds, only tofind that the calculation resulted
in too small a value for the speed. In 1816, Laplace was the first one to point
out that the lack of agreement between calculated and observed speeds was
due to the fact that the computations in the Principia were based on the
assumption of isothermal compressions and expansions, whereas in reality
the oscillations for sound are so rapid that compressions are adiabatic,
thereby increasing the elasticity of the air and the speed of sound.
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The minds of Laplace and Lagrange, the two leading mathematicians
of the revolution, were in many ways direct opposites. For Laplace, nature
was the essence, and mathematics was only a kit of tools that he handled
with extraordinary skill; for Lagrange, mathematics was a sublime art
that was its own excuse for being. The mathematics of the Mécanique
céleste has often been described as difficult, but no one calls it beautiful;
the Mécanique analytique, on the other hand, has been admired as “a
scientific poem” in the perfection and grandeur of its structure.

Legendre

Adrien Marie Legendre (1752 1833) experienced no difficulty in
securing an education, but even he was not a university teacher in the
strict sense, although for five years he taught in the École Militaire in
Paris. Like Carnot, he felt the need for greater rigor in mathematics.

Geometry

The lack of rigor in geometry as portrayed by Bézout’s Cours de
mathématiques prompted Legendre, who was, after all, primarily an
analyst, to revive some of the intellectual quality of Euclid. The result was
the Éléments de géométrie, which appeared in 1794, the year of the
Terror. Here, too, we see the very antithesis of what is generally regarded
as practical. As Legendre said in the preface, his object is to present a
geometry that shall satisfy l’esprit. The result of Legendre’s efforts was
a remarkably successful textbook, for twenty editions appeared within the
author’s lifetime.
We are prone to forget that during much of the nineteenth century,

it was French mathematics that dominated American teaching, and this
was primarily through the work of the men whom we have been con-
sidering. Textbooks by Lacroix, Biot, and Lagrange were published in
America for use in the schools, but perhaps the most influential of all
was the geometry of Legendre. Davies’ Legendre became almost a
synonym for geometry in America.

Elliptic Integrals

The success of Legendre’s Éléments should not lead one to think of the
author as a geometer. The fields in which Legendre made significant
advances were numerous but chiefly nongeometric—differential equations,
calculus, theory of functions, theory of numbers, and applied mathematics.
He composed a three-volume treatise, Exercices du calcul intégral
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(1811 1819), that rivaled Euler’s for comprehensiveness and authorita-
tiveness; later, he expanded aspects of this in another three volumes that
comprised the Traité des fonctions elliptiques et des intégrales eulériennes
(1825 1832). In these important treatises, as well as in earlier memoirs,
Legendre introduced the name “Eulerian integrals” for the beta and gamma
functions. More important, he provided some basic tools of analysis, so
helpful to mathematical physicists, that bear his name. Among these are the
Legendre functions, which are solutions of the Legendre differential equa-
tion (12 x2)yv2 2xyu1 n(n1 1)y5 0. Polynomial solutions for positive
integral values of n are known as Legendre polynomials.
Legendre spent much effort in reducing elliptic integrals (quadratures

of the form
Ð
R(x, s)dx, where R is a rational function and s is the square

root of a polynomial of the third or fourth degree) to three standard
forms that have since borne his name. The elliptic integrals of the first
and second kind in Legendre’s form are

FðK;φÞ5
ðφ
0

dφ
12K2sin2ϕ

p
and

EðK;φÞ5
ðφ
0

12K2sin2φ
p

dφ;

respectively, where K 2, 1; those of the third form are somewhat more
complicated. Tables of these integrals, tabulated for given K and varying
values of φ, can be found in most comprehensive handbooks, for the
integrals arise in many problems. Legendre’s elliptic integral of the first
kind arises naturally in solving the differential equation for the motion of
a simple pendulum; that of the second kind appears in seeking the length
of arc of an ellipse. Elliptic integrals also arose in Legendre’s earlier
memoirs, especially in one of 1785 on the gravitational attraction of an
ellipsoid, a problem in connection with which there appeared what are
known as zonal harmonics or “Legendre’s coefficients”—functions used
effectively by Laplace in potential theory.
Legendre was an important figure in geodesy, and in this connection, he

developed the statistical method of least squares. A simple case of the
method of least squares may be described as follows. If observations have
led to three or more approximate equations in two variables, say, a1x 1
b1y1 c15 0, a2x1 b2y1 c25 0, and a3x1 b3y1 c35 0, one adopts as the
“best” values of x and y the solution of the two simultaneous equations

ða2

1
1 a2

2
1 a2

3
Þx1 ða1b1 1 a2b2 1 a3b3Þy1 ða1c1 1 a2c2 1 a3c3Þ 5 0

ða1b1 1 a2b2 1 a3b3Þx1 ðb2

1
1 b2

2
1 b2

3
Þy1 ðb1c1 1 b2c2 1 b3c3Þ5 0:
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The Theory of Numbers

The Memoirs of the Institut also contain one of Legendre’s attempts to
prove the parallel postulate, but of all of his contributions to mathe-
matics, Legendre was most pleased with the works on elliptic integrals
and the theory of numbers. He published a two-volume Essai sur la
théorie des nombres (1797 1798), the first treatise to be devoted
exclusively to the subject. The famous “last theorem of Fermat” attracted
him, and in about 1825, he gave a proof of its insolvability for n5 5.
Almost equally famous is a theorem on congruences that Legendre
published in the treatise of 1797 1798. If, given integers p and q, there
exists an integer x such that x22 q is divisible by p, then q is known as a
quadratic residue of p; we now write (following a notation introduced by
Carl Friedrich Gauss) x2 � q (mod p), reading this as “x2 is congruent to
q modulo p.”
Legendre rediscovered a beautiful theorem, given earlier in less modern

form by Euler, known as the law of quadratic reciprocity: if p and q
are odd primes, then the congruences x2 � q (mod p) and x2 � p (mod q)
are either both solvable or both unsolvable, unless both p and q are of the
form 4n1 3, in which case one is solvable and the other is not. For
example, x2 � 13 (mod 17) has the solution x5 8, and x2 � 17 (mod 13)
has the solution x5 11, and it can be shown that x2 � 5 (mod 13) and x2 �
13 (mod 5) have no solution. On the other hand, x2 � 19 (mod 11) is not
solvable, whereas x2 � 11 (mod 19) has the solution x5 7. The theorem is
here stated in the customary modern form. In the exposition of Legendre,
it becomes

p

q

� �
q

p

� �
5 ð2 1Þðp 1Þðq 1Þ=4;

where the Legendre symbol (p/q) denotes 1 or 21, according as x2 � p
(mod q) is, or is not, solvable for x.
Ever since the days of Euclid, it had been known that the number of

primes is infinite, yet it is obvious that the density of prime numbers
decreases as we move on to ever larger integers. Hence, it became one
of the most famous problems to describe the distribution of primes
among the natural numbers. Mathematicians were looking for a rule,
known as the prime number theorem, that should express the number
of primes less than a given integer n as a function of n, usually written
π(n). In his well-known treatise of 1797 1798, Legendre conjectured, on
the basis of a count of a large number of primes, that π(n) approaches
n / (ln n2 1.08366) as n increases indefinitely. This conjecture comes
close to the truth, but a precise statement of the theorem that
πðnÞ-n = ln n, suggested several times during the following century, was
not proved until 1896. Legendre showed that there is no rational algebraic
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function that always gives primes, but he noted that n21 n1 17 is prime
for all values of n from 1 to 16 and 2n21 29 is prime for values of n
from 1 to 28. (Earlier, Euler had shown that n22 n1 41 is prime for
values of n from 1 to 40.)

Aspects of Abstraction

In looking at the achievements of these six men, one is struck by a lack
of utilitarian motive in their work. Carnot’s deals with broad principles,
not with technology. The Mécanique of Lagrange is likewise concerned
with a postulational treatment of the subject, far removed from criteria of
practicability. It is primarily to him that we owe such compact forms,
though somewhat differently expressed, as

1

2!

x1 y1 1

x2 y2 1

x3 y3 1

������
������ and

1

3!

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

��������

��������
for the area of a triangle and for the volume of a tetrahedron, respec-
tively, results that appeared in a paper, “Solutions analytiques de quel-
ques problèmes sur les pyramides triangulaires,” delivered in 1773 and
published in 1775. Such work looks pretty but inconsequential, yet it
contained an idea that was to become, through the educational reforms of
the revolution, very important. As Lagrange expressed it, “I flatter
myself that the solutions which I am going to give will be of interest to
geometers as much for the methods as for the results. These solutions are
purely analytic and can even be understood without figures.” True to his
promise, there is not a single diagram throughout the work. Monge, too,
although he used diagrams and models in descriptive and differential
geometry, somehow seems to have come to the conclusion that one
should avoid the use of diagrams in elementary analytic geometry.
Perhaps Carnot felt somewhat the same way, for his Essai, antedating the
Mécanique of Lagrange, contains not a single diagram.

Paris in the 1820s

Paris appeared particularly attractive to students of mathematics in the
1820s. Not only did it boast the opportunity for systematic training
epitomized by the École Polytechnique, with its sizable staff of excep-
tional mathematicians who offered lectures on a wide area of subjects in
pure and applied fields, but there were cutting-edge mathematical pub-
lications. Aside from independent works printed in the French capital,
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both the Mémoires of the Academy of Sciences and the Journal of the
École Polytechnique reported major new mathematical research results.
Moreover, the Collège de France and other institutions harbored addi-
tional mathematicians. Still living in Paris, though at the end of their
careers, were Laplace and Legendre. Laplace published the last volume
of his Mécanique celeste in 1825, two years before his death. Legendre
was active in the Academy, reviewing the work of younger men and
updating his own results, such as his standard work on number theory,
the third edition of which appeared in 1830. Perhaps the most influential
of the next generation of mathematicians who was active in Paris in the
1820s was J.-B. Fourier (1768 1830).

Fourier

Fourier was the son of a tailor in Auxerre. Having been orphaned in
childhood, he obtained his education through the guidance of the Church,
first at the local military school, then in a school run by the Benedictine
Order. During the revolution, he taught school in his hometown and was
politically active. Arrested during the Terror, on his release he enrolled in
the École Normale, which led to his becoming an assistant to Lagrange
and Monge at the newly formed École Polytechnique. In 1798, he joined
Monge in Napoleon’s Egyptian adventure, subsequently becoming
secretary of the Institut d’Égypte and compiling the Description de
l’Égypte. On his return to France, he held a number of administrative
posts, but he nevertheless had opportunity to continue his scholarly
pursuits. In 1822, he was elected secrétaire perpetuel of the Académie
des Sciences in Paris, which placed him in an influential position during the
1820s. Among the young foreigners in Paris in the 1820s who came under
Fourier’s influence were P. G. Lejeune Dirichlet (1805 1859) from
Prussia, Jean-Jacques-François Sturm (1803 1855) from Switzerland, and
Mikhail Vasilievich Ostrogradsky (1801 1861) from Russia. Compatriots
who benefited from his counsel included Sophie Germain (1776 1831)
and Joseph Liouville (1809 1882).
Fourier is best known today for his celebrated Théorie analytique de la

chaleur of 1822. This book, described by Lord Kelvin as “a great
mathematical poem,” was a development of ideas that ten years earlier
had won him the Académie prize for an essay on the mathematical
theory of heat. Lagrange, Laplace, and Legendre, the referees, had cri-
ticized the essay for a certain looseness of reasoning; the later clar-
ification of Fourier’s ideas was to some extent the reason that the
nineteenth century came to be called the age of rigor.
The chief contribution of Fourier and his classic in mathematics was

the idea, adumbrated by Daniel Bernoulli, that any function y5 f(x) can
be represented by a series of the form
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y5
1

2
a0 1 a1 cos x1 a2 cos 2x1 � � � 1 an cos nx1 � � �

1 b1 sin x1 b2 sin 2x1 � � � 1 bn sin nx1 � � � ;
now known as a Fourier series. Such a series representation affords
considerably greater generality in the type of functions that can be
studied than does the Taylor series. Even if there are many points at
which the derivative does not exist (as in Fig. 18.4) or at which the
function is not continuous (as in Fig. 18.5), the function may still have a
Fourier expansion. This expansion is easily found on noting that

a0 5
1

π

ðπ
2π

f ðxÞdx; an5
1

π

ðπ
2π

f ðxÞcos nx dx;

and

bn 5
1

π

ðπ
2π

sin nx dx:

Fourier, like Monge, had fallen from grace when the Bourbon
restoration followed the exile of Napoleon in 1815, but his work has ever

FIG. 18.4

FIG. 18.5
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since been fundamental in both physics and mathematics. Functions no
longer needed to be of the well-behaved form with which mathemati-
cians had been familiar. In 1837, Lejeune Dirichlet, for instance, sug-
gested a very broad definition of function: If a variable y is so related to a
variable x that whenever a numerical value is assigned to x, there is a
rule according to which a unique value of y is determined, then y is said
to be a function of the independent variable x. This comes close to the
modern view of a correspondence between two sets of numbers, but the
concepts of “set” and “real number” had not at that time been estab-
lished. To indicate the completely arbitrary nature of the rule of corre-
spondence, Dirichlet proposed a very “badly behaved” function: When x
is rational, let y5 c, and when x is irrational, let y5 d 6¼ c. This function,
often known as Dirichlet’s function, is so pathological that there is no
value of x for which it is continuous. Dirichlet also gave the first rigorous
proof of the convergence of a Fourier series for a function subject to
certain restrictions, known as Dirichlet’s conditions. A Fourier series
does not always converge to the value of a function from which it is
derived, but in Leopold Crelle’s Journal for 1828, Dirichlet proved the
following theorem: If f(x) is periodic of period 2π, if for2π, x,π the
function f(x) has a finite number of maximum and minimum values and a
finite number of discontinuities, and if

Ð π
2π f ðxÞ dx is finite, then the

Fourier series converges to f(x) at all points where f(x) is continuous, and
at jump points it converges to the arithmetic mean of the right-hand and
left-hand limits of the function. Also useful is another theorem known as
Dirichlet’s test: If the terms in the series a1b11 a2b21 � � �1 anbn1 � � �
are such that the b’s are positive and monotonically tending toward zero,
and if there is a number M such that ja1 1 a2 1 � � �1 amj,M for all
values of m, then the series converges.
The name of Dirichlet arises in many other connections in pure

and applied mathematics. Especially important in thermodynamics and
electrodynamics is the Dirichlet problem: Given a region R bounded by
a closed curve C and a function f(x, y) continuous on C, find a function
F(x, y) continuous in R and on C that satisfies the Laplace equation in R
and is equal to f on C. In pure mathematics, Dirichlet is well-known for
his application of analysis to the theory of numbers, in connection with
which he introduced the Dirichlet series, Σane

2λnS, where the Dirichlet
coefficients an are complex numbers, the Dirichlet exponents λn are real
monotonically increasing numbers, and S is a complex variable.

Cauchy

The star of the 1820s was a man born in the year of the revolution, when
Fourier was twenty-one. Augustin-Louis Cauchy (1789 1857), the son
of well-educated parents, studied at the École Polytechnique, which he
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entered in 1805, and the École des Ponts et Chaussées, where he matri-
culated in 1807. He served as an engineer until 1813, when he returned to
Paris. By that time, he had already solved several problems of interest
to mathematicians. These included the determination of a convex poly-
hedron by its faces, the expression of a number as a sum of n-gonal
numbers, and a study of determinants. The latter is one of the few
branches in which the role of Gauss was slight, although it was from the
terminology of Gauss in a somewhat different context that Cauchy
derived the name “determinant” for what he otherwise described as a
class of alternating symmetric functions, such as a1b22 b1a2. A good case
could be made for having the definitive history of determinants begin in
1812, when Cauchy read to the Institut a long memoir on the subject,
although in doing so, one would fail to do justice to some pioneer work as
early as 1772 by Laplace and Alexandre-Théophile Vandermonde
(1735 1796). Both Lagrange and Laplace had taken an interest in
Cauchy’s progress, and he followed in the tradition of Lagrange in his
preference for pure mathematics in elegant form with due attention to
rigorous proofs. His 1812 paper on determinants, to be followed by many
others from him on the same topic, was in this tradition of giving
emphasis to the symmetries of notation with which it abounds.
In the pedagogical approach to determinants, today it is customary

to begin with the square array and then to attach a meaning or a value to
this through an expansion in terms of transpositions or permutations.
In the memoir of Cauchy, the author did the opposite. He began with
the n elements or numbers, a1, a2, a3, . . . an, and formed the product
of these by all of the differences of distinct elements: a1a2a3 . . . an(a22 a1)
(a32 a1) . . . (an2 a1)(a32 a2) . . . (an2 a2) . . . (an2 an 1). He then defined the
determinant as the expression obtained on changing every indicated
power into a second subscript, so that asr becomes ar � s; he wrote this as S
(6 a1 � 1a2 � 2a3 � 3 . . . an � n). Then he arranged the n2 different quantities in this
determinant in a square array not unlike that used today:

a1 1; a1 2; a1 3; . . . a1 n

a2 1; a2 2; a2 3; . . . a2 n

� � � � � � � � �
an 1; an 2; an 3; . . . an n

As thus arranged, the n2 quantities in his determinant were said to form “a
symmetric system of order n.” He defined conjugate terms as elements the
orders of whose subscripts are reversed, and he called terms that are self-
conjugate “principal terms”; the product of the terms in what we call the
“main diagonal” or the “principal diagonal,” he called the “principal
product.” Later in the memoir, Cauchy gave other rules for determining
the sign of a term in the expansion, using circular substitutions.
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Cauchy’s eighty-four-page memoir of 1812 was not his only work on
the subject of determinants; from then on, he found many opportunities
to use them in a variety of situations. In a memoir of 1815, on wave
propagation, he applied the language of determinants to a problem in
geometry and also to one in physics. Cauchy asserted that if A, B, and C
are the lengths of three edges of a parallelepiped, and if the projections
of these on the x, y, and z axes of a rectangular coordinate system are

A1; B1; C1

A2; B2; C2

A3; B3; C3;

then the volume of the parallelepiped will be A1B2C32A1B3C21
A2B3C12A2B1C31A3B1C22A3B2C15 S(6A1B2C3). In the same memoir,
in connection with the propagation of waves, he applied his determinant
notation to partial derivatives, replacing a condition that required two
lines for its expression by the simple abbreviation

S 6
dx

da

dy

db

dz

dc

� �
5 1:

The left-hand side of this is obviously what is now called the “Jacobian”
of x, y, z with respect to a, b, c. The name of Carl Gustav Jacob Jacobi is
attached to functional determinants of this form not because he was the
first to use them, but because he was an algorithm builder who was
especially enthusiastic about the possibilities inherent in determinant
notations. It was not until 1829 that Jacobi first used the functional
determinants that bear his name.
By this time, Cauchy was well established in Paris. In 1814, two years

after the memoir on determinants, he had presented to the French
Academy a paper that contains the germs of some of his major con-
tributions to the theory of complex functions. After another two years, he
received praise for a prize-winning memoir on hydrodynamics. The year
1819 finds him displaying the method of characteristics in the solution of
partial differential equations; shortly thereafter, he submitted a classic on
the theory of elasticity. During this decade, he was appointed to mem-
bership in the Academy of Sciences, as well as a professorship at the
École Polytechnique; after this, he married.
Cauchy filled the Journal of the École Polytechnique and the Cornptes

Rendus of the Académie with ever longer memoirs. These were on a
variety of topics but especially on the theory of functions of a complex
variable, a field of which, from 1814 on, Cauchy became the effective
founder. In 1806, Jean Robert Argand (1768 1822) of Geneva had
published an account of the graphical representation of complex num-
bers. Although, at first, this went almost as unnoticed as the work of
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Caspar Wessel, by the end of the second decade of the nineteenth century,
most of Europe was familiar, through Cauchy, not only with the Wessel-
Argand-Gaussian diagram for a complex number, but with the funda-
mental properties of complex functions as well. In the eighteenth century,
problems in complex variables occasionally had arisen in connection
with the physics of Euler and d’Alembert, but now they became a part of
pure mathematics. Inasmuch as two dimensions are required for a pic-
torial representation of the independent variable alone, it would take four
dimensions to graphically portray a functional relationship between two
complex variables, w5 f(z). Complex variable theory entails a higher
degree of abstraction and complexity than does the study of functions of a
real variable. Definitions and rules of differentiation, for example, cannot
readily be carried over from the real case to the complex, and the deri-
vative in the latter case is no longer pictured as the slope of the tangent to
a curve. Without the crutch of visualization, one is likely to require more
precise and careful definitions of concepts. To supply this need was one
of Cauchy’s contributions to the calculus, for both real variables and
complex variables.
The first teachers in the École Polytechnique had set a precedent

according to which even the greatest of mathematicians are not above
writing textbooks on all levels, and Cauchy followed in this tradition. In
three books—Cours d’ analyse de l’École Polytechnique (1821), Resumé
des leçons sur le calcul infinitesimal (1823), and Leçons sur le calcul
différentiel (1829)—he gave to elementary calculus the character that it
bears today. Rejecting the “Taylor’s theorem approach” of Lagrange, he
made the limit concept of d’Alembert fundamental, but he gave it an
arithmetic character of greater precision. Dispensing with geometry and
with infinitesimals or velocities, he gave a relatively clear-cut definition
of limit:

When the successive values attributed to a variable approach indefinitely

a fixed value so as to end by differing from it by as little as one wishes,

this last is called the limit of all the others.

Where many earlier mathematicians had thought of an infinitesimal as
a very small fixed number, Cauchy clearly defined it as a dependent
variable:

One says that a variable quantity becomes infinitely small when its

numerical value decreases indefinitely in such a way as to converge

toward the limit zero.

In the calculus of Cauchy, the concepts of function and limit of a func-
tion were fundamental. In defining the derivative of y5 f(x) with respect to
x, he gave to the variable x an increment Δx5 i and formed the ratio
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Δy

Δx
5

f ðx1 iÞ2 f ðxÞ
i

:

The limit of this difference quotient as i approaches zero he defined
as the derivative f u(x) of y with respect to x. The differential he relegated
to a subsidiary role, although he was aware of its operational facility. If
dx is a finite quantity, the differential dy of y5 f(x) is defined simply as
f u(x)dx. Cauchy also gave a satisfactory definition of a continuous
function. The function f(x) is continuous within given limits if between
these limits an infinitely small increment i in the variable x always
produces an infinitely small increment, f(x1 i)2 f(x), in the function
itself. When we bear in mind Cauchy’s definition of infinitely small
quantities in terms of limits, his definition of continuity parallels that
used today.
During the eighteenth century, integration had been treated as the

inverse of differentiation. Cauchy’s definition of derivative makes it clear
that the derivative will not exist at a point for which the function is dis-
continuous, yet the integral may afford no difficulty. Even discontinuous
curves may determine a well-defined area. Hence, Cauchy defined the
definite integral in terms of the limit of the integral sums in a manner
not very different from that used in elementary textbooks today, except
that he took the value of the function always at the left-hand end point
of the interval. If Sn5 (x12 x0)f(x0)1 (x22 x1 )f(x1) � � �1 (X2 xn 1)
f(xn 1), then the limit S of this sum Sn, as the magnitudes of the intervals
xi2 xi 1 decrease indefinitely, is the definite integral of the function f(x) for
the interval from x5 x0 to x5X. It is from Cauchy’s concept of the
integral as a limit of a sum, rather than from the antiderivative, that
the many fruitful modern generalizations of the integral have arisen.
Having defined the integral independently of differentiation, it was

necessary for Cauchy to prove the usual relation between the integral and
the antiderivative, and this he accomplished through use of the theorem of
mean value. If f(x) is continuous over the closed interval [a, b] and dif-
ferentiable over the open interval (a, b), then there will be some value x0
such that a, x0, b and f(b)2 f(a)5 (b2 a)f u(x0). This is a fairly obvious
generalization of Rolle’s theorem, which was known a century earlier.
The mean-value theorem, however, did not attract serious attention until
the days of Cauchy, but it has since continued to play a basic role in
analysis. It is with justice, therefore, that a still more general form,

f ðbÞ2 f ðaÞ
gðbÞ2 gðaÞ 5

f 0ðx0Þ
g0ðx0Þ

with suitable restrictions on f(x) and g(x), is known as Cauchy’s mean-
value theorem.
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The history of mathematics teems with cases of simultaneity and
near simultaneity of discovery, some of which have already been
noted. The work by Cauchy that we have just described is another case
in point, for similar views were developed at about the same time
by Bernhard Bolzano (1781 1848), a Czechoslovakian priest whose
theological views were frowned on by his church and whose mathe-
matical work was most undeservedly overlooked by his lay and
clerical contemporaries. For a time Cauchy lived at Prague, where
Bolzano was born and died, yet there is no indication that the men met.
The similarity in their arithmetization of the calculus and of their
definitions of limit, derivative, continuity, and convergence was only a
coincidence. In 1817, Bolzano had published a book, Rein analy-
tischer Beweis, devoted to a purely arithmetic proof of the location
theorem in algebra, and this had required a nongeometric approach to
the continuity of a curve or a function. Going considerably further in
his unorthodox ideas, he disclosed some important properties of infi-
nite sets in a posthumous work of 1850, Paradoxien des Unendlichen.
From Galileo’s paradox on the one-to-one correspondence between

integers and perfect squares, Bolzano went on to show that similar
correspondences between the elements of an infinite set and a proper
subset are commonplace. For example, a simple linear equation, such as
y5 2x, establishes a one-to-one correspondence between the real num-
bers y in the interval from 0 to 2, for example, and the real numbers x in
half of this interval. That is, there are just as many real numbers between
0 and 1 as between 0 and 2, or just as many points in a line segment 1
inch long as in a line segment 2 inches long. Bolzano even seems to have
recognized, by about 1840, that the infinity of real numbers is of a type
different from the infinity of integers, being nondenumerable. In such
speculations on infinite sets, the Bohemian philosopher came closer to
parts of modern mathematics than had his better-known contemporaries.
Both Gauss and Cauchy seem to have had a kind of horror infiniti,
insisting that there could be no such thing as a completed infinite in
mathematics. Their work on “orders of infinity” in reality was far
removed from the concepts of Bolzano, for to say, as Cauchy in essence
did, that a function y is infinite of order n with respect to x if
limx-Ny=x

n5K 6¼ 0 is quite different from making a statement about
correspondences between sets.
Bolzano was a “voice crying in the wilderness,” and many of his

results had to be rediscovered later. Among these was the recognition
that there are pathological functions that do not behave as mathemati-
cians had always expected them to behave. Newton, for instance, had
assumed that curves are generated by smooth and continuous motions.
There might be occasional abrupt changes in direction or even some
discontinuities at isolated points, but during the first half of the nine-
teenth century, it was generally assumed that a continuous real function
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must have a derivative at most points. In 1834, however, Bolzano had
thought up a function continuous for an interval but, despite physical
intuition to the contrary, having no derivative at any point in the interval.
The example given by Bolzano unfortunately did not become known;
hence, credit for building the first continuous but nowhere differentiable
function generally goes to Karl Weierstrass about a third of a century
later. Similarly, it is the name of Cauchy, rather than that of Bolzano,
that is attached to an important test of convergence for an infinite series
or sequence. Occasionally, before their time, there had been warnings
about the need to test an infinite series for convergence. For example, as
early as 1812, Gauss used the ratio test to show that his hypergeometric
series

11
αβ
γ

x1
αβðα1 1Þðβ1 1Þ

1U2γðγ1 1Þ x2 1 � � �
αβðα1 1Þðβ1 1Þ � � � ðα1 n2 1Þðβ1 n2 1Þ

1U2 � � � ðn2 1Þγðγ1 1Þ � � � ðλ1 n2 1Þ xn 1 � � �

converges for 7x7, 1 and diverges for 7x7. 1. This test seems to have been
first used much earlier, in England, by Edward Waring, although it gen-
erally bears the name of d’Alembert or, more occasionally, that of Cauchy.
In 1811, Gauss informed an astronomer friend, F. W. Bessel (1784

1846), of a discovery that he had made in what was soon to become a
new subject in the hands of Cauchy and that today bears the latter’s
name. The theory of functions of a real variable had been developed by
Lagrange, but the theory of functions of a complex variable awaited the
efforts of Cauchy, yet Gauss perceived a theorem of fundamental sig-
nificance in the as-yet-unworked field. If, in the complex or Gaussian
plane, one draws a simple closed curve, and if a function f(z) of the
complex variable z5 x1 iy is analytic (that is, has a derivative) at every
point on the curve and within the curve, then the line integral of f(z)
taken along the curve is zero.
The name of Cauchy appears today in connection with a number of

theorems on infinite series, for, despite some efforts on the part of Gauss
and Abel, it was largely through Cauchy that the mathematician’s con-
science was pricked concerning the need for vigilance with regard to
convergence. Having defined a series to be convergent if, for increasing
values of n, the sum Sn of the first n terms approaches a limit S, called the
sum of the series, Cauchy proved that a necessary and sufficient con-
dition that an infinite series converge is that for a given value of p, the
magnitude of the difference between Sn and Sn1 p tends toward zero as n
increases indefinitely. This condition for “convergence within itself” has
come to be known as Cauchy’s criterion, but it was known earlier to
Bolzano (and possibly still earlier to Euler).
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In 1831, Cauchy also announced the theorem that an analytic function
of a complex variable w5 f(z) can be expanded about a point z5 z0 in a
power series that is convergent for all values of z within a circle having z0
as center and passing through the singular point of f(z) nearest to z0. From
this time on, the use of infinite series became an essential part of the theory
of functions of both real and complex variables. Several tests for con-
vergence bear Cauchy’s name, as does a particular form of the remainder
in the Taylor series expansion of a function, the more usual form being
attributed to Lagrange. The period of rigor in mathematics was taking
hold rapidly. It is said that when Cauchy read his first paper on the
convergence of series to the Académie, Laplace hurried home to verify
that he had not made use of any divergent series in hisMécanique céleste.
Toward the end of his life, Cauchy became aware of the important notion
of “uniform convergence,” but here, too, he was not alone, having been
anticipated by the physicist G. G. Stokes (1819 1903) and others.
As broader classes of differential equations were considered, the

question under what conditions a solution exists moved to the fore-
ground. Cauchy provided two widely used methods for answering this
question. Building on the work of Euler, Cauchy showed how to use a
method of approximations by difference equations, providing an existence
proof for the approximate solutions; this became the basis of the Cauchy-
Lipschitz technique in the solution of ordinary differential equations.
Rudolf Lipschitz (1831 1904), a student of Dirichlet’s, refined and
generalized Cauchy’s work in 1876; he replaced the so-called Lipschitz
condition with Cauchy’s condition that the first derivatives be continuous
and extended the work to systems of higher-order equations. Also due to
Cauchy, though best known in the form given by the French mathema-
ticians Briot and Jean-Claude Bouquet in 1854, is the method of major-
ants, which Cauchy called his calcul des limites. After successfully using
it for ordinary differential equations, Cauchy applied it to certain systems
of first-order partial differential equations. Here again, his work came tobe
known in the generalized form it received from a later nineteenth-century
mathematician. Sofia Kovalevskaya (Sonia Kowalewski) (1850 1891)
extended Cauchy’s result to a broad class of equations of higher order,
simplifying his technique in the process; further streamlined by subsequent
analysts, the Cauchy-Kowalewski theorem received its best-known form in
a textbook by Édouard Goursat (1858 1936) that was widely used in the
twentieth century.
Because of the legendary, voluminous nature of his publications,

Cauchy often lost track of results he had obtained. Also, as often hap-
pens, he assessed the relative significance of his own work quite dif-
ferently from the way later generations have seen it. The best-known
illustration of this is found in complex function theory; here, he had
provided a powerful tool for analysts with the so-called Cauchy integral
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theorem, yet he attached far more significance to his “calculus of resi-
dues,” which failed to gain favor with later workers in the field.
The prolific Cauchy contributed to almost as many fields as did his

contemporary Gauss. He, too, contributed to mechanics and error theory.
Although in the theory of numbers, his work is less well known than that
of Legendre and Gauss, it is to Cauchy that we owe the first general
proof of one of the most beautiful and difficult theorems of Fermat—that
every positive integer is the sum of at most three triangular numbers or
four square numbers or five pentagonal numbers or six hexagonal
numbers, and so on, indefinitely. This proof is a fitting climax to the
study of figurate numbers initiated by the Pythagoreans some 2,300
years earlier.
Cauchy evidently was little attracted to geometry in its various forms.

In 1811, however, in one of his very earliest memoirs, he presented a
generalization of the Descartes-Euler polyhedral formula E1 25
F1V, where E, F, and V are, respectively, the number of edges, faces,
and vertices of the polyhedron; we have noted a case of his application
of determinants in finding the volume of a tetrahedron.

Diffusion

The leadership role of the mathematical community in Paris diminished
rapidly after 1830. This was due in part to the dying out of an older
generation; in part, to efforts elsewhere, notably in England and Prussia,
to establish mathematics more solidly; and, in part, to political circum-
stances in France. After the deaths in 1827, 1830, and 1833, respectively,
of Laplace, Fourier, and Legendre, and the departure of Cauchy from
Paris in 1830, the best-known French mathematician born before the
revolution and still active was Siméon-Denis Poisson (1781 1840).

Poisson

Poisson would become a physician, but strong mathematical interests led
him in 1798 to enter the École Polytechnique, where on graduation he
became successively a lecturer, a professor, and an examiner. He is said
to have once remarked that life is good for only two things: to do
mathematics and to teach it. Consequently, he published almost 400
works, and he enjoyed a reputation as an excellent instructor.
The direction of his research is indicated in part by a sentence from a

letter written in 1826 by Abel concerning the mathematicians in Paris:
“Cauchy is the only one occupied with pure mathematics; Poisson,
Fourier, Ampère, etc., busy themselves exclusively with magnetism and
other physical subjects.” This should not be taken too literally, but
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Poisson, in memoirs of 1812, did help make electricity and magnetism a
branch of mathematical physics, as did Gauss, Cauchy, and Green.
Poisson was also a worthy successor to Laplace in studies on celestial
mechanics and the attraction of spheroids. The Poisson integral in
potential theory, the Poisson brackets in differential equations, the
Poisson ratio in elasticity, and Poisson’s constant in electricity indicate
the importance of his contributions to various fields of applied mathe-
matics. Two of his best-known treatises were the Traité de mécanique
(2 vols., 1811, 1833) and Recherches sur la probabilité des jugements
(1837). In the latter appears the familiar Poisson distribution, or Pois-
son’s law of large numbers. In the binomial distribution (p1 q)n, (where
p1 q5 1 and n is the number of trials), as n increases indefinitely, the
binomial distribution ordinarily tends toward a normal distribution, but
if, as n increases indefinitely, p approaches zero, the product np
remaining constant, the limiting case of the binomial distribution is the
Poisson distribution.
His analytic skill in refining the mathematical physics of Lagrange and

Laplace gained him early fame. His critical analyses of the work of
others often led him to innovative new concepts; an example is his
memoir on potential theory following his study of the work of James
Ivory (1765 1842). Poisson’s important memoir, in turn, was studied by
George Green (1793 1841) and was a significant ingredient in Green’s
1828 memoir on the subject. Yet Poisson’s clinging to superseded
physical concepts and his claims to a rigor that applied to his self-
assurance more than to his mathematics kept him from assuming the
mantle of mathematical leadership in later years. When men such as
Jacobi and Dirichlet chose the problems of Poisson for special treatment
in their lectures and memoirs, it was to recast them in a new mold.

Reforms in England and Prussia

Reform characterized much of the activity affecting mathematicians in
England, as well as in Prussia. The turning point in British mathematics
came in 1813 with the formation at Trinity College, Cambridge, of
the Analytical Society, which was led by three young Cantabrigians: the
algebraist George Peacock (1791 1858), the astronomer John Herschel
(1792 1871), and Charles Babbage (1791/2 1871) of “Calculating
Engines” fame. The immediate purpose of the society was to reform the
teaching and the notation of the calculus, and in 1817, when Peacock was
appointed an examiner for the mathematical tripos, differential notation
replaced fluxional symbols on the Cambridge examination. Peacock was
himself a Cambridge graduate and teacher, the first of many Trinity
College men who were to lead in the development of algebra. He grad-
uated as second wrangler—that is, he took second place in the celebrated
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tripos examination (initiated in 1725) for undergraduates who had spe-
cialized in mathematics—the first wrangler being John Herschel, another
of the founders of the Analytical Society. Peacock was a zealous
administrator and reformer, taking an active part in modifying the uni-
versity statutes and in establishing the Astronomical Society of London,
the Philosophical Society of Cambridge, and the British Association for
the Advancement of Science, the latter of which set the pattern for the
American Association for the Advancement of Science. The last twenty
years of his life were spent as dean of Ely cathedral.
Peacock did not produce any outstanding new results in mathematics,

but he was of great importance in reforming the subject in Britain,
especially with respect to algebra. At Cambridge, there had been a
tendency in algebra as conservative as that in geometry and analysis.
Whereas on the Continent, mathematicians were developing the gra-
phical representation of complex numbers, in England there were pro-
tests that not even negative numbers had validity.
In the words of Charles Babbage, the aim of the Analytical Society

was to promote “the principles of pure d-ism as opposed to the dot-age
of the university.” (A second aim of the Society was “to leave the world
wiser than they found it.”) This was, of course, a reference to the con-
tinued refusal of the English to abandon the dotted fluxions of Newton
for the differentials of Leibniz; more generally, it also implied a desire to
take advantage of the great strides in mathematics that had been made on
the Continent. In 1816, as a result of the society’s inspiration, an English
translation of Lacroix’s one-volume Calculus was published, and within
a few years, British mathematicians were in a position to vie with their
contemporaries on the Continent. For example, George Green, a self-
educated miller’s son, who, as we noted, studied Poisson’s memoir on
potential theory, in 1828 published for private circulation the essay on
electricity and magnetism that contained the important theorem bearing
his name: If P(x, y) and Q(x, y) have continuous partial derivatives
over a region R of the xy-plane bounded by a curve C, then

Ð
C P dx1

Qdy5
Ð Ð

RðQx 2PyÞ dxdy: This theorem, or its analogue in three
dimensions, is also known as Gauss’s theorem, for Green’s results were
largely overlooked until rediscovered by Lord Kelvin in 1846. The
theorem, meanwhile, had also been discovered by Mikhail Ostrogradski
and in Russia, it bears his name to this day.
In Prussia, a large share of the credit for the rejuvenation of mathe-

matics goes to the brothers Humboldt. Wilhelm von Humboldt (1767
1835), a philologist, is best known for his reform of the Prussian edu-
cational system. Alexander von Humboldt (1769 1859), a liberal
courtier, a natural historian, and a friend of mathematical scientists, used
his considerable influence in Berlin to assure Dirichlet’s return to Prussia
from Paris; he also aided the careers of C. G. J. Jacobi and G. Eisenstein,
among others, and showed interest in Abel.
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As a result, by midcentury a substantial number of mathematicians
were actively pursuing research in France, Prussia, and England. Each
country had established a major mathematical journal in the second
quarter of the century. In 1836, Liouville had founded the Journal de
Mathématiques Pures et Appliquées. The Cambridge Mathematical
Journal followed. Crelle’s Journal continued to thrive, with much active
support from Dirichlet and his students.
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19

Gauss

Mathematics is the queen of the sciences and number theory

the queen of mathematics.

Gauss

Nineteenth-Century Overview

The nineteenth century deserves to be known as the Golden Age in
mathematics. The additions to the subject during these one hundred years
far outweigh the total combined productivity of all preceding ages. The
century was also one of the most revolutionary in the history of mathe-
matics. The introduction into the mathematician’s repertoire of concepts
such as non-Euclidean geometries, n-dimensional spaces, noncommutative
algebras, infinite processes, and nonquantitative structures all contributed
to a radical transformation that changed the appearance, as well as the
definitions, of mathematics.
The geographic distribution of mathematical activity also began to

change. Hitherto, each major period of history seemed to be character-
ized by specific geographic clusters where most advances in mathe-
matics took place. During the first half of the nineteenth century, the
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center of mathematical activity became diffused. Nevertheless, several
decades passed before there were institutions that could boast the
mathematical strength of the French, epitomized by the École Poly-
technique. Most countries supported mathematical efforts directed
toward surveying, navigation, or other areas of application. Support for
research in pure mathematics—in time or money—was the exception,
rather than the rule. This is illustrated in the career of the greatest
mathematician of the time, who was German.

Gauss: EarlyWork

Carl Friedrich Gauss (1777 1855) enjoyed numerical computation as a
child; an anecdote that is told of his early schooling is characteristic.
One day, in order to keep the class occupied, the teacher had the
students add up all of the numbers from 1 to 100, with instructions that
each child should place his slate on a table as soon as he had completed
the task. Almost immediately, Carl placed his slate on the table, saying,
“There it is.” When the instructor finally looked at the results, Gauss’s
slate was the only one to have the correct answer, 5050, with no further
calculation. Evidently, the ten-year-old boy had mentally computed the
sum of the arithmetic progression 11 21 31 � � �1 991 100, pre-
sumably through the formula m(m1 1) / 2. His teachers soon called
Gauss’s talent to the attention of the Duke of Brunswick, who sup-
ported his education, which first enabled him to study at the local
college, then at the University in Göttingen, where he matriculated in
October 1795.
The following March, still a month short of being nineteen years old,

Gauss made a brilliant discovery. For more than 2,000 years, men had
known how to construct, with compasses and straightedge, the equilateral
triangle and the regular pentagon (as well as certain other regular poly-
gons, the numbers of whose sides are multiples of two, three, and five),
but no other polygon with a prime number of sides. Gauss showed that the
regular polygon of seventeen sides could also be constructed with com-
passes and straightedge.
Gauss commemorated his discovery by starting a diary in which, for

the next eighteen years, he noted many of his discoveries. He obtained
numerous results while still a student. Some were rediscoveries of the-
orems established by Euler, Lagrange, and other eighteenth-century
mathematicians; many were new. Among the more significant discoveries
of his student days, we may single out the method of least squares, the
proof of the law of quadratic reciprocity in number theory, and his work
on the Fundamental Theorem of Algebra.
He earned his doctorate with a thesis titled “New Demonstration of the

Theorem That Every Rational Integral Algebraic Function in One
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Variable Can Be Resolved into Real Factors of First or Second Degree.”
In this, the first of four proofs of the Fundamental Theorem of Algebra
that he published during his life, Gauss stressed the importance of
demonstrating the existence of at least one root in proving the theorem in
question.
Gauss presented this doctoral thesis to the University of Helmstedt,

which had on its faculty Johann Friedrich Pfaff (1765 1825), who, next
to Gauss, was widely regarded as the ranking German mathematician of
his time. Today he is best known for an 1813 memoir on the integration
of systems of differential equations. On leaving Göttingen in 1798, he
returned to his native Brunswick, where he spent the next nine years
enjoying the continued support of the duke, waited for a suitable job, got
married, and made some of his major discoveries.

Number Theory

While still a student in Göttingen, Gauss had begun work on a major
publication in number theory. Appearing two years after his doctoral
dissertation, the Disquisitiones Arithmeticae is one of the great classics of
mathematical literature. It consists of seven sections. Culminating in two

Facsimile of a page in the famous diary of Gauss
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proofs of the law of quadratic reciprocity, the first four sections are
essentially a tightened recasting of eighteenth-century number theory.
Fundamental in the discussion are the concepts of congruence and residue
class. Section 5 is devoted to the theory of binary quadratic forms,
specifically the question of solutions for equations of the form ax2 1
2bxy1 cy25m; the techniques developed in this section became the basis
for much work done by later generations of number theorists. Section 6
consists of various applications. The last section, which initially drew the
most attention, deals with the solution of the general cyclotomic equation
of prime degree.
Gauss called the law of quadratic reciprocity, which Legendre had

published a couple of years earlier, the theorema aureum, or the gem of
arithmetic. In his later work, Gauss sought to find comparable theorems
for congruences xn � p(mod q) for n5 3 and 4, but for these cases,
he found it necessary to extend the meaning of the word “integer” to
include the so-called Gaussian integers, that is, numbers of the form
a1 bi, where a and b are integers. The Gaussian integers form an
integral domain like that of the real integers but more general. Problems
in divisibility become more complicated, for 5 no longer is a prime,
being factorable into the product of the two “primes” 11 2i and 12 2i.
In fact, no real prime of the form 4n1 1 is a “Gaussian prime,” whereas
real primes of the form 4n2 1 remain primes in the generalized sense. In
the Disquisitiones, Gauss included the Fundamental Theorem of Arith-
metic, one of the basic principles that continues to hold in the integral
domain of Gaussian integers. In fact, any integral domain for which
factoring is unique is known today as a Gaussian integral domain. One of
the contributions of the Disquisitiones was a rigorous proof of the the-
orem, known since the days of Euclid, that any positive integer can be
represented in one and only one way (except for the order of the factors)
as a product of primes.
Not all that Gauss discovered about prime numbers is contained in the

Disquisitiones. On the back page of a copy of a table of logarithms that
he had obtained as a boy of fourteen is written cryptically in German:

Primzahlen unter að5NÞ a

1a
:

This is a statement of the celebrated prime number theorem: the number
of primes less than a given integer a approaches asymptotically the
quotient a / ln a as a increases indefinitely. The odd thing is that if Gauss
wrote this, as we presume he did, he kept this beautiful result to himself.
We do not know whether he had a proof of the theorem or even when the
statement was written.
In 1845, a Parisian professor, Joseph L. F. Bertrand (1822 1900),

guessed that if n. 3, there is always at least one prime between n and
2n (or, more precisely, 2n2 2) inclusive. This conjecture, known as
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Bertrand’s postulate, was proved in 1850 by Pafnuty Lvovich Chebyshev
(1821 1894) of the University of St. Petersburg. Chebyshev was a rival
of Nikolay Ivanovich Lobachevsky as the leading Russian mathemati-
cian of his day and became a foreign associate of the Institut de France
and of the Royal Society of London. Chebyshev, evidently unaware
of Gauss’s work on primes, was able to show that if π(n)(ln n) / n
approaches a limit as n increases indefinitely, this limit must be 1, but he
could not demonstrate the existence of a limit. Not until two years after
Chebyshev’s death was a proof generally known. Then, in 1896, two
mathematicians, working independently, came up with demonstrations
in the same year. One was the Belgian mathematician C. J. de la Vallée-
Poussin (1866 1962), who lived to be almost ninety-six; the other was a
Frenchman, Jacques Hadamard (1865 1963), who was almost ninety-
eight when he died.
Problems on the number and the distribution of primes have fascinated

many mathematicians from Euclid’s day to our own. What may be
regarded as a deep and difficult corollary to Euclid’s theorem on
the infinity of primes was proved by the mathematician who in 1855 was
to succeed Gauss at Göttingen. This was Peter Gustav Lejeune Dirichlet
(1805 1859), the man who did more than anyone else to amplify the
Disquisitiones. The Dirichlet theorem states not only that the number of
prime numbers is infinite, but that if one considers only those integers in
an arithmetic progression a, a1 b, a1 2b, . . . , a1 nb, in which a and b
are relatively prime, then even in this relatively sparser subset of the
integers, there still will be infinitely many primes. The proof Dirichlet
gave required complicated tools from analysis, where Dirichlet’s name is
again preserved in the Dirichlet test for uniform convergence of a series.
Among Dirichlet’s other contributions was the first proof of Bertrand’s
postulate. It should be noted that Dirichlet’s theorem showed that the
discrete domain of the theory of numbers cannot be studied in isolation
from the branch of mathematics dealing with continuous variables—that
is, that number theory requires the aid of analysis. Gauss himself, in the
Disquisitiones, had given a striking example of the fact that the prop-
erties of prime numbers intrude in the most unexpected ways even into
the realm of geometry.
Toward the end of the Disquisitiones, Gauss included the first

important discovery he had made in mathematics: the construction of the
regular polygon of seventeen sides. He carried the topic to its logical
conclusion by showing which of the infinitely many possible regular
polygons can be constructed and which cannot. General theorems,
such as that which Gauss now proved, are of ever so much more value
than a single case, no matter how spectacular the single case may be.
It will be recalled that Fermat had believed that numbers of the form
22

n

1 1 are primes, a conjecture that Euler had shown to be incorrect. The
number 22

2

1 15 17 is indeed prime, as are also 22
3

1 15 257 and
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22
4

1 15 65;537. Gauss had already shown the polygon of seventeen
sides to be constructible, and the question naturally arises whether
a regular polygon of 257 or 65,537 sides can be constructed with
Euclidean tools. In the Disquisitiones, Gauss answered the question in
the affirmative, showing that a regular polygon of N sides can be con-
structed with Euclidean tools if and only if the number N is of the form
N5 2mplp2p3 . . . pr, where m is any positive integer and the p’s are dis-
tinct Fermat primes. There remains one aspect of the problem that Gauss
did not answer, and that has not yet been answered. Is the number of
Fermat primes finite or infinite? For n5 5, 6, 7, 8, and 9, it is known that
the Fermat numbers are not prime, and it appears possible that there are
five and only five constructible regular polygons of a prime number of
sides, two that were known in antiquity and the three that were dis-
covered by Gauss. A young man whom the aging Gauss admired,
Ferdinand Gotthold Eisenstein (1823 1852), an instructor of mathe-
matics at Berlin, added a new conjecture about prime numbers when he
hazarded the thought, unverified up to the present time, that numbers of
the form 22 1 1; 22

2

1 1; 22
2
2

1 1, and so on, are primes. To Gauss is
attributed the remark that “There have been only three epoch-making
mathematicians, Archimedes, Newton, and Eisenstein.” Whether, given
a normal span of years, Eisenstein might have fulfilled such a glowing
prediction is a matter of conjecture, for the young privatdozent died
when he was not yet thirty years old.

Reception of the Disquisitiones Arithmeticae

Many mathematicians introducing new methods or concepts have found
that these are viewed with skepticism until it becomes clear not only that
they are useful in obtaining new results but that they so far exceed
existing techniques as to make it worthwhile for a mature researcher to
learn them. Gauss, too, found this to be true in the case of his great book
on number theory. It created little initial attention; only the algebraic
contribution of the last section was noted with approbation by French
authors of the time. One of the very few individuals who initiated a
correspondence with Gauss for the purpose of exchanging ideas about
the number-theoretic aspects of the book was a certain “Monsieur
Leblanc”; this turned out to be Sophie Germain, a mathematician who
worked outside the established institutions that were closed to women.
Germain earned the respect and assistance not only of Gauss but of
Lagrange and Legendre; the latter attached her name to a theorem
that marks a major step in the three-century marathon effort to prove
Fermat’s Last Theorem. In another field, the Paris Academy of Sciences
awarded her a prize for a memoir on the mathematical theory of elastic
surfaces.
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In general, however—and despite the availability in Paris of a French
translation after 1807—Gauss’s Disquisitiones arithmeticae lay dormant
until the late 1820s, when C. G. J. Jacobi (1804 1851) and P. G.
Lejeune Dirichlet first brought to light some of the deeper consequences
to be derived from the work.

Astronomy

It was astronomy, rather than number theory, that gained immediate fame
for the twenty-four-year-old author of the Disquisitiones Arithmeticae.
On January 1, 1801, Giuseppe Piazzi (1746 1826), the director of the
Palermo observatory, had discovered the new minor planet (asteroid)
Ceres, but a few weeks afterward, the tiny body was lost to sight. Having
most unusual computational ability, as well as the added advantage of the
method of least squares, Gauss took up the challenge to compute, from
the few recorded observations of the planet, the orbit in which it moved.
For the task of computing orbits from a limited number of observations,
he devised a scheme, known as Gauss’s method, that is still used to track
satellites. The result was a resounding success, the planet being redis-
covered at the end of the year in very nearly the position indicated by his
calculations. Gauss’s orbit computations captured the attention of
astronomers internationally and soon brought him to prominence among
German mathematical scientists, most of whom were engaged in astro-
nomical and geodesic activities at the time. In 1807, he was appointed
director of the Göttingen observatory, a post he held for nearly half a
century. Two years later, his classic treatise on theoretical astronomy, the
Theoria Motus, appeared. It provided a clear guide for carrying out
orbital computations and by the time of his death had been translated into
English, French, and German.
Orbital computations were not the only area of astronomical research

in which Gauss distinguished himself and paved a path for succeeding
generations, however. Much of his time during the first decade of
the nineteenth century was spent in working on the problem of pertur-
bations. This had moved to the foreground of astronomers’ interests
after the discovery in 1802 of the minor planet Pallas by Gauss’s good
friend, the physician and amateur astronomer Heinrich Wilhelm Olbers
(1758 1840). Pallas has a relatively large eccentricity and is particularly
affected by the gravitational attraction of other planets such as Jupiter
and Saturn. Determining the effect of these attractions is a specific
example of the n-body problem that Euler and Lagrange had previously
attacked for n5 2 or 3. Gauss’s work on this problem resulted not only
in astronomical memoirs but in two classical mathematical papers: one
dealt with infinite series, the other with a new method for numerical
analysis.
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Gauss’s MiddleYears

The decade in which Gauss arrived at the preceding results had been filled
with new discoveries, as well as emotionally draining events. He had
experienced early recognition and honors, happiness in marriage, and
fatherhood. But then came financial concerns resulting from levies
imposed by the occupying administration in Göttingen; the deaths of
his patron, the Duke of Brunswick, and of his wife and third child;
annoyance at the lack of appreciation of his work among scientists such
as the French astronomer J. B. J. Delambre; concern over raising his
children; and rapid entry into a second marriage. The previously cheerful
young genius became an austere figure whose strict sense of duty often
led him to seemingly rigid decisions in the nonscientific realm. This
image was intensified after the 1820s by the lingering illness of his
second wife, who died in 1831, and an estrangement from one of his sons
that lasted for more than a decade.
In the meantime, Gauss’s position as director of the Göttingen obser-

vatory presented new challenges. Between 1810 and 1820, much of his
energy was absorbed by the building and outfitting of a new observatory.
He made the acquaintance of major instrument makers of the period and
involved himself with the details of instrument construction. Studies of
instruments and observations led him to significant results in error theory.
After 1815, his increasing comprehension of the nature of instrumental,
observational, and technical errors was reinforced by his immersion in
surveying and geodesy. The result was a set of reports on error theory.
During the 1820s, he was charged with the survey of the Kingdom of
Hannover, which meant that he spent numerous summers in the field,
personally conducting measurements, often under primitive and hazar-
dous conditions. The most significant publication that resulted from the
geometric considerations of the decade appeared in 1827, and it opened a
new direction in geometric and, ultimately, in physical research.
Gauss was not especially fond of geometry, yet he thought about the

subject sufficiently to do two things: (1) to arrive, by 1824, at an
important unpublished conclusion on the parallel postulate; and (2) to
publish, in 1827, a classic treatise that generally is regarded as the cor-
nerstone of a new branch of geometry. Gauss, while still a student at
Göttingen, had tried to prove the parallel postulate, as had his intimate
friend Wolfgang (or Farkas) Bolyai (1775 1856) as well. Both men
continued to look for a proof, the latter giving up in despair, the former
eventually coming to the conviction that not only was no proof possible,
but that a geometry quite different from that of Euclid might be devel-
oped. Had Gauss expanded and published his thoughts on the parallel
postulate, he would have been hailed as the inventor of non-Euclidean
geometry, but his silence on the subject resulted in credit going to others,
as we shall see further on.
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Differential Geometry

The new branch of geometry that Gauss initiated in 1827 is known as
differential geometry, and it belongs perhaps more to analysis than to the
traditional field of geometry. Ever since the days of Newton and Leibniz,
men had applied the calculus to the study of curves in two dimensions; in
a sense, this work constituted a prototype of differential geometry. Euler
and Monge had extended this to include an analytic study of surfaces;
hence, they are sometimes regarded as the fathers of differential geometry.
Nevertheless, not until the appearance of Gauss’s classical treatise Dis-
quisitiones Circa Superficies Curvas was there a comprehensive volume
devoted entirely to the subject. Roughly speaking, ordinary geometry is
interested in the totality of a given diagram or figure, whereas differential
geometry concentrates on the properties of a curve or a surface in the
immediate neighborhood of a point on the curve or the surface. In this
connection, Gauss extended the work of Huygens and Clairaut on the
curvature of a plane or a gauche curve at a point by defining the curvature
of a surface at a point—the “Gaussian curvature” or “the total curvature.”
If at a point P on a well-behaved surface S one erects a line N normal to S,
the pencil of planes through N will cut the surface S in a family of plane
curves, each of which will have a radius of curvature. The directions of the
curves with the largest and smallest radii of curvature, R and r, are called
the principal directions on S at P, and they always happen to be perpen-
dicular to each other. The quantities R and r are known as the principal
radii of curvature of S at P, and the Gaussian curvature of S at P is defined
as K5 1 / rR. (The quantity Km5 1

2ð1=r1 1=RÞ, known as the mean cur-
vature of S at P, also turns out to be useful.) Gauss gave formulas for K in
terms of the partial derivatives of the surface with respect to various
coordinate systems, curvilinear as well as Cartesian; he also discovered
what even he regarded as “remarkable theorems” about properties of
families of curves, such as geodesics, drawn on the surface.
Gauss began the treatment of curved surfaces by using the parametric

equation of a surface introduced by Euler. That means if a point (x, y, z) of
a surface can be represented by the parameters u and v so that x5 x(u, v),
y5 y(u, v), and z5 z(u, v), then dx5 a du1 au dv, dy5 b du1 bu dv,
dz5 c du1 cu dv, where a5 xu, au5 xv, b5 yu, bu5 yv, c5 zu, and cu5 zv.
Considering the arc length ds25 dx21 dy21 dz2, expressing this in the
parametric coordinates gives ds25 (adu1 au dv)21 (b du1 bu dv)21
(c du1 cu dv)25Edu21 2Fdudv1Gdv2, where E5 a21 b21 c2, F5
aau1 bbu1 ccu, andG5 au21 bu21 cu2. Gauss proceeded to show that the
properties of a surface depend only on E, F, and G. This leads to many
consequences. In particular, it becomes easy to say what properties of
the surface remain invariant. It was in building on this work of Gauss
that Bernhard Riemann and later geometers transformed the subject of
differential geometry.
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Gauss’s Later Work

By the time the work on curved surfaces had appeared, the mathematical
climate in Germany was beginning to change. One of the most significant
aspects of this change was the founding of a new journal in 1809. This
was the Annales de Mathématiques Pures et Appliquées, edited by
Joseph-Diaz Gergonne (1771 1859). In Germany, a periodical similar to
Gergonne’s Annales, and even more successful, was begun in 1826 by
August Leopold Crelle (1780 1855) under the title Journal für die reine
und angewandte Mathematik. So heavily weighted were the articles in the
direction of pure (reine) mathematics (notably those by Abel, six of
which appeared in the very first volume) that wags suggested the title
might be more appropriate if the two German words und angewandte
(“and applied”) were replaced by the single word unangewandte
(“unapplied”). Gauss contributed two short articles to this new venture:
one was a proof of “Harriot’s theorem in algebra,” the other contained the
statement of Gauss’s principle of least constraint. He continued to submit
his major memoirs to the Göttingen Gesellschaft der Wissenschaften,
however. An important memoir on capillarity was published by the
Göttingen Society, as were his two influential memoirs on number theory.
Historians often cite the first of these, published in 1832, because it
contains Gauss’s geometric representation of complex numbers. The
importance of the memoir as a whole lies in the fact that it pointed
the way to extending the theory of numbers from the reals to the complex
field and beyond. As noted previously, this was crucial in the work of
later mathematicians.
At the more elementary level, it is interesting to observe that the

graphical representation of complex numbers had already been dis-
covered in 1797 by Caspar Wessel (1745 1818) and published in the
transactions of the Danish academy for 1798, but Wessel’s work went
virtually unnoticed; hence, today the plane of complex numbers is
usually referred to as the Gaussian plane, even though Gauss did not
publish his views until some thirty years after Wessel did. No one before
Wessel and Gauss took the obvious step of thinking of the real and
imaginary parts of a complex number a1 bi as rectangular coordinates
of points in a plane. Imaginary numbers, for these could now be
visualized in the sense that every point in the plane corresponds to a
complex number, and the old ideas about the nonexistence of imaginary
numbers were generally abandoned.
During the last twenty years of his life, Gauss published only two

major papers of mathematical interest. One was his fourth proof of the
fundamental theorem of algebra, which he released at the time of his
doctoral jubilee in 1849, fifty years after the publication of his first proof.
The other was an influential memoir on potential theory, which appeared
in 1840, in one of the volumes of geomagnetic results that he coedited
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with his younger friend, the physicist Wilhelm Weber (1804 1891).
Geomagnetic issues occupied much of his time in the 1830s and early
forties; he also devoted effort in the late thirties to issues pertaining to
weights and measures. Most of his publications in the last decade of his
life reflect work at the astronomical observatory; they deal with the
newer minor planets, with observations of the recently discovered planet
Neptune, and with other data of interest to astronomers of the day, who
read of them in the Astronomische Nachrichten.
Gauss’s mathematics provided the starting point for some of the main

research areas of modern mathematics. Except for his personal fame and
the fortune he amassed by making shrewd investments, his external
circumstances were similar to those of many earlier mathematicians,
however. His main obligations lay in running an observatory and per-
forming various duties for his government. He had teaching responsi-
bilities, but because most of his students were ill-prepared, he avoided
classroom teaching as much as possible, feeling that the returns were not
worth the investment in time. His best students tended to become
astronomers, rather than mathematicians, although some, such as August
Ferdinand Möbius, made a name for themselves in mathematics. Most of
his research results, aside from those published as books, appeared in the
publications of the Göttingen Society of Science or in journals devoted
to astronomy and geodesy—initially, in Franz Xaver von Zach’s Mon-
atliche Korrespondenz zur Beförderung der Erd-und Himmelskunde; after
1820, in the Astronomische Nachrichten. His mathematical communica-
tions were restricted to correspondence with a few friends and occasional
visits of younger colleagues from abroad.

Gauss’s Influence

Despite the relatively small number of well-known mathematicians who
could claim to be Gauss’s students in the formal sense, it is hard to
overestimate the influence Gauss had on successive generations. Those
who studied his publications, the few who came to see him, the ones who
followed the new avenues of research he had opened include some of the
best-known mathematicians of the nineteenth century. When it came to
his expressed opinion of the work of others, his impact was not always
salutary, however. Toward the end of his life, Gauss may have become
uncharacteristically generous in his comments; we note the well-deserved
appreciation of Riemann’s habilitation and the questionable enthusiasm
concerning Eisenstein.
We now turn to the work of some who benefited directly from study of

his publications, especially the Disquisitiones Arithmeticae, and from
indirect encouragement through the example he set. In several cases, their
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studies of Gauss’s work supplemented their exposure to the investiga-
tions of Legendre.

Abel

Niels Henrik Abel’s short life (1802 1829) was filled with poverty and
tragedy. He was born into a large family, the son of the pastor of the little
village of Findo in Norway. When he was sixteen, his teacher urged him
to read the great books in mathematics, including the Disquisitiones
Arithmeticae of Gauss. In his reading, Abel noted that Euler had proved
the binomial theorem only for rational powers, so he filled the gap by
giving a proof valid for the general case. When Abel was eighteen, his
father died, and much of the care of the family fell on his young and
weak shoulders, yet within the next year, he made a remarkable math-
ematical discovery. Ever since the cubic and quartic equations had been
solved in the sixteenth century, men had studied the quintic. Abel at first
thought he had hit on a solution, but in 1824, he published a memoir,
“On the Algebraic Resolution of Equations,” in which he reached the
opposite conclusion. He gave the first proof that no solution is possible,
thus putting an end to the long search. There can be no general formula,
expressed in explicit algebraic operations on the coefficients of a poly-
nomial equation, for the roots of the equation if the degree of the
equation is greater than 4. An earlier proof, less satisfactory and gen-
erally overlooked, of the insolvability of the quintic had been published
in 1799 by Paolo Ruffini (1765 1822), and hence the result is now
referred to as the Abel-Ruffini theorem.
When Abel visited Paris in 1826, he hoped his research results would

gain him recognition by members of the Academy. He found the city
inhospitable, however, and wrote home to a friend, “Every beginner has
a great deal of difficulty in getting noticed here. I have just finished an
extensive treatise on a certain class of transcendental functions but
Mr. Cauchy scarcely deigns to glance at it.” The publication in question
contained what he considered the jewel in his bag of mathematical treas-
ures, “Abel’s addition theorem,” a grand generalization of Euler’s addition
theorems on elliptic integrals. Before arriving in Paris, Abel had spent
some time in Berlin and had been well received by Crelle, who was
about to inaugurate his new Journal. He invited Abel to contribute to the
publication. Abel complied; the first volume contained six articles by
him, which were followed by more for succeeding volumes. They
included the expanded version of his proof of the insolvability of the
quintic, as well as his further contributions to the theory of elliptic and
hyperelliptic functions. While these were appearing in Berlin, Abel had
returned to his native Norway; increasingly weakened by tuberculosis,
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he kept sending more material to Crelle. He died in 1829, scarcely aware
of the interest his publications were creating. Two days after his death, a
letter arrived offering him a position in Berlin.

Jacobi

What created something of a sensation and helped increase the reader-
ship of Crelle’s new journal was the fact that Abel was not alone in his
new discoveries. The Prussian mathematician Carl Gustav Jacob Jacobi
(1804 1851) was obtaining many of the same results independently;
moreover, he, too, was publishing them in the early volumes of Crelle’s
journal. It became apparent to men such as Legendre that both Abel
and Jacobi were forging new tools of great consequence. What was
not generally known was that the unpublished memoranda of Gauss
hung like a sword of Damocles over mathematics of the first half of
the nineteenth century. When an important new development was
announced by others, it frequently turned out that Gauss had had the idea
earlier but had permitted it to go unpublished. Among the striking
instances of this situation was the disclosure of elliptic functions, a
discovery in which four outstanding figures are involved. One of these
was, of course, Legendre, who had spent some forty years studying
elliptic integrals almost single-handedly. He had developed a great many
formulas, some of them resembling relationships among inverse trigo-
nometric functions (a number of which had been known much earlier to
Euler). This was not surprising, inasmuch as the elliptic integralð

dx

ð12K2x2Þð12 x2Þp
includes ð

dx

ð12 x2Þp
as the special case for which K5 0. Yet it remained for Gauss and his
two younger contemporaries to take full advantage of a point of view
that greatly facilitates the study of elliptic integrals. If

u5
ðv
0

dx

12 x2
p ;

then u5 arcsin v. Here u is expressed as a function of the independent
variable v (x being only the dummy variable for integrating), but it turns
out to be more felicitous to reverse the roles of u and v by choosing u
as the independent variable. In this case, we have v5 f(u), or, in the
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language of trigonometry, v5 sin u. The function v5 sin u is more
expeditiously manipulated, and it has a striking property that u5 arcsin v
does not have: it is periodic. The private papers of Gauss show that
perhaps as early as 1800, he had discovered the double periodicity of
elliptic (or lemniscatic) functions. It was not until 1827 1828, however,
that this remarkable property was disclosed by Abel.
In 1829, Jacobi wrote to Legendre to inquire about the memoir Abel

had left with Cauchy, for Jacobi had intimations that it touched on his
outstanding discovery. On looking into the matter, Cauchy in 1830 dug
up the manuscript, which Legendre later described as “a monument
more lasting than bronze,” and it was published in 1841 by the French
Institut among the memoirs presented by foreigners. It contained an
important generalization of Legendre’s work on elliptic integrals. If

u5
ðv
0

dx

ð12K2x2Þð12 x2Þp ;

u is a function of v, u5 f(v), the properties of which had been very
extensively described by Legendre in his treatise on elliptic integrals.
What Legendre had missed and what Gauss, Abel, and Jacobi saw was
that by inverting the functional relationship between u and v, one obtains
a more useful and more beautiful function, v5 f(u). This function,
usually written v5 sn u and read as “v is the sine amplitude of u,” together
with others defined in a somewhat similar manner, are known as elliptic
functions. (Some historical confusion has arisen because Legendre used
the phrase “fonctions elliptiques” to refer to elliptic integrals and not to
what are now known as elliptic functions.)
The most striking property of these new higher transcendental func-

tions was, as their three independent discoverers saw, that in the theory of
complex variables they have a double periodicity, that is, there are two
complex numbers m and n, such that v5 f(u)5 f(u1m)5 f(u1 n).
Whereas the trigonometric functions have only a real period (a period of
2π) and the function ex has only an imaginary period (2πi), the elliptic
functions have two distinct periods. So impressed was Jacobi with the
simplicity achieved through a simple inversion of the functional rela-
tionship in elliptic integrals that he regarded the advice “You must always
invert” as the secret of success in mathematics.
Jacobi also deserves credit for several critical theorems related to

elliptic functions. In 1834, he proved that if a single-valued function of
one variable is doubly periodic, the ratio of the periods cannot be real,
and that it is impossible for a single-valued function of a single inde-
pendent variable to have more than two distinct periods. To him, we also
owe a study of the “Jacobi theta functions,” a class of quasi doubly
periodic entire functions of which the elliptic functions are quotients.
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The fateful misplaced memoir by Abel contained the hint of something
even more general than the elliptical functions. If one replaces the
elliptic integral with

u5
ðv
0

dx

PðxÞp ;

where P(x) is a polynomial the degree of which may exceed four, and if
one again inverts the relationship between u and v, to obtain v5 f(u), this
function is a special case of what is known as an Abelian function. It was
Jacobi, however, who in 1832 first demonstrated that the inversion can
be carried out not only for a single variable but for functions of several
variables.
The most celebrated results of his research were those in elliptic

functions, published in 1829, which brought him the praise of Legendre.
By means of this new analysis, Jacobi later proved again the four-square
theorem of Fermat and Lagrange. In 1829, Jacobi also published a paper
in which he made extensive and general use of Jacobians, expressing
these in a more modern form than had Cauchy:

@u

@x
;

@u

@x1
;

@u

@x2
; � � � @u

@xn 1

@u1

@x
;

@u1

@x1
;
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@xn 1� � � � � � � � � � � � � � � � � � �
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;
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:

Jacobi became so enamored of functional determinants that he insisted
on thinking of ordinary numerical determinants as Jacobians of n linear
functions in n unknowns.
Jacobi’s use of functional determinants in a paper on algebra in 1829was

only incidental, as had been that of Cauchy. Had this been the only con-
tribution from the pen of Jacobi, his name would not have been attached to
the particular determinant that we are considering. In 1841, however, he
published a long memoir, “De Determinantibus Functionalibus,” specifi-
cally devoted to the Jacobian. He pointed out, among other things, that this
functional determinant is in many ways an analogue, for functions of
several variables, to the differential quotient of a function of a single
variable, and, of course, he called attention to its role in determining
whether a set of equations or functions is independent. He showed that if a
set of n functions in n variables are functionally related, the Jacobian must
vanish identically; if the functions are mutually independent, the Jacobian
cannot be identically zero.
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Galois

Young geniuses whose lives were cut short by death from dueling or
consumption are part of the real and fictional literary tradition of the
Romantic Age. Someone wishing to present a mathematical caricature of
such lives could do no better than to create the characters of Abel and
Galois. Évariste Galois (1812 1832) was born just outside Paris in the
village of Bourg-la-Reine, where his father served as mayor. His well-
educated parents had not shown any particular aptitude for mathematics,
but the young Galois did acquire from them an implacable hatred of
tyranny. When he first entered school at the age of twelve, he showed
little interest in Latin, Greek, or algebra, but he was fascinated by
Legendre’s Geometry. Later, he read with understanding the algebra and
the analysis in the works of masters such as Lagrange and Abel, but
his routine class work in mathematics remained mediocre, and his tea-
chers regarded him as eccentric. By the age of sixteen, Galois knew what
his teachers had failed to recognize—that he was a mathematical genius.
He hoped, therefore, to enter the school that had nurtured so many
celebrated mathematicians, the École Polytechnique, but his lack of
systematic preparation resulted in his rejection.
This disappointment was followed by others. A paper Galois wrote

and presented to the Academy when he was seventeen was held up by
Cauchy; he failed in a second attempt to enter the École Polytechnique;
worst of all, his father, feeling persecuted because of clerical intrigues,
committed suicide. Galois entered the École Normale to prepare for
teaching; he also continued his research. In 1830, he submitted another
paper to the Academy in a prize competition. Fourier, as secretary of the
Academy, received the paper but died shortly thereafter, and this memoir
was lost. Faced on all sides by tyranny and frustration, Galois made the
cause of the 1830 revolution his own. A blistering letter criticizing
the indecision of the director of the École Normale resulted in Galois’s
expulsion. A third effort to present a paper to the Academy resulted in its
being returned by Poisson with a request for proofs. Thoroughly dis-
illusioned, Galois joined the National Guard. In 1831, he was twice
arrested; he had proposed a toast in a gathering of republicans that was
interpreted as a threat on the life of King Louis Philippe. Shortly
afterward, he became involved with a coquette and was challenged to a
duel. The night before the duel, with forebodings of death, Galois spent
the hours jotting down, in a letter to a friend named Chevalier, notes for
posterity concerning his discoveries. He asked that the letter be pub-
lished (as it was within the year) in the Revue Encydopédique and
expressed the hope that Jacobi and Gauss might publicly give their
opinion as to the importance of the theorems. On the morning of May 30,
1832, Galois met his adversary in a duel with pistols, which resulted in
his death the following day. He was twenty years old.
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In 1846, Joseph Liouville edited several memoirs and manuscript
fragments of Galois and published these, along with the last letter
to Chevalier in his Journal de Mathématiques. This marks the beginning
of the effective dissemination of Galois’s ideas, although some clues to
Galois’s work had been published earlier. Two papers by Galois had
appeared in Ferussac’s Bulletin Sciences Mathématiques of 1830. In the
first, Galois had listed three criteria for the solvability of a “primitive”
equation; the chief of these was the beautiful proposition that

In order that an irreducible equation of prime degree be solvable by

radicals, it is necessary and sufficient that all its roots be rational func-

tions of any two of them.

Aside from referring to Gauss’s cyclotomic equation and noting that
his results had been derived from the theory of permutations, this paper
contained no indication of the method used to derive results and no
proofs. In the other paper, on number theory, Galois showed how to
construct finite fields of order p given the root of an irreducible con-
gruence of degree n mod p. Here, too, he stressed the analogy to Gauss’s
results in Section III of the Disquisitiones Arithmeticae. His letter to
Chevalier, published in September 1832, had contained an outline of the
main results of the memoir that had been returned by the Academy.
There, Galois had indicated what he considered to be the essential part of
his theory. In particular, he stressed the difference between adjoining one
or all of the roots of the resolvent and related it to the decomposition of
the group G of the equation. In modern terminology, he indicated that an
extension of the given field is normal if and only if the corresponding
subgroup is a normal subgroup of G. He observed that an equation whose
group cannot be properly decomposed (one whose group does not have
a normal subgroup) should be transformed into one that can. Then,
he noted the equivalent of saying that an equation is solvable if and
only if one obtains a chain of normal subgroups of prime index. Unac-
companied by proofs, definitions, or adequate explanations of the new
concepts involved, the profound content of the letter was not understood
until Liouville published the full memoir, along with these previously
published papers.
The main goal of the memoir is the proof of the theorem quoted

previously. The memoir contains the important notion of “adjunction”:

We shall call every quantity rational which is expressed as a rational

function of the coefficients of the equation and of a certain number of

quantities adjoined to the equation and selected arbitrarily.

Galois noted that Gauss’s cyclotomic equation of prime degree n is
irreducible until a root of one of the auxiliary equations is adjoined.
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Gauss, in his criteria for the constructibility of regular polygons, had in
essence solved the question of the solvability of the equation
a0Xn1 an5 0 in terms of rational operations and square roots on the
coefficients. Galois generalized the result to provide criteria for the
solvability of a0X

n 1 a1X
n�1 1 � � � 1 an 1X1 an 5 0 in terms of rational

operations and nth roots on the coefficients. His approach to the problem,
now known as Galois theory, was another of the highly original con-
tributions to algebra in the nineteenth century. Yet it has been said that
Galois theory is like garlic, in that there is no such thing as a little of it.
One must make a substantial study of it to appreciate the reasoning—as
Galois’s experience with his contemporaries showed. Nevertheless, we
can indicate in a general way what is behind Galois theory and why it
has been important.
Galois began his investigations with some work of Lagrange on

permutations on the roots of a polynomial equation. Any change in
the ordered arrangement of n objects is called a permutation on these
objects. If, for example, the order of the letters a, b, c is changed to c, a,
b, this permutation is written succinctly as (acb), a notation in which
each letter is taken into the letter immediately following, the first letter
being understood to be the successor of the last letter. Thus, the letter a
was carried into c, c in turn was carried into b, and b went into a. The
notation (ac) or (ac, b), however, means that a goes into c, c goes into
a, and b goes into itself. If two permutations are performed succes-
sively, the resulting permutation is known as the product of the two
permutation transformations. Thus, the product of (acb) and (ac, b),
written as (acb)(ac, b), is the permutation (a, bc). The identical per-
mutation I takes each letter into itself—that is, it leaves the order a, b, c
unchanged. The set of all permutations on the letters a, b, c clearly
satisfies the definition of a group, given in chapter 20 on geometry; this
group, containing six permutations, is known as the symmetric group
on a, b, c. In the case of n distinct elements, x1, x2, . . . , xn, the sym-
metric group on these contains n! transformations. If these elements are
the roots of an irreducible equation, the properties of the symmetric
group provide necessary and sufficient conditions that the equation be
solvable by radicals.
Inspired by Abel’s proof of the insolvability by radicals of the quintic

equation, Galois discovered that an irreducible algebraic equation is
solvable by radicals if and only if its group—that is, the symmetric group
on its roots—is solvable. The description of a solvable group is quite
complicated, involving as it does relationships between the group and its
subgroups. The three permutations (abc), (abc)2, and (abc)35 I form
a subgroup of the symmetric group on a, b, and c. Lagrange had already
shown that the order of a subgroup must be a factor of the order of the
group, but Galois went deeper and found relations between the factor-
ability of the group of an equation and the solvability of the equation.
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Moreover, to him we owe the use in 1830 of the word “group” in its
technical sense in mathematics and the concept of a normal subgroup.
Although his work was done before that of most of the British

algebraists of the great period 1830 1850, Galois’s ideas were without
influence until they were published in 1846. Presence in Paris did not
guarantee success to even the brightest young mathematical minds of the
day. Abel and Galois are the most illustrious examples of men who felt
frustrated by their failure to find the recognition they sought in Paris.
The situation had changed by the time Liouville published Galois’s

work in his Journal. By midcentury, a substantial number of mathe-
maticians were actively pursuing research in France, Prussia, and Eng-
land. Each country had established a major mathematical journal in
the second quarter of the century. In 1836, Liouville had founded the
Journal de Mathématiques Pures et Appliquées. The Cambridge Math-
ematical Journal followed. Crelle’s journal continued to thrive, with
much active support from Dirichlet and his students.
Gauss and Cauchy died within two years of each other, the former in

1855, the latter in 1857. They had been preceded in death by many of
their contemporaries, including some of their younger followers; they
were followed, in 1859, by Dirichlet and Alexander von Humboldt.
In this respect, the 1850s mark the end of an era. But the decade also
brought a new direction to the continued unfolding of the mathematical
legacy of Gauss and Cauchy: that which emerged from the work of
Bernhard Riemann (1826 1866).
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20

Geometry

There is no branch of mathematics, however abstract, which may not

some day be applied to phenomena of the real world.

Lobachevsky

The School of Monge

Geometry, of all of the branches of mathematics, has been most subject
to changing tastes from age to age. In classical Greece, it had climbed to
the zenith, only to fall to its nadir at about the time that Rome fell. It
recovered some lost ground under Islam and in Renaissance Europe; in the
seventeenth century, it stood on the threshold of a new era, only to be all
but forgotten, at least by research mathematicians, for nearly two more
centuries, languishing in the shade of the ever-proliferating branches of
analysis. Britain, especially during the later eighteenth century, fought a
losing battle to restore Euclid’s Elements to its once glorious position, but
the British had done little to advance research in the subject. Through the
efforts of Monge and Carnot, there were some stirrings of revival in pure
geometry during the period of the French Revolution, but the almost
explosive rediscovery of geometry as a living branch of mathematics came
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chiefly with the dawn of the nineteenth century. As one might have
anticipated, Monge’s students at the École Polytechnique made significant
contributions to the new geometric movement. Reflecting the multiple
nature of their teacher’s research, some pursued geometric applications to
engineering, some to pedagogy, some to physics; many studied the subject
for its own sake. Thus, Charles Dupin (1784 1873) applied his geometric
knowledge primarily to problems of naval architecture and established
technical training courses at the Conservatoire des Arts et Métiers. Still, he
is best remembered among geometers for contributions to the theory of
surfaces, where he introduced concepts such as that of the cyclide, the
surface enveloped by all spheres tangent to a given set of spheres. Theo-
dore Olivier (1793 1853) went beyond Monge in creating geometric
models to develop powers of visualization of geometric concepts; this
work began the building of geometric model collections, heavily promoted
by the end of the century through the pedagogic influence of Felix
Klein (1849 1925). Jean-Baptiste Biot (1774 1862), though primarily
remembered as a physicist, in his lectures passed on Monge’s emphasis on
geometric visualization of physical and mathematical problems. Charles
Jules Brianchon (1785 1864) is best known today for one theorem, which
he discovered only a year after his entrance at the École Polytechnique,
where he studied under Monge and read Carnot’s Géométrie de position.
The twenty-one-year-old student, later an artillery officer and a teacher,
first reestablished the long-forgotten theorem of Pascal, which Brianchon
expressed in the modern form: In any hexagon inscribed in a conic section,
the three points of intersection of the opposite sides always lie on a straight
line. Continuing through some other demonstrations, he came to the one
that bears his name: “In any hexagon circumscribed about a conic section,
the three diagonals cross each other in the same point.” As Pascal had been
impressed by the number of corollaries that he had been able to derive
from his theorem, so Brianchon remarked that his own theorem “is preg-
nant with curious consequences.” The theorems of Pascal and Brianchon
are, in fact, fundamental in the projective study of conics. They form, in
addition, the first clear-cut instance of a pair of significant “dual” theorems
in geometry, that is, theorems that remain valid (in plane geometry) if the
words “point” and “line” are interchanged. If we let the phrase “a line is
tangent to a conic” be read as “a line is on a conic,” the two theorems can
be expressed in the following combined form:

The six
vertices

sides
of a hexagon lie on a conic if

�

and only if the three
points

lines
common to the three pairs of

�

opposite
sides

vertices
have a

line

point
in common:

��

.
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Projective Geometry: Poncelet and Chasles

Relationships between points and lines on conics were also efficaciously
exploited by another alumnus of the École Polytechnique, the man who
became the effective founder of projective geometry. This was Jean-
Victor Poncelet (1788 1867), who also studied under Monge. Poncelet
entered the army corps of engineers just in time to take part in Napoleon’s
ill-fated 1812 campaign in Russia and be taken prisoner. While in
prison, Poncelet composed a treatise on analytic geometry, Applications
d’analyse et de géométrie, which was based on the principles he had
learned at the École Polytechnique. This work, however, was not pub-
lished until about half a century later (2 vols., 1862 1864), despite the
fact that it was originally intended to serve as an introduction to
the author’s far more celebrated Traité des propriétés projectives des
figures of 1822. The latter work differed sharply from the former, in that
it was synthetic, rather than analytic, in style. Poncelet’s tastes had
changed on his return to Paris, and from that time on, he was a staunch
advocate of synthetic methods. He realized that the apparent advantage
of analytic geometry lay in its generality, and he therefore sought to make
statements in synthetic geometry as general as possible. To further this
design, he formulated what he called the “principle of continuity” or “the
principle of permanence of mathematical relations.” This he described
as follows:

The metric properties discovered for a primitive figure remain applicable,

without other modifications than those of change of sign, to all correlative

figures which can be considered to spring from the first.

As an example of the principle, Poncelet cited the theorem of the
equality of the products of the segments of intersecting chords in a circle,
which becomes, when the point of intersection lies outside the circle, an
equality of the products of the segments of secants. If one of the lines is
tangent to the circle, the theorem nevertheless remains valid on replacing
the product of the segments of the secant with the square of the tangent.
Cauchy was inclined to scoff at Poncelet’s principle of continuity, for it
appeared to him to be nothing more than a bold induction. In a sense, this
principle is not unlike the view of Carnot, but Poncelet carried it further
to include the points at infinity that Kepler and Desargues had suggested.
Thus, one could say of two straight lines that they always intersected—
either in an ordinary point or (in the case of parallel lines) in a point at
infinity, called an ideal point. In order to achieve the generality of
analysis, Poncelet found it necessary to introduce into synthetic geo-
metry not only ideal points but also imaginary points, for only thus could
he say that a circle and a straight line always intersect. Among his
striking discoveries was that all circles whatsoever, drawn in a plane,
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have two points in common. These are two ideal imaginary points,
known as the circular points at infinity and usually designated as I and J
(or, more informally, as Isaac and Jacob).
Poncelet argued that his principle of continuity, which presumably had

been suggested by analytic geometry, was properly a development of
synthetic geometry, and he quickly became a champion of the latter
against the analysts. During the second half of the eighteenth century,
there had been some controversy, especially in Germany, about the
relative merits of analysis and synthesis. During the early nineteenth
century, interest in the rival methodologies in France was such that a
prize was offered in 1813 by the Bordeaux Scientific Society for the best
essay characterizing synthesis and analysis and the influence that each
had exerted. The winning essay, by a teacher at Versailles, closed with
the hope that there might be a reconciliation between the two camps, but
half a dozen years later, the controversy broke out again and became
increasingly bitter.
The history of geometry in the nineteenth century is replete with cases

of independent discovery and rediscovery. One example is that of the
nine-point circle. Poncelet and Brianchon published a joint paper in
Gergonne’s Annales for 1820 1821, which, though titled “Recherches
sur la détermination d’une hyperbole équilatère,” contained a proof of
the beautiful theorem that

The circle which passes through the feet of the perpendiculars, dropped

from the vertices of any triangle on the sides opposite to them, passes also

through the midpoints of these sides as well as through the midpoints of

the segments which join the vertices to the point of intersection of the

perpendiculars.

This theorem is generally named for neither Brianchon nor Poncelet, but
for an independent German mathematician, Karl Wilhelm Feuerbach
(1800 1834), who published it in 1822. The little monograph containing
this and some related propositions also included proofs of several fasci-
nating properties of the circle. Among these is the fact that the center
of the nine-point circle lies on the Euler line and is midway between
the orthocenter and the circumcenter, and “Feuerbach’s theorem” that the
nine-point circle of any triangle is tangent internally to the inscribed circle
and tangent externally to the three escribed circles. One enthusiast, the
American geometer Julian Lowell Coolidge (1873 1954), called this
“the most beautiful theorem in elementary geometry that has been dis-
covered since the time of Euclid.” It should be noted that the charm
of such theorems supported considerable investigation in the geometry of
triangles and circles during the nineteenth century.
Returning to Poncelet, let us note that we remember him primarily for

his using existing Desarguesian concepts of central (point) projections
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and points of infinity to establish the notion of the complex projective
plane. Basic is the study of projective properties defined as those
remaining invariant under perspectivities. Given a point O and a line l in
the plane, a perspectivity assigns to each point P a point Pu on l such that
if Q is a second point, there exists a point Qu on OQ such that PQ
intersects PuQu on l. A sequence of perspectivities is called a projectivity.
Again, calling on an approach used by Desargues, Poncelet brought to the
fore the Apollonian concepts of pole and polar to which, as we have
noted, he attributed his discovery of the principle of duality.
The work of Poncelet was continued by Michel Chasles (1798 1880),

also a graduate of the École Polytechnique, where he became professor of
machine technology in 1841; beginning in 1846, he held a chair for higher
geometry at the Sorbonne. To Chasles was due the emphasis in projective
geometry on the six cross ratios, or anharmonic ratios, (c2 a) / (c2 b) :
(d2 a) / (d2 b) of four collinear points or four concurrent lines, and
the invariance of these under projective transformations. His Traité de
géométrie supérieure (1852) was influential as well in establishing the
use of directed line segments in pure geometry. Chasles, who is also
noted for his Aperçu historique sur l’origine et la dévéloppement des
méthodes en géométrie (1837), was one of the last great projective
geometers in France. Late in life, he initiated the study of enumerative
geometry, that branch of algebraic geometry whose task it is to deter-
mine the number of solutions of algebraic problems by means of geo-
metric interpretation. Here and elsewhere, he made prominent use of the
“principle of correspondence.”

Synthetic Metric Geometry: Steiner

In many respects, Chasles’s results overlapped with those of several
German geometers. Foremost among them was Jakob Steiner, the man
who has been regarded as the greatest synthetic geometer of modern
times. In his hands, synthetic geometry made strides comparable to those
made earlier in analysis. He intensely disliked analytic methods. The
term “analysis” implies a certain amount of technique or machinery;
analysis is often referred to as a tool, a term never applied to synthesis.
Steiner objected to all kinds of tools or “props” in geometry. In a
paper in Crelle’s Journal, he demonstrated by synthetic methods alone
a striking theorem that naturally appears to belong to analysis: that a
surface of the third order contains only twenty-seven lines. Steiner
also proved that all Euclidean constructions can be performed with a
straightedge alone, provided that one is also given a single fixed circle.
This theorem shows that one cannot, in Euclidean geometry, dispense
entirely with the compasses, but that having used them to draw one
circle, one can thereafter discard them in favor of the straightedge alone.
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Steiner’s name is recalled in many connections, including the prop-
erties of the Steiner points: If one joins in all possible ways the six points
on a conic in Pascal’s mystic hexagon, one obtains sixty Pascal lines that
intersect three by three in twenty Steiner points. Among Steiner’s
unpublished discoveries are those relating to the fruitful geometric
transformation known as inversive geometry: If two points P and Pu lie
on a ray from the center O of a circle C of radius r 6¼ 0, and if the product
of the distances OP and OPu is r 2, then P and Pu are said to be inverse to
each other with respect to C. To every point P outside the circle, there is
a corresponding point inside the circle. Inasmuch as there is no outside
point Pu corresponding to P when P coincides with the center O, one has
in a sense a paradox similar to that of Bolzano: The inside of every
circle, no matter how small, contains, as it were, one more point than the
portion of the plane outside the circle. In an exactly analogous manner,
one readily defines the inverse of a point in three-dimensional space with
respect to a sphere.
A host of theorems in plane or solid inversive geometry are readily

proved by either analytic or synthetic methods. In particular, it is easy to
show that a circle not passing through the center of inversion is trans-
formed under a plane inversion, into a circle, whereas a circle through
the center of inversion goes into a straight line not passing through the
center of inversion (with analogous results holding for spheres and
planes in three-dimensional inversive geometry). Somewhat more dif-
ficult to establish is the more significant result that inversion is a con-
formal transformation, that is, that angles between curves are preserved
in this geometry. That angle-preserving transformations are far from
usual is clear from a theorem proved by Joseph Liouville that in space,
the only ones that are conformal are inversions and similarity and con-
gruency transformations. Steiner did not publish his ideas on inversion,
and the transformation was rediscovered several times by other mathe-
maticians of the century, including Lord Kelvin (or William Thomson,
1824 1907), who, in 1845, arrived at it through physics and who
applied it to problems in electrostatics.
If the center O of the circle of inversion of radius a is at the origin of

a plane Cartesian coordinate system, the coordinates x u and y u of the
inverse Pu of a point P(x, y) are given by the equations

x0 5
a2x

x2 1 y2
and y0 5

a2y

x2 1 y2

These equations later suggested to Luigi Cremona (1830 1903), a pro-
fessor of geometry successively at Bologna, Milan, and Rome, the study
of themuchmore general transformation x u5R1(x, y), y u5R2(x, y),whereR1

and R2 are rational algebraic functions. Such transformations, of which
those for inversion are only a special case, are now known as Cremona
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transformations, in honor of the man who, in 1863, published an account
of them and who later generalized them for three dimensions.

Synthetic Nonmetric Geometry: von Staudt

Steiner, in his Systematische Entwicklungen of 1832, had produced a
treatment of projective geometry based on metric considerations.
Some years later, pure geometry found another German devotee in
K. G. C. von Staudt (1798 1867), a one-time student of Gauss’s, whose
Geometrie der Lage of 1847 built up projective geometry without
reference to magnitude or number. Von Staudt, after defining the cross
ratio of four points x1, x2, x3, and x4 as x12 x3 / x12 x4 : x22 x3 / x22 x4,
made a harmonic set of points (a set whose cross ratio is 1) fundamental
to building up projective geometry; two pencils of points are said to be
projective if harmonic sets are preserved. Von Staudt’s geometry was
exceedingly significant in showing how a projective geometry could be
established without the concept of distance, thus paving the way for the
idea of having a nonmetric geometry on which a notion of distance could
be defined. A few years later, Edmond Laguerre (1834 1886) in France
discussed the possibility of imposing a measure on a nonmetric angle
geometry. It was Arthur Cayley, however, who subsequently presented
the most influential elaboration on the whole concept of defining a metric
on a projective geometry in his “Sixth Memoir on Quantics.”

Analytic Geometry

As Monge had been perhaps the first modern specialist in geometry
in general, so Julius Plücker (1801 1868) became the first specialist in
analytic geometry in particular. His earliest publications in Gergonne’s
Annales in 1826 had been largely synthetic, but he inadvertently became
so embroiled in controversy with Poncelet that he forsook the camp of
the synthesists and became the most prolific of all analytic geometers.
Algebraic methods, he came to believe firmly, were much to be preferred
to the purely geometric approach of Poncelet and Steiner. That his name
survives in coordinate geometry in what is called Plücker’s abridged
notation is a tribute to his influence, although, in this case, the phrase
does him more than justice. During the early nineteenth century, a
number of men, including Gergonne, had recognized that analytic geo-
metry was burdened by awkwardness in algebraic computation; hence,
they began to drastically abbreviate notations. The family of all circles
through the intersection of the two circles x21 y21 ax1 by1 c5 0 and
x21 y21 aux1 buy1 cu5 0, for instance, was written by Gabriel Lamé
(1795 1870) in 1818 simply as mC1muCu5 0, using two parameters
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or multipliers m and mu. Gergonne and Plücker preferred a single Greek
multiplier, the former writing C1 lCu5 0, from which we have the word
“lambdalizing,” and the latter using C1μCu5 0, resulting in the phrase
“Plücker’s μ.” Lamé seems to have been the initiator in the study in ana-
lytic geometry of one-parameter families through abridged notation, but it
was Plücker who, especially during the years 1827 1829, carried this
study furthest.
Among the many uses Plücker made of abridged notation was one of

1828, in Gergonne’s Annales, in which he explained the Cramer-Euler
paradox. If, for example, one has fourteen random points in a plane,
the quartic curve through these points can be written as Q1μQu5 0,
where Q5 0 and Qu5 0 are distinct quartics through the same thirteen of
the fourteen given points. Let μ be so determined that the coordinates
of the fourteenth point satisfy Q1μQu5 0. Then, Q5 0, Qu5 0, and
Q1 uQu5 0 all have in common not only the original thirteen points, but
also all sixteen points of intersection of Q5 0 and Qu5 0. Hence, with
any set of thirteen points there are three additional points dependent on,
or associated with, the original thirteen, and no set of fourteen or more
points selected from the combined set of sixteen dependent points will
determine a unique quartic curve, despite the fact that a random set of
fourteen points will in general uniquely determine a quartic curve. More
generally, any given set of

nðn1 3Þ
2

2 1

random points will determine a concomitant set of

n2 2
nðn1 3Þ

2
2 1

� �
5

ðn2 1Þðn2 2Þ
2

additional “dependent” points such that any curve of degree n through
the given set of points will also pass through the dependent points.
In addition, Plücker gave a dual of his theorem on the paradox, as well as
generalizations to surfaces in three dimensions.
It was Plücker who, in the first volume of his Analytisch-geometrische

Entwicklungen (1828), elevated the abridged notation of Lamé and
Gergonne to the status of a principle; in the second volume of this
influential work (1831), Plücker effectively rediscovered a new system of
coordinates that had been independently invented three times earlier. This
was what we now call homogeneous coordinates, of which Feuerbach
was one inventor. Another discoverer was A. F. Möbius (1790 1860),
also a student of Gauss’s, who published his scheme in 1827 in aworkwith
the title Der barycentrische Calcul. He introduced his “barycentric
coordinates” by considering a given triangle ABC and defining the coor-
dinates of a point P as the mass to be placed at A, B, and C so that P is the

490 Geome t r y



center of gravity of these masses. Möbius classified transformations
according to whether they were congruences (leaving corresponding
figures equal), similarities (corresponding figures similar), affine (corre-
sponding figures preserving parallel lines), or collineations (lines going
into lines) and suggested the study of invariants under each family of
transformations. The author of Der barycentrische Calcul is best known,
however, for the one-sided surface that bears his name—the Möbius strip
or band obtained by joining the ends of a segment of ribbon after one end
has been turned upside down. Still another inventor of homogeneous
coordinates was Étienne Bobillier (1798 1840), a graduate of the École
Polytechnique who published his new coordinate system in Gergonne’s
Annales for 1827 1828.
The notations and patterns of reasoning of the four inventors of

homogeneous coordinates differed somewhat, but they all had one thing
in common—they made use of three coordinates, instead of two, to locate
a point in a plane. The systems were equivalent to what are also known
as trilinear coordinates. Plücker, in fact, at first specifically took his
three coordinates x, y, and t of a point P in a plane to be the three dis-
tances of P from the sides of a triangle of reference. Later, in Volume II of
his Analytisch-geometrische Entwicklungen, he gave the more usual
definition of homogeneous coordinates as any set of ordered number
triples (x, y, t) related to the Cartesian coordinates (X, Y ) of P such that
x5Xt and y5 Yt. It will immediately be apparent that the homogeneous
coordinates of a point P are not unique, for the triples (x, y, t) and (kx,
ky, kt) correspond to the same Cartesian pair (x / t, y / t). This lack of
uniqueness, however, causes no more difficulty than does the lack
of uniqueness in polar coordinates or the lack of uniqueness of form in the
case of equal fractions. The name “homogeneous” stems, of course, from
the fact that when one uses the equations of transformation to convert the
equation of a curve f(X, Y )5 0 in rectangular Cartesian coordinates to
the form f(x / t, y / t)5 0, the new equation will contain terms all of the
same degree in the variables x, y, and t. More important, it will be noted
that there is in the system of Cartesian coordinates no number pair cor-
responding to a homogeneous plane number triple of the form (x, y, 0).
Such a triple (provided that x and y are not both zero) designates an ideal
point, or a “point at infinity.” At long last, the infinite elements of Kepler,
Desargues, and Poncelet had been tied down to a coordinate system of
ordinary numbers. Moreover, just as any ordered triple of real numbers
(not all zero) in homogeneous coordinates corresponds to a point in a
plane, so also does every linear equation ax1 by1 ct5 0 (provided that
a, b, and c are not all zero) correspond to a straight line in the plane. In
particular, all of the “points at infinity” in the plane obviously lie on the
line given by the equation t5 0, known as the line at infinity or the ideal
line in the plane. It is obvious that this new system of coordinates is
ideally suited to the study of projective geometry, which up to this time
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had been approached almost exclusively from the point of view of pure
geometry.
Homogeneous coordinates were a big step in the direction of the

arithmetization of geometry, but in 1829, Plücker contributed to Crelle’s
Journal a paper with a revolutionary point of view that broke completely
with the old Cartesian view of coordinates as line segments. The
equation of a straight line in homogeneous coordinates has the form
ax1 by1 ct5 0. The three coefficients of parameters (a, b, c) determine
a unique straight line in the plane, just as the three homogeneous
coordinates (x, y, t) correspond to a unique point in the plane. Inasmuch
as coordinates are numbers, hence not unlike coefficients, Plücker saw
that one could modify the usual language and call (a, b, c) the homo-
geneous coordinates of a line. If, finally, one reverses the Cartesian
convention so that letters at the beginning of the alphabet designate
variables and those near the end of the alphabet designate constants, the
equation ax1 by1 ct5 0 represents a pencil of lines through the fixed
point (x, y, t), rather than a pencil of points on the fixed line (a, b, c).
If, now, one considers the noncommittal equation pu1 qv1 rw5 0, it is
clear that one can consider this indifferently as the totality of points (u, v,
w) lying on the fixed line ( p, q, r) or as the totality of lines ( p, q, r)
through the fixed point (u, v, w).
Plücker had discovered the immediate analytic counterpart of the geo-

metric principle of duality, about which Gergonne and Poncelet had quar-
reled; it now became clear that the justification that pure geometry
had sought in vain was here supplied by the algebraic point of view.
The interchange of the words “point” and “line” merely corresponds to an
interchange of the words “constant” and “variable” with respect to the
quantities p, q, r and u, v,w. From the symmetry of the algebraic situation, it
is clear that every theorem concerning pu1 qv1 rw5 0 immediately
appears in two forms, one the dual of the other. Moreover, Plücker showed
that every curve (other than a straight line) can be regarded as having a
dual origin: It is a locus generated by a moving point and enveloped by
a moving line, the point moving continuously along the line while the
line continues to rotate about the point. Oddly enough, the degree of a
curve in point coordinates (the “order” of the curve) need not be the same
as the degree of the curve in line coordinates (the “class” of the curve),
and one of Plücker’s great achievements, published in Crelle’s Journal
for 1834,was the discovery of four equations,which nowbear his name, that
relate the class and the order of a curve with the singularities of the curve:

m5 nðn2 1Þ2 2δ2 3κ and n5mðm2 1Þ2 2τ2 3ι;
l5 3nðn2 2Þ2 6δ2 8κ and κ5 3mðm2 2Þ2 6τ2 8t;

where m is the class, n the order, δ the number of nodes, κ the number of
cusps, ι the number of stationary tangents (points of inflection), and τ the
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number of bitangents. From these equations, it is clear at a glance that a
conic (of order two) can have no singularities and thus must also be of
class two.
In later papers and volumes, Plücker extended his work to include

imaginary Cartesian and homogeneous coordinates. It was now a trivial
matter to justify Poncelet’s theorem that all circles have in common two
imaginary points at infinity, for the points (1, i, 0) and (i, 1, 0) both
satisfy the equation x21 y21 axt1 byt1 ct25 0, no matter what values
a, b, c may take on. Plücker also showed that the foci of conics have the
property that the imaginary tangents from these points to the curve pass
through the above two circular points; he therefore defined a focus of a
higher plane curve as a point having this property.
During the days of Descartes and Fermat and again in the time ofMonge

and Lagrange, France had been the center for the development of analytic
geometry, but with the work of Plücker, leadership in the field crossed the
Rhine to Germany. Nevertheless, Plücker was, to a considerable extent,
the proverbial prophet without honor in his own country. There, Steiner,
the champion of synthetic methods, was inordinately admired. Möbius
remained neutral in the analysis-synthesis controversy, but Jacobi, despite
the fact that he himself was an algorithm-builder, joined Steiner in
polemically opposing Plücker. Discouraged, in 1847, Plücker turned from
geometry to physics, where he published a series of papers on magnetism
and spectroscopy.
One notes with surprise that Plücker had not taken advantage of

developments in determinants, possibly because of his feud with
Jacobi; this may have been why he did not systematically develop an
analytic geometry of more than three dimensions. Plücker had come
close to this notion through his observation in 1846 that the four
parameters determining a line in three-dimensional space can be
thought of as four coordinates, but only long afterward, in 1865, did he
return to analytic geometry and develop the idea of a “new geometry of
space”—a four-dimensional space in which straight lines, rather than
points, were the basic elements. Meanwhile, in 1843, Cayley had
initiated the ordinary analytic geometry of n-dimensional space, using
determinants as an essential tool. In this notation, using homogeneous
coordinates, the equations of the line and the plane, respectively, can be
written as

x y t

x1 y1 t1
x2 y2 t2

������
������5 0 and

x y z t

x1 y1 z1 t1
x2 y2 z2 t2
x3 y3 z3 t3

��������

��������
5 0:

Cayley pointed out that the corresponding fundamental (n2 l)-dimensional
element in n-dimensional space can be expressed in homogeneous
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coordinates by a determinant, similar to those above, of order n1 1. Many
of the simple formulas for two and three dimensions, when properly
expressed, can easily be generalized to n dimensions. In 1846, Cayley
published a paper in Crelle’s Journal, in which he again extended some
theorems from three dimensions to a space of four dimensions; in 1847,
Cauchy published an article in theComptes Rendus, inwhich he considered
“analytical points” and “analytical lines” in space of more than three
dimensions.

Non-Euclidean Geometry

In non-Euclidean geometry, we find a startling case of simultaneity
of discovery, for similar notions occurred, during the first third of
the nineteenth century, to three men, one German, one Hungarian, and
one Russian. We have already noted that during the second decade
of the century, Gauss had come to the conclusion that the efforts to
prove the parallel postulate made by Saccheri, Lambert, Legendre, and his
Hungarian friend Farkas Bolyai were in vain and that geometries other
than Euclid’s were possible. Yet he had not shared this view with others;
he had simply elaborated the idea, as he said, “for himself.” Hence, efforts
to prove the parallel postulate continued, and among those attempting
such a proof was young Nikolai Ivanovich Lobachevsky (1793 1856).
Lobachevsky is regarded as the “Copernicus of geometry,” the man who
revolutionized the subject through the creation of a whole new branch,
Lobachevskian geometry, thereby showing that Euclidean geometry was
not the exact science or the absolute truth it previously had been taken
to be. Through the work of Lobachevsky, it became necessary to revise
fundamental views of the nature of mathematics, but Lobachevsky’s
colleagues were too close to the situation to see it in proper perspective,
and the trailblazer had to pursue his thoughts in lonely isolation.
Lobachevsky’s revolutionary view seems not to have come to him as a

sudden inspiration. In an outline of geometry that he drew up in 1823,
presumably for classroom use, Lobachevsky said of the parallel postu-
late simply that “no rigorous proof of the truth of this had ever been
discovered.” Apparently, he did not then exclude the possibility that such
a proof might yet be discovered. Three years later at Kazan University,
he read in French a paper (now lost) on the principles of geometry,
including “une démonstration rigoreuse du théorème des parallèles.”
The year 1826 in which this paper was delivered may be taken as
the unofficial birth date of Lobachevskian geometry, for it was then
that the author presented many of the characteristic theorems of the
new subject. Another three years later, in the Kazan Messenger for 1829,
Lobachevsky published an article, “On the Principles of Geometry,”
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which marks the official birth of non-Euclidean geometry. Between 1826
and 1829, he had become thoroughly convinced that Euclid’s fifth
postulate cannot be proved on the basis of the other four, and in the
paper of 1829, he became the first mathematician to take the revolu-
tionary step of publishing a geometry specifically built on an assumption
in direct conflict with the parallel postulate: Through a point C lying
outside a line AB there can be drawn more than one line in the plane
and not meeting AB. With this new postulate, Lobachevsky deduced a
harmonious geometric structure having no inherent logical contra-
dictions. This was in every sense a valid geometry, but so contrary to
common sense did it appear, even to Lobachevsky, that he called it
“imaginary geometry.”
Lobachevsky was well aware of the significance of his discovery of

“imaginary geometry,” as is clear from the fact that during the score
of years from 1835 to 1855, he wrote out three full accounts of the new
geometry. In 1835 1838, his New Foundations of Geometry appeared in
Russian; in 1840, he published Geometrical Investigations on the Theory
of Parallels in German; and in 1855, his last book, Pangeometry, was
published simultaneously in French and Russian. (All have since been
translated into other languages, including English.) From the second of
the three works, Gauss learned of Lobachevsky’s contributions to non-
Euclidean geometry, and it was on his recommendation that in 1842,
Lobachevsky was elected to the Göttingen Scientific Society. In letters to
friends, Gauss praised Lobachevsky’s work, but he never gave it support
in print, for he feared the jibes of “the Boeotians.” Partly for this reason,
the new geometry became known only very slowly.
Gauss’s Hungarian friend Farkas Bolyai had spent much of his life

trying to prove the parallel postulate, and when he found that his own
son Janos Bolyai (1802 1860) was absorbed in the problem of parallels,
the father, a provincial mathematics teacher, wrote to the son, a dashing
army officer:

For God’s sake, I beseech you, give it up. Fear it no less than sensual

passions because it, too, may take all your time, and deprive you of your

health, peace of mind, and happiness in life.

The son, not dissuaded, continued his efforts until, in about 1829, he
came to the conclusion reached only a few years earlier by Lobachevsky.
Instead of attempting to prove the impossible, he developed what he
called the “Absolute Science of Space,” starting from the assumption that
through a point not on a line, infinitely many lines can be drawn in the
plane, each parallel to the given line. Janos sent his reflections to his
father, who published them in the form of an appendix to a treatise that he
had completed, bearing a long Latin title beginning with Tentamen. The
elder Bolyai’s Tentamen bears an imprimatur dated 1829, the year of
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Lobachevsky’s Kazan Messenger article, but it did not actually appear
until 1832.
Gauss’s reaction to the “Absolute Science of Space” was similar

to that in the case of Lobachevsky—sincere approval, but lack of support
in print. When Farkas Bolyai wrote to ask for an opinion on the unor-
thodox work of his son, Gauss replied that he could not praise Janos’s
work, for this would mean self-praise, inasmuch as he had held these
views for many years. The temperamental Janos was understandably
disturbed, fearing that he would be deprived of priority. Continued lack of
recognition, as well as the publication of Lobachevsky’s work in German
in 1840, so upset him that he published nothing more. The lion’s share of
the credit for the development of non-Euclidean geometry consequently
belongs to Lobachevsky.

Riemannian Geometry

Non-Euclidean geometry continued for several decades to be a fringe
aspect of mathematics until it was thoroughly integrated through the
remarkably general views of G. F. B. Riemann (1826 1866). The son of
a village pastor, Riemann was brought up in very modest circumstances,
always remaining frail in body and shy in manner. He nevertheless
secured a good education, first at Berlin and later at Göttingen, where he
took his doctorate with a thesis in theory of functions of a complex
variable. It is here that we find the so-called Cauchy-Riemann equations,
ux5 vy, uy52 vx, which an analytic function w5 f(z)5 u1 iv of a
complex variable z5 x1 iy must satisfy, although this requirement had
been known even in the days of Euler and d’Alembert. The thesis also
led to the concept of a Riemann surface, anticipating the part that
topology ultimately was to play in analysis.
In 1854, Riemann became a privatdozent at the University of Göttingen,

and according to custom, he was called on to deliver aHabilitationsschrift
before the faculty. The result, in Riemann’s case, was the most celebrated
probationary lecture in the history of mathematics, for it presented a deep
and broad view of the whole field of geometry. The thesis bore the
title “Über die Hypothesen welche der Geometrie zu Grunde liegen”
(“On theHypotheseswhich Lie at the Foundation ofGeometry”), but it did
not present a specific example. It instead urged a global view of geometry
as a study of manifolds of any number of dimensions in any kind of space.
His geometries are non-Euclidean in a far more general sense than is
Lobachevskian geometry, where the question is simply how many paral-
lels are possible through a point. Riemann saw that geometry should
not even necessarily deal with points or lines or space in the ordinary
sense, but with sets of ordered n-tuples that are combined according to
certain rules.
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Among the most important rules in any geometry, Riemann saw, is
that for finding the distance between two points that are infinitesimally
close together. In ordinary Euclidean geometry, this “metric” is given by
ds25 dx21 dy21 dz2, but infinitely many other formulas can be used as
a distance formula, and, of course, the metric used will determine the
properties of the space or the geometry.A spacewhosemetric is of the form

ds2 5 g11 dx
2 1 g12 dx dy1 g13 dx dz

1 g21 dy dx1 g22 dy
2 1 g23 dy dz

1 g13 dz dx1 g23 dz dy1 g33 dz
2;

where the g’s are constants or, more generally, functions of x, y, and z,
is known as a Riemannian space. Thus, (locally) Euclidean space is
only the very special case of a Riemannian space in which g115 g225
g335 1 and all the other g’s are zero. Riemann even developed from
the metric a formula for the Gaussian curvature of a “surface” in his
“space.” It is no wonder that after Riemann’s lecture and for almost the
only time in his long career, Gauss expressed enthusiasm for the work
of someone else.
There is a more restricted sense in which we today use the phrase

“Riemannian geometry”: the plane geometry that is deduced from
Saccheri’s hypothesis of the obtuse angle if the infinitude of the straight
line is also abandoned. A model for this geometry is found in the inter-
pretation of the “plane” as the surface of a sphere and of a “straight line”
as a great circle on the sphere. In this case, the angle sum of a triangle is
greater than two right angles, whereas in the geometry of Lobachevsky
and Bolyai (corresponding to the hypothesis of the acute angle), the angle
sum is less than two right angles. This use of Riemann’s name, however,
fails to do justice to the fundamental change in geometric thought that his
1854 Habilitationsschrift (not published until 1867) brought about. It was
Riemann’s suggestion of the general study of curved metric spaces, rather
than of the special case equivalent to geometry on the sphere, that ulti-
mately made the theory of general relativity possible. Riemann himself
contributed heavily to theoretical physics in a number of directions, and it
was therefore fitting that in 1859 he should have been appointed as suc-
cessor to Dirichlet in the chair at Göttingen that Gauss had filled.
In showing that non-Euclidean geometry with angle sum greater than

two right angles is realized on the surface of a sphere, Riemann essentially
verified the consistency of the axioms from which the geometry is derived.
In much the same sense, Eugenio Beltrami (1835 1900), a colleague of
Cremona’s at Bologna and later a professor at Pisa, Pavia, and Rome,
showed that there was at hand a corresponding model for Lobachevskian
geometry. This is the surface generated through the revolution of a tractrix
about its asymptote, a surface known as a pseudosphere, inasmuch as it has
constant negative curvature, as the sphere has constant positive curvature.
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If we define the “straight line” through two points on the pseudosphere
as the geodesic through the points, the resulting geometry will have
the properties resulting from the Lobachevskian postulates. Inasmuch
as the plane is a surface with constant zero curvature, Euclidean geometry
can be regarded as an intermediary between the two types of non-
Euclidean geometry.

Spaces of Higher Dimensions

The unification of geometry that Riemann had achieved was especially
relevant in the microscopic aspect of differential geometry, or geo-
metry “in the small.” Analytic geometry, or geometry “in the large,”
had not been much changed. In fact, Riemann’s lecture was given at
about the midpoint of Plücker’s self-imposed geometric retirement,
during which there had been something of a lull in analytic geometric
activity in Germany. In 1865, Plücker again resumed mathematical
publication, this time in British publications instead of in Crelle’s
Journal, probably because Cayley had shown interest in Plücker’s
work. In this year, he published a paper in the Philosophical Trans-
actions (often known simply as Phil. Trans.), expanded three years
later into a book on a “new geometry” of space. Here, he explicitly
formulated a principle at which he had hinted about twenty years
earlier. A space, he argued, need not be thought of as a totality of
points; it can equally well be visualized as composed of lines. In fact,
any figure that formerly had been thought of as a locus or a totality of
points can itself be taken as a space element, and the dimensionality
of the space will correspond to the number of parameters determining
this element. If our ordinary three-space is considered a “cosmic
haystack of infinitely thin, infinitely long straight straws,” rather than
an “agglomeration of infinitely fine birdshot,” it is four-dimensional,
rather than three-dimensional. In 1868, the year of Plücker’s book
based on this theme, Cayley analytically developed in the Phil. Trans.
the notion of the ordinary two-dimensional Cartesian plane as a space
of five dimensions, the elements of which are conics. In Plücker’s Neue
Geometrie des Raumes, there are also other new ideas. The geometric
representation of a single equation f(x, y, z)5 0 in point coordinates is
called a surface, two simultaneous equations correspond to a curve, and
three equations determine one or more points. In the “new geometry” of
his four-dimensional line space, Plücker called the “figure” represented
by a single equation f(r, s, t, u)5 0 in the four coordinates of his line
space a “complex,” two equations designated a “congruence,” and three
a “range.” He found that the quadratic line complex has properties
similar to those of the quadric surface, but he did not live to complete
the extensive study he planned. He died in 1868, the year in which
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the first volume of his New Geometry appeared, followed a year later
by the second, edited by one of his students, Felix Klein (1849 1925).

Felix Klein

Klein had been Plücker’s assistant at the University of Bonn during the
latter’s return to geometry, and, in a sense, he was Plücker’s successor in
his enthusiasm for analytic geometry. Yet the young man’s work in the
field took a different direction—one that served to bring some element of
unity into the diversity of new results of research. The new view may
have been in part the result of visits to Paris, where Lagrange’s hints
of group theory had been developed, especially through substitution
groups, into a full-blown branch of algebra. Klein was deeply impressed
by the unifying possibilities in the group concept, and he spent much of
the rest of his life in developing, applying, and popularizing the notion.
A set of elements is said to form a group with respect to a given

operation if (1) the set of elements is closed under the operation, (2) the
set contains an identity element with respect to the operation, (3) for
every element in the set there is an inverse element with respect to the
operation, and (4) the operation is associative. The elements can be
numbers (as in arithmetic), points (in geometry), transformations (in
algebra or geometry), or anything at all. The operation can be arithmetic
(such as addition or multiplication) or geometric (as a rotation about a
point or an axis) or any other rule for combining two elements of a set
(such as two transformations) to form a third element in the set. The
generality of the group concept is readily apparent. Klein, in a celebrated
inaugural program in 1872, when he became a professor at Erlangen,
showed how it could be applied as a convenient means of characterizing
the various geometries that had appeared during the century.
The program that Klein gave, which became known as the Erlanger

Programm, described geometry as the study of those properties of
figures that remain invariant under a particular group of transformations.
Hence, any classification of groups of transformations becomes a codi-
fication of geometries. Plane Euclidean geometry, for example, is the
study of such properties of figures, including areas and lengths, as
remain invariant under the group of transformations made up of trans-
lations and rotations in the plane—the so-called rigid transformations,
equivalent to Euclid’s unstated axiom that figures remain unchanged
when moved about in a plane. Analytically, the rigid plane transfor-
mations can be written in the form

x05 ax1 by1 c;
y05 dx1 ey1 f ;

�
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where ae2 bd5 1; these form the elements of a group. The “operation”
that “combines” two such elements is simply that of performing the
transformations in order. It is easy to see that if the previous transfor-
mation is followed by a second,

xv5Ax01By0 1C;
yv5Dx01Ey01F;

�

the result of the two operations performed successively is equivalent to
some single operation of this type that will carry the point (x, y) into the
point (xv, yv).
If, in this transformation group, one replaces the restriction that

ae2 bd5 1 by the more general requirement that ae2 bd 6¼ 0, the new
transformations also form a group. Lengths and areas do not necessarily
remain the same, however, but a conic of given type (ellipse, parabola,
or hyperbola) will, under these transformations, remain a conic of the
same type. Such transformations, studied earlier by Möbius, are known
as affine transformations; they characterize a geometry known as affine
geometry, so called because a finite point goes into a finite point under
any such transformation. It is clear, then, that Euclidean geometry, in
Klein’s view, is only a special case of affine geometry. Affine geometry,
in its turn, becomes only a special case of a still more general geo-
metry—projective geometry. A projective transformation can be written
in the form

x0 5
ax1 by1 c

dx1 ey1 f
; y0 5

Ax1By1 c

dx1 ey1 f
:

It is clear that if d5 05 e and f5 1, the transformation is affine.
Interesting properties of projective transformations include the fact that
(1) a conic is transformed into a conic and (2) the cross ratio remains
invariant.
The work of Klein is, in a sense, a fitting climax to “The Heroic Age in

Geometry,” for he taught and lectured for half a century. So contagious
was his enthusiasm that some late-nineteenth-century figures were
willing to prophesy that not only geometry, but all of mathematics,
ultimately would be contained within the theory of groups. Nevertheless,
not all of Klein’s work was concerned with groups. His classic history of
mathematics in the nineteenth century (published posthumously) shows
how familiar he was with all aspects of the subject; his name is also
recalled today in topology in the one-sided surface known as the Klein
bottle. He was much concerned with non-Euclidean geometry, to which
he contributed the names “elliptic geometry” and “hyperbolic geometry”
for the hypotheses of the obtuse and the acute angle, respectively; for the
latter, he proposed a simple model as an alternative to that of Beltrami.
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Let the hyperbolic plane be pictured as the points interior to a circle C in
the Euclidean plane, let the hyperbolic “straight line” through two points
P1 and P2 be that portion of the Euclidean line P1, P2 that lies within C,
and let the “distance” between the two points P1 and P2 within the circle
be defined as

ln
P2Q1UP1Q2

P1Q1UP2Q2

;

where Q1 and Q2 are the points of intersection of the line P1P2 with the
circle C (Fig. 20.1). With an appropriate definition of “angle” between
two “lines,” the “points,” “lines,” and “angles” in Klein’s hyperbolic
model have properties similar to those in Euclidean geometry, except for
the parallel postulate.
Not since Monge had there been a more influential teacher, for, in

addition to giving inspiring lectures, Klein was concerned with the
teaching of mathematics at many levels and exerted a strong influence in
pedagogical circles. In 1886, he became a professor of mathematics at
Göttingen, and under his leadership, the university became a mecca to
which students from many lands, including America, flocked. In his later
years, Klein very effectively played the role of an “elder statesman” in
the realm of mathematics. Thus, the golden age of modern geometry that
had begun so auspiciously in France at the École Polytechnique, with the
work of Lagrange, Monge, and Poncelet, reached its zenith in Germany,
at the University of Göttingen, through the research and inspiration of
Gauss, Riemann, and Klein.

Post-Riemannian Algebraic Geometry

There were several new approaches to geometry toward the end of the
century that are usually classified as versions of algebraic geometry.
These had a common basis in the work of Riemann. Rather than
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Riemann’s explicitly geometric publications, it was his work on complex
function theory, especially as linked to the concept of a Riemann surface
in a classic paper on Abelian functions, that provided the stimulus for
most of these investigations.
Initially, Alfred Clebsch (1833 1872) did more than anyone else to

exploit Riemann’s function theory for geometric purposes. Clebsch, a
mathematical grandson of Jacobi via the geometer Otto Hesse (1811
1874), had studied in Königsberg, where he came under the influence of
the mathematical physicist Franz Neumann. His teaching career took
him from the polytechnic high school in Karlsruhe to Giessen, where
he spent five years, before being called to Göttingen. In 1868, he and
Franz Neumann’s son, Carl (1832 1925), cofounded the journal
Mathematische Annalen.
Clebsch first called attention to our subject in a paper “On the

Application of Abelian Functions to Geometry,” which appeared in
the Journal für die reine und angewandte Mathematik. This was the
beginning of a triply oriented attack. Clebsch initially set out simply to
apply Riemann’s theory of complex functions to the study of algebraic
curves. He was well equipped to carry this out; he was familiar with the
previous work of the complex projective geometers, with the Jacobi
tradition of Abelian function theory, and with Riemann’s papers. He
obtained many fruitful results, which laid the basis for further research.
For example, he obtained a classification of curves by genus and also
considered subclasses of curves having the same genus but different
branching points.
Another approach was used in work that Clebsch did in collaboration

with Paul Gordan (1837 1912) of Erlangen. In a book of 1866, the
Theorie der Abelschen Functionen, they set out to reestablish the theory of
Abelian functions on the basis of algebraic geometry. Gordan is remem-
bered as a champion of nineteenth-century invariant theory, and we note
in this context that the turn-of-the-century school of Italian geometers,
which included Guido Castelnuovo (1865 1952), Federigo Enriques
(1871 1946), and, somewhat later, Francesco Severi (1879 1961), relied
heavily on invariants as well.
Finally, Clebsch turned to surfaces. He introduced double integrals,

hoping to obtain results by exploring the analogy with the Abelian
integrals applied to the study of curves. He, along with Cayley, Max
Noether (1844 1921), and the Danish mathematician H. G. Zeuthen
(1839 1920), was successful for a large number of cases. Their work
was continued by Émile Picard, a specialist in the study of double integrals.
His research was the basis for later results by Beppo Levi (1875 1928).
Yet because of the complicated nature ofmany surfaces, this approachwas
less successful than was initially hoped for.
The most active direction followed was that in which geometers

applied birational transformations to the study of curves. Many of them
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put their studies in Riemannian terms by noting that Riemann’s moduli are
simply birational invariants. Despite much activity by mathematicians in
the main European centers, the results eventually seemed disappointing.
By the 1920s, most of these “algebro-geometric” efforts began to take a
backseat to a purely algebraic approach, which dominated algebraic geo-
metry for several decades, while increasing in generality and abstractness.
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Algebra

It is no paradox to say that in our most theoretical moods we may be

nearest to our most practical applications.

A. N. Whitehead

Introduction

The development of algebraic concepts in England in the first half of the
nineteenth century differed fundamentally from that on theContinent. Abel,
Galois, and other Continental mathematicians evolved new concepts while
working on unsolved problems and adapting—through fusion, general-
ization, or straight transfer—existing successful methods. As we have seen,
this allowed their work to be recognized for its immediate results, even if the
full significance of a new concept contained therein went undetected. The
British contributors to algebra who belonged to the generation of Abel and
Galois, on the other hand, set out to establish algebra as a “demonstrative
science.” These men were strongly affected by the fact that England’s
analytic contributions lagged behind those of the Continent. This was
attributed to the superiority of “symbolic reasoning,” or, more specifically,
of the Leibnizian dy / dx notation over the fluxional dots still prevalent in
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England. Since the seventeenth century, however, mathematicians had been
noting that neither higher analysis nor algebra had attained the degree of
rigor found in geometry.

British Algebra and the Operational Calculus of Functions

It was George Peacock who produced the first major work “written with a
view of conferring upon Algebra the character of a demonstrative science.”
To accomplish this goal, Peacock proposed a reevaluation of the rela-
tionship between arithmetic and algebra. Rather than being viewed as the
foundation of algebra, arithmetic “can only be considered as a Science of
Suggestion, to which the principles and operations of Algebra are adapted,
but by which they are neither limited nor determined.” Peacock therefore
separated “arithmetical” from “symbolical” algebra. The elements of arith-
metical algebra are numbers, and its operations are those of arithmetic.
Symbolical algebra, however, is “a science, which regards the combina-
tions of signs and symbols only according to determinate laws, which are
altogether independent of the specific values of the symbols themselves.”
Peacock related the two by a principle reminiscent of François-Joseph
Servois’s (1768 1847) principle of the preservation of formal laws; it is
the “principle of the permanence of equivalent forms”:

Whatever form is algebraically equivalent to another when expressed in

general symbols, must continue to be equivalent whatever these symbols

denote.

Conversely,

Whatever equivalent form is discoverable in arithmetical algebra con-

sidered as the science of suggestion when the symbols are general in their

form, though specific in their value, will continue to be an equivalent

form when the symbols are general in their nature as well as in their form.

The justification for such a bold extrapolation is not made clear. Peacock
merely accepts this as a “principle of the permanence of equivalent forms”
somewhat akin to the correlation principle that Carnot and Poncelet
had used so fruitfully in geometry. Yet in one respect, the algebraic form
of this fuzzy postulate served as a deterrent to progress, for it suggested
that the laws of algebra are the same no matter what the numbers or the
objects within the algebra may be. Peacock, it appears, was thinking
primarily of the number system of integers and the real magnitudes of
geometry, and his distinction between the two types of algebra was not so
different from that which Viète had made between logistica numerosa and
logistica speciosa.
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Peacock restated his views on algebra in a report on analysis presented
to the British Association for the Advancement of Science in 1833,
whereby they became widely known. Within a few years, several authors
treated the subject anew, to varying degrees linking the foundations of
algebra to the operational calculus of functions, which was also treated
with renewed interest. Robert Murphy (1806 1843) did so in a paper
read to the Royal Society in December 1836; Augustus De Morgan
(1806 1871) did so in a Treatise on the Calculus of Functions published
the same year; and D. F. Gregory (1813 1844) did so in a series of
memoirs on the nature of algebra published in the Transactions of the
Edinburgh Royal Society a few years later. Gregory remarked on the
identity of the laws of combination for the symbols of differentiation and
differences and those of number and placed his and Peacock’s studies in
line of succession to those of Leibniz, Lagrange, John F. W. Herschel,
and Servois on the calculus. Gregory’s friend George Boole, in a prize-
winning essay presented to the Royal Society in 1844, stressed that

any great advances in the higher analysis must be sought for by an

increased attention to the laws of combinations of symbols. The value of

this principle can scarcely be overrated.

Three years later, Boole illustrated his position by applying the laws of
combination of symbols to logic.

Boole and theAlgebra of Logic

Born into an impecunious lower-class tradesman’s family in Lincoln,
England, George Boole (1815 1864) had only a common school edu-
cation, but he learned both Greek and Latin independently, believing
that this knowledge would help him rise above his station. Having
become friendly with De Morgan, he also took a keen interest in a con-
troversy over logic that the Scottish philosopher Sir William Hamilton
(1788 1856), not to be confused with the Irish mathematician Sir
William Rowan Hamilton (1805 1865), had raised with De Morgan. The
result was that in 1847, Boole published a short work titled The Mathe-
matical Analysis of Logic, a little book that De Morgan recognized as
epoch making.
The history of logic may be divided, with some slight degree of

oversimplification, into three stages: (1) Greek logic, (2) Scholastic
logic, and (3) mathematical logic. In the first stage, logical formulas
consisted of words of ordinary language, subject to the usual syntactical
rules. In the second stage, logic was abstracted from ordinary language
but characterized by differentiated syntactical rules and specialized
semantic functions. In the third stage, logic became marked by the use of
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an artificial language in which words and signs have narrowly limited
semantic functions. Whereas in the first two stages, logical theorems were
derived from ordinary language, the logic of the third stage proceeds in a
contrary manner—it first constructs a purely formal system, and only later
does it look for an interpretation in everyday speech. Although Leibniz is
sometimes regarded as a precursor of the latter point of view, its floruit
date is really the year in which Boole’s first book appeared, as well as
De Morgan’s Formal Logic. The work of Boole, in particular, emphasized
that logic should be associated with mathematics, rather than with meta-
physics, as the Scottish Sir William Hamilton had argued.
More important even than his mathematical logic was Boole’s view

of mathematics itself. In the introduction to hisMathematical Analysis of
Logic, the author objected to the then current view of mathematics as the
science of magnitude or number (a definition still adopted in some of
the weaker dictionaries). Espousing a far more general view, Boole
wrote,

We might justly assign it as the definitive character of a true Calculus, that

it is a method resting upon the employment of Symbols, whose laws of

combination are known and general, and whose results admit of a con-

sistent interpretation. . . . It is upon the foundation of this general principle,

that I propose to establish the Calculus of Logic, and that I claim for it a

place among the acknowledged forms of Mathematical Analysis,

Peacock’s Algebra of 1830 had suggested that the symbols of objects in
algebra need not stand for numbers, and De Morgan argued that inter-
pretations of the symbols for operations were also arbitrary; Boole
carried the formalism to its conclusion. No longer was mathematics to
be limited to questions of number and continuous magnitude. Here, for
the first time, the view is clearly expressed that the essential character-
istic of mathematics is not so much its content as its form. If any topic is
presented in such a way that it consists of symbols and precise rules of
operation on these symbols, subject only to the requirement of inner
consistency, this topic is part of mathematics. Although theMathematical
Analysis of Logic did not achieve wide recognition, it probably was on the
weight of this work that two years later, Boole was appointed professor of
mathematics at the newly established Queens College in Cork.
Boole’s Investigation of the Laws of Thought of 1854 is a classic in the

history of mathematics, for it amplified and clarified the ideas presented
in 1847, establishing both formal logic and a new algebra, known as
Boolean algebra, the algebra of sets, or the algebra of logic. Boole used
the letters x, y, z, . . . to represent objects of a subset of things—numbers,
points, ideas, or other entities—selected from a universal set or universe
of discourse, the totality of which he designated by the symbol or “number”
1. For example, if the symbol 1 represents all Europeans, x might stand
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for all Europeans who are French citizens, y might be all European men
over twenty-one, and z might be all Europeans who are between five and
six feet tall. The symbol or number 0 Boole took to indicate the empty set,
containing no element of the universal set, what now is known as the null
set. The sign1 between two letters or symbols, as x1 y, he took to be the
union of the subsets x and y—that is, the set made up of all of the elements
in x or y (or both). The multiplication sign3 represented the intersection
of sets, so that x3 y means the elements or the objects that are in the
subset x and also in the subset y. In the previous example, x1 y consists
of all Europeans who are French citizens or are men over twenty-one or
both; x3 y (also written as x � y or simply as xy) is the set of French
citizens who are men over twenty-one. (Boole, unlike De Morgan, used
exclusive union, not permitting common elements in x and y, but modern
Boolean algebra more conveniently takes1 to be the inclusive union of
sets that may have elements in common.) The sign5 represents the
relationship of identity. It is clear that the five fundamental laws
of algebra now hold for this Boolean algebra, for x1 y5 y1 x, xy5 yx,
x1 (y1 z)5 (x1 y)1 z, x(yz)5 (xy)z, and x(y1 z)5 xy1 xz. Never-
theless, not all of the rules of ordinary algebra continue to be valid: for
example, 11 15 1 and x � x5 x. (The second of these appears in the
work of Boole, but not the first, because he used exclusive union). The
equation x25 x has only the two roots, in ordinary algebra, x5 0 and
x5 1; in this respect, the algebra of logic and ordinary algebra are in
agreement. The equation x25 x, when written in the form x(l2 x)5 0,
also suggests that 12 x should designate the complement of the subset
x, that is, all of the elements in the universal set that are not in the
subset x. Although it is true in Boolean algebra that x35 x or
x(l2 x2)5 0 or x(12 x)(l1 x)5 0, the solution in ordinary algebra
differs from that in Boolean algebra, in which there are no negative
numbers. Boolean algebra also differs from ordinary algebra in that if
zx5 zy (where z is not the null set), it does not follow that x5 y; nor is
it necessarily true that if xy5 0, then x or y must be 0.
Boole showed that his algebra provided an easy algorithm for syllo-

gistic reasoning. The equation xy5 x, for example, says very neatly that
all x’s are y’s. If it is also given that all y’s are z’s, then yz5 y. On
substituting in the first equation the value of y given by the second
equation, the result is x(yz)5 x. Using the associative law for multi-
plication, the last equation can be written as (xy)z5 x, and, on replacing
xy with x, we have xz5 x, which is simply the symbolic way of saying
that all x’s are z’s.
The Mathematical Analysis of Logic (1847) and, a fortiori, Investi-

gation of the Laws of Thought (1854) contain much more of the algebra
of sets than we have indicated. In particular, the latter work includes
applications to probability. Notations have changed somewhat since
Boole’s day, so that union and intersection are generally indicated by
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, and -, rather than by1 and 3, and the symbol for the null set is φ,
rather than 0, but the fundamental principles of Boolean algebra are
those that were laid down by Boole more than a century ago.
There is an aspect of Boole’s work that is not closely related to his

treatises in logic or the theory of sets but that is familiar to every student of
differential equations. This is the algorithm of differential operators, which
he introduced to facilitate the treatment of linear differential equations.
If, for example, we wish to solve the differential equation ayv1
byu1 cy5 0, the equation is written in the notation (aD21 bD1 c)y5 0.
Then, regarding D as an unknown quantity, rather than as an operator, we
solve the algebraic quadratic equation aD21 bD1 c5 0. If the roots of the
algebraic equation are p and q, then epx and eqx are solutions of the dif-
ferential equation, and Aepx1Beqx is a general solution of the differential
equation. There are many other situations in which Boole, in his Treatise
on Differential Equations of 1859, pointed out parallels between the
properties of the differential operator (and its inverse) and the rules of
algebra. British mathematicians in the second half of the nineteenth century
were thus again becoming leaders in algorithmic analysis, a field in which,
fifty years earlier, they had been badly deficient.
Boole died in 1864, only ten years after publishing his Investigation

of the Laws of Thought, but recognition, including an honorary degree
from the University of Dublin, had come to him before his death. It is
curious to note that Georg Cantor, who like Boole was one of the chief
trailblazers of the century, was one of the few who declined to accept the
work of Boole. On the other hand, Boole’s work prompted a sequence
of axiomatic studies by W. S. Jevons (1835 1882), C. S. Peirce (1839
1914), E. Schröder (1841 1902), and others, which led to a complete set
of postulates for the algebra of logic after 1900.

Augustus De Morgan

Among the supporters of the new view of algebra was Augustus De
Morgan, a prolific writer who had helped found the British Association
for the Advancement of Science (1831). De Morgan had been born, blind
in one eye, in India, his father having been associated with the East India
Company; he attended Trinity College, graduating as fourth wrangler.
He could not hold a fellowship at Cambridge or Oxford because he
refused to submit to the necessary religious test, despite the fact that
he had been brought up in the Church of England, in which his mother
hoped he would become a minister. De Morgan consequently was
appointed, at the early age of twenty-two, a professor of mathematics at
the newly established London University, later University College of the
University of London, where he continued to teach, except for short
periods following resignations prompted by cases of abridgement of
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academic freedom. He always remained a champion of religious and
intellectual toleration, and he was equally a writer and a teacher of
exceptional ability. Many of his conundrums and witticisms were col-
lected in his well-known Budget of Paradoxes.
Peacock was something of a prophet in the development of abstract

algebra, and De Morgan was to him somewhat as Elisha was to Elijah.
In Peacock’s Algebra, the symbols were generally understood to be
numbers or magnitudes, but De Morgan would keep them abstract. He left
without meaning not only the letter that he used, but also the symbols of
operation; letters such as A, B, C might stand for virtues and vices
and1 and might mean reward and punishment. DeMorgan insisted that
“with one exception, no word or sign of arithmetic or algebra has one atom
of meaning throughout this chapter, the object of which is symbols and
their laws of combination, giving a symbolic algebra which may hereafter
become the grammar of a hundred distinct significant algebras.” (The
exception mentioned by De Morgan is the symbol of equality, for he
thought that in A5B, the symbols A and B must “have the same resulting
meaning, by whatever steps attained.”) This idea, expressed as early as
1830 in his Trigonometry and Double Algebra, comes close to the modern
recognition that mathematics deals with propositional functions, rather
than with propositions, but De Morgan seems not to have realized the
entirely arbitrary nature of the rules and the definitions of algebra. He was
sufficiently close to Kantian philosophy to believe that the usual funda-
mental laws of algebra should apply to any algebraic system whatsoever.
He saw that in going from the “single algebra” of the real number system
to the “double algebra” of the complex numbers, the rules of operation
remain the same. And De Morgan believed that these two forms exhaust
the types of algebra that are possible and that a triple or quadruple algebra
could not be developed. In this important respect, he was shown to be
wrong by William Rowan Hamilton of Dublin. Another mathematician of
Trinity (Dublin) was George Salmon (1819 1904), who taught both
mathematics and divinity there and was the author of excellent textbooks
on conics, algebra, and analytic geometry.

William Rowan Hamilton

Hamilton’s father, a practicing attorney, and his mother, said to have
been intellectually gifted, both died while he was a boy, but even before
he was orphaned, the young Hamilton’s education had been determined
by an uncle who was a linguist. An extremely precocious youngster,
William read Greek, Hebrew, and Latin by the time he was five; at the
age of ten, he was acquainted with half a dozen oriental languages.
A meeting with a lightning calculator a few years later perhaps spurred
Hamilton’s already strong interest in mathematics, as friendships with
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WilliamWordsworth and Samuel Taylor Coleridge probably encouraged
him to continue to produce the bad poetry he had been writing since
boyhood. Hamilton entered Trinity College, Dublin, and while still
an undergraduate there, at the age of twenty-two, he was appointed
Royal Astronomer of Ireland, director of the Dunsink Observatory,
and professor of astronomy. In the same year, he presented to the Irish
Academy a paper on systems of rays, in which he expressed one of his
favorite themes—that space and time are “indissolubly connected with
each other.” Perhaps Hamilton here was following in algebra the lead of
Newton, who, when he had difficulty defining abstract concepts in the
method of fluxions, felt more comfortable in appealing to the notion
of time in the physical universe. Possibly, he was simply concluding
that because geometry is the science of space, and space and time are
the two aspects of sensuous intuition, algebra should be the science
of time.
Shortly after he presented his first paper, Hamilton’s prediction of

conical refraction in certain crystals was experimentally confirmed by
physicists. This verification of a mathematical theory assured his repu-
tation, and at the age of thirty, he was knighted. Two years earlier, in
1833, he had presented a long and significant paper before the Irish
Academy, in which he introduced a formal algebra of real number
couples, the rules of combination of which are precisely those given
today for the system of complex numbers. The important rule for mul-
tiplication of the couples is, of course,

ða; bÞðα; βÞ5 ðaα2 bβ; aβ1 bαÞ;

and he interpreted this product as an operation involving rotation. Here
one sees the definitive view of a complex number as an ordered pair of
real numbers, an idea that had been implied in the graphical repre-
sentations of Wessel, Argand, and Gauss but that now for the first time
was made explicit.
Hamilton realized that his ordered pairs could be thought of as directed

entities in the plane, and he naturally tried to extend the idea to three
dimensions by going from the binary complex number a1 bi to ordered
number triples a1 bi1 cj. The operation of addition created no diffi-
culty, but for ten years, he was baffled by multiplication of n-tuples for
n greater than 2. One day in 1843, as he was walking with his wife along
the Royal Canal, he had a flash of inspiration: his difficulty would vanish
if he used quadruples instead of triples and if he abandoned the com-
mutative law for multiplication. It had been more or less clear that for
number quadruples a1 bi1 cj1 dk, one should take i25 j25 k2521.
Now Hamilton saw in addition that he should let ij5 k, but ji52k, and,
similarly, jk52kj and ki5 j52ik. In other respects, the laws of
operation are as in ordinary algebra.
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Just as Lobachevsky had created a new geometry consistent within itself,
by abandoning the parallel postulate, so Hamilton created a new algebra,
also consistent within itself, by discarding the commutative postulate for
multiplication. He stopped in his walk, and, with a knife, he cut the fun-
damental formula i25 j25 k25 ijk on a stone of Brougham Bridge; the
same day, October 16, he asked the Royal Irish Academy for leave to read
a paper on quaternions at the next session. The key discovery was sudden,
but the discoverer had been working toward it for some fifteen years.
Hamilton, quite naturally, always regarded the discovery of quaternions as
his greatest achievement. In retrospect, it is clear that it was not so much
this particular type of algebra that was significant, but rather the discovery
of the tremendous freedom that mathematics enjoys to build algebras that
need not satisfy the restrictions imposed by the so-called fundamental laws,
which up to that time, supported by the vague principle of permanence of
form, had been invoked without exception. For the last twenty years of his
life, Hamilton spent his energies on his favorite algebra, which he was
inclined to imbue with cosmic significance and which some British
mathematicians regarded as a kind of Leibnizian arithmetica universalis.
His Lectures on Quaternions appeared in 1853. Much of this bulky work is
devoted to applications of quaternions to geometry, differential geometry,
and physics. Of primary significance for the history of modern algebra is the
fact that Hamilton here presented a detailed theory of a noncommutative
algebraic system.
Among the basic concepts discussed in the book are those of vectors

and scalars. The quaternion units i, j, and k were variously described as
operators and as coordinates. Generally, Hamilton treated quaternions
as vectors and essentially showed that they form a linear vector space
over the real number field. He defined the addition of quaternions and
introduced the notion of two types of products, obtained by multiplying a
vector by a scalar or by another vector, respectively; he observed that the
first is associative, distributive, and commutative, whereas the latter is
only associative and distributive. He also discussed the inner product
(“scalar product”) of two vectors and demonstrated its bilinearity.
Subsequently, Hamilton devoted himself to the preparation of the

enlarged Elements of Quaternions. This was not quite completed when he
died in 1865, but it was edited and published by his son in the following
year. It is gratifying for Americans to recall that in those unhappy years of
civil strife, the newly established National Academy of Sciences named
Sir William Rowan Hamilton its first foreign associate.

Grassmann and Ausdehnungslehre

The concept of an n-dimensional vector space had received detailed treat-
ment in Hermann Grassmann’s Ausdehnungslehre, published in Germany
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in 1844. Grassmann (1809 1877), a secondary schoolteacher, was also led
to his results by studying the geometric interpretation of negative quantities
and the addition and the multiplication of directed line segments in
two and three dimensions. He emphasized the dimension concept and
stressed the development of an abstract science of “spaces” and “sub-
spaces” that would include the geometry of two and three dimensions as
special cases. It is interesting to note that Grassmann, like Hamilton, was a
linguist, being a specialist in Sanskrit literature. His father, Justus
Grassmann, had belonged to the so-called combinatorial school of
German mathematicians at the beginning of the century. This undoubtedly
affected his views on the nature of mathematics. Grassmann defined pure
mathematics as the science of forms (Formenlehre), stressing the difference
between this view and that which regards mathematics merely as the
science of quantities. The concepts basic to his science of forms are those of
equality and combination, which he denoted by5 and-, respectively. He
defined the inverse,, of-, by stating that a, b is the form that satisfies
a, b- b5 b- a. The science of extension is “the abstract foundation
of geometry,” freed from spatial conceptualizations and restriction to
three dimensions. A single element generates a one-dimensional space
(einstufiges System); the set of elements derived from a given element by a
constant change gives a two-dimensional space, corresponding to lines in
geometry. Generally,

if all elements of an n-dimensional domain are subjected to one and the same

kind of change which leads to new elements (not contained in the domain),

then the totality of the elements generated by this change and its inverse is

called a domain of dimension n1 1.

This definition was made more precise in the revised 1862 edition
of Grassmann’s Ausdehnungslehre, where he elaborated on the concepts
of linear dependence and independence of vectors and discussed sub-
spaces, their unions and intersections, and spanning sets. He also stated
theorems equivalent to the proposition that if S and T are two subspaces
of a vector space V, then d[S]1 d[T]5 d[S,T]1 d[S-T], where d[S]
represents the dimension of S, and S, T, S-T the union and the
intersection of S and T, respectively.
Grassmann laid great stress on the different kinds of multiplication

that arose in the Ausdehnungslehre. He distinguished between “inner”
and “outer” or “combinatorial” products. In the particular case treated by
Hamilton, these reduce to the latter’s scalar and vector products. Other
types of multiplication treated by Grassmann included “algebraic” pro-
ducts, namely, those where ab2 ba, as in common algebra, and “outer”
products, which correspond to matrix products. One could translate
many details of Grassmann’s work into the language of modern abstract
vector space theory; suffice it to say that using the basic concepts cited
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previously, Grassmann showed how an n-dimensional system containing
various new operations could be established, which for special cases
reduced to more familiar mathematical structures.
The significance of the Ausdehnungslehre was slow to be recognized,

for the book was not only unconventional but difficult to read. One reason
was that Grassmann, like Desargues before him, used a very unconven-
tional terminology; more fundamental was the novelty and extreme
generality of the author’s approach to the question of extension.
Largely under the urging of Möbius, Grassmann not only revised the

Ausdehnungslehre but also published various articles in Crelle’s Journal,
in which he summarized some of his basic results. It was through these
articles that most mathematicians became acquainted with the substance
of his work.
Word of the Ausdehnungslehre began to spread after the publication

in 1867 of Hermann Hankel’s work on systems of complex numbers.
Hankel, a student ofRiemann’s, attempted to present a rigorous introduction
to complex numbers. His work, which reflected study of Grassmann,
referred to Peacock, gave the first German account of Hamilton’s qua-
ternions, and presented a theory of “alternating numbers” equivalent to
Grassmann’s outer products. Among those whose attention was drawn
to Grassmann’s work through Hankel’s book was Felix Klein. He wrote to
F. Engel in 1911:

As is well known, Grassmann in his Ausdehnungslehre is an affine, rather

than a projective, geometer. This became clear to me in the late fall of

1871 and (besides the study of Möbius and Hamilton and the working out

of all the impressions I had received in Paris) led to my conception of my

later Erlanger Program.

In England, William K. Clifford championed Grassmann’s cause; in the
United States, the Ausdehnungslehre supported the development, pri-
marily through the efforts of a Yale University physicist, Josiah Willard
Gibbs (1839 1903), of the more limited algebra of vectors in three-
dimensional space. The algebra of vectors is again a multiple algebra in
which the commutative law for multiplication fails to hold. In fact, it was
proved in 1867 by Hankel that the algebra of complex numbers is, as
De Morgan suspected, the most general algebra that is possible under the
fundamental laws of arithmetic. The Vector Analysis of Gibbs appeared in
1881 and again in 1884, and he published further articles during the decade.
These works led to a spirited and not-too-genteel controversy with the pro-
ponents of quaternions over the relativemerits of the two algebras. In 1895, a
colleague of Gibbs’s at Yale organized an International Association for
Promoting the Study of Quaternions and Allied Systems of Mathe-
matics, of which the first president was a rabid supporter of quaternions. It
was not long before allied systems (such as vectors and their generalization,
tensors) for a time eclipsed quaternions, but today they have a recognized
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place in algebra, as well as in quantum theory. Moreover, although Hamil-
ton’s name is infrequently linked with vectors, because Gibbs’s notations
came mostly from Grassmann, the chief properties of vectors had never-
theless been worked out in Hamilton’s protracted investigations in multiple
algebras.

Cayley and Sylvester

By the middle of the nineteenth century, German mathematicians stood
head and shoulders above those of other nationalities in analysis and geo-
metry, with the universities of Berlin and Göttingen in the lead and with
publication centering on Crelle’s Journal. Algebra, on the other hand, was
for a while almost a British monopoly, with Trinity College, Cambridge, in
the forefront and theCambridgeMathematical Journal as the chiefmedium
of publication. Peacock andDeMorganwere fromTrinity, as was Cayley, a
heavy contributor to both algebra and geometry, who had graduated as
senior wrangler. We have noted Cayley’s work in analytic geometry,
especially in connection with the use of determinants, but Cayley was also
one of the firstmen to studymatrices, another instance of theBritish concern
for formand structure in algebra.Thiswork grewout of amemoir of 1858 on
the theory of transformations. If, for example, we follow the transformation

T1

x05 ax1 by

y05 cx1 dy

�

by another transformation,

T2

xv5Ax01By0

yv5Cx01Dy0;

�

then the result (which had appeared earlier, for example, in the Dis-
quisitiones Arithmeticae of Gauss in 1801) is equivalent to the single
composite transformation

T2T1

xv5 ðAa1BcÞx1 ðAb1BdÞy
yv5 ðCa1DcÞx1 ðCb1DdÞy:

�

If, on the other hand, we reverse the order of T1 and T2, so that T2 is the
transformation

x05Ax1By

y05Cx1Dy

�

and T1 is the transformation

xv5 ax01 by0

yv5 cx01 dy0;

�

C ay l e y and S y l v e s t e r 515



then these two, applied successively, are equivalent to the single trans-
formation

T1T2

xv5 ðaA1 bCÞx1 ðaB1 bDÞy
yv5 ðcA1 dCÞx1 ðcB1 dDÞy :

�

Reversing the order of the transformations in general gives a different
result. Expressed in the language of matrices,

a b

c d

� �
U

A B

C D

� �
5

aA1 bC aB1 bD

cA1 dC cB1 dD

� �

but

A B

C D

� �
U

a b

c d

� �
5

Aa1Bc Ab1Bd

Ca1Dc Cb1Dd

� �
:

In as much as two matrices are equal, if and only if all corresponding
elements are equal, it is clear that once again we have an instance of
noncommutative multiplication.
The definition ofmultiplication of matrices is as indicated previously, and

the sum of two matrices (of the same dimensions) is defined as the matrix
obtained by adding the corresponding elements of the matrices. Thus,

a b

c d

� �
1

A B

C D

� �
5

a1A b1B

c1C d1D

� �
:

Multiplication of a matrix by a scalar K is defined by the equation

K U
a b

c d

� �
5

Ka Kb

Kc Kd

� �
:

The matrix

1 0

0 1

� �
;

which is usually denoted by I, leaves every square matrix of second order
invariant under multiplication; hence, it is called the identity matrix under
multiplication. The only matrix leaving another such matrix invariant
under addition is, of course, the zero matrix

0 0

0 0

� �
;

which, consequently, is the identity matrix under addition. With these
definitions, we can think of the operations on matrices as constituting an
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“algebra,” a step that was taken by Cayley and the American mathe-
maticians Benjamin Peirce (1809 1880) and his son Charles S. Peirce
(1839 1914). The Peirces somewhat played the role in America that
Hamilton, Grassmann, and Cayley had filled in Europe. The study of
matrix algebra and of other noncommutative algebras has everywhere
been one of the chief factors in the development of an increasingly
abstract view of algebra, especially in the twentieth century.
Shortly after receiving his degree at Trinity, Cayley took to the law

for fourteen years; this interfered little with his mathematical research,
and he published several hundred papers during these years. Many of
the papers were in the theory of algebraic invariants, a field in which he
and his friend James Joseph Sylvester (1814 1897) were preeminent.
Cayley and Sylvester were a study in contrasts, the former being mild and
even-tempered, the latter mercurial and impatient. Both were Cambridge
men—Cayley at Trinity, Sylvester at St. John’s—but Sylvester was
ineligible for a degree because he was a Jew. For three years following
1838, Sylvester had taught at University College, London, where he was
a colleague of his former teacher De Morgan; after this, he accepted
a professorship at the University of Virginia. Discipline problems so
upset the temperamental mathematician that he left precipitately after
only three months. When he returned to England, he spent almost ten
years in business and then turned to the study of law, in connection with
which, in 1850, he first met Cayley. The two men were ever afterward
friends and mathematicians, and, ultimately, both left the law. In 1854,
Sylvester took a position at the Royal Military Academy at Woolwich,
and in 1863, Cayley accepted the Sadlerian professorship at Cambridge.
In 1876, Sylvester had one more fling at teaching in America, this time at
the newly established Johns Hopkins University, where he remained until
he was almost seventy, when he accepted a professorship offered him by
Oxford University. In 1881, while Sylvester was still at Johns Hopkins,
Cayley accepted an invitation to deliver there a series of lectures on
Abelian and theta functions. Although Cayley’s papers, which rival those
of Euler and Cauchy in number, are predominantly in algebra and geo-
metry, he did also contribute to analysis, and his only book, published in
1876, is a Treatise on Elliptic Functions.
Cayley’s interests were divided, but Sylvester’s loyalty to algebra was

firm, and it is fitting that his name is attached to what is known as
Sylvester’s dialytic method in eliminating an unknown from two poly-
nomial equations. The device is a simple one and consists of multiplying
one or both of the two equations by the unknown quantity to be elimi-
nated, repeating the process if necessary until the total number
of equations is 1 greater than the number of powers of the unknown. From
this set of n1 1 equations, one can then eliminate all of the n powers,
thinking of each power as a different unknown. Thus, to eliminate x
from the pair of equations x21 ax1 b5 0 and x31 cx21 dx1 e5 0, one
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multiplies the first by x and then multiplies the resulting equation, and also
the second equation above, by x. Then, thinking of each of the four powers
of x as a separate unknown, the determinant

0 0 1 a b

0 1 a b 0

1 a b 0 0

0 1 c d e

1 c d e 0

����������

����������
;

known as the resultant in Sylvester’s method, when equated to zero gives
the result of the elimination.
More important than his work in elimination was Sylvester’s colla-

boration with Cayley in the development of the theory of “forms” (or
“quantics,” as Cayley preferred to call them), through which the men
came to be known as “invariant twins.” Between 1854 and 1878, Sylvester
published almost a dozen papers on forms—homogeneous polynomials in
two or more variables—and their invariants. The most important cases
in analytic geometry and physics are the quadratic forms in two and three
variables, for, when equated to a constant, these represent conics and
quadrics. In particular, the quantic or form Ax21 2Bxy1Cy2, when
equated to a nonzero constant, represents an ellipse (real or imaginary), a
parabola, or a hyperbola according as B22AC is less than, equal to, or
greater than zero. Moreover, if the form is transformed under a rotation
of axes about the origin into the new form Aux21 2Buxy1Cuy2, then
(Bu)22AuCu5B22AC, that is, the expression B22AC, known as the
characteristic of the form, is an invariant under such a transformation.
The expression A1C is another invariant. Still other important invariants
associated with the form are the roots k1 and k2 of the characteristic
equation

A2 k B

B C2 k

����
����5 0 or

A0 2 k B0

B0 C0 2 k

����
����5 0:

These roots are, in fact, the coefficients of x2 and y2 in the canonical form
k1x21 k2y2 to which the form, if not of parabolic type, can be reduced
through a rotation of axes. The effervescent Sylvester boasted that he
had discovered and developed the reduction of binary forms to canonical
form at one sitting “with a decanter of port wine to sustain nature’s
flagging energies.”
If we designate byM the matrix of coefficients of the form and by I the

identity matrix of order two, the characteristic equation can be written as
9M2 kI95 0, where the vertical lines represent the determinant of the
matrix. One of the important properties of the algebra of matrices is that a
matrix M satisfies its characteristic equation, a result given in 1858 and
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known as the Hamilton-Cayley theorem. It is sometimes held that
Cayley’s algebra of matrices was an outcome of Hamilton’s algebra of
quaternions, but in 1894, Cayley specifically denied such a link. He
admired the theory of quaternions, but he asserted that his development
of matrices stemmed from that of determinants as a convenient mode of
expressing a transformation. In fact, Cayley’s publication of 1858 reflects
not only the influence of Hamilton’s quaternions but Cayley’s concern
with the issues raised by the operational calculus of the day. These two
factors are also evident in an earlier publication (1845), in which he had
provided an example of a nonassociative algebra.

Linear Associative Algebras

It was the classification of linear associative algebras that marks the
beginning of contributions by Americans to modern algebra. Benjamin
Peirce, for many years affiliated with the U.S. Coast Survey, as well as a
professor of mathematics at his alma mater, Harvard, presented this work
to the American Academy of Arts and Sciences in the 1860s and had it
printed with limited circulation in 1870. It only became generally known
in a version that appeared posthumously, in the American Journal of
Mathematics in 1881, with ample notes and addenda by his son Charles
S. Peirce, who had also contributed basic ideas to the original paper.
Linear associative algebras include ordinary algebra, vector analysis, and
quaternions as special cases but are not restricted to the units 1, i, j, k.
Peirce worked out multiplication tables for 162 algebras. C. S. Peirce
continued his father’s work in this direction by showing that of all of
these algebras, there are only three in which division is uniquely defined:
ordinary real algebra, the algebra of complex numbers, and the algebra
of quaternions.
It was in connection with his work on linear associative algebra that in

1870, Benjamin Peirce gave the well-known definition “Mathematics is
the science which draws necessary conclusions.” His son was in whole-
hearted agreement with this view, as a result of Boole’s influence, but he
stressed that mathematics and logic are not the same. “Mathematics is
purely hypothetical: it produces nothing but conditional propositions.
Logic, on the contrary, is categorical in its assertions.” This distinction
was to be argued further throughout the mathematical world in the first
half of the twentieth century.
In England, somewhat similar ideas were pursued by William Kingdon

Clifford (1845 1879), yet another Trinity graduate, whose brilliant
work, like that of an earlier Trinity graduate, Roger Cotes, was cut short
by premature death in his thirty-fourth year. Clifford was extraordinary in
several respects. For one thing, he was a gymnast who could pull himself
up on the bar with either hand—a most unusual feat for anyone and
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especially almost unheard of for one who graduated as second wrangler.
Also, like the Oxford mathematician C. L. Dodgson (1832 1898), better
known as Lewis Carroll, the author of Alice in Wonderland, Clifford
composed The Little People, a collection of tales for children. In 1870,
Clifford wrote a paper, “On the Space-Theory of Matter,” in which he
showed himself to be a staunch British supporter of the non-Euclidean
geometry of Lobachevsky and Riemann. In algebra, Clifford also
espoused the newer views, and his name is perpetuated today in the so-
called Clifford algebras, of which octonions or biquaternions are special
cases. These noncommutative algebras were used by Clifford to study
motions in non-Euclidean spaces, certain manifolds of which are known
as spaces of Clifford and Klein. How different was the progressive British
mathematics of the latter part of the nineteenth century from the stulti-
fyingly conservative views at the opening of the century!

Algebraic Geometry

In 1882, two works appeared that, in hindsight, foreshadowed important
twentieth-century trends. One was a deep study by Leopold Kronecker
dealing with an arithmetic theory of algebraic quantities. This difficult
paper had a pronounced impact on algebraists and number theorists at
the turn of the century. The other work was a joint memoir by Richard
Dedekind (1831 1916) and HeinrichWeber (1842 1913) on the theory of
algebraic functions. Dedekind and Weber used the algebraic theory
developed by the former in his treatment of algebraic numbers to strip
Riemann’s work on function theory from its geometric underpinnings. This
allowed them to define parts of a Riemann surface algebraically in such
a way that it could be considered invariant with respect to an algebraic
function field. The purely algebraic approach opened up an entirely new
avenue for post-Riemannian algebraic geometry; indeed, it turned out to be
one of the most fruitful paths pursued by twentieth-century investigators.
Almost half a century would pass before this became apparent, however.

Algebraic and Arithmetic Integers

The work of Galois had been important not only in making the abstract
notion of group fundamental in the theory of equations, but also in leading,
through the contributions of Dedekind, Kronecker, and Ernst Eduard
Kummer, to what may be called an arithmetical approach to algebra,
somewhat akin to the arithmetization of analysis. This means the devel-
opment of a careful postulational treatment of algebraic structure in terms
of various number fields. The concept of field was implicit in work by Abel
and Galois, but in 1879, Dedekind seems to have been the first one to give
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an explicit definition of a number field—a set of numbers that form an
Abelian group with respect to addition and with respect to multiplication
(except for the inverse of zero) and for which multiplication distributes
over addition. Simple examples are the system of rational numbers, the
real number system, and the complex number field. In 1881, Kronecker
gave other instances through his domains of rationality. The set of numbers
of the form a1 b 2

p
, where a and b are rational, form a field, as is easily

verified. In this case, the number of elements in the field is infinite. A field
with a finite number of elements is known as a Galois field, and a simple
instance of this is the field of integers modulo 5 (or any prime).
The concern for structure and the rise of new algebras, especially

during the second half of the nineteenth century, led to broad general-
izations about number and arithmetic. We have already noted that Gauss
extended the idea of integer through the study of Gaussian integers of the
form a1 bi, where a and b are integers. Dedekind generalized further in
the theory of “algebraic integers”—numbers satisfying a polynomial
equation with integral coefficients that have leading coefficient unity.
Such systems of “integers” do not, of course, form a field, for inverses
under multiplication are lacking. They do have something in common,
in that they satisfy the other requirements for a number field; they are
thus said to form an “integral domain.” Such generalizations of the word
“integer” are, however, bought at a price—the loss of unique factorization.
Therefore, Dedekind, adapting ideas developed by the contemporary
mathematician Ernst Eduard Kummer (1810 1893), introduced into
arithmetic the concept of an “ideal.”
A set of elements is said to form a ring if (1) it is an Abelian group

with respect to addition, (2) the set is closed under multiplication, and
(3) multiplication is associative and is distributive over addition. (Hence,
a ring that is commutative under multiplication has a unit element and
has no divisors of zero is an integral domain.) An ideal, then, is a subset
I of elements of a ring R that (1) form an additive group and (2) are
such that whenever x belongs to R and y belongs to I, then xy belong to I.
The set of even integers, for example, is an ideal in the ring of integers. It
turns out that in the ring (or integral domain) R of algebraic integers, any
ideal I of R can be represented uniquely (except for the order of the
factors) as a product of prime ideals. That is, uniqueness of factorization
can be saved through the theory of ideals.
Kummer earned his doctorate at the University of Halle. After about a

dozen years of teaching in gymnasia, he succeeded Dirichlet at Berlin
when, in 1855, the latter became Gauss’s successor at Göttingen; Kum-
mer remained there until his retirement in 1883. Shortly after earning his
degree, Kummer had become interested in Fermat’s Last Theorem.
Kummer was able to prove the theorem for a large class of exponents, but
a general proof eluded him. The stumbling block seems to have been the
fact that in the factoring of xn1 yn, through the solution of xn1 yn5 0 for x
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in terms of y, the algebraic integers, or roots of the equation, do not
necessarily satisfy the Fundamental Theorem of Arithmetic; that is, they
are not uniquely factorable. The result was that although he failed to solve
Fermat’s theorem, in the attempt to do so he created, in a sense, a new
arithmetic. This was a theory, not of our ideals, but of devices that he
called “ideal complex numbers.” One of the lessons that the history of
mathematics teaches is that the search for solutions to unsolved problems,
whether solvable or unsolvable, invariably leads to important discoveries
along the way.
Dedekind’s concern with algebra goes back to the 1850s, when he

attended Dirichlet’s lectures on number theory in Göttingen and pursued
intensive studies of Galois theory. His notes of the period show that he
developed an abstract treatment of elementary group theory at that time.
After Dirichlet’s death, Dedekind was charged with publishing Dirich-
let’s lectures on number theory. In appendices to that work, he presented
a number of results of his own. Best known among these was his ideal
theory, various versions of which can be compared in the successive
editions of Dirichlet-Dedekind. The most axiomatic approach, which
appeared in the 1894 edition, was the one that especially influenced
Emmy Noether and her school of algebraists in the 1920s.
In 1897 and 1900, Dedekind also published two memoirs on a new

structure he called a “dual group.” In the first of these memoirs, the
modern reader easily recognizes a set of axioms for a lattice. In the sec-
ond, devoted to a study of the free modular lattice with three generators,
Dedekind showed that a lattice forms a partially ordered set. Here the
reader also finds the important concepts of a covering relation and of
the dimension of a lattice. Dedekind also utilized chain conditions.
During the last quarter of the nineteenth century, numerous other

abstract and often axiomatic treatments of groups and fields were pub-
lished. Several of these were instigated by Dedekind; this is true parti-
cularly of the work of Heinrich Weber, whom Dedekind interested in
algebra.

Axioms of Arithmetic

Mathematics has often been likened to a tree, for it grows through an ever
more widely spreading and branching structure above ground, while, at
the same time, it sinks its roots ever deeper and wider in the search for a
firm foundation. This double growth was especially characteristic of the
development of analysis in the nineteenth century, for the rapid expan-
sion of the theory of functions had been accompanied by the rigorous
arithmetization of the subject from Bolzano to Weierstrass. In algebra,
the nineteenth century had been more notable for new developments than
for attention to foundations, and Peacock’s efforts to provide a sound

522 A lgeb ra



basis were feeble in comparison with the precision of Bolzano in analysis.
During the closing years of the century, however, there were several
efforts to provide stronger roots for algebra. The complex number system
is defined in terms of the real numbers, which are explained as classes of
rational numbers, which in turn are ordered pairs of integers. But what,
after all, are the integers? Everyone thinks that he or she knows, for
example, what the number 3 is—until he or she tries to define or explain
it—and the idea of equality of integers is assumed to be obvious. Not
satisfied to leave the basic concepts of arithmetic, hence of algebra, in so
vague a state, the German logician and mathematician F.L.G. Frege
(1848 1925) was led to his well-known definition of a cardinal number.
The basis for his views came from the theory of sets of Boole and Cantor.
It will be recalled that Cantor had regarded two infinite sets as having
the same “power” if the elements of the sets can be put into one-to-one
correspondence. Frege saw that this idea of the correspondence of ele-
ments is also basic in the notion of equality of integers. Two finite sets
are said to have the same cardinal number—that is, to be equal—if the
elements in either class can be put into one-to-one correspondence with
the elements in the other. If, then, one were to begin with an initial set,
such as the set of fingers on the normal human hand, and were to form the
much more comprehensive set of all sets the elements of which can be put
into one-to-one correspondence with the elements of the initial set, then
this set of all such sets would constitute a cardinal number, in this case the
number 5. More generally, Frege’s definition of the cardinal number of
a given class, whether finite or infinite, is the class of all classes that
are similar to the given class (where by “similar,” one means that the
elements of the two classes in question can be placed in one-to-one
correspondence).
Frege’s definition of a cardinal number appeared in 1884 in a well-

known book, Die Grundlagen der Arithmetik (The Foundations of
Arithmetic), and from the definition, he derived the properties of the whole
numbers that are familiar in grade-school arithmetic. During the suc-
ceeding years, Frege amplified his views in the two-volumeGrundgesetze
der Arithmetik (Basic Laws of Arithmetic), the first volume of which
appeared in 1893 and the second, ten years later. As the second volume
was in press, however, Frege received a letter from Bertrand Russell
informing him of the paradox concerning the class of all classes that are
not members of themselves. Frege, recognizing the implication for his
definition of cardinal numbers and the entire work he had just completed,
appended a note to his volume commenting on the blow to a scholar when
the foundation of an entire structure he has established is pulled out from
underneath.
Frege undertook to derive the concepts of arithmetic from those of

formal logic, for he disagreed with the assertion of C. S. Peirce that
mathematics and logic are clearly distinct. Frege had been educated at
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the universities of Jena and Göttingen, and he taught at Jena during a
long career. Nevertheless, his program did not meet with much response
until it was undertaken independently early in the twentieth century by
Bertrand Russell, when it became one of the chief goals of mathemati-
cians. Frege was keenly disappointed by the poor reception of his work,
but the fault lay in part in the excessively novel and philosophical form
in which the results were cast. History shows that novelty in ideas is
more readily accepted if couched in a relatively conventional form.
Italy had taken a somewhat less active part in the development of

abstract algebra than had France, Germany, and England, but during the
closing years of the nineteenth century, there were Italian mathemati-
cians who took a deep interest in mathematical logic. Best known of
these was Giuseppe Peano (1858 1932), whose name is recalled today
in connection with the Peano axioms on which so many rigorous con-
structions of algebra and analysis depend. His aim was similar to that of
Frege, but it was at the same time more ambitious and yet more down to
earth. He hoped, in his Formulaire de mathématiques (1894 et seq.),
to develop a formalized language that should contain not only mathe-
matical logic but all of the most important branches of mathematics.
That his program attracted a large circle of collaborators and disciples
resulted in part from his avoidance of metaphysical language and from
his felicitous choice of symbols—such as A (belongs to the class of),
, (logical sum or union),- (logical product or intersection), and �
(contains)—many of which are used even today. For his foundations of
arithmetic, he chose three primitive concepts: zero, number (that is,
nonnegative whole number), and the relationship “is the successor of,”
satisfying five postulates:

1. Zero is a number.
2. If a is a number, the successor of a is a number.
3. Zero is not the successor of a number.
4. Two numbers of which the successors are equal are themselves

equal.
5. If a set S of numbers contains zero and also the successor of every

number in S, then every number is in S.

The last requirement is, of course, the axiom of induction. The Peano
axioms, first formulated in 1889 in Arithmetices principia nova methodo
exposita, represent the most striking attempt of the century to reduce
common arithmetic—hence, ultimately, most of mathematics—to the
stark essentials of formal symbolism. (He expressed the postulates in
symbols, rather than in the words that we have used.) Here the postu-
lational method attained a new height of precision, with no ambiguity of
meaning and no concealed assumptions. Peano also spent much effort in
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the development of symbolic logic, a favorite pursuit of the twentieth
century.
A further contribution by Peano to mathematics should perhaps be

mentioned, inasmuch as it represented one of the disquieting discoveries
of the time. The nineteenth century had opened with a recognition that
curves and functions need not be of the well-behaved type that had
theretofore preempted the field, and in 1890, Peano showed how thor-
oughly mathematics could outrage common sense when he constructed
continuous space-filling curves, that is, curves given by parametric
equations x5 f(t), y5 g(t), where f and g are continuous real functions in
the interval 0# t# 1, the points of which completely fill the unit square
0# x# 1, 0# y# 1. This paradox, of course, is all of a piece with
Cantor’s discovery that there are no more points in a unit square than in a
unit line segment, and it was among the factors that caused the following
century to devote much more attention to the basic structure of mathe-
matics. In 1903, Peano himself, however, was distracted by his invention
of the international language that he called “Interlingua” or “Latino sine
flexione,” with vocabulary drawn from Latin, French, English, and
German. This movement turned out to be far more ephemeral than his
axiomatic structure in arithmetic.
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22

Analysis

It is the simple hypotheses of which one must be most wary; because

these are the ones that have the most chances of passing unnoticed.

Poincaré

Berlin and G˛ttingen at Midcentury

Analysis, the study of infinite processes, had been understood by Newton
and Leibniz to be concerned with continuous magnitudes, such as lengths,
areas, velocities, and accelerations, whereas the theory of numbers has as
its domain the discrete set of natural numbers. We have nevertheless seen
that Bolzano tried to give purely arithmetic proofs of propositions, such as
the location theorem in elementary algebra, that seemed to depend on
properties of continuous functions, and Plücker had thoroughly arith-
metized analytic geometry. The theory of groups had originally been
concerned with discrete sets of elements, but Klein envisioned a uni-
fication of both discrete and continuous aspects of mathematics under the
group concept. The nineteenth century was indeed a period of correlation
in mathematics. The geometric interpretation of analysis and algebra was
one aspect of this tendency; the introduction of analytic techniques in
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number theory was another. Toward the end of the century, the strongest
current was that of arithmetization; it affected algebra, geometry, and
analysis.
In 1855, Dirichlet succeeded Gauss in Göttingen. He left in place, in

Berlin, a tradition of lectures on the applications of analysis to physical
problems and number theory. He also left a small group of his and Jacobi’s
friends and students, who continued to influence mathematics at the
academy, in the Journal für die reine und angewandte Mathematik, and
at the university. In Göttingen, mathematical lectures were less solidly
established. As already noted, Gauss’s limited teaching had usually
emphasized subjects such as the method of least squares that would be
useful to his observatory assistants. Most mathematics proper was taught
by one lecturer, Moritz Stern (1807 1894). Dirichlet sought to emphasize
the “true” Gaussian legacy with lectures on number theory and potential
theory.
There were two young men in Göttingen who were to be profoundly

influenced by Dirichlet, although they differed greatly in personality
and mathematical orientation. One was Richard Dedekind; the other,
Bernhard Riemann. When Dirichlet died unexpectedly in 1859, it was
Riemann who succeeded him.

Riemann in G˛ttingen

When Riemann became a professor in Göttingen, he was no stranger to
that university. He had matriculated there in 1846, spent several seme-
sters in Berlin to get his mathematical training from Jacobi and Dirichlet,
then returned to Göttingen, obtained good training in physics from
Wilhelm Weber, assisted Weber, obtained his doctoral degree, and was
appointed lecturer (privatdozent) in 1854. His research, as well as his
career, was split between mathematics and physics. By the time he
succeeded Dirichlet, he had published five memoirs; two of these dealt
with problems in physics. A similar division characterized his later work,
yet, conceptually, it is not the division but the commonality of many
concepts that predominates. Riemann was a many-sided mathematician
with a fertile mind, contributing to geometry, the theory of numbers,
and analysis. Having previously touched on some of his geometric and
function-theoretic work, we shall here cite only the example of his
shortest and possibly most famous paper before proceeding to note
his influence on mathematical physics.
Euler had noted connections between prime number theory and the

series
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where s is an integer—a special case of the Dirichlet series. Riemann
studied the same series for s a complex variable, the sum of the series
defining a function ζðsÞ, which has since been known as Riemann’s zeta
function. One of the tantalizing suggestions that mathematicians have
not yet been able to prove or disprove is the famous Riemann conjecture
that all of the imaginary zeros s5σ1 iτ of the zeta function have real
part σ5 1

2 .
In analysis, Riemann is recalled for his part in the refinement of the

definition of the integral, for emphasis on the Cauchy-Riemann equ-
ations, and for the Riemann surfaces. These surfaces are an ingenious
scheme for uniformizing a function, that is, representing a one-to-
one mapping of a complex function that in the ordinary Gaussian plane
would be multivalued. Here we see the most striking aspect of
Riemann’s work—a strongly intuitive and geometric background in
analysis that contrasts sharply with the arithmetizing tendencies of the
Weierstrassian school. His approach has been called “a method of
discovery,” whereas that of Weierstrass was “a method of demon-
stration.” His results were so significant that Bertrand Russell descri-
bed him as “logically the immediate predecessor of Einstein.” It was
Riemann’s intuitive genius in physics and mathematics that produced
such concepts as that of the curvature of a Riemannian space or
manifold, without which the theory of general relativity could not have
been formulated.

Mathematical Physics in Germany

There had been several centers of growing activity in mathematical
physics in Germany before Riemann. Beginning in the 1830s, Dirichlet
had introduced the techniques of Fourier and the results of his great
French contemporaries to a large group of students in mathematics
and physics in Berlin. Dirichlet interacted with the Berlin physicists;
he had been a friend of Wilhelm Weber’s years before they became
colleagues in Göttingen. Similarly, in Königsberg, Jacobi had worked
closely with the mathematical physicist Franz Neumann (1798 1895) in
research and teaching. In Leipzig, the new analysis was not yet well
represented. but when the Weber brothers felt the need to consult their
mathematical colleagues, there were no barriers. When Weber involved
Riemann in his electrodynamic investigations in Göttingen, the subject
had also been dealt with in Königsberg; both German traditions drew
on the pioneering work of André-Marie Ampère and Poisson. When
Riemann initiated his influential study of the propagation of sound
waves, he elaborated on a topic that Poisson had furthered in the early
years of the century and on which Dirichlet had frequently lectured in
Berlin. It is an important chapter in the history of the wave equation.
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Riemann’s approach involved dealing with a second-order linear dif-
ferential equation in two variables and finding a “characteristic” function
that satisfied a certain adjoint partial differential equation. Riemann’s
technique has been widely adopted for hyperbolic equations.
PaulDuBois Reymond (1831 1889), who had obtained his doctorate in

Berlin just before Dirichlet’s departure, built on Riemann’s work in
obtaining a generalization of Green’s theorem. Hermann Helmholtz
(1821 1894), who came to mathematical physics from a background in
physiology, overlapped with Riemann in acoustical studies. Many of
his notable contributions to the study of sound were included in his
popular work On the Sensations of Tone. The reduced wave equation
Δw1 k2w5 0 is often called the “Helmholtz equation” because hewas the
first to tackle the issue of finding a general solution. The physicist Gustav
Kirchhoff (1824 1887), who was a contemporary of these men, obtained
further significant results in the study of partial differential equations,
particularly the wave equation.

Mathematical Physics in English-Speaking Countries

By the middle of the nineteenth century, a number of English-speaking
men promoted mathematical physics in Great Britain and elsewhere.
The earliest significant nineteenth-century contributions to mathematical
physics across the channel were those of the Irishman William Rowan
Hamilton. When he initiated his studies on dynamics in the 1830s, he
drew heavily on concepts he had developed while establishing a math-
ematical theory of optics in the late 1820s. Key to his method was the
introduction of variational principles into the treatment of certain partial
differential equations. He built on work by Lagrange and Poisson but
utilized physical principles established earlier. Jacobi, working out his
own dynamics in the 1830s, recast Hamilton’s innovative ideas and
called attention to them in the context of his own theory. The result is
now known as the Hamilton-Jacobi theory. Hamilton’s primary cham-
pion was the Scottish physicist Peter Guthrie Tait (1831 1901). Among
Tait’s mathematical contributions are early studies of knots; in this,
he followed a little-known line of research by Gauss and Listing,
prompted by electrodynamic investigations. His name came to be known
to generations in linkage with that of William Thomson through the
classic Treatise on Natural Philosophy, usually simply referred to as
“T and T” or “T and Tu.” This work, which first appeared in 1867, went
through several editions. Although it does not make for light reading,
nearly a century after its first publication it reappeared as a paperback
with the title Principles of Mechanics and Dynamics.
William Thomson, Tait’s coauthor, is better known by his title as Lord

Kelvin. Born in Belfast, raised in Glasgow, and educated in Cambridge,
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he discovered Fourier’s book on heat theory as an adolescent and shortly
thereafter was given a copy of Green’s rare 1828 Essay. Thomson not
only studied Green’s work himself but made it known on the Continent.
His earliest mathematical contributions of the 1840s were furthered
through communication with Liouville, in whose Journal they appeared.
They relate to the method of inversion and to Dirichlet’s principle, both
treated with regard to electricity and magnetism. Subsequent research
tended to be more physically and experimentally oriented.
Thomson was a contemporary of an English physicist whose name is

familiar to every student of advanced calculus: George Gabriel Stokes
(1819 1903). Stokes graduated from Cambridge in 1841; like Thomson,
he had been senior wrangler. Much of his research was done before
1850; during the second part of the century, he held the Lucasian chair of
mathematics at Cambridge and was an active member of the Royal
Society, whose Copley medal he had won for a major study on optics
in the early fifties. William Thomson knew the theorem that bears
Stokes’s name in 1850, although it first appeared in print in the form of
an exam question in 1854. Stokes proved the theorem when Thomson
sent it to him in 1850 and seems to have chosen it as an examination
question.
One of those taking this examination in 1854 was James Clerk Maxwell

(1831 1879). Best known for his stunningly successful derivation, in
1864, of the electromagnetic wave equations, he was influential in urging
onmathematicians and physicists the use of vectors. A friend of Tait’s, he,
too, admired Hamilton. Yet he avoided becoming heavily involved in the
notational quarrels surrounding many advocates of the use of vector
analysis.
Before leaving the English-speaking analysts of the period, we should

note some important contributions from those studying celestial
mechanics. As previously noted, nineteenth-century theoretical astron-
omers had two great guidebooks: one was Laplace’s Mécanique celeste,
the other Gauss’s Theoria motus. The translation of Laplace’s work
into English brought to European attention an American, Nathaniel
Bowditch (1773 1838), in the 1830s. The subject was one in which
American analysts were repeatedly to make their mark, the most notable
nineteenth-century American contribution being that of George William
Hill (1838 1914). In 1877 1878, Hill published two important papers
on lunar theory, in which he established the theory of linear differential
equations with periodic coefficients. After Henri Poincaré noted the
importance of this work in 1885, the first of these papers was repub-
lished in Mittag-Leffler’s Acta Mathematica, and attention was drawn
to the recently established American Journal of Mathematics, the first
volume of which had contained Hill’s other paper.
Finally, it should be noted that the Astronomer Royal of England

G. B. Airy (1801 1892) made numerous contributions to the study of
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series and integrals, which, although they belong to the age of Gauss and
Cauchy, were important in the effect they had on England’s midcentury
analysts and mathematical physicists. For example, in his optical studies
in 1850, Stokes was confronted with an integral that Airy had used to
describe a certain situation involving diffraction. Stokes set up a dif-
ferential equation having Airy’s integral as a special solution and solved
the equation by “semiconvergent” series. This was one of the early
examples of work that subsequently led to the more general theory of
such series established by T.-J. Stieltjes (1856 1894).

Weierstrass and Students

The leading analyst in Berlin in the second half of the nineteenth century
was Karl Weierstrass (1815 1897). Weierstrass prepared himself at
Münster for secondary-school teaching, where an instructor, Christoph
Gudermann (1798 1851), took Weierstrass under his wing.
Gudermann was especially interested in elliptic and hyperbolic func-

tions; his name is still recalled in the Gudermannian: If u is a function of
x satisfying the equation tan u5 sin hx, then u is known as the Guder-
mannian of x, written as u5 gd x. More important to mathematics than
this minor contribution were the time and inspiration the teacher gave to
his student Karl Weierstrass, who was destined in turn to become the
greatest mathematics teacher of the mid-nineteenth century—at least, as
measured in terms of the number of successful research workers he
produced. Gudermann had impressed on the young Weierstrass what a
useful tool the power series representation of a function was, and it was
in this connection that Weierstrass produced his greatest work, following
in the footsteps of Abel.
Weierstrass earned his teacher’s certificate at the late age of twenty-six,

and for more than a dozen years, he taught at various secondary schools.
In 1854, however, a paper on Abelian functions, appearing in Crelle’s
Journal, brought him such recognition that shortly thereafter he was
offered and he accepted a professorship at the University of Berlin.
Weierstrass was then almost forty, making him a striking exception to
the common notion that a great mathematician must make his mark early
in life.
It had been generally assumed, before the middle of the nineteenth

century, that if an infinite series converges for some interval to a con-
tinuous and differentiable function f(x), then a second series obtained by
differentiating the original series, term by term, necessarily will con-
verge, for the same interval, to f u(x). Several mathematicians showed that
this is not necessarily the case and that term-by-term differentiation can
be trusted only if the series is uniformly convergent for the interval—that
is, if a single N can be found such that for every value of x in the interval
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the partial sums Sn(x) will differ from the sum S(x) of the series by less
than a given ε for all n.N. Weierstrass showed that for a uniformly
convergent series, term-by-term integration was also permissible. In the
matter of uniform convergence, Weierstrass was far from alone, for
the concept was hit on independently at about the same time by at least
three other men—Cauchy in France (perhaps by 1853), Stokes at Cam-
bridge (in 1847), and P. L. V. Seidel (1821 1896) in Germany (in 1848).
H. E. Heine (1821 1881), previously close to Dirichlet and Riemann, in
1870 proved that the Fourier series development of a continuous function
is unique if one imposes the condition that it be uniformly convergent. Yet
perhaps no one is more deserving to be known as the father of the critical
movement in analysis than is Weierstrass. From 1857 until his retirement
in 1890, he urged a generation of students to use infinite series repre-
sentations with care.
One of Weierstrass’s important contributions to analysis is known as

analytic continuation. Weierstrass had shown that the infinite power
series representation of a function f(x), about a point Pl in the complex
plane, converges at all points within a circle C1 whose center is P1 and
which passes through the nearest singularity. If, now, one expands the
same function about a second point P2 other than P1 but within C1, this
series will be convergent within a circle C2 having P2 as the center and
passing through the singularity nearest to P2. This circle may include
points outside C1; hence, one has extended the area of the plane within
which f(x) is defined analytically by a power series; the process can be
continued with still other circles. Weierstrass therefore defined an ana-
lytic function as one power series together with all of those that are
obtainable from it by analytic continuation. The importance of work
such as that of Weierstrass is felt particularly in mathematical physics, in
which solutions of differential equations are rarely found in any form
other than as an infinite series.
Weierstrass’s influence was exerted through his students as much as

through his own lectures and publications. In the field of differential
equations, this brings us to Lazarus Fuchs (1833 1902). Building on
work by the French mathematicians Briot (1817 1882) and Bouquet
(1819 1885), and on Riemann’s memoir about the hypergeometric equa-
tion, Fuchs initiated the systematic study of regular singularities of linear
ordinary differential equations in the complex domain. His immediate
motivation came from lectures on Abelian functions that Weierstrass
had given in 1863. Fuchs’s work was sharpened by G. Frobenius
(1849 1917) at Berlin and served as a takeoff point for Poincaré.
Another Weierstrass student who made major contributions to comp-

lex analysis was H. A. Schwarz (1848 1921). Schwarz was interested
in mapping questions and was especially affected by Weierstrass’s
criticism of Riemann’s use of the Dirichlet principle. Riemann’s famous
mapping theorem, translated into a later terminology, states that “there
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exists one and only one conformal mapping of a given bounded simply
connected surface onto a second one, for which the images of one interior
point and one boundary point are prescribed” (Birkhoff 1973, p. 47).
Weierstrass noted that Riemann’s proof was unacceptable because it
extended the use of Dirichlet’s principle beyond the limitations that
would assure the existence of a minimizing integral. Schwarz thereupon
set out to find specific instances for which he could validate the mapping
theorem. This search led him to two very useful tools, one known as his
“reflection principle,” the other as his “alternating process.” He was able
to obtain a number of specific mappings; for example, he could map a
simply connected plane region onto a circle, but he could not achieve the
hoped-for broader generalization.
Yet another follower of Weierstrass who was to assume international

importance because of his journal and his support of mathematicians
from different parts of the world was the Swede Gösta Mittag-Leffler
(1846 1927). Mittag-Leffler had studied with Charles Hermite (1822
1901) in Paris and Ernst Christian Julius Schering (1824 1897) in
Göttingen before he came to Berlin. He made independent contributions
to complex function theory. More important, he founded the journal Acta
Mathematica, was a friend of Weierstrass’s and Hermite’s, exchanged
information with mathematicians around the world, and supported
numerous mathematicians directly, as well as through his connections in
Sweden and elsewhere. Thus, he played an important role in the lives of
such diverse individuals as Sofia Kovalevskaya, Henri Poincaré, and
Georg Cantor.

TheArithmetization of Analysis

Note that 1872 was a red-letter year not only in geometry but, more
particularly, in analysis. In that year, crucial contributions toward the
arithmetization of analysis were made by no fewer than five mathe-
maticians, one French, the others German. The Frenchman was H. C. R.
(Charles) Méray (1835 1911) of Burgundy; the four Germans were
Karl Weierstrass of Berlin, H. E. Heine of Halle, Georg Cantor
(1845 1918), also of Halle, and J. W. R. Dedekind (1831 1916) of
Braunschweig. These men, in a sense, represented the climax in half
a century of investigation into the nature of function and number that
had begun in 1822 with Fourier’s theory of heat and with an attempt
made in that year by Martin Ohm (1792 1872) to reduce all of analysis
to arithmetic in Versuch eines vollständig konsequenten Systems der
Mathematik. There were two chief causes of uneasiness in this fifty-year
interval. One was the lack of confidence in operations performed on
infinite series. It was not even clear whether an infinite series of
functions—of powers or of sines and cosines, for example—always
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converges to the function from which it was derived. A second cause
for concern was occasioned by the lack of any definition of the phrase
“real number” that lay at the very heart of the arithmetization program.
By 1817, Bolzano had been so fully aware of the need for rigor in
analysis that Klein referred to him as the “father of arithmetization,” but
Bolzano had been less influential than Cauchy, whose analysis was still
encumbered with geometric intuition. Even Bolzano’s continuous
nondifferentiable function of about 1830 was overlooked by successors,
and the example of such a function given by Weierstrass (in classroom
lectures in 1861 and in a paper to the Berlin Academy in 1872) was
generally thought to be the first illustration of it.
Riemann, meanwhile, had exhibited a function f(x) that is dis-

continuous at infinitely many points in an interval and yet the integral of
which exists and defines a continuous function F(x) that, for the infinity
of points in question, fails to have a derivative. Riemann’s function is, in
a sense, less pathological than are those of Bolzano and Weierstrass, but
it made clear that the integral required a more careful definition than that
of Cauchy, which had been guided largely by geometric feeling for the
area under a curve. The present-day definition of the definite integral
over an interval in terms of upper and lower sums is generally known as
the Riemann integral, in honor of the man who gave necessary and
sufficient conditions that a bounded function be integrable. The Dirichlet
function, for instance, does not have a Riemann integral for any interval.
Still more general definitions of the integral, with weaker conditions on
the function, were proposed in the next century, but the definition of the
integral used in most undergraduate courses in the calculus is still that of
Riemann.
There was a gap of some fifty years between the work of Bolzano

and that of Weierstrass, but the unity of effort in this half century and the
need to rediscover Bolzano’s work were such that there is a celebrated
theorem that bears the name of both men, the Bolzano-Weierstrass
theorem: A bounded set S containing infinitely many elements (such as
points or numbers) contains at least one limit point. Although this the-
orem was proved by Bolzano and apparently was also known to Cauchy,
it was the work of Weierstrass that made it familiar to mathematicians.
Skepticism about Fourier’s series had been expressed by Lagrange,

but Cauchy, in 1823, thought he had proved the convergence of the
general Fourier series. Dirichlet had shown that Cauchy’s proof was
inadequate and had provided sufficient conditions for the convergence.
It was in seeking to liberalize Dirichlet’s conditions for the convergence
of a Fourier series that Riemann developed his definition of the Riemann
integral; in this connection, he showed that a function f(x) may be
integrable in an interval without being representable by a Fourier series.
It was the study of infinite trigonometric series that also led to Cantor’s
theory of sets, to be described later.
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Only a year after the critical year 1872, a young man who had given
promise of significant contributions to both mathematics and its history
died at the early age of thirty-four. This was Hermann Hankel (1839
1873), a student of Riemann’s and a professor of mathematics at Leipzig.
In 1867, he had published a book, Theorie der komplexen Zahlensysteme,
in which he pointed out that “the condition for erecting a universal
arithmetic is . . . a purely intellectual mathematics, one detached from all
perceptions.” We have seen that the revolution in geometry took place
when Gauss, Lobachevsky, and Bolyai freed themselves from pre-
conceptions of space. In somewhat the same sense, the thoroughgoing
arithmetization of analysis became possible only when, as Hankel fore-
saw, mathematicians understood that the real numbers are to be viewed as
“intellectual structures,” rather than as intuitively given magnitudes
inherited from Euclid’s geometry. Hankel’s view was not really new;
a generation of algebraists, especially in Great Britain, had been devel-
oping a universal arithmetic and multiple algebras. The implications for
analysis, however, had not been widely recognized. During the early
1830s, Bolzano had made an attempt to develop a theory of real numbers
as limits of rational number sequences, but this had gone unnoticed and
unpublished until 1962. Sir William Rowan Hamilton (1805 1865) per-
haps had felt some such need, but his appeal to time, rather than to space,
was a change in language, although not in logical form, from the usual
geometric background. The crux of the matter was first effectively seized
on and published by the quintet of 1872 mentioned earlier.
Méray was prompt to present his thoughts, for as early as 1869 he had

published an article calling attention to a serious lapse in reasoning of
which mathematicians from the time of Cauchy had been guilty.
Essentially, the petitio principii consisted of defining the limit of a seq-
uence as a real number and then, in turn, defining a real number as a limit
of a sequence (of rational numbers). It will be recalled that Bolzano and
Cauchy had attempted to prove that a sequence that “converges within
itself”—one for which Sn1p differs from Sn (for a given integer p and for n
sufficiently large) by less than any assigned magnitude ε, also converges
in the sense of external relations to a real number S, the limit of the
sequence. Méray, in his Nouveau précis d’analyse infinitésimale of 1872,
cut the Gordian knot by not invoking the external condition of con-
vergence or the real number S. Using only the Bolzano-Cauchy criterion,
where n, p, and ε are rational numbers, convergence can be described
without reference to irrational numbers. In a broad sense, he regarded a
converging sequence as determining either a rational number as a limit or
a “fictitious number” as a “fictitious limit.” These “fictitious numbers”
can, he showed, be ordered, and, in essence, they are what we know as
the irrational numbers. Méray was somewhat vague as to whether his
converging sequence is the number. If it is, as seems to be implied, then
his theory is equivalent to one developed at the same time by Weierstrass.
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Weierstrass sought to separate the calculus from geometry and to base it
on the concept of number alone. Like Méray, he also saw that to do this, it
was necessary to give a definition of an irrational number that is inde-
pendent of the limit concept, inasmuch as the latter had up to this point
presupposed the former. To correct Cauchy’s logical error, Weierstrass
settled the question of the existence of a limit of a convergent sequence by
making the sequence itself the number or the limit. Weierstrass’s scheme
is too subtle to be presented in detail here, but in considerably over-
simplified form, we may say that the number 1

3 is not the limit of the series
3
10 1

3
100 1

3
1000 1 � � �1 3

10 n 1 � � �; it is the sequence associated with this
series. (Actually, in Weierstrass’s theory, the irrational numbers are more
broadly defined as aggregates of the rationals, rather than more narrowly
as ordered sequences of rationals, as we have implied.)
Weierstrass did not publish his views on the arithmetization of ana-

lysis, but they were made known by men such as Ferdinand Lindemann
and Eduard Heine, who had followed his lectures. In 1871, Cantor had
initiated a third program of arithmetization, similar to those of Méray
and Weierstrass. Heine suggested simplifications that have led to the
so-called Cantor-Heine development, published by Heine in Crelle’s
Journal for 1872 in the article “Die Elemente der Funktionenlehre.” In
essence, the scheme resembled that of Méray’s, in that convergent
sequences that fail to converge to rational numbers are taken by fiat to
define irrational numbers. A thoroughly distinct approach to the same
problem and the one that today is best known was given in the same year
by Dedekind in a celebrated book, Stetigkeit und die Irrationalzahlen
(Continuity and Irrational Numbers).

Dedekind

Dedekind’s attention had been directed to the problem of irrational
numbers as early as 1858, when he found himself lecturing on the cal-
culus. The limit concept, he concluded, should be developed through
arithmetic alone, without the usual guidance from geometry, if it were to
be rigorous. Instead of simply seeking a way out of Cauchy’s vicious
circle, Dedekind asked himself, as the title of his book implies, what
there is in continuous geometric magnitude that distinguishes it from the
rational numbers. Galileo and Leibniz had thought that the “continuous-
ness” of points on a line was the result of their density—that between any
two points, there is always a third; however, the rational numbers have this
property, yet they do not form a continuum. On pondering this matter,
Dedekind came to the conclusion that the essence of the continuity of a
line segment is not due to a vague hang-togetherness but to an exactly
opposite property: the nature of the division of the segment into two
parts by a point on the segment. In any division of the points of the
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segment into two classes such that each point belongs to one and only
one class, and such that every point of the one class is to the left of every
point in the other, there is one and only one point that brings about the
division. As Dedekind wrote, “By this commonplace remark the secret
of continuity is to be revealed.” Commonplace the remark may have
been, but its author seems to have had some qualms about it, for he
hesitated for some years before committing himself in print.
Dedekind saw that the domain of rational numbers can be extended to

form a continuum of real numbers if one assumes what is now known as
the Cantor-Dedekind axiom, namely, that the points on a line can be put
into one-to-one correspondence with the real numbers. Arithmetically
expressed, this means that for every division of the rational numbers into
two classes A and B such that every number of the first class, A, is less
than every number of the second class, B, there is one and only one real
number producing this Schnitt, or Dedekind cut. If A has a largest number
or if B contains a smallest number, the cut defines a rational number, but
if A has no largest number and B no smallest, then the cut defines an
irrational number. If, for example, we put in A all negative rational
numbers and also all positive rational numbers whose squares are less
than 2 and in B all positive rational numbers whose squares are more than
2, we have subdivided the entire field of rational numbers in a manner
defining an irrational number—in this case, the number that we usually
write as 2

p
. Now, Dedekind pointed out, the fundamental theorems on

limits can be proved rigorously without recourse to geometry. It was
geometry that had pointed the way to a suitable definition of continuity,
but in the end, it was excluded from the formal arithmetic definition of the
concept. The Dedekind cut in the rational number system, or an
equivalent construction of real number, has now replaced geometrical
magnitude as the backbone of analysis.
The definitions of real number are, as Hankel indicated they should be,

intellectual constructions on the basis of the rational numbers, rather
than something imposed on mathematics from without. Of the previous
definitions, one of the most popular has been that of Dedekind. Early in
the twentieth century, a modification of the Dedekind cut was proposed
by Bertrand Russell (1872 1970). He noted that because either of
Dedekind’s two classes A and B is uniquely determined by the other, one
alone suffices for the determination of a real number. Thus, 2

p
can be

defined simply as that segment or subclass of the set of rational numbers
made up of all positive rational numbers whose squares are less than 2
and also of all negative rational numbers. Similarly, every real number is
nothing more than a segment of the rational number system.
In some respects, the life of Dedekind was similar to that of Weier-

strass. He, too, was one of four children, and he, too, never married, and
both men lived into their eighties. On the other hand, Dedekind made an
earlier start in mathematics than had Weierstrass, entering Göttingen
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at the age of nineteen and earning his doctorate three years later with
a thesis on the calculus that elicited praise from Gauss. Dedekind
stayed at Göttingen for a few years, teaching and listening to lectures by
Dirichlet, and then he took up secondary school teaching, chiefly at
Brunswick, for the rest of his life. Dedekind lived so long after his
celebrated introduction of “cuts” that the famous publishing house of
Teubner had listed his death in its Calendar for Mathematicians as
September 4, 1899. This amused Dedekind, who lived more than a dozen
years longer, and he wrote to the editor that he had passed the day in
question in stimulating conversation with his friend Georg Cantor.

Cantor and Kronecker

The life of Cantor was tragically different from that of his friend Dede-
kind. Cantor was born in St. Petersburg of parents who had migrated from
Denmark, but most of his life was spent in Germany, the family having
moved to Frankfurt when he was eleven. His parents were Christians of
Jewish background—his father had been converted to Protestantism,
his mother had been born a Catholic. The son Georg took a strong interest
in the fine-spun arguments of medieval theologians concerning continuity
and the infinite, and this militated against his pursuing a mundane career
in engineering, as suggested by his father. In his studies at Zurich,
Göttingen, and Berlin, the young man consequently concentrated on
philosophy, physics, and mathematics—a program that seems to have
fostered his unprecedented mathematical imagination. He took his doc-
torate at Berlin in 1867 with a thesis on the theory of numbers, but
his early publications show an attraction to Weierstrassian analysis. This
field prompted the revolutionary ideas that sprang to his mind in his
late twenties. We have already noted the work of Cantor in connection
with the prosaic phrase “real number,” but his most original contributions
centered about the provocative word “infinity.”
Ever since the days of Zeno, men had been talking about infinity, in

theology as well as in mathematics, but no one before 1872 had been able
to tell precisely what he was talking about. All too frequently in dis-
cussions of the infinite, the examples cited were such things as unlimited
power or indefinitely large magnitudes. Occasionally, attention had
instead been focused, as in the work of Galileo and Bolzano, on the
infinitely many elements in a collection, for example, the natural numbers
or the points in a line segment. Cauchy and Weierstrass saw only paradox
in attempts to identify an actual or “completed” infinity in mathematics,
believing that the infinitely large and small indicated nothing more than
the potentiality of Aristotle—an incompleteness of the process in ques-
tion. Cantor and Dedekind came to a contrary conclusion. Dedekind saw
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in Bolzano’s paradoxes not an anomaly, but a universal property of
infinite sets that he took as a precise definition:

A system S is said to be infinite when it is similar to a proper part of itself;

in the contrary case S is said to be a finite system.

In somewhat more modern terminology, a set S of elements is said
to be infinite if the elements of a proper subset Su can be put into one-to-
one correspondence with the elements of S. That the set S of natural
numbers is infinite, for instance, is clear from the fact that the subset
Su made up of all triangular numbers is such that to each element n
of S, there corresponds an element of Su given by n(n 1 l) /2. This
positive definition of a “completed infinite” set is not to be confused
with the negative statement sometimes written with Wallis’s symbol as
1/05N. This last “equation” simply indicates that there is no real number
that multiplied by zero will produce the number 1.
Dedekind’s definition of an infinite set appeared in 1872 in his

Stetigkeit und irrationale Zahlen. (In 1888, Dedekind amplified his
ideas in another important treatise, Was sind und was sollen die Zahlen.)
Two years later, Cantor married, and on the honeymoon, he took his
bride to Interlaken, where they met Dedekind. In the same year, 1874,
Cantor published in Crelle’s Journal one of his most revolutionary
papers. He, like Dedekind, had recognized the fundamental property of
infinite sets, but, unlike Dedekind, Cantor saw that not all infinite sets are
the same. In the finite case, sets of elements are said to have the same
(cardinal) number if they can be put into one-to-one correspondence. In a
somewhat similar way, Cantor set out to build a hierarchy of infinite sets
according to the Mächtigkeit, or “power,” of the set. The set of perfect
squares or the set of triangular numbers has the same power as the set of
all of the positive integers, for the groups can be put into one-to-one
correspondence. These sets seem to be much smaller than the set of
all rational fractions, yet Cantor showed that the latter set is also
countable or denumerable—that is, it, too, can be put into one-to-one
correspondence with the positive integers, hence has the same power. To
show this, we merely follow the arrows in Fig. 22.1, “counting” the
fractions along the way.
The rational fractions are so dense that between any two of them, no

matter how close, there will always be another, yet Cantor’s arrangement
showed that the set of fractions has the same power as does the set of
integers. One begins to wonder whether all sets of numbers have the same
power, but Cantor proved conclusively that this is not the case. The set
of all real numbers, for example, has a higher power than does the set of
rational fractions. To show this, Cantor used a reductio ad absurdum.
Assume that the real numbers between 0 and 1 are countable, are expressed
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as nonterminating decimals (so that 1
3, for example, appears as 0.333 . . . ,

1
2 as 0.499 . . . , and so on), and are arranged in denumerable order:

a1 5 0:a11a12a13 � � �;
a2 5 0:a21a22a23 � � �;
a3 5 0:a31a32a33 � � �;
� � � � � � � � � �;

where aij is a digit between 0 and 9 inclusive. To show that not all of the
real numbers between 0 and 1 are included above, Cantor exhibited an
infinite decimal different from all of those listed. To do this, simply form
the decimal b5 0.b1b2b3 . . . , where bK5 9 if aKK5 1 and bK5 1 if aKK 6¼
1. This real number will be between 0 and 1, and yet it will be unequal to
any one of those in the arrangement that was presumed to contain all of
the real numbers between 0 and 1.
The real numbers can be subdivided into two types in two different

ways: (1) as rational and irrational or (2) as algebraic and transcendental.
Cantor showed that even the class of algebraic numbers, which is far more
general than that of rational numbers, nevertheless has the same power as
that of the integers. Hence, it is the transcendental numbers that give to the
real number system the “density” that results in a higher power. That it is
fundamentally a matter of density that determines the power of a set
is suggested in the fact that the power of the set of points on an infinitely
extended line is just the same as the power of the set of points in any
segment of the line, however small. To show this, let RS be the infinitely
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extended line and let PQ be any finite segment (Fig. 22.2). Place the
segment so that it intersects RS at a point O but is not perpendicular to RS
and does not lie on RS. If the points M and N are so chosen that PM and
QN are parallel to RS and MON is perpendicular to RS, then, by drawing
lines through M intersecting both OP and OR and lines through N inter-
secting OQ and OS, a one-to-one correspondence is easily established.
More surprising still is the fact that dimensionality is not the arbiter of

the power of a set. The power of the set of points in a unit line segment
is just the same as that of the points in a unit area or in a unit volume—
or, for that matter, in all of three-dimensional space. (Dimensionality,
however, retains some measure of authority, in that any one-to-one
mapping of points in a space of unlike dimensionality is necessarily a
discontinuous mapping.) So paradoxical were some results in point-set
theory that Cantor himself on one occasion in 1877 wrote to Dedekind,
“I see it, but I don’t believe it,” and he asked his friend to check the
proof. Publishers, too, were very hesitant about accepting his papers, and
several times the appearance of articles by Cantor in Crelle’s Journal
was delayed by editorial indecision and concern lest error lurk in the
unconventional approach to mathematical concepts.
Cantor’s amazing results led him to establish the theory of sets, a full-

fledged mathematical discipline, known as Mengenlehre (theory of ass-
emblages) orMannigfaltigkeitslehre (theory of manifolds), a branch that in
the mid-twentieth century was to have profound effects on the teaching
of mathematics. At the time of its founding, Cantor spent much effort in
convincing his contemporaries of the validity of the results, for there was
considerable horror infiniti, and mathematicians were reluctant to accept
the eigentlich Unendliche or “completed infinity.” In piling evidence on
evidence, Cantor in the end built awhole transfinite arithmetic. The “power”
of a set became the “cardinal number” of the set. Thus, the “number” of
the set of integers is the “smallest” transfinite number, E, and the “number”
of the set of real numbers or of points on a line is a “larger” number,
C, the number of the continuum. Still unanswered is the question whether
there are transfinite numbers between E and C. Cantor himself showed
that there are indefinitely many transfinite numbers beyond C, for he
proved that the set of subsets of a set is always of a higher power than the set
itself. Hence, the “number” of the set of subsets of C is a third transfinite
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number, the set of subsets of this set of subsets determines a fourth number,
and so on, indefinitely. As there are infinitely many natural numbers, so are
there infinitely many transfinite numbers as well.
The transfinite numbers described previously are cardinal numbers, but

Cantor also developed an arithmetic of transfinite ordinal numbers. Order-
ing relations are a ticklish matter in mathematics, so it turns out that trans-
finite ordinal arithmetic differs strikingly from finite ordinal arithmetic.
For finite cases, the rules for ordinal numbers are essentially the same as for
cardinal numbers. Thus, 31 45 41 3, whether these digits represent car-
dinal or ordinal numbers. If, however, one designates by ω the ordinal
number of the “counting numbers,” then ω1 1 is not the same as 11ω, for
11ω is obviously the same as ω. Moreover, one can show that ω1ω5ω
andω Uω5ω, properties unlike those of finite ordinals but resembling those
of transfinite cardinals.
Dedekind and Cantor were among the most capable mathematicians,

and certainly the most original, of their day, yet neither man secured a
top-ranking professional position. Dedekind spent almost a lifetime
teaching at the secondary-school level, and Cantor spent most of his
career at the University of Halle. Cantor had hoped to achieve the dis-
tinction of a professorship at the University of Berlin, and he blamed
Leopold Kronecker (1823 1891) for his lack of success.
Kronecker had been a student ofKummer’s, first at the secondary-school

level, when the latter was a teacher in the gymnasium that Kronecker
attended, later at the University of Breslau. Kronecker studied with
Steiner and Dirichlet at Berlin, where he obtained his doctoral degree in
1845. The son of wealthy parents, he did not initially pursue an academic
career but looked after the family’s financial interests. He continued to
do mathematical research, however. When he moved to Berlin in 1855,
he led the life of a private scholar. His prodigious output, covering number
theory, the theory of equations, and elliptic function theory, among others,
in 1861 gained him membership in the Academy of Sciences in Berlin.
This made him eligible to teach at the University of Berlin, which
he proceeded to do. He was appointed to a regular professorship in
1883, when Kummer retired. Kronecker’s research contributions were
significant, both for individual results and for his overall attempt to
arithmetize algebra, as well as analysis. His influence on early twentieth-
century algebra was considerable, as was that on number theory; the work
of Erich Hecke (1887 1947) serves as an example. The importance of
Kronecker’s work has been overshadowed in most historical accounts by
rather hostile versions of his conflict with Cantor. In fact, his predilection
for the integers and his espousal of constructive procedures also estranged
him fromWeierstrass. To him is attributed thewell-known statement “God
made the integers, and all the rest is the work of man.” He categorically
rejected the real-number constructions of his day on the grounds that
they cannot be achieved only through finite processes. He is said to have
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asked Lindemann of what use was the proof that π is not algebraic,
inasmuch as irrational numbers are nonexistent. Sometimes it is reported
that his movement died of inanition. We shall later see that it can be
said to have reappeared in a new form in the work of Poincaré and
L. E. J. Brouwer.
In 1883, Cantor wrote a vigorous defense in his Grundlagen einer

allgemeinen Mannigfaltigkeitslehre (Foundations of a General Theory of
Manifolds), holding that “definite numerations can be undertaken with
infinite sets just as well as with finite.” He had no fear of falling into what
he described as an “abyss of transcendentals,” yet he did occasionally
lapse into arguments of the theological type. Kronecker continued his
attacks on the hypersensitive and temperamental Cantor, and in 1884,
Cantor suffered the first of the nervous breakdowns that were to recur
during the remaining thirty-three years of his life. Fits of depression
sometimes led him to doubt his own work, although he was comforted to
some extent by the support of men such as Hermite. Toward the end, he
did earn recognition for his achievements, but his death in 1918 in a
mental institution in Halle is a reminder that genius and madness some-
times are closely related. The tragedy of his personal life is mitigated
by the paean of praise of one of the leading mathematicians of the early
twentieth century, David Hilbert, who described the new transfinite
arithmetic as “the most astonishing product of mathematical thought, one
of most beautiful realizations of human activity in the domain of the
purely intelligible.” Where timid souls had hesitated, Hilbert exclaimed,
“No one shall expel us from the paradise which Cantor has created for us.”

Analysis in France

Before examining some of the fruits of Cantor’s paradise, we should
regard some nineteenth-century analytic work in the country thus far
ignored in this chapter—France. Although analytic activity during the
latter part of the nineteenth century was most conspicuous in Germany
and England, there had been a steady stream of contributions from Paris.
These took a variety of forms, in teaching and research. Primarily
associated with teaching were the great textbooks, usually based on
lecture notes. Sturm’s Cours d’analyse was but one of the longest-lasting
successors to Cauchy’s record of the course taught at the École Poly-
technique; at the turn of the century, it was overtaken by Goursat’s work,
which exerted a special influence in the United States through its English
translation. Briot and Bouquet’s Théorie des fonctions elliptiques was
a comprehensive compendium on the subject of elliptic functions;
H. Laurent produced an elementary textbook on the subject more sui-
table for classroom use. Toward the end of the century, Jules Tannery
and J. Molk produced multivolume Elements of the theory of elliptic
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functions. There were authors who ranged across a wider field, such as
Joseph Alfred Serret (1819 1885), who taught and produced textbooks on
practically every area of mid-nineteenth-century mathematics. Also sig-
nificant was the work of popularizers such as the Abbé Moigno, a self-
appointed explicator of Cauchy in the 1840s and the editor of Cosmos, a
journal that reported on scientific and mathematical activities.
Not surprisingly, Cauchy’s work provided ample takeoff points for

many analysts of the time. For example, Pierre-Alphonse Laurent (1813
1854) and Victor Puiseux (1820 1883) are still remembered for their
contributions to complex function theory. Laurent’s expansion replaces
Taylor series at certain points of discontinuity; Puiseux went beyond
Cauchy in a clear discussion of essential singularities and related matters.
French mathematics continued to influence activity elsewhere—we

have already noted this in connection with Liouville and Camille Jordan.
Another example may be found in the work of Gabriel Lamé (1795
1860), whose name is primarily associated with the introduction of
curvilinear coordinates to the treatment of the partial differential equa-
tions, especially the heat equation, describing physical problems. Eduard
Heine, a much younger member of the Dirichlet circle, who concentrated
on spherical harmonics and the potential equation, first followed and for
a while was in close competition with Lamé in his research. Also
inspired by Lamé’s concept of curvilinear coordinates and overlapping
with Heine was É. Mathieu (1835 1900), who introduced elliptic
cylindrical coordinates and the functions named after him in his study of
the wave equation, in connection with the problem of a vibrating elliptic
membrane.
Perhaps the best-known French analytic work of midcentury was that

of Sturm and Liouville, dealing with the theory of second-order ordinary
differential equations with boundary conditions. In fact, the papers in
question were published in the early issues of Liouville’s Journal in the
1830s. Their tremendous significance emerged only gradually, however,
especially through the use made of them by the British mathematical
physicists of the later period. The problem at issue was that of the
expansibility into characteristic functions (eigenfunctions) of the expres-
sion at hand. It can be regarded as a generalization of the theory
of Fourier series. Sturm had studied not only Fourier’s theory of heat
but also his work on numerical solutions of equations; the influence of
this work seems apparent as soon as one reads Sturm’s first major result
of the theory. This is his separation theorem, which states that the
oscillations of any two (real) solutions alternate, or separate each other.
The Sturm-Liouville theory not only confirmed the expansibility but
also provided criteria for solutions and for the evaluation of the eigen-
functions. The theory was not altogether rigorous at the outset. Toward
the end of the century, refinements in applications and proofs were pro-
vided. Especially active in the field was the American mathematician
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Maxime Bôcher (1867 1918). Bôcher, who trained at Harvard in the
1880s under William Elwood Byerly, Benjamin O. Peirce, and James
Mills Peirce, had earned his doctoral degree at Göttingen under Klein in
1891 with a prize-winning dissertation on the series expansions of
potential theory. After the turn of the century, Bôcher was briefly joined
in the study of Sturm-Liouville issues by his fellow countrymen Max
Mason, G. R. D. Richardson, and G. D. Birkhoff. As a token of appre-
ciation for Sturm and Liouville’s theory and the research opportunities it
had provided for this small band of American analysts, Bôcher chose
Sturm’s methods as his topic when he was invited to give a set of lectures
at the University of Paris in the winter of 1913 1914.
Liouville is also noted for a variety of other contributions. In complex

analysis, his work is recalled in Liouville’s theorem: If f(z), an entire
analytic function of the complex variable z, is bounded over the complex
plane, then f(z) is a constant. From this theorem, the fundamental the-
orem of algebra can be deduced as a simple corollary as follows: If f(z) is
a polynomial of degree greater than zero, and if f(z) were nowhere zero
in the complex plane, then its reciprocal F(z)5 l / f(z) would satisfy the
conditions of the Liouville theorem. Consequently, F(z) would have to
be a constant, which obviously it is not. Therefore, the equation f(z)5 0
is satisfied by at least one complex value z5 z0. In plane analytic geo-
metry, there is another “Liouville theorem”: The lengths of the tangents
from a point P to a conic C are proportional to the cube roots of the radii
of curvature of C at the corresponding points of contact. Finally, let us
consider Liouville’s best-known contribution to the theory of real
numbers.
The theory of numbers deals primarily with the integers or, more

generally, with ratios of integers—the so-called rational numbers.
Such numbers are always roots of a linear equation ax 1 b5 0 with
integral coefficients. Real analysis deals with a more general type of
number that may be either rational or irrational. It had been known, in
essence, to Euclid that the roots of ax21 bx1 c5 0, where a, b, and c
are integral multiples of a given length, can be constructed geome-
trically with a straightedge and compasses. If the coefficients of
axn 1 bxn 1 1 cxn 2 1 � � �1 px1 q5 0, where n and a, b, c, . . . , q are
integers and n. 2, the roots of the equation generally are not con-
structible with Euclidean tools. The roots of such an equation, for
n. 0, are known as algebraic numbers, to indicate the manner in
which they are defined. Inasmuch as every rational number is a root
of such an equation for n5 1, the question naturally arises whether
every irrational number is a root of such an equation for some n$ 2.
The negative of this question was finally established in 1844 by
Liouville, who in that year constructed an extensive class of non-
algebraic real numbers. The numbers of the particular class that he
developed are known as Liouville numbers, the more comprehensive
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set of nonalgebraic real numbers being called transcendental numbers.
Liouville’s construction of transcendental numbers is quite involved,
but if one does not insist on a proof of transcendentalism, some simple
examples of transcendental numbers can be given—such as
0.1001000100001 . . . , or numbers of the form

XN
n 1

1

10n!
:

To prove that any particular real number, such as e or π, is not
algebraic is usually quite difficult. Liouville, for example, was able to
show, in his Journal for 1844, that neither e nor e2 could be the root of a
quadratic equation with integral coefficients; hence, given a unit line
segment, lines of length e or e2 are not constructible by Euclidean
tools. But it was almost thirty years before another French mathemati-
cian, Charles Hermite (1822 1901), pursuing the views of Liouville,
was able to show in 1873 in an article in the Comptes Rendus of the
Académie that e could not be the root of any polynomial equation with
integral coefficients—that is, that e is transcendental.
The status of the number π baffled mathematicians for nine years

longer than did the number e. Lambert in 1770 and Legendre in 1794
had shown that both π and π2 are irrational, but this proof had not put
an end to the age-old question of the squaring of the circle. The matter
was finally put to rest in 1882 in a paper in the Mathematische Annalen
by C. L. F. Lindemann (1852 1939) of Munich. The article, titled “Über
die Zahl π,” showed conclusively, in extending the work of Liouville
and Hermite, that π is also a transcendental number. In his proof,
Lindemann first demonstrated that the equation eix 1 15 0 cannot be
satisfied if x is algebraic. Inasmuch as Euler had shown that the value
x5π does satisfy the equation, it must follow that π is not algebraic.
Here, finally, was the answer to the classical problem of the quadrature
of the circle. In order for the quadrature of the circle to be possible
with Euclidean tools, the number π would have to be the root of an
algebraic equation with a root expressible in square roots. Because π is
not algebraic, the circle cannot be squared according to the classical
rules. Emboldened by his success, Ferdinand Lindemann later published
several purported proofs of Fermat’s Last Theorem, but they were shown
by others to be invalid.
Hermite was one of France’s most influential nineteenth-century ana-

lysts. Despite, or perhaps because of, the fact that he had fared badly as a
student when faced with educational pedantry and examinations, Hermite
at one time or another was affiliated with the major mathematically
oriented institutions of Paris. Hermite served as examiner at the École
Polytechnique, substituted at the Collège de France, taught at the École
Normale, and, from 1869 to 1897, held the chair as professor of higher
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analysis at the Sorbonne. In school, he had the same teacher who had
encouraged the young Galois; his first reading in the mathematical classics
consisted of Lagrange’s work on the solution of numerical equations and
the French translation of Gauss’sDisquisitiones Arithmeticae. He had first
come to notice in 1842, while still a preparatory school student, by sub-
mitting two papers to the Nouvelles Annales de Mathématiques, a journal
aimed at mathematics teachers and their more advanced students. One of
these paperswas a very elegant expositionof the insolvability of the quintic.
In 1858, he, as well as Kronecker, solved the quintic equation using elliptic
modular functions. During the intervening years, Hermite had come under
the protection of Liouville, who introduced Hermite to his friends in
Prussia, especially Jacobi. The ensuing correspondence shows Hermite’s
early feats in the theory of elliptic and Abelian functions and analytic
number theory. In 1864, Hermite contributed a new class of special func-
tions in connection with the problem of functional expansions over
unbounded intervals. Ironically, the name of this great analyst nowadays
appears more frequently in algebra than in analysis: Given a matrix H, let
each of its elements be replaced by its complex conjugate and call the
resulting matrix H*. If H5H*, the matrix is called Hermitian. In 1858,
Hermite showed that the eigenvalues of such a matrix are real. Previously,
he had coined the term “orthogonal” for a matrix M if 2M equals the
inverse ofM*.
The steady contributions of nineteenth-century French analysts attest

to the continuing fertility of French analytic soil, but the most telling
sign was the spectacular display of new concepts that Poincaré and his
younger contemporaries presented to the new century.
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23

Twentieth-Century
Legacies

[M]athematics . . . is a ball of wool, a tangled hank where all [strands] . . .

react upon another in an almost unpredictable way.

Dieudonné

Overview

By the end of the nineteenth century, it was clear that not only the content
of mathematics but also its institutional and interpersonal framework
had changed radically since the early 1800s. In addition to the growth of
mathematical journals and academic departments during the century and
the traditional individual communication among mathematicians of dif-
ferent countries, the exchange of mathematical ideas was furthered greatly
by the establishment of national mathematical societies and international
meetings of mathematicians. The London Mathematical Society, founded
in 1865, and the Société Mathématique de France, established in 1872, led
the way. They were followed in the 1880s by the Edinburgh Mathematical
Society in Scotland, the Circolo Matematico Palermo in Italy, and the New
York Mathematical Society, soon renamed the American Mathematical
Society. The Deutsche Mathematiker-Vereinigung followed in 1890. Each
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of these groups held regular meetings and issued periodical publications.
An International Congress of Mathematicians was first held in Chicago in
1893, in conjunction with the Columbian Exposition. This was followed
in 1897 by the first of a series of “official” congresses of mathematicians,
held every four years except for disruption by the two world wars and
the cold war. The first of these took place in Zurich. During most of the
twentieth century, congresses were held in Europe, the exceptions being
1924 (Toronto), 1974 (Vancouver), 1986 (Berkeley), and 1990 (Kyoto).
Despite major economic and political differences, for the most part,
twentieth-centurymathematicians hadmore rapid awareness of the work of
their colleagues on other continents than their precursors had of results
obtained by someone in a neighboring province.
Other twentieth-century trends that were becoming noticeable toward

the end of the nineteenth century include the emphasis on common
underlying structures that point up correspondences among areas of
mathematics that had been considered unrelated until then. At the same
time, mathematics was no less immune to the fashions and dominance of
certain mathematical schools than were previous periods in history. This
is attributed to the state of research in a given area as well as to the
influence of individual contributors; there are also external factors, such
as developments in allied fields like physics, statistics, and computer
science, or economic and social pressures, which usually serve to sup-
port applications.

Henri Poincaré

When Gauss died in 1855, it was generally thought that there would
never again be a universalist in mathematics—one who is at home in all
branches, pure and applied. If anyone has since proved this view wrong,
it was Poincaré, for he took all mathematics as his province. In several
respects, however, Poincaré differed fundamentally from Gauss. Gauss
had been a calculating prodigy who during his life did not flinch from
involved computations, whereas Poincaré was not especially early in
showing mathematical promise and readily admitted that he had diffi-
culty with simple arithmetic calculations. Poincaré’s case shows that to
be a great mathematician, one need not excel in number facility; there
are other, more advantageous aspects of innate mathematical ability.
Also, whereas Gauss wrote relatively little, polishing his works, Poincaré
wrote hastily and extensively, publishing more memoirs per year than
any other mathematician. Moreover, Poincaré, especially in later life,
wrote popular books with a philosophical flair, something that had not
tempted Gauss. On the other hand, similarities between Poincaré and
Gauss are numerous and fundamental. Both so teemed with ideas that it
was difficult for them to jot the thoughts down on paper, both had a
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strong preference for general theorems over specific cases, and both
contributed to a wide variety of branches of science.
Henri Poincaré (1854 1912) was born in Nancy, a city that was to

harbor a number of leading mathematicians in the twentieth century. The
family achieved eminence in various ways; Henri’s cousin Raymond
served as president of France during World War I. Henri was clumsily
ambidextrous, and his ineptitude in physical exercise was legendary. He
had poor eyesight and was very absentminded, but, like Euler and Gauss,
he had a remarkable capacity for mental exercises in all aspects of
mathematical thought. On graduating from the École Polytechnique in
1875, he took a degree in mining engineering in 1879 and became
attached to the Department of Mines for the rest of his life. Also in 1879,
he earned his doctorate under Hermite at the University of Paris; he
would hold several professorships in mathematics and science there until
his death, besides serving as a professor at the École Polytechnique.

Automorphic Functions and Differential Equations

Poincaré’s doctoral thesis had been on differential equations (not on
methods of solution, but on existence theorems), which led to one of his
most celebrated contributions to mathematics—the properties of auto-
morphic functions. In fact, he was the virtual founder of the theory of these
functions. An automorphic function f(z) of the complex variable z is one
that is analytic, except for poles, in a domainD and that is invariant under a
denumerably infinite group of linear fractional transformations

zu5
az1 b

cz1 d
:

Such functions are generalizations of trigonometric functions (as we see
if a5 15 d, c5 0, and b is of the form 2kπ) and of elliptic functions.
Hermite had studied such transformations for the restricted case in which
the coefficients a, b, c, and d are integers for which ad2 bc5 1 and had
discovered a class of elliptic modular functions invariant under these.
But Poincaré’s generalizations disclosed a broader category of functions,
known as zeta-Fuchsian functions, which, Poincaré showed, could be
used to solve the second-order linear differential equation with algebraic
coefficients.
This was only the beginning of many important contributions by

Poincaré to the theory of differential equations. The subject runs like a
red thread through most of his work. In a synopsis of his own work, he
commented that analysts had faced three major problems since the
establishment of the calculus: the solution of algebraic equations, the
integration of algebraic differentials, and the integration of differential
equations. He observed that in all three cases, history had shown that
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success lay not in the traditional attempts at reduction to a simpler
problem but in a head-on attack on the nature of the solution. This had
been the key to the algebraic problem provided by Galois. In the second
case, the attack on algebraic differentials, successes had been achieved
for several decades by those who no longer attempted a reduction to
elementary functions but used the new transcendental functions. Poincaré
had been certain that a similar approach would aid with previously
intractable problems in the solution of differential equations.
As noted previously, the outlook was already present in his doctoral

thesis. It had been titled “On the Properties of Functions Defined by Partial
Differential Equations.” He tackled the main problem in a series of papers
published in the early 1880s, in which he set out to provide a qualitative
description of solutions. He first attacked the general equation dx/f(x, y)5
dy/g(x, y), where f and g are real polynomials. To handle the problem of
infinite branches, he projected the xy-plane onto a sphere. He now
examined his equation, paying special attention to the points at which both
polynomials vanish. Using the classification by Briot and Bouquet, based
on Cauchy, of such singularities into nodes, saddle points, foci, and cen-
ters, he was able to establish general properties of the solutions that
depended purely on the presence or the absence of a specific type of sin-
gularity. For example, he established that the traditional solution of the
type T(x, y)5C (with T analytic andC constant) occurs only if there are no
nodes or foci. In the third of the four papers containing this theory,
Poincaré extended his analysis to higher-degree equations of the form
F(x, y, yu)5 0, F being a polynomial. He approached such equations by
considering the surface defined by F(x, y, yu)5 0. Letting the genus of
the surface be p, the number of foci be F, of nodes N, and of saddle points
S, Poincaré showed that N1 F2 S5 22 2P. After exploring the ramifi-
cations of this and of other results, Poincaré proceeded to the study of
equations of higher order. Though not able to establish as comprehensive a
set of results as he had for dimension two, he generalized the new tech-
nique using hypersurfaces and firmed up relationships between the sin-
gularities and the Betti number of the hypersurface.
Among many other results in the study of differential equations, we

cite only a few. One of his earliest pertains to linear equations and the
neighborhood of an irregular singularity; here he provided a path-
breaking example of expanding solutions into asymptotic series. In 1884,
he turned to the study of first-order differential equations with fixed
singularities in the complex domain. Émile Picard (1856 1941) used
this work in his study of second-order equations. Poincaré’s work here
is also at the basis of Paul Painlevé’s (1863 1933) profound inves-
tigations of nonlinear second-order equations with or without (movable)
singularities. Poincaré’s subsequent work in ordinary and partial dif-
ferential equations related mostly to physical applications, especially in
celestial mechanics and the n-body problem.
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Mathematical Physics And Other Applications

Poincaré did not stay in any field long enough to round out his work. A
contemporary said of him, “He was a conqueror, not a colonist.” In his
teaching at the Sorbonne, he would lecture on a different topic each school
year—capillarity, elasticity, thermodynamics, optics, electricity, tele-
graphy, cosmogony, and others; the presentation was such that in many
cases, the lectures appeared in print shortly after they had been delivered.
In astronomy alone, he published half a dozen volumes—Les méthodes
nouvelles de la mécanique celeste (3 vols., 1892 1899) and Leçons de
mécanique céleste (3 vols., 1905 1910)—being in this respect a worthy
successor of Laplace. Especially important were the methods he used to
attack the three-body problem and its generalizations. Also significant for
cosmogony was a memoir of 1885, in which he showed that a pear shape
can be a figure of relative equilibrium assumed by a homogeneous fluid
subject to Newtonian gravitation and rotating uniformly about an axis; the
question of a pear-shaped earth has continued to interest geodesists to our
day. Sir George H. Darwin (1845 1912), the son of Charles Darwin
(1809 1882), wrote in 1909 that Poincaré’s celestial mechanics would be
a vast mine for researchers for half a century; a century later, the mine has
not been exhausted.
It is interesting that Poincaré, like Laplace, also wrote extensively on

probability. In some respects, his work is only a natural continuation of that
of Laplace and the analysts of the nineteenth century, but Poincaré was
Janus-faced and to some extent anticipated the great interest in topology
that was to be so characteristic of the twentieth century. Topology was not
the invention of any one man. Some topological problems are found in the
work of Euler, Möbius, and Cantor, and even the word “topology” had
been used in 1847 by J. B. Listing (1808 1882) in the title of a book,
Vorstudien zur Topologie (Introductory Studies in Topology). But as a date
for the beginning of the subject, none is more appropriate than 1895, the
year in which Poincaré published its first systematic development in his
Analysis situs.

Topology

Topology is now a broad and fundamental branch of mathematics, with
many aspects, but it can be subdivided into two fairly distinct sub-
branches: combinatorial topology and point-set topology. Poincaré had
little enthusiasm for the latter, and when, in 1908, he addressed the
International Mathematical Congress at Rome, he referred to Cantor’s
Mengenlehre as a disease from which later generations would regard
themselves as having recovered. Combinatorial topology, or analysis
situs, as it was then generally called, is the study of intrinsic qualitative
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aspects of spatial configurations that remain invariant under con-
tinuous one-to-one transformations. It is often referred to popularly as
“rubber-sheet geometry,” for deformations of, say, a balloon, without
puncturing or tearing it, are instances of topological transformations. A
circle, for example, is topologically equivalent to an ellipse; the
dimensionality of a space is a topological invariant, as is also the
Descartes-Euler number N02N11N2 for simple polyhedra. Among
Poincaré’s original contributions to topology was a generalization of
the Descartes-Euler polyhedral formula for spaces of higher dimen-
sionality, making use of what he called “Betti numbers,” in honor of
Enrico Betti (1823 1892), who had taught at the University of Pisa and
had noted some of the properties of these topological invariants. Most of
topology, nevertheless, deals with qualitative, rather than quantitative,
aspects of mathematics, and, in this respect, it typifies a sharp break from
the styles prevailing in nineteenth-century analysis. Poincaré’s attention
seems to have been directed toward analysis situs by attempts at quali-
tative integrations of differential equations. Poincaré, like Riemann, was
especially adept at handling problems of a topological nature, such as
finding out the properties of a function without worrying about its formal
representation in the classical sense; both men were intuitionists with
sound judgment.
Poincaré stated that practically every problem he touched led him to

analysis situs. We have seen an example in his attack on differential
equations. In the decade that overlapped the end of the nineteenth century
and the beginning of the twentieth, he published a series of papers on the
subject. These became the basis of twentieth-century combinatorial, or
algebraic, topology. Here he elaborated on the concepts derived from
Riemann and Betti that we encountered in his work on differential equa-
tions: treating a figure as an n-dimensional manifold and considering the
order of connectedness. He set forth the fundamental definitions and the-
orems of simplicial homology theory; he established the relationship
between the fundamental group of a manifold and the first Betti number; he
also pointed to further relationships involving the Betti numbers. These
papers contained theorems and conjectures that led to many of the sub-
sequent explorations of twentieth-century topologists. We shall outline the
story of one of these in our last chapter.

Other Fields and Legacy

Of Poincaré’s many other contributions to mathematics, we only men-
tion additional work in function theory, including Abelian functions;
substantive work on Lie groups and related problems in algebra; and
influential nontechnical writings—some polemical—on mathematics
and the philosophy of mathematics.
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As an instance of Poincaré’s many-sidedness, it is to him that we owe
a suggestive model of Lobachevskian geometry within a Euclidean
framework. Suppose that a world is bounded by a large sphere of radius
R and the absolute temperature at a point within the sphere is R22 r2,
where r is the distance from the center of the sphere; also suppose that
the index of refraction of the pellucid medium is inversely proportional
to R22 r2. Moreover, assume that the dimensions of objects change from
point to point, being proportional to the temperature at any given place.
To inhabitants of such a world, the universe would appear to be infinite,
and rays of light, or “straight lines,” would not be rectilinear but would
be circles orthogonal to the limiting sphere and would appear to be
infinite. “Planes” would be spheres orthogonal to the limiting sphere, and
two such non-Euclidean “planes” would intersect in a non-Euclidean
“line.” The axioms of Euclid would hold, with the exception of the
parallel postulate.
In addition to his universality, the powerful new tools he developed,

and the results he obtained, Poincaré’s importance for the twentieth
century lies in the “unfinished” but very open nature of many of his
memoirs. An example is a famous paper he wrote on number theory.
Published in 1901, this dealt with the study of diophantine equations. In
the direction established twenty years earlier by Dedekind and Weber,
this subject was now approached through the birational theory of alge-
braic curves. In other words, given a curve f(x, y)5 0 with rational
coefficients, one wishes to find points with rational coordinates lying
on the curve. Poincaré again examined the genus of the curve, especially
for the case p5 1. Utilizing a technique made popular by Clebsch, he
used elliptic functions for a parametric representation of the curve and
noted that the rational points on the Jacobian form a subgroup; its rank is
what he called the rank of the curve. This paper has led to several
important studies. A 1917 paper by Alexander Hurwitz (1859 1919)
was followed by one from Louis Joel Mordell (1888 1972) in 1922
in which he proved that the rank of the subgroup is finite. In 1928, André
Weil (1906 1998) extended this result to arbitrary p. Echoing Fermat,
Mordell and Weil used a “method of infinite descent” based on the
bisection of the elliptic functions, which Poincaré may have suggested in
related trisections. The subsequent history of the Mordell conjecture and
other expansions of these ideas belong to contemporary mathematics; we
note the 1901 paper simply as an example of the tremendously sug-
gestive nature of Poincaré’s publications.
On the day Poincaré died, Paul Painlevé issued a brief tribute. He ended

it by stressing Poincaré’s intellectual sincerity. In particular, he linked to
this quality Poincaré’swillingness to issue partial results when he felt there
was no time or little chance that he could bring a problem to a complete
solution. As an example, Painlevé quoted fromPoincaré’s last publication,
in which Poincaré had justified his presenting partial results. After noting
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that there seemed little chance he might take up the problem again in the
future, Poincaré had written:

The importance of the subject is too great and the collection of results

obtained too considerable already for me to resign myself to leave them

definitely barren. I can hope that geometers who will interest themselves

in this problem, and who will be undoubtedly more fortunate than I, can turn

this to good use and have it serve them to find the direction they must take.

David Hilbert

David Hilbert (1862 1943), like Immanuel Kant (1724 1804), had
been born in Königsberg in East Prussia, but, unlike Kant, he traveled
widely, especially to attend the international congresses of mathemati-
cians that had become so characteristic of this century. Except for a
semester spent at the University of Heidelberg, where he studied under
the analyst Lazarus Fuchs (1833 1902), Hilbert obtained his mathe-
matical training at the University of Königsberg. The main professor for
mathematics there was Heinrich Weber (1842 1913), who had been
encouraged to turn to the study of abstract concepts in algebra and
number theory by Dedekind. Weber presented some of the first abstract
definitions for groups and fields in the 1880s and 1890s and was the
author of a well-known and influential three-volume textbook of algebra
and the coauthor, with Dedekind, of the important paper on algebraic
functions mentioned in chapter 23. In 1883, Weber left Königsberg. His
successor, F. Lindemann, had just published his proof of the transcen-
dence of π. Lindemann suggested to Hilbert his doctoral thesis topic
in invariant theory and encouraged Hilbert’s early work in this field.
Hilbert’s interest in invariants was further stimulated by two men closer
to his own age, of whom he saw a great deal in the 1880s. They were
Adolf Hurwitz, who had studied with Felix Klein and joined Lindemann
on the Königsberg faculty in 1884, and Hermann Minkowski (1864
1909), who, although still a student, in April 1893 won the “Grand Prix
des Sciences Mathématiques” awarded by the Paris Academy of Sci-
ences for his essay on the decomposition of integers into the sum of five
squares. Hurwitz’s early work dealt with number-theoretic and geo-
metric questions. Most of the research he did in Königsberg applied
Riemannian function-theoretic methods to problems in algebra, specifi-
cally to algebraic functions. In 1892, he left Königsberg for Zurich,
where he spent the rest of his life, making important contributions to the
theory of algebraic numbers and number fields. Minkowski obtained his
doctorate in July 1885, a few months after Hilbert. His thesis dealt with
investigations of quadratic forms using methods introduced by Dirichlet.
Hilbert was the “opponent” in debating the thesis with Minkowski at the

Dav i d H i lb e r t 555



latter’s public promotion. As will be seen, Minkowski and Hilbert re-
mained close friends.

Invariant Theory

Hilbert worked predominantly in invariant theory until 1892; his most
important contributions to that subject were published in 1890 and 1893.
To understand their place in the history of invariant theory, it is useful to
follow Hilbert’s own account of that theory, which he prepared for the
International Mathematical Congress in Chicago in 1893.
For three decades after Boole, Cayley, and Sylvester’s early work on

invariant theory, much time was spent on computing specific invariants.
Aside from the English mathematicians previously mentioned, leading
contributors to this activity were Clebsch and Siegfried Heinrich Aronhold
(1819 1884), who discovered invariants for ternary cubic forms and
established a “symbolic” method for computing. To systematize this work,
it was proposed to find a complete system, or basis, of invariants; that is,
given a form of x of degree n, to find the smallest number of rational
integral invariants and covariants so that any other rational integral
invariant or covariant could be expressed as a rational integral form with
numerical coefficients of the complete set. Paul Gordan (1837 1912), a
professor of mathematics at the University of Erlangen, proved the exis-
tence of a finite complete set for binary forms. He showed that every
binary form has a finite complete system of invariants and covariants and
that any finite system of binary forms has such a system. Gordan’s proof
was cumbersome but showed how the complete system could be com-
puted; in 1886, Franz Mertens (1840 1927) provided a more streamlined
inductive proof, which did not exhibit the system. Hilbert’s famous result
of 1888, known as his “basis theorem,” was far more general. It was
published as theorem I of a paper “On the Theory of Algebraic Forms” in
the Mathematische Annalen in 1890. As was customary, Hilbert defined
an algebraic form as an integral rational homogeneous function in certain
variables whose coefficients are numbers in a certain “domain of ration-
ality.” The theorem states that for any infinite sequence S5F1, F2, F3, . . .
of forms in n variables x1, x2, . . . , xn, there exists a number m such that any
form of that sequence can be expressed as

F5A1F1 1A2F2 1?1AmFm;

where the Ai are forms in the same n variables. Hilbert applied this
result to the proof for the existence of a finite full system of invariants
for systems of forms in arbitrarily many variables. In a subsequent
influential paper, published in 1893, “On a Full System of Invariants,”
Hilbert developed his new methods for attacking problems in invariant
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theory. He stressed that his approach was fundamentally different from
that of his predecessors because he treated the theory of algebraic
invariants as part of the general theory of algebraic function fields.

“Zahlbericht”

The three-year period 1892 1895 brought major changes in Hilbert’s
life. He had begun his academic career as a privatdozent in Königsberg
in 1886, having spent the year after his doctorate on a study trip, part of
the time in Leipzig to visit Felix Klein and part in Paris to meet Charles
Hermite. In 1892, he became Hurwitz’s successor as an associate
(“extraordinary”) professor in Königsberg; he married the same year.
Already the next year, on Lindemann’s departure for Munich, Hilbert
was made a full (“ordinary”) professor. Yet, he stayed in Königsberg
only until 1895, for in that year Heinrich Weber, who had left Königs-
berg for Göttingen twelve years earlier, now followed a call to Strass-
burg. Felix Klein arranged to have Hilbert succeed Weber at Göttingen,
and since then, his name has been linked with that center of mathema-
tical activity, where he resided for nearly half a century.
At the 1893 meeting of the German Mathematical Society, Hilbert and

Minkowski were asked to write a report on number theory for the
Jahresbericht of that organization. The resulting work by Hilbert on
“The Theory of Algebraic Number Fields” became a classic; it is com-
monly referred to as the “Zahlbericht.” Minkowski, who was working on
hisGeometry of Numbers at that time, withdrew from the project, although
he provided Hilbert with crucial comments on his manuscript, as he did
with most of Hilbert’s manuscripts up to his untimely death in 1909.
In the introduction to his “Zahlbericht,” Hilbert expressed a point of

view that was to become typical of his work and his influence. It is
characterized by emphasis on the abstraction, arithmetization, and
logical development of mathematical concepts and theories. Noting that
while number theory has the fewest prerequisites necessary for an
understanding of its truths, it had been blamed for requiring a high
degree of abstraction to fully master arithmetic concepts and proof
techniques, Hilbert expressed the opinion that all other branches of
mathematics require at least an equally high degree of abstraction,
provided one subjects the foundation of these branches to the same
rigorous and complete study that is necessary. Next, he stressed the
interrelationship between number theory and algebra, as well as between
number theory and function theory, that had become apparent during the
nineteenth century. He saw the development in mathematics taking place
in his lifetime as being guided by number. According to Hilbert,
Dedekind and Weierstrass’s definition of arithmetic fundamental con-
cepts and Cantor’s work led to an “arithmetization of function theory,”
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while modern investigations on non-Euclidean geometry, with their
concern for a rigorous logical development and a clear introduction of
the number concept, led to an “arithmetization of geometry.” In the body
of the report, Hilbert attempted to present a logical theory of algebraic
number fields. He joined in his comprehensive treatment the work of his
immediate predecessors and contemporaries and also included his own
results. Hilbert contributed a few more papers to this subject in the
1890s; these are his most mature efforts in the direction of obtaining a
generalized law of quadratic reciprocity over a variety of number fields.
With one notable exception, Hilbert produced no more new results in
number theory after the turn of the century, but until World War I, he
continued to supervise doctoral dissertations on number theory, includ-
ing those of R. Fueter (1880 1950) and E. Hecke (1887 1947).

The Foundations of Geometry

Hilbert, whose work tended to concentrate on one subject at a time,
turned to geometry after completion of the “Zahlbericht.” In 1894, he
had lectured on non-Euclidean geometry, and in 1898 1899, he pre-
sented a small but celebrated volume titled Grundlagen der Geometrie
(Foundations of Geometry). This work, translated into numerous lan-
guages, exerted a strong influence on the mathematics of the twentieth
century. Through the arithmetization of analysis and the axioms of
Peano, most of mathematics, except for geometry, had achieved a strict
axiomatic foundation. Geometry in the nineteenth century had flourished
as never before, but it was chiefly in Hilbert’s Grundlagen that an effort
was first made to give it the purely formal character found in algebra and
analysis. Euclid’s Elements did have a deductive structure, but it was
replete with concealed assumptions, meaningless definitions, and logical
inadequacies. Hilbert understood that not all terms in mathematics can
be defined and therefore began his treatment of geometry with three
undefined objects—point, line, and plane—and six undefined relations:
being on, being in, being between, being congruent, being parallel, and
being continuous. In place of Euclid’s five axioms (or common notions)
and five postulates, Hilbert formulated for his geometry a set of twenty-
one assumptions, since known as Hilbert’s axioms. Eight of these con-
cern incidence and include Euclid’s first postulate, four are on order
properties, five are on congruency, three are on continuity (assumptions
not explicitly mentioned by Euclid), and one is a parallel postulate that is
essentially equivalent to Euclid’s fifth postulate. Following the pioneer
work by Hilbert, alternative sets of axioms have been proposed by
others, and the purely formal and deductive character of geometry, as
well as of other branches of mathematics, has been thoroughly estab-
lished since the beginning of the twentieth century.
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Hilbert, through his Grundlagen, became the leading exponent of an
“axiomatic school” of thought that has been influential in fashioning
contemporary attitudes in mathematics and mathematical education. The
Grundlagen openedwith amotto taken fromKant: “All human knowledge
begins with intuitions, proceeds to concepts, and terminates in ideas,”
but Hilbert’s development of geometry established a decidedly anti-
Kantian view of the subject. It emphasized that the undefined terms in
geometry should not be assumed to have any properties beyond those
indicated in the axioms. The intuitive-empirical level of the older geo-
metric views must be disregarded, and points, lines, and planes are to be
understood merely as elements of certain given sets. Set theory, having
taken over algebra and analysis, now was invading geometry. Similarly,
the undefined relations are to be treated as abstractions indicating
nothing more than a correspondence or a mapping.
Like the major papers on algebra and number theory discussed pre-

viously, Hilbert’s research on the elements of geometry was partly insti-
gated by one of the mathematical meetings of the 1890s that he attended. In
1891, he had heard and been captivated by a talk that H. Wiener gave at a
scientific meeting in Halle on the possibility of axiomatizing the rules
governing the unions and the intersections of points and lines without
regard to the existing (Euclidean) axioms of geometry. Following this talk,
Hilbert is reputed to have stated the need for the abstraction of familiar
geometric concepts in the form: “One must at all times be able to replace
‘points, lines, planes’ by ‘tables, chairs, beer mugs.’ ”

The “Hilbert Problems”

Perhaps no contribution to an international congress has been as cele-
brated as the one that Hilbert made in his address to the second congress,
held in Paris in 1900. Hilbert’s talk was titled “Mathematical Problems.”
It consisted of an introduction that has become a classic of mathematical
rhetoric, followed by a list of twenty-three problems designed to serve as
examples of the kind of problem whose treatment should lead to a fur-
thering of the discipline. In fact, on the advice of Hurwitz and Min-
kowski, Hilbert cut the spoken version of the talk so that it contained
only ten of the twenty-three problems. Yet the complete version of the
talk, as well as excerpts, were soon translated and published in several
countries. For example, the 1902 volume of the Bulletin of the American
Mathematical Society carried an authorized translation by Mary Winston
Newson (1869 1959), a specialist in partial differential equations,
who had been the first American woman to obtain a Ph.D. degree in
mathematics at Göttingen. Although Hilbert objected to the view that the
concepts of arithmetic alone are susceptible of a fully rigorous treatment,
he admitted that the development of the arithmetic continuum by
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Cauchy, Bolzano, and Cantor was one of the two most notable achi-
evements of the nineteenth century—the other being the non-Euclidean
geometry of Gauss, Bolyai, and Lobachevsky—and thus the first of the
twenty-three problems concerned the structure of the real number con-
tinuum. The question is made up of two related parts: (1) is there a
transfinite number between that of a denumerable set and the number of
the continuum; and (2) can the numerical continuum be considered a
well-ordered set? The second part asks whether the totality of all real
numbers can be arranged in another manner so that every partial
assemblage will have a first element. This is closely related to the axiom
of choice named for the German mathematician Ernst Zermelo
(1871 1956), who formulated it in 1904. Zermelo’s axiom asserts that
given any set of mutually exclusive nonempty sets, there exists at least
one set that contains one and only one element in common with each of
the nonempty sets. As an illustration of a problem involving Zermelo’s
axiom, consider the set of all real numbers n such that 0 # n # 1; let us
call two of these real numbers equivalent if their difference is rational.
There obviously are infinitely many classes of equivalent real numbers.
If we form a set S made up of one number from each of these classes, is
S denumerable or nondenumerable? The axiom of choice, indispensable
in analysis, was in 1940 proved by Kurt Gödel (1906 1978) to be
consistent with other axioms of set theory, but in 1963, it was demon-
strated by Paul Cohen (1934 2007) that the axiom of choice is inde-
pendent of the other axioms in a certain system of set theory, thus
showing that the axiom cannot be proved within this system. This seems
to preclude a clear-cut solution to Hilbert’s first problem.
Hilbert’s second problem, also suggested by the nineteenth-century age

of rigor, involved the question whether it can be proved that the axioms of
arithmetic are consistent—that a finite number of logical steps based on
them can never lead to contradictory results. A decade later, there app-
eared the first volume of Principia mathematica (3 vols., 1910 1913), by
Bertrand Russell and Alfred North Whitehead (1861 1947), the most
elaborate attempt up to that time to develop the fundamental notions
of arithmetic from a precise set of axioms. This work, in the tradition of
Leibniz, Boole, and Frege and based on Peano’s axioms, carried out in
minute detail a program intended to prove that all of pure mathematics can
be derived from a small number of fundamental logical principles. This
would justify the view of Russell, expressed earlier, that mathematics is
indistinguishable from logic. But the system of Russell and Whitehead,
not entirely formalized, seems to have met with more approval among
logicians than among mathematicians. Moreover, the Principia left
unanswered the second query of Hilbert. Efforts to solve this problem led
in 1931 to a surprising conclusion on the part of the young Austrian
mathematician Kurt Gödel. Gödel showed that within a rigidly logical
system such as Russell and Whitehead had developed for arithmetic,
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propositions can be formulated that are undecidable or undemonstrable
within the axioms of the system. That is, within the system there exist
certain clear-cut statements that can be neither proved nor disproved.
Hence, one cannot, using the usual methods, be certain that the axioms of
arithmetic will not lead to contradictions. In a sense, Gödel’s theorem,
sometimes regarded as the most decisive result in mathematical logic,
seems to dispose negatively of Hilbert’s second query. In its implica-
tions, the discovery by Gödel of undecidable propositions is as disturb-
ing as was the disclosure by Hippasus of incommensurable magnitudes,
for it appears to foredoom hope of mathematical certitude through use
of the obvious methods. Perhaps also doomed, as a result, is the ideal of
science—to devise a set of axioms from which all phenomena of the
natural world can be deduced. Nevertheless, mathematicians and scientists
alike have taken the blow in stride and have continued to pile theorem on
theorem at a rate greater than ever before. Most assuredly, no scholar of
today would echo the assertion of Babbage in 1813 that “The golden age
of mathematical literature is undoubtedly past.”
The problems raised by Gödel’s theorem have been approached from

outside arithmetic itself through a new aspect of mathematical logic that
arose toward the middle of the twentieth century and is known as meta-
mathematics. This is not concerned with the symbolism and the opera-
tions of arithmetic but with the interpretation of these signs and rules. If
arithmetic cannot lift itself from the quagmire of possible inconsistency,
perhaps metamathematics, standing outside the arithmetic bog, can save
the day by other means—such as transfinite induction. Some math-
ematicians would at least hope for a means of determining, for every
mathematical proposition, whether it is true, false, or undecidable. In
any case, even the discouragingly negative answer to Hilbert’s second
query has thus spurred, rather than daunted, mathematical creativity.
The next three problems, problems three, four, and five, were among

those omitted at the actual reading of the paper. Problem three was
geometric; it asks to give two tetrahedra of equal basis and equal height
that cannot be decomposed into congruent tetrahedra, either directly or
by adjoining congruent tetrahedra. As Hilbert noted, this problem goes
back to a question raised by Gauss in his correspondence. A negative
answer was provided by a student of Hilbert’s, Max Dehn (1878 1952),
in 1902, and clarified by W. F. Kagan in 1903.
Problem four was formulated somewhat broadly; it asked for geo-

metries whose axioms are “closest” to those of Euclidean geometry if the
axioms of order and incidence are retained, but the congruence axioms
are weakened and the equivalent of the parallel axiom is omitted. The
earliest answer was provided in a doctoral dissertation by G. Hamel,
another Hilbert student.
The fifth problem was to prove more influential and difficult. It

asked whether one could avoid the assumption of differentiability for the
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functions defining a continuous transformation group. This problem came
to be closely tied to the early history of topological groups. Lie’s con-
tinuous transformation groups were locally Euclidean with differentiable
operations. As the concept of a topological group was made the subject of
special studies, first by L. E. J. Brouwer (1882 1966), then by Lev
Semenovich Pontryagin (1908 1988), the Hilbert problem was refor-
mulated to apply to the larger realm of topological groups: Is a locally
Euclidean topological group a Lie group? The problem and related issues
occupied numerous topologists until the 1950s. In the 1930s, John von
Neumann solved it for bicompact groups; Pontryagin, for commutative
locally bicompact groups. C. Chevalley (1909 1984) obtained the answer
for solvable groups; in 1946, Anatoly Ivanovich Malcev (1909 1967)
solved it for a still wider set of locally bicompact groups. By now, the
problem had become truly international. In 1952, three Americans,
Andrew Gleason (1921 2008), Deane Montgomery (1909 1992), and
Leo Zippin (1905 1995), finally obtained the answer for all locally
bicompact groups.
The sixth problem asked for an axiomatization of physics, a subject to

which Hilbert himself devoted some effort.
Problem seven inquired whether the number αβ, where α is algebraic

(and not zero or 1) and β is irrational and algebraic, is transcendental. In
alternative geometric form, Hilbert expressed this by asking whether in an
isosceles triangle, the ratio of the base to a side is transcendental if the
ratio of the vertex angle to the base angles is algebraic and irrational. This
question was disposed of in 1934 when Aleksander Osipovich Gelfond
(1906 1968) proved that Hilbert’s conjecture, now known as Gelfond’s
theorem, was indeed correct—αβ is transcendental if α is algebraic and
neither zero nor 1, and β is algebraic and not rational. Later, Alan Baker
provided a major generalization to the Gelfond theorem.
Hilbert’s eighth query simply renewed the call, familiar since the

nineteenth century, for a proof of Riemann’s conjecture that the zeros of
the zeta function, except for the negative-integral zeros, all have real part
equal to one half. A proof of this, he felt, might lead to a proof of the
familiar conjecture on the infinity of prime pairs, but no demonstration
has yet been given, although it is more than a century since Riemann
hazarded the guess.
These examples may suffice to indicate the diversity of formulation

and interest of the problems Hilbert chose; let us simply list the nature of
the remaining, which include some of the most intriguing and have
involved a large number of twentieth-century mathematicians.
The ninth problem called for generalizations of the reciprocity laws of

number theory. The tenth was the decision problem for solvability of Dio-
phantine equations. The eleventh called for extending results obtained for
quadratic fields to arbitrary algebraic fields. The twelfth asked for an
extension of a theorem by Kronecker to arbitrary algebraic fields.
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These number-theoretic problems were followed by the thirteenth,
which asked to show the impossibility of solving the general seventh-
degree equation by functions of two variables; the fourteenth problem
asked about the finiteness of systems of relatively integral functions; the
fifteenth asked for a justification for Hermann Schubert’s (1848 1911)
enumerative geometry.
The sixteenth problem was an invitation to develop a topology of

real algebraic curves and surfaces. The seventeenth asked for the repre-
sentation of definite forms by squares; the eighteenth posed the challenge
to build spaces with congruent polyhedra. The nineteenth deals with the
analytic character of solutions of variational problems. Closely related to
this was the twentieth, concerned with general boundary problems. The
twenty-first, which Hilbert himself solved in 1905, asked for the solution
of differential equations with a given monodromy group. The twenty-
second was the uniformization problem, and the final, twenty-third, pro-
blem asked for an extension of the methods of the calculus of variations;
in recent years, this has been tied to research in optimization questions.

Analysis

Hilbert’s chief contributions to analysis fall in the period between 1900
and World War I. They revolve primarily around the study of integral
equations. His contributions to this subject were preceded, however, by
his “revival” of the Dirichlet principle. As previously noted, the criti-
cism of the Dirichlet principle had been followed by only partially
successful attempts to show its validity. The last major effort in this
direction had been published by Poincaré in 1890, in a paper containing
his ingenious “sweeping-out” (balayage) method. Hilbert proceeded to
establish the Dirichlet principle in its most general form by treating it as
a problem in the calculus of variations. First, he sketched a constructive
proof of the existence of minimal curves; then he showed how the
existence of a function minimizing the Dirichlet region for plane regions
could be inferred. This memoir was followed by a very readable
Weierstrassian review of the problem by the American W. F. Osgood
(1864 1943) the following year; in 1904, Hilbert himself elaborated on
his argument in a more detailed paper.
It was during this period, in 1901, that the subject of integral equa-

tions captured Hilbert’s attention. One of his Scandinavian students
presented a seminar report on work done in that field by his professor in
Stockholm, Ivar Fredholm (1866 1927). Hilbert’s results, first pub-
lished between 1904 and 1910, were collected in a book that appeared in
1912 and was designed to present a systematic theory of linear integral
equations. His work was streamlined by Erhard Schmidt (1876 1959).
What is interesting in following Hilbert’s progress of the subject is the
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interplay between his often rough new approaches and refinements and
generalizations brought to bear by others. Indeed, the great value of this
work nowadays lies in the fact that from it came many of the twentieth
century’s most important ideas basic to the study of abstract linear spaces
and spectra.

Waring’s Problem and Hilbert’s Work after 1909

Perhaps as relief from his rather cumbersome work in integral equations,
Hilbert during this time returned to number theory and proved Waring’s
theorem that every positive integer can be represented as a sum of at
most m nth powers, m being a function of n. This triumph, tempered by
the unexpected death of his good friend Minkowski in 1909, marks the
end of the period during which Hilbert produced his most concentrated,
purely mathematical work.
Hilbert spent much of the next decade on mathematical physics. Until the

beginning of World War I, he studied the application of integral equations
to physical theories such as the kinetic theory of gases. With the appear-
ance of Albert Einstein’s general theory of relativity, Hilbert turned to that
subject, which also occupied his colleague Felix Klein. Interestingly, the
most lasting mathematical contribution out of this effort came from an
algebraist who had recently engaged in studies of differential invariants.
This was Emmy Noether (1888 1935), the daughter of the algebraic
geometer Max Noether, whom Hilbert and Klein brought to Göttingen to
assist them in this research. Her results were published in 1918; best known
is “Noether’s theorem,” which is still referred to in the discussion of
correspondences between certain invariants and conservation laws.
Hilbert had initiated his studies in mathematical physics in the hope

of proceeding to the axiomatization for which he had called in 1900.
He came closest to this goal in his last work on physics, dealing with
quantum mechanics. Because Hilbert had begun to have serious health
problems by this time, this research was conducted in collaboration
with two younger men, L. Nordheim and J. von Neumann.
Hilbert’s major results in his last great effort at the axiomatization of

arithmetic and logic have come to us in the form given to them by his suc-
cessors, too. They are contained in the comprehensive treatisesGrundlagen
derMathematik andGrundzüge der mathematischen Logik, better known by
the names of the coauthors as Hilbert-Bernays and Hilbert-Ackermann.

Integration and Measure

Toward the end of the nineteenth century, the emphasis on rigor had led
numerous mathematicians to bring forth examples of “pathological”
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functions that, because of some unusual property, violated a theorem
previously held to be generally valid. There was concern among some
distinguished analysts that a preoccupation with such special cases
would divert younger mathematicians from seeking answers to the major
open questions of the day. Hermite said that he turned away “with fright
and horror from this lamentable plague of functions which have no
derivatives.” Poincaré shared his teacher’s concern:

Formerly, when one invented a new function it was in view of some

practical goal; today one invents them expressly to point out flaws in

the reasoning of our fathers and one will never derive anything from them

but that. (Translated from a quotation in Saks, 1964)

Yet through the study of unusual cases and the questioning of their
elders, two younger French mathematicians arrived at the definitions
of concepts that were to be fundamental to the development of some
of the most general theories of twentieth-century mathematics. Henri
Lebesgue (1875 1941) had had the usual type of mathematical training,
although he had shown exceptional irreverence in questioning statements
made by his professors and supplemented his course work with library
studies, including the work of Camille Jordan (1838 1922) and René
Baire (1874 1934), among others. His dissertation, accepted in 1902,
was most unusual in virtually remaking the field of integration. His work
was so great a departure from accepted views that Lebesgue, like Cantor,
at first was assailed by both external criticism and internal self-doubt,
but the value of his views was increasingly recognized, and in 1910, he
was appointed to the Sorbonne. He did not create a “school of thought,”
however, nor did he concentrate on the field that he had opened. Although
his concept of the integral was in itself a striking case of generalization,
Lebesgue feared that “Reduced to general theories, mathematics would
be a beautiful form without content. It would quickly die.” Later devel-
opments seem to indicate that his fears concerning the baneful influence
of generality in mathematics were without foundation.
The Riemann integral had dominated studies in integration before

Lebesgue became the “Archimedes of the extension period.” But toward
the close of the nineteenth century, studies in trigonometric series and the
Mengenlehre of Cantor had made mathematicians more keenly aware
that the essential idea in functionality should be a pointwise corre-
spondence or “mapping” in the newer sense and not smoothness of
variation. Cantor had even struggled with notions of measurable sets, but
under his definition, the measure of the union of two sets could be less
than the sum of the measures of the sets. Defects in Cantor’s definition
were removed by Émile Borel (1871 1956), the immediate predecessor
of Lebesgue in studies on measure theory.
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Borel, from 1909 until 1941 the holder of a chair for theory of func-
tions at the Sorbonne and, from 1921, a chair in probability and math-
ematical physics, was also a multifaceted administrator. He succeeded
Jules Tannery as deputy director of the École Normale Supérieure, a
position he held for ten years; in the 1920s, he founded the Institute for
Statistics at the University of Paris and, in 1929, the Institut Henri
Poincaré. Having served in the military and run a government office
during World War I at the request of Painlevé, he returned to public
service as member of the Chamber of Deputies from 1925 to 1936,
championed the European Union, and served as minister of the navy
until his arrest in 1940 under the Vichy regime. His record in mathe-
matical publication before 1924 had been impressive and included more
than half a dozen books. One of the earlier volumes had been on an
unusual theme: Leçons sur les séries divergentes (1901). Here, the
author showed how for some divergent series, a “sum” can be defined
that will make sense in relationships and operations involving such
series. For example, if the series is Σun, then a “sum” can be defined asÐ
x

0
e�xΣN

0
unx

n=n!dx if this integral exists. During the first decades of this
century, there was lively interest in such definitions, but Borel’s more
lasting influence was in the application of the theory of sets to the theory
of functions, where his name is recalled in the familiar Heine-Borel
theorem:

If a closed set of points on a line can be covered by a set of intervals so

that every point of the set is an interior point of at least one of the

intervals, then there exists a finite number of intervals with this covering

property.

In somewhat different terminology, this theorem had been expressed by
Heine in 1872, but it had been overlooked until reenunciated in 1895
by Borel. Borel’s name is also attached to any set that can be obtained
from closed and open sets on the real line by repeated applications of the
operations of union and intersection to denumerable numbers of sets.
Any Borel set is a measurable set in his sense.
Lebesgue, pondering Borel’s work on sets, saw that Riemann’s defi-

nition of the integral has the drawback of applying only in exceptional
cases, for it assumes not more than a few points of discontinuity in the
function. If a function y5 f(x) has many points of discontinuity, then, as
the interval xi1 12 xi becomes smaller, values of f(xi1 1) and f(xi) do not
necessarily become closer together. Instead of subdividing the domain of
the independent variable, Lebesgue therefore subdivided the range f 2 f
of the function into subintervalsΔyi and within each subinterval selected
a value η

i
. Then, he found the “measure” m(Ei) of the set Ei of points on

the x-axis for which values of f(x) are approximately equal to η
i
. As

Lebesgue liked to express the difference informally, the earlier
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integrators had added indivisibles, large or small, in order from left to
right, whereas he preferred to group together indivisibles of comparable
size before adding. That is, for the earlier Riemann sums Sn5Σ f ðxiÞΔxi

he substituted the Lebesgue-type sum Sn5η
i
mðEiÞ and then let the

intervals tend toward zero.
The Lebesgue integral that we have here very roughly described is

in actuality defined far more precisely in terms of upper and lower
bounds and the Lebesgue measure of a set; an illustrative example may
suggest how the Lebesgue procedures operate. Let it be granted that the
Lebesgue measure of all rational numbers in the interval [0,1] is zero
and that the Lebesgue measure of all irrational numbers in this interval
is 1; let the integral of f(x) be required over this interval, where f(x) is
zero for all rational values of x and f(x) is 1 for all irrational values of x.
Inasmuch as m(Ei)5 0 for all values of i except i5 n, where ηn5 1,
we have Sn5 01 01 � � � η1 nm(En)5 1 � 15 1; hence, the Lebesgue
integral is 1. The Riemann integral of the same function over the same
interval does not, of course, exist.
The word “measure” can take on various meanings. When Lebesgue

presented his new concept of the integral, he used the word in the specific
sense now known as the Lebesgue measure. This was an extension of
classical notions of length and area to sets more general than those
associated with the usual curves and surfaces. Today the word “measure”
is used more broadly still, a measure on a field R being simply a
nonnegative function μ with the property μðUAiÞ5ΣμðAiÞ for every
countable disjoint class Ai contained in R. Not only does the new concept
of integral cover a wider class of functions than does that of Riemann,
but the inverse relationship between differentiation and integration (in
Lebesgue’s generalized sense) is subject to fewer exceptions. For exam-
ple, if g(x) is differentiable in [a, b] and if gu (x)5 f(x) is bounded, then
f(x) is Lebesgue integrable and gðxÞ2 gðaÞ5L

Ð x
a f ðtÞdt, whereas with the

same restrictions on g(x) and g u(x) the Riemann integral R

Ð x
a f ðtÞdt might

not even exist.
Lebesgue’s ideas date from the closing years of the nineteenth century,

but they became widely known through his two classic treatises: Leçons
sur les series trigonométriques (1903) and Leçons sur l’intégration
et la recherche des fonctions primitives (1904). The revolutionary views
they contained paved the way for further generalizations. Among these
are the Denjoy integral and the Haar integral, proposed by a Frenchman,
Arnaud Denjoy (1884 1974), and a Hungarian, Alfred Haar (1885
1933), respectively. Another well-known integral of the twentieth cen-
tury is the Lebesgue-Stieltjes integral, a combination of the ideas of
Lebesgue and the Dutch analyst T.-J. Stieltjes (1856 1894). The work
of these men and others so altered the concept of the integral, through
generalization, that it has been said that although integration is as old
as the time of Archimedes, “the theory of integration was a creation of
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the twentieth century.” Word of the new theory spread. For example,
N. N. Luzin (1883 1950), who had spent most of his time during the
years 1910 1914 in Göttingen, introduced many of the new ideas to
Moscow on his return.

Functional Analysis and GeneralTopology

The new theories of integration were closely allied with another pro-
nounced characteristic of the twentieth century: the rapid growth of point
set topology. At the University of Paris, Maurice Fréchet (1878 1973),
in his doctoral dissertation of 1906, showed clearly that function theory
no longer could do without a very general view of set theory. What
Fréchet had in mind were not necessarily sets of numbers but sets of
elements of arbitrary nature, such as curves or points; on such arbitrary
sets, he built a “functional calculus,” in which a functional operation is
defined on a set E when to each element A of E there corresponds a
numerically determined value U(A). His interest was not in a particular
instance of a set E, but in those set-theoretical results that are inde-
pendent of the nature of the set elements. In this very broad calculus,
the notion of limit is much broader than limits as previously defined, the
latter being included in the former as special cases, just as the Lebesgue
integral includes the integrals of Riemann and Cauchy. Probably no
aspect of twentieth-century mathematics stands out more clearly than
does the ever-greater degree of generalization and abstraction. From
the time of Hilbert and Fréchet, the notions of abstract set and abstract
space have been fundamental in research.
It is interesting to note that Hilbert and Fréchet came to their gen-

eralizations of the concept of space from somewhat differing directions.
Hilbert had become interested, as had Poincaré, in the study of integral
equations, especially through the work of Ivar Fredholm (1866 1927).
In a sense, an integral equation can be considered an extension of a
system of n equations in n unknowns to a system of infinitely many
equations in infinitely many unknowns, a topic that had been touched on,
in the form of infinite determinants, by Helge von Koch (1870 1924).
As Hilbert worked in integral equations from 1904 to 1910, he did not
explicitly refer to infinite dimensional spaces, but he did develop the
concept of continuity of a function of infinitely many variables. To what
extent Hilbert formally constructed the “space” that later was named
for him may be a moot point, but the basic ideas were there, and their
impact on the mathematical world was great. His work on integral
equations was soon extended to more general functions and abstract
spaces by Friedrich Riesz (1880 1956) and Ernst Fischer (1875 1959).
During the years that Hilbert was concerned with integral equations,

Jacques Hadamard was doing research in the calculus of variations, and
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his student Fréchet consciously sought in 1906 to generalize the methods
in this field through what he called functional calculus. Whereas the
ordinary calculus deals with functions, the functional calculus concerns
functionals. Whereas a function is a correspondence between a set S1 of
numbers and another set S2 of numbers, a functional is a correspondence
between a class C1 of functions and another class C2 of functions. Fréchet
formulated generalized definitions, corresponding roughly to terms such
as “limit,” “derivative,” and “continuity” in the ordinary calculus,
applicable to the function spaces he thus created, to a considerable extent
introducing a new vocabulary for the new situation. Shortly thereafter,
this would intrigue the group of young Russians about to put their
own stamp on the evolving subject of topology; that includes the Luzin
students P. S. Aleksandrov (1896 1982), Pavel Uryson (1898 1924), and
A. N. Kolmogorov (1903 1987).
Topology is said by some to have begun with the analysis situs of

Poincaré; others claim that it dates from the set theory of Cantor or per-
haps from the development of abstract spaces. Still others regard Brouwer
as the founder of topology, especially for his topological invariance the-
orems of 1911 and for his fusion of the methods of Cantor with those
of analysis situs. At all events, with Brouwer there began the period of
intensive evolution of topology that has continued to the present day.
During this “golden age” of topology, American mathematicians have
been conspicuous contributors. It has been said that “topology began as
much geometry and little algebra, but that now it is much algebra and little
geometry.” Whereas once topology could be described as geometry
without measurement, algebraic topology came to dominate the field, a
change that resulted largely from leadership in the United States.
Hermann Weyl (1885 1955), lecturing on Riemann surfaces at

Göttingen, also emphasized the abstract nature of a surface, or a “two-
dimensional manifold,” as he preferred to call it. The concept of a
manifold, he asserted, should not be tied to a point space (in the usual
geometric sense) but given broader meaning. We merely begin with a
collection of things called “points” (which can be any objects whatso-
ever) and introduce a concept of continuity through appropriate defini-
tion. The classical formulation of this view was given a year later by
Felix Hausdorff (1868 1942), the “high priest” of point set topology.
The first portion of Hausdorff’s Grundzüge der Mengenlehre (Basic

Features of Set Theory) of 1914 is a systematic exposition of the char-
acteristic features of set theory, where the nature of elements is of no
consequence; only the relations among the elements are important. In the
latter portion of the book, we find a clear-cut development of “Hausdorff
topological spaces” from a set of axioms. By a topological space, the
author understands a set E of elements x and certain subsets Sx known as
neighborhoods of x. The neighborhoods are assumed to satisfy the
following four “Hausdorff axioms”:
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1. To each point x there corresponds at least one neighborhood U(x),
and each neighborhood U(x) contains the point x.

2. If U(x) and V(x) are two neighborhoods of the same point x, there
must exist a neighborhood W(x) that is a subset of both.

3. If the point y lies in U(x), there must exist a neighborhood U/(y) that
is a subset of U(x).

4. For two different points x and y, there are two neighborhoods U(x)
and U(y) with no points in common.

Neighborhoods, as so defined, permitted Hausdorff to introduce the
concept of continuity. Through additional axioms, he developed the prop-
erties of various more restricted spaces, such as the Euclidean plane.
If any one book marks the emergence of point set topology as a separate

discipline, it is Hausdorff’s Grundzüge. It is interesting to note that
although it was the arithmetization of analysis that began the train of
thought that led from Cantor to Hausdorff, in the end the concept of number
is thoroughly submerged under a far more general point of view. Moreover,
although the word “point” is used in the title, the new subject had as little
to do with the points of ordinary geometry as with the numbers of
common arithmetic. This was underlined by Zygmunt Janiszewski (1888
1920), Stefan Mazurkiewicz (1888 1945), and the indefatigable Waclaw
Sierpinski (1882 1969), the founders, in 1920, of Fundamenta Mathe-
maticae. When the journal that seemed at times to carry nothing but con-
tributions to point set topology was resurrected after World War II, the
cover noted that it was devoted to set theory, mathematical logic and
the foundations of mathematics, topology and its interactions with algebra,
and dynamical systems. Here and elsewhere, topology came to the fore
in the twentieth century as one of the subjects that appeared to unify
almost the whole of mathematics, providing it with an unexpected
cohesiveness.

Algebra

The high degree of formal abstraction that had found its way into analysis,
geometry, and topology in the early twentieth century could not help but
invade algebra. The result was a new type of algebra, sometimes inade-
quately described as “modern algebra,” largely a product of the third
decade of the century. It is indeed true that a gradual process of general-
ization in algebra had developed during the nineteenth century, but in the
twentieth century, the degree of abstraction took a sharp turn upward. For
example, in 1903, the American Leonard Eugene Dickson (1874 1954),
E. H. Moore’s first student, published an axiomatic definition of a linear
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associative algebra over an abstract field. Next, Dickson, J. H. M. Wed-
derburn (1882 1948), who spent the year 1904 1905 in Chicago, and
others published a series of papers dealing with various aspects of hyper-
complex number systems and finite algebras. The best known of these is one
by Wedderburn, in which he abstracted his subject from dependence on a
specific number field, thereby taking it beyond the work done by Frobenius,
Theodor Molien (1861 1941), and Elie Cartan (1869 1951) on the Con-
tinent.Wedderburn here presented his influential structure theorems. These
state the following:

1. Any algebra can be expressed as the sum of a nilpotent and a
semisimple algebra.

2. Any semisimple algebra that is not simple is the direct sum of simple
algebras.

3. Any simple algebra is the direct product of a primitive algebra and a
simple matrix algebra.

Another paper of great influence in the trend to abstraction was Ernst
Steinitz’s (1871 1928) work on the algebraic theory of fields, which
appeared in the winter of 1909 1910 and had been motivated by Kurt
Hensel’s (1861 1941) work on p-adic fields. Analogous work in ring
theory was first undertaken by A. Fraenkel (1891 1965), who had been
a student of Hensel’s. Following his work, Emmy Noether, in 1921,
transferred decomposition theorems for ideals in algebraic number fields
to those for ideals in arbitrary rings. On the basis of this work, Wolfgang
Krull (1899 1971) published a series of papers on the algebraic theory
of rings, in which he carried out the analogy to Steinitz’s memoir on
fields. Noether and her students made other major contributions to ring
theory before she turned to a treatment of finite group representations
from an ideal-theoretic point of view. By now, Noether’s work and that
of her students overlapped with related work of Richard Brauer (1901
1977), Emil Artin (1898 1962), B. L. van der Waerden (1903 1996),
and Helmut Hasse (1898 1979). Simultaneously, Wedderburn and the
American school continued their generalizations. Against this back-
ground of increased activity in abstract ring theory and hypercomplex
systems theory, Artin published a generalization of the Wedderburn
structure theorems to rings satisfying chain conditions. Chain conditions
had been used since the days of Otto Hölder (1859 1937) and Dedekind
but were brought to the fore in the 1921 paper of Emmy Noether just
mentioned. Through Noether’s influence, these algebraic notions were
linked to topology in the work of Heinz Hopf (1894 1971) and Pavel
Aleksandrov, both of whom had obtained their topological orientation
from L. E. J. Brouwer.
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Differential Geometry andTensorAnalysis

Early-twentieth-century differential geometry would make an interest-
ing case study for examining the impact of external forces on changing
attitudes toward a branch of mathematics. The joint papers of Gregorio
Ricci-Curbastro (1853 1925) and Tullio Levi-Civita (1873 1941)
on Ricci-Curbastro’s absolute calculus provided a fitting summary of
late-nineteenth-century accomplishments in differential geometry. The
subject had reached a certain plateau; workers in the field made minor
contributions, interesting alternatives were formulated, and complex
computational results were modified and simplified—yet altogether it
was a field apparently doomed to be of interest only to the specialist.
This changed dramatically after the announcement by Albert Einstein
(1879 1955) of his theory of general relativity. In 1915, he presented
the discovery of his gravitational equations by noting that it marked
“a true triumph of the methods of the general differential calculus
founded by Gauss, Riemann, Christoffel, Ricci” (Sitzungsbericht der
Preussischen Akademie der Wissenschaften, 1915:778 786).
Interest in the general theory of relativity led to a spate of publications

designed to clarify or expand both the theory of general relativity
and differential geometry. In 1916, the German set theorist Gerhard
Hessenberg (1874 1925) had introduced the concept of a connection.
Levi-Civita introduced his concept of parallelism in 1917 and, in the
early 1920s, lectured at the University of Rome on the subject that
he continued to call the absolute differential calculus; he published a
systematic exposition in 1923. Just one year earlier, Dirk Struik
(1894 2000), a student of, and a collaborator with, the Dutch differ-
ential geometer J. A. Schouten (1883 1971), had issued a volume on the
elements of multidimensional differential geometry; it was followed in
1924 by a treatise on the Ricci-Curbastro calculus by Schouten himself.
Simultaneously, a group of books by mathematicians and physicists
appeared that combined the exposition of known principles with new
contributions to the physical interpretation and the mathematical the-
ory. Among the best known of these works published between 1916 and
1925 were those by the Americans G. D. Birkhoff and R. D. Carmichael
(1879 1967), the Englishman A. S. Eddington (1882 1944), and the
Germans Max von Laue and Hermann Weyl. Although some of these
volumes were brilliant examples of exposition, treating as clearly as
possible a subject the mathematical basis of which was wrapped up in a
cumbersome theory, their very popularity among the scientifically and
philosophically oriented reading public did much to spread the notion
of the incomprehensibility of mathematics and mathematical physics.
For more than a generation, relatively few mathematicians were aware
that the seeds of a new approach to differential geometry had already
been sown.
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When Hermann Weyl left his position as privatdozent in Göttingen in
1913 to accept a professorship at the University of Zurich, he had just
completed a period of immersion in the mathematics of Riemann. In the
winter of 1911 1912, he had lectured on Riemann’s function theory;
his stated theme was to base Riemann’s work not on “visualizable
plausibility” but on set-theoretically exact proofs meeting requirements
of rigor. The outgrowth of this was Weyl’s classic book on the concept of
the Riemann surface, completed in April 1913. New concepts and defi-
nitions, such as the introductory one of a complex manifold, made this
small work basic to much subsequent research on manifolds. Weyl spent
more time on Riemannian geometry after his move to Zurich and during
World War I. He explored the concept of a linear connection, thinking for
some time that linking this to the group of similitudes might result in a
unified field theory. A set of classical papers on the theory of linear
representations of Lie groups written in the mid-1920s was partially an
outgrowth of this work. In the meantime, Elie Cartan, who had begun his
career with the study of Lie groups, revamped differential geometry.
Cartan, early in his research work, had developed the calculus of

exterior differential forms. He shaped it into a powerful tool that he
applied to differential geometry, as well as to many other areas of
mathematics. In his approach to differential geometry, he expanded the
nineteenth-century notion of a “moving frame” that had been used by
Gaston Darboux 1842 1917), among others. His main achievements
were based on the use of two concepts he fashioned: One was his
definition of a connection, which was widely adopted by differential
geometers. The other was the notion of a symmetric Riemann space. In
such a space, each point is assumed to be surrounded by a symmetry,
that is, a certain distance-preserving transformation that leaves the point
fixed. Cartan had earlier succeeded in classifying simple real Lie alge-
bras and in determining the irreducible linear representations of simple
Lie algebras. It turns out that the classification of simple Lie groups can
be applied to the description of symmetric Riemann spaces.
Among Cartan’s contribution to other areas of mathematics, we note

only his important work in the theory of differential systems. Here, too,
he was able to abstract the traditional problem from a choiceof variables
or functions, by defining a truly “general” solution of an abstract system.
He then turned his attention to seeking all singular solutions; this
work was completed by Masatake Kuranishi four years after Cartan’s
death.

Probability

Set theory and measure theory during the twentieth century invaded an
ever-widening portion of mathematics, and few branches have been as
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thoroughly influenced by the trend as has the theory of probability, to
which Borel had contributed his Élements de la théorie des probabilités
(1909). The opening year of the new century was auspicious for prob-
ability, both in physics and in genetics, for in 1901, Josiah Willard Gibbs
published his Elementary Principles in Statistical Mechanics, and in the
same year, Biometrika was founded by Karl Pearson (1857 1936).
Francis Galton (1822 1911), a precocious cousin of Charles Darwin and
a born statistician, had studied regression phenomena; in 1900, Pearson,
the Galton Professor of Eugenics at the University of London, had
popularized the chi-square test. One of Poincaré’s titles had been
“Professor of the Calculus of Probabilities,” indicating the rising interest
in the subject.
In Russia, the study of linked chains of events was initiated, especially in

1906 1907, byA.A.Markov (1856 1922), a student of Chebyshev’s and
the coeditor of his teacher’s Oeuvres (2 vols., 1899 1904). In the kinetic
theory of gases and in many social and biological phenomena, the prob-
ability of an event often depends on preceding outcomes, and especially
since the middle of the twentieth century, Markov chains of linked prob-
abilities have been widely studied. As mathematical foundations for the
expanding theory of probability were sought, statisticians found the
appropriate tool at hand, and today no rigorous presentation of probability
theory is possible without using the notions of measurable functions and
modern theories of integration. In Russia, for example, Kolmogorovmade
important advances in Markov processes (1931) and satisfied in part
Hilbert’s sixth project, calling for axiomatic foundations of probability,
through the use of Lebesgue measure theory. Classical analysis had been
concerned with continuous functions, whereas probability problems
generally involve discrete cases. Measure theory and the extensions of the
integration concept were ideally suited to bring about a closer association
of analysis and probability, especially after themiddle of the century,when
Laurent Schwartz (1915 2002) of Nancy and Paris generalized the con-
cept of differentiation through the theory of distributions (1950 1951).
The Dirac delta function of atomic physics had shown that the

pathological functions that had long occupied mathematicians were also
useful in science. In the more difficult cases, however, differentiability
breaks down, with resulting problems in the solution of differential
equations—one of the chief connecting links between mathematics and
physics, especially where singular solutions are involved. To surmount
this difficulty, Schwartz introduced a broader view of differentiability,
one made possible by the development, in the first half of the century, of
general vector spaces by Stefan Banach (1892 1945), Fréchet, and
others. A linear vector space is a set of elements a, b, c, . . . satisfying
certain conditions, especially including the requirement that if a and b
are elements of L, and if α and β are complex numbers, then αa1 βb is
an element of L. If the elements of L are functions, the linear vector
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space is called a linear space, and a mapping of this case is called a
linear functional. By a “distribution,” Schwartz meant a linear and con-
tinuous functional on the space of functions that are differentiable and that
satisfy certain other conditions. The Dirac measure, for example, is a
special case of a distribution. Schwartz then developed an appropriate
definition of the derivative of a distribution such that the derivative of a
distribution is always itself a distribution. This provides a powerful gen-
eralization of the calculus, with immediate applications to probability
theory and physics.

Bounds and Approximations

While observing the growth of abstraction and generality during the early
twentieth century, it is easy to overlook the fact that this was also a period
of increased activity in the development of numerical techniques designed
to assist in solving problems that withstood direct attack with closed form
expressions. One of the best-known examples is the Kutta-Runge method
for the solution of differential equations known since the first decade of the
twentieth century. The strongest of theKutta-Runge algorithms proved to be
superior to many of the more recent competitors that flourished after
numerical analysis gained new prominence because of the advent of
automatic computing. Similarly, numerous approximations and bound
calculations in number theory that were achieved in the first three decades
of the century would be superseded only decades later.
A significant number of studies dealt with bounds for minimal forms, a

subject to whichHermite had called attention; it was hewho gave an upper
bound for the minimum of an n-ary form with a given determinant that is
fixed—and to which A. N. Korkin (1837 1908) and Egor Zolotarev
(1847 1878) made significant contributions, which in turn inspired
Markov, who had studied with them as well as with Chebyshev at St.
Petersburg.Markov had won a gold medal for a paper on the integration of
differential equations by continued fractions and two years later, in 1880,
wrote a highly acclaimed thesis on binary quadratic forms with positive
determinant. Intrigued by the research emanating from the St. Petersburg
group—Markov’s thesis had been published in the Mathematische
Annalen—Frobenius wrote a number of papers that built on Markov’s
work; in addition, several of Frobenius’s students made important con-
tributions to this area of research. The problem Markov addressed of
finding a lower bound for an indefinite binary quadratic form provides a
good example. In several papers published in 1913, Frobenius showed that
in contrast toMarkov, he could obtainmost ofMarkov’s resultswithout the
use of continued fractions. The one case that had eluded Frobenius was
resolved byRobert Remak (1888 1942) by 1924. In his studyofMarkov’s
problem, Issai Schur (1875 1941) in 1913 had relied onminimal forms in
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a way that Remak now used, along with Frobenius’s successful results.
Having completely rid the solution of Markov’s problem from continued
fractions, Remak in 1925 first proved strictly arithmetically a number of
related theorems and then provided a geometric interpretation of the
results obtained by Markov, Frobenius, and himself.
Another major impetus to studies of bounds and approximations

emanated from Hermann Minkowski. In his Habilitationsschrift of 1886,
he had discussed minima of positive definite quadratic forms. The
notions found in this work would be elaborated in his Diophantische
Approximationen of 1907 and his posthumous Geometrie der Zahlen
(1910). Edmund Landau (1877 1938), Minkowski’s successor at
Götttingen, although a student of Frobenius’s, was primarily interested
in analytic number theory. In 1903, he produced a simplified proof of the
prime number theorem; in 1909, his magnum opus, a two-volume
handbook concerning the distribution of primes, was published. Yet
in 1918, he was to obtain the first estimation of units and regulators in
algebraic number fields. He used a procedure Remak had developed
(without use of continued fractions) in a 1913 paper that contained
numerical bounds for the equation t2 2Du251, along with Minkowski’s
theorem concerning linear forms. Landau, like Minkowski before him,
did not shy away from using ideal theory in these studies. Neither did he
avoid analytic supports where necessary; thus, in one of the 1918 papers,
he made free use of the functional equation of Dedekind’s zeta-function
that Hecke had brought forth the previous year. On the other hand,
Remak, who would excel in the estimation of units and regulators in the
years to come, strove for purely arithmetic proofs and eschewed ideal-
theoretic, as well as analytic tools.
Three men who freely used analytic tools were G. H. Hardy (1877

1947), J. E. Littlewood (1885 1977), and the autodidactic Indian genius
Srinivasa Ramanujan (1887 1920). In the second decade of the century,
Hardy and Littlewood began their well-known collaboration on numer-
ical partitions. During the time that he spent with them in England,
Ramanujan and Hardy produced a joint paper on asymptotic values of
p(n), where p(n) is the number of partitions of an integer n into sum-
mands. Ramanujan had previously made a number of conjectures con-
cerning p(n), based on numerical data for small n; he had also proved some
of his guesses using elliptic functions. In the joint paper, he suggested an
asymptotic formula for p(n) that, as Hans Rademacher (1892 1969) would
subsequently prove, actually led to an exact value for n.
The activities just outlined are of interest not only for the specific results

they produced but because of the competition among the various parti-
cipants to demonstrate the superiority, or at least the usefulness, of their
particular technique, whether arithmetic, algebraic, analytic—singly or in
combination. This would eventually shed additional light on many
underlying structural relationships.
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The1930s andWorldWar II

The rise to power of Hitler and the National Socialist Party in Germany
precipitated a catastrophe that soon affected mathematical institutions
around the world. In the spring of 1933, numerous professors were dis-
missed from German universities. This and the subsequent more serious
actions taken against individuals of Jewish background or opposing
political beliefs resulted in a vast migration of scholars from Germany
or German-occupied countries, as well as in the deaths of many who
remained. It also resulted in the diminution of some of the most estab-
lished mathematical centers of Western and Central Europe. Attempted
purges of mathematicians in the Soviet Union similarly stifled growth in a
number of the younger centers of activity. Some of the most severe
institutional and individual losses occurred in Poland with the closing
of the universities after 1939, the destruction of the University of
Warsaw’s mathematical collections, the deportation of nearly 200 faculty
members from the Jagellonian University in Krakow, and the planned
killing of professors in Lvov in July 1941.
A substantial number of European mathematicians came to the United

States. Among the best known were Hermann Weyl and the algebraists
Emil Artin, Richard Brauer, and Emmy Noether; the analysts Richard
Courant and Jacques Hadamard; the probability specialist William Feller;
the statistician Jerzy Neyman; the logicians Kurt Gödel and Alfred Tarski;
and the historian of mathematics Otto Neugebauer, to name but a few.
There were mathematicians not subject to persecution who left profes-
sional life, often at the beginning of their careers, to avoid institutional
or organizational affiliations that were incompatible with their moral
beliefs; a few reemerged after World War II. On the other hand, recalling
only three of the multitude who did not escape, Hausdorff committed
suicide to avoid deportation; Otto Blumenthal, Hilbert’s first Ph.D. stu-
dent, died in Theresienstadt; and Stanislaw Saks, the noted contributor to
twentieth-century integration theory, was killed in Warsaw.
The relocation of mathematicians who found refuge resulted in the

infusion of new ideas in many mathematical centers. This presented a
challenge both to those confronted with new concepts and those
attempting to superimpose them on existing systems. Mathematicians
were equally challenged by new problems encountered in World War II.
Especially important at that time were the needs in applied mathematics.
Table computations and the methodology of operations research are but
two examples of areas that redirected the attention of many mathema-
ticians who had been trained in entirely different fields. Nevertheless,
most of the enormous development during the twenty years following
World War II was spurred on by problems within pure mathematics
itself, yet within the same period, the applications of mathematics to
science multiplied exceedingly.
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Nicolas Bourbaki

Mathematics of the twentieth century saw an emphasis on abstraction
and an increasing concern with the analysis of broad patterns. Perhaps
nowhere is this more clearly apparent than in the mid-twentieth-century
works that emanated from the polycephalic mathematician known as
Nicolas Bourbaki. This is a nonexistent Frenchman with a Greek name
that has appeared on the title pages of several dozen volumes in a
continuing major work, Éléments de mathématique, that was intended to
survey all of worthwhile mathematics. The home of Bourbaki is given as
Nancy, a city that provided a number of leading twentieth-century
mathematicians. In Nancy, there is a statue to the colorful and once-
very-real General Charles Denis Sauter Bourbaki (1816 1897), who in
1862 was offered, but declined, the throne of Greece and whose role in
the Franco-Prussian War was very tangible. Nicolas Bourbaki, never-
theless, is not a relative in any sense of the word; the name was simply
appropriated to designate a group of anonymous mathematicians, almost
exclusively French. As an institutional connection, N. Bourbaki some-
times used the University of Nancago, a playful reference to the fact that
two of the moving spirits within the group were for a while connected
with universities in the Chicago area—André Weil at the University of
Chicago (later, however, at the Institute for Advanced Study at Prince-
ton) and Jean Dieudonné (1906 1992) at Northwestern University
(formerly at the University of Nancy, later at the University of Paris).
Bourbaki originated as the result of conversations between André

Weil and Henri Cartan in Strasbourg in 1934 concerning the need for
new, up-to-date textbooks; they were spurred to action by their frus-
tration at their students’ having to rely on Goursat’s Traité d’Analyse,
and they invited a group of other young mathematicians to join them in
a remedial project of writing a new analysis textbook. The original
group, holding regular meetings in a Paris café, consisted of Claude
Chevalley (1909 1984), Jean Dieudonné, René de Possel (1905 1974)
and Jean Delsarte (1903 1968), in addition to Cartan and Weil. Also
participating were S. Mandelbrojt (1899 1983) and, for a shorter per-
iod, Paul Dubreil (1904 1994) (replaced by Jean Coulomb) and Jean
Leray (1906 1988) (replaced by Charles Ehresmann (1905 1979).
They rather quickly gave up the original idea of a massive one-volume
textbook and decided instead on a series of self-contained, linearly
ordered volumes. Each volume would be characterized by strict adher-
ence to an axiomatic approach, an abstract form that brought out the
structure of the underlying concepts, and a progression from general to
specific cases. Members chose and discussed the topic for each volume;
one person was chosen to act as editor; members then reviewed the copy,
with Dieudonné predominantly acting as final reviser; and each volume
was cleared for publication after unanimous consent had been reached.
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It was hoped that the emphasis on structure and logical coherence
would effect a considerable economy of thought. In the early nineteenth
century, the discovery that the structure of the complex number system
was the same as that of points in the Euclidean plane showed that the
properties of the latter, studied for more than two millennia, could be
applied to the former. The result was an exuberant proliferation in
complex analysis. It seemed that twentieth-century concern for simila-
rities in structure should, in the years to come, yield similar dividends.
Romantics in mathematics earlier in the century had feared a takeover

of their subject by an arid formalism encouraged by logicism. By the
middle of the century, the feud between formalists and intuitionists
had quieted, and the Bourbaki group saw no need to take sides in the
controversy. “What the axiomatic method sets as its essential aim,”
Bourbaki wrote, “is exactly that which logical formalism by itself can-
not supply, namely the profound intelligibility of mathematics.” In
the same vein, one of the leaders of the group wrote that “If logic is the
hygiene of the mathematician, it is not his source of food.”
The first volume of Bourbaki’s Éléments appeared in 1939. After the

end of World War II, parts of the first three books were still incom-
plete and the last three had to be started. New members who joined
Bourbaki before 1950 included Roger Godemont, Pierre Samuel,
Jacques Dixmier, and Jean-Pierre Serre, and they were soon followed
by Samuel Eilenberg, Jean-Louis Koszul, and Laurent Schwartz. By
1958, most of what is known as Part I, Les structures fondamentales de
l’analyse, had been completed. This part contains half a dozen sub-
headings or “books”: (1) Set Theory, (2) Algebra, (3) General Topology,
(4) Functions of a Real Variable, (5) Topological Vector Spaces, and
(6) Integration. As the titles indicate, only a small portion of the
mathematics contained in these volumes was in existence a century
earlier.
By the time plans for the next volumes had to be firmed up, a “third

generation” joined the group. They included Armand Borel, François
Bruhat, Pierre Cartier, Alexander Grothendieck, Serge Lang, and John
Tate. They were faced with major challenges in determining the course
the project should now take. Should the original concept of the self-
contained linear order be followed when so many new topics would
require preliminaries that might be decades in the making? Should the
existing first six volumes be rewritten and brought up to date? Should
the volumes covering the newest research results in mathematics still
be treated as textbooks? Should all members of the group be expected
to be sufficiently knowledgeable in each topic to participate in the
decision-making process for that volume?
After a variety of proposals, substantial arguments, and considerable

debate—an activity that had always characterized the meetings of
the group—by 1984, Bourbaki had produced a certain amount of new
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material. As before, chapters of the individual books were not always
completed in the planned, eventual order. There were two “summary”
chapters on differential and analytic manifolds, designed to serve as
a compromise for having to give up the rigorous linear order for these topics;
seven chapters on commutative algebra; eight chapters on Lie groups and
Lie algebras; and two chapters on spectral theories. In addition, there was
now an English translation of some of the first six books, of three of the
chapters on Lie groups and algebras, and of the chapters on commutative
algebra. Fifty years after the first café gatherings in Paris, the future of
Bourbakiwas less certain than it had been during the difficult days of its first
quarter-century.

Homological Algebra and Category Theory

The fundamental concepts of modern (or abstract) algebra, topology, and
vector spaces were laid down between 1920 and 1940, but the next
twenty years saw a veritable upheaval in methods of algebraic topology
that carried over into algebra and analysis. The result was a new subject
known as homological algebra, the first book on which, by Henri Cartan
(1904 2008) and Samuel Eilenberg (1913 1998), appeared in 1955, to
be followed in the next dozen years by several other monographs,
including Saunders Mac Lane’s (1909 2005) Homology. Homological
algebra is a development of abstract algebra concerned with results that
are valid for many different kinds of spaces—an invasion of algebraic
topology in the domain of pure algebra. The rapidity with which this
general and powerful cross between abstract algebra and algebraic
topology has grown is apparent in the swift increase in the number of
articles on homological algebra listed in Mathematical Reviews. More-
over, so widely applicable are results in the field that the older labels
of algebra, analysis, and geometry scarcely fit the results of recent
research. Never before has mathematics been so thoroughly unified as in
our day.
Symptomatic of this trend was the introduction of the notions of

functor and category in 1942 by Eilenberg and Mac Lane. In the words
of Eilenberg:

A category A has “objects” A, B, C, and so on, and arrows A�!f B, C�!h D

and so on. Two consecutive arrows, A�!f B�!g C, may be composed to

give A�!gf C This composition is associative. Each object A has an

identity, that is, an arrow A�!1 A which, when composed with any other

arrow, does not change it. Functors are simply ways of transforming one

category into another. . . . For those familiar with the terms, we list some

examples. The category of groups: here the objects are groups, and the

arrows (technically called morphisms) are homomorphisms of groups.
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Category of topological spaces: the objects are topological spaces and

themorphisms continuousmappings. Category of differentiable manifolds:

the morphisms are differentiable mappings. Category of vector spaces: the

morphisms are linear transformations.Now some examples of functors. The

rule which associates with each topological space its one-dimensional

homology group and with each continuous mapping of one space into

another the induced homomorphism of homology groups is a functor from

the category of topological spaces to that of Abelian groups. The rule which

associates with each differentiable manifold the vector space of differ-

entiable functions denned on it and with each differentiable mapping the

induced linear mapping of the vector space is a functor from the category of

differentiable manifolds to that of vector spaces [COSRIMS, 1969, p. 159].

Algebraic Geometry

Twentieth-century algebraic geometry was subject to a succession of
efforts to place its foundation on firmer groundwork. In the late 1920s,
Oscar Zariski (1899 1986), who had been trained in the Italian school
of algebraic geometers, working with Enriques, Castelnuovo, and Severi,
set out to use the most recent results of abstract algebra as building
blocks for algebraic geometry. Not surprisingly, B. L. van der Waerden,
the author of the paradigmatic two-volume Moderne Algebra, took a
similar approach. It was André Weil, in the introduction to his 1946
volume on Foundations of Algebraic Geometry, who described the issue
at hand from the following broader perspective:

However grateful we algebraic geometers should be to the modern

algebraic school for lending us temporary accommodation, makeshift

constructions full of rings, ideals and valuations, in which some of us feel

in constant danger of getting lost, our wish and aim must be to return at

the earliest possible moment to the palaces which are ours by birthright,

to consolidate shaky foundations, to provide roofs where they are missing, to

finish, in harmony with the portions already existing, what has been

left undone.

The next effort to stabilize the foundations occurred after World War
II. In 1946, Jean Leray began to publish several notes in the Comptes
rendus discussing the notions of sheaves and spectral sequences. Much
of this material was based on thoughts he had developed as a prisoner of
war. In the 1950s, Jean-Pierre Serre produced a series of publications
applying sheaves to algebraic geometry. This in turn was followed in the
1960s by Alexander Grothendieck’s series Éléments de géométrie
algébrique, where the idea of schemes came to the fore. The notes of
Grothendieck’s seminar of the same decade underlined the relationship
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of algebraic geometry to algebraic number theory and called attention to
correspondences between algebraic geometry over finite fields and
the topology of manifolds. A major motivation of this work was an
attack on the Weil conjectures of the 1940s concerning the local zeta
functions obtained from the points on algebraic varieties over finite
fields. The most difficult of the conjectures—an analogue of the Riemann
hypothesis—was proved by Pierre Deligne in 1974, using etale coho-
mology theory.
While much of algebraic geometry is concerned with abstract and

general statements about varieties, methods for effective computation
with concretely given polynomials were also developed. By the 1990s,
reputable undergraduate textbooks assured students and instructors that
they no longer needed to be conversant with the traditional abstract
content of graduate courses in algebraic geometry but, thanks to the
development of new algorithms, could work efficiently with polynomial
equations and should be able to use a computer algebra system and study
the most important of the newer techniques, the method of Gröbner
bases, which was employed in all computer algebra systems of the time.

Logic and Computing

It is one of the ironies of history that while Bourbaki and many other pure
mathematicians pursued the goal of substituting ideas for calculations,
engineers and applied mathematicians developed a tool that revived
interest in numerical and algorithmic techniques and sharply affected the
composition of many departments of mathematics: the computer. In the
first half of the twentieth century, the history of computing machines
involved more statisticians, physicists, and electrical engineers than
mathematicians. Desk calculating machines and punched-card systems
were indispensable to business, banking, and the social sciences. The slide
rule became the symbol of the engineer, and integrators of various types
were used by physicists, geodesists, and statisticians. Paper and pencil
remained the chief tools of the mathematician. The situation changed
somewhat in the 1940s because of the involvement of mathematicians in
thewar effort.Althoughmost of themajor effortswere driven byphysicists
and engineers, numerous younger mathematicians played a part in the
development of the automatic digital electronic computer. Some of these
pioneers stayed in the computer field; others went into new fields more
closely related to the new technology; some turned to applied mathematics;
a few returned to their original specialties. Most of these mathematicians
were at an early stage of their careers when they became involved with
computers, many having received their Ph.D.s in the 1930s. Let us consider
three mathematicians whose contributions to the emerging computer field
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were notable largely because of the fact that they had already gained a
reputation as mathematicians.
John von Neumann (1903 1957) was born in Budapest. After good

preparatory training that included individualized mathematical instruc-
tion, he earned early recognition for his mathematical talents. This
permitted his obtaining a Ph.D. in mathematics from Budapest practi-
cally in absentia while he spent his time in Zurich and Berlin. He did,
however, earn a degree in chemical engineering at the Polytechnic
Institute in Zurich. In a paper published when he was only twenty-one,
he gave a new definition for ordinal numbers; two years later, he pre-
sented a system of axioms for set theory that provided an alternative to
those of Zermelo and A. Fraenkel. In 1926, he produced a pioneering
paper on game theory, following work by Borel. His teaching career
began in Germany, where he spent the three years from 1927 to 1930
at the universities of Berlin and Hamburg. In 1930, he moved to
Princeton, New Jersey, where he was affiliated with Princeton University
until asked to become a member of the Institute for Advanced Study
in 1933. One of the most creative and versatile mathematicians of the
century, von Neumann was a pioneer in a new approach to mathe-
matical economics. Econometrics had long made use of mathematical
analysis, but it was especially through the Theory of Games and Eco-
nomic Behavior of von Neumann and Oskar Morgenstern in 1944 that
so-called finite mathematics came to play an increasing role in the social
sciences. Von Neumann’s contributions to game theory involved pri-
marily versions of cooperative games; the 1944 volume considered
two-person zero-sum games. (This field of inquiry was expanded con-
siderably in the 1950s when John Forbes Nash developed the equili-
brium concept that allowed examination of noncooperative games,
which eventually resulted in his sharing the 1994 Nobel Prize in
Economics.)
Interrelationships among the various branches of thought had become so

complicated that Norbert Wiener (1894 1964), a mathematical prodigy
and for many years a professor of mathematics at the Massachusetts
Institute of Technology, in 1948 published his Cybernetics, a book that
established a new subject devoted to the study of control and commu-
nication in animals and machines. Von Neumann and Wiener were
also deeply involved in quantum theory, and the former in 1955 was
appointed to the Atomic Energy Commission. In addition to their
contributions to applied mathematics, these men contributed at least as
extensively to pure mathematics—to set theory, group theory, opera-
tional calculus, probability, and mathematical logic and foundations.
It had been von Neumann, in fact, who in about 1929 had given Hilbert
space its name, its first axiomatization, and its present highly abstract
form. Wiener had been important in the early 1920s in the origins of the
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modern theory of linear spaces and, in particular, in the development of
Banach space.
Alan Turing (1913 1954), the youngest of the three, was an Eng-

lishman who graduated from King’s College at Cambridge University in
1934. The following year, he made history by solving one of the out-
standing problems in mathematical logic. The paper containing this
result, published in 1937, was titled “On Computable Numbers, with
an Application to the Entscheidungsproblem.” In 1936, Turing had gone
to the United States to study at Princeton. While there, he worked
with the logician A. Church, who brought out his own proof of the
Entscheidungsproblem and became acquainted with John von Neumann.
Having been awarded a Ph.D. degree in 1938, Turing returned to
England. On the outbreak of World War II, Turing reported to the
Government Code and Cipher School at Bletchley Park. From then until
his untimely death in 1954, he was deeply involved in cryptanalytic
activity, the design of electronic computers, and the design of pro-
gramming systems.
Initial uses of computers for mathematical purposes were limited to

table computations and calculations of prime numbers, mathematical
constants, and the like. Some of the early computations of e and π were
carried out to test computing speed and capacity, as much as to establish
new results. In time, such efforts became more useful for mathematics,
theorem-proving programs were developed, and, as we shall note in the
next chapter, by 1977, the first computer-based proof of a major math-
ematical theorem could be announced.

The Fields Medals

The international mathematical community has an award that is often
likened to the Nobel Prize in other disciplines. The award is named for
John Charles Fields (1863 1932), a Canadian mathematician based at
the University of Toronto who specialized in the study of algebraic
functions. He had good interpersonal relationships with European
mathematicians, notably Gösta Mittag-Leffler and appears to have had
considerable managerial skills. He succeeded in bringing the 1924
International Congress of Mathematicians to Toronto at a time when
there were sharp political differences among mathematicians. After
World War I (until 1928), Germany, Austria, Hungary, Bulgaria, and
Turkey were excluded from the International Mathematical Union
(IMU) that was established in 1920 to organize subsequent congresses.
Fields successfully persuaded many leading European mathematicians
opposed to the IMU to support and attend the 1924 congress; he raised
funds for the congress and its attendees; and when it turned out that there
was excess money at the end, he proposed, in 1931, that this money be
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used to establish an international medal for mathematics. His will pro-
vided for an additional amount.
At the International Congress of Mathematicians in 1932, it was

decided that beginning with the 1936 congress, “Fields medals” should
be awarded at the ICM to two mathematicians every four years. The
recipients should be under forty years old, and, as Fields had suggested,
the awards should call attention to past accomplishments as well as
future potential. The rules were modified in 1966 to stipulate that the
number of Fields medals awarded at each congress should be at least two
but no more than four.
The first two medals went to Lars V. Ahlfors (1907 1996) and Jesse

Douglas (1897 1965) for their work in analysis. Ahlfors was recog-
nized for his work “on covering surfaces related to Riemann surfaces
of inverse functions of entire and meromorphic functions”; Douglas
received recognition for his research in the area of Plateau’s problem.
World War II disrupted the International Congresses and the con-

comitant medal awards; the next awards ceremony took place in 1950.
The 1950s reflected the waning dominance of classical analysis;
henceforth there was a steady increase of awards for research in topology
as well as in algebra, algebraic geometry, and number theory. Since the
1990s, a number of awards have gone to individuals who excelled in
research that pulled together previously diverse areas of mathematics.
Of the fifty-two Fields medals awarded prior to 2014, only four went

to recipients under thirty years of age. Eleven honorees were born in the
United States, eight each in France and the former Soviet Union or
Russia, six in England, and three each in Germany and Japan. The
remaining recipients were natives of Finland, Norway, Sweden, Italy,
Ukraine, New Zealand, Australia, South Africa, China, Vietnam, and
Israel. These figures are of limited significance, however; for example,
two of those born in Germany studied and lived in France; numerous
others born outside North America spent at least part of their careers in
the United States. As we shall see in the next chapter, one honoree
declined the award and another potential recipient lost out because of the
proximity of his fortieth birthday; he received a silver plate instead of a
medal.

The F i e l d s Meda l s 585



24

Recent Trends

The pragmatist knows that doubt is an art which has to be

acquired with difficulty.

C. S. Peirce

Overview

As we look back over the last three decades, the period reveals several
emerging characteristics. Centers of significant mathematical activity
spread to Asia, and mathematical communication became speedier and
worldwide, in large part with help of the Internet. The dominance of
purely abstract algebra gave way to topics that drew on more integrated
algebra-geometric techniques, studies in complex topological structures,
differential geometric systems, questions of stability, and others. Numer-
ous problems, including some long-standing open questions of note, were
solved with computers; complexity theory and other mathematical devel-
opments served to enhance computing power that was directed toward
mathematical problem solving. The length and the compound nature of
some of the best-known proofs led to questioning their validity, and the
mathematical community was divided on the question of what constitutes
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an acceptable proof. Prizes involving previously unmatched monetary
awards helped bring mathematical challenges to public attention by pub-
licity in media outlets that were not known to have dealt with mathe-
matical topics in the past.
We conclude this survey by considering aspects of four famous

problems solved during this period that illustrate a number of these
characteristics.

The Four-Color Conjecture

The four-color conjecture was first stated by Francis Guthrie (1831�1899),
an ex-student of Augustus De Morgan’s at University College who
earned a law degree but eventually returned to mathematics and received
an appointment as a professor in South Africa, where he also dis-
tinguished himself as a botanist. In 1852, while still a law student,
Francis Guthrie contemplated the coloring of maps. He requested his
brother Frederick, who by then was also a student of De Morgan’s, to
ask De Morgan about the validity of a conjecture that De Morgan for-
mulated in a letter to William Rowan Hamilton as follows:

A student of mine asked me today to give him a reason for a fact which

I did not know was a fact and do not yet. He says that if a figure be

anyhow divided and the compartments differently coloured so that figures

with any portion of common boundary line are differently coloured four

colours may be wanted, but not more.

Neither Hamilton nor others whom De Morgan approached had a solu-
tion for the “quaternions of color” problem. Among those who spent
some time on the puzzle were Charles Peirce in the United States and
Arthur Cayley in England. The latter brought it to the attention of the
London Mathematical Society in 1878 and the following year published
an analysis of the problem with the Royal Geographic Society. That same
year, Alfred Bray Kempe (1849�1922) announced in Nature that he had
a proof of the four-color conjecture.
Kempe had studied mathematics under Cayley at Cambridge and,

though entering the legal profession, devoted some of his time to
mathematics during most of his life. At Cayley’s suggestion, Kempe
submitted his proof to the American Journal of Mathematics, where it
was published in 1879. It created interest on both sides of the Atlantic;
Kempe offered more streamlined versions of his proof, and in Edinburgh
P. G. Tait even proceeded to publish two proofs of his own.
In the 1890s, two men called attention to the fact that Kempe’s proof

was flawed. One was de la Vallée Poussin, the other Percy John Heawood
(1861�1955), then a lecturer at Durham, where he subsequently became a
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professor of mathematics and a mainstay of the university. Kempe could
not fix the problem, informed the London Mathematical Society of the
flaw, and turned to other endeavors, for which he was elected a fellow and
treasurer of the Royal Society and knighted in 1912; he is best known for
his work on linkages. Tait’s proof, too, turned out to contain errors, as did
numerous attempts by other mathematicians who thought they could solve
this simple-sounding puzzle. Heawood, who had been the first to shatter
Kempe’s claim to a proof, showed that every map can be colored with five
colors and proceeded to work on map coloring for decades to come. His
investigations included maps on a variety of surfaces, and he managed to
connect the number of colors with the Euler characteristic of the surface.
In 1898, he also proved that if the number of edges around each region is
divisible by 3, then the regions can be colored with four colors. Numerous
generalizations of this theorem followed. Among those who published a
paper on the four-color conjecture generalizing Heawood’s work was the
noted American geometer Oswald Veblen (1880�1960). A year later, in
1913, his countryman George David Birkhoff published a memoir on
reducibility that would lay the basis for much work on the four-color
conjecture for decades to follow.
Most attempted proofs of the four-color conjecture used methods that

relied on three concepts: “Kempe chains,” “avoidable sets,” and “redu-
cibility.” “Kempe chains” were basic to Kempe’s approach. Suppose you
are given a map every region (“compartment”) of which, except for one,
is colored either C1, C2, C3, or C4. Let U be the exceptional region. If U is
surrounded by regions of fewer than four colors, then U can be assigned
the missing color, and all is well. If, however, regions R1, R2, R3, and R4,
colored C1, C2, C3, and C4, respectively, surround U, then either there is no
chain of adjacent regions from R1 to R3 alternately colored C1 and C3, or
there is such a chain. In the first case, let R1 be colored C3 rather than C1,
and likewise exchange all C1s and C3s in the chain of adjacent regions
joining R1. R3 is not in the chain, keeps its color C3, and so U can be
colored C1. In the second case, there can be no chain of alternating colors
C2 and C4 between R2 and R4. The same procedure used in the first
case now can be applied. What Kempe did not take into consideration was
the effect that interchanging the Ci in one chain may have on others in
some of the many cases he checked off.
Tait had introduced the idea of considering edges, and most twentieth-

century discussions of the four-color conjecture explained the attemp-
ted proof constructions in intuitively accessible graph theoretic terms.
This meant representing the regions of a map by vertices and joining
vertices of adjacent regions with an edge. The conjecture now states that
the vertices can be colored using four colors, with no two adjacent
vertices having the same color. This leads to the following definitions:
Let the graph representing the map be triangulated by adding suitable
edges to its faces. A portion of a triangulation within a circuit is called
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a configuration. A set of configurations such that any triangulation must
contain an element of the set is called unavoidable.
Suppose a graph cannot be four-colored. A configuration that cannot

be contained in a triangulation of the smallest such graph is called
reducible. In 1922, Philip Franklin (1898�1965), who had written a
doctoral thesis on the four-color conjecture under Veblen’s direction,
following Birkhoff’s analysis of reducibility, showed that a map with no
more than 25 regions can be colored with 4 colors; others increased the
number of regions to a maximum of 27 (1926), 35 (1940), 39 (1970), and
95 (1976). It was in the 1960s, however, that a new ingredient was added
to the mix that would result in a new kind of proof.
In 1969, the German mathematician Heinrich Heesch (1906�1995)

introduced a fourth concept: the method of discharging. This consists
of assigning to a vertex of degree i the charge 62i. (Every smallest
counterexample is a 6-connected triangulation.) Euler’s characteristic
implies that the sum of the charges over all of the vertices must be 12. A
given set of configurations can be proved unavoidable if for a triangula-
tion that does not contain a configuration in that set the charges can be
redistributed (without changing the total charge) so that no vertex ends up
with a positive charge.
Heesch thought that the four-color conjecture could be solved by

considering a set of around 8,900 configurations. He was unable to
follow through on his projected program because some of his config-
urations could not be reduced with available methods; he could not gain
access to adequate computer facilities in Germany, and German grant
support for collaborative work in the United States, which had enabled
him to make several trips to the University of Illinois and its “super-
computer” facilities, was withdrawn.
In 1976, Kenneth Appel and Wolfgang Haken at the University of

Illinois, using the concept of reducibility with the aid of Kempe chains,
followed through on Heesch’s discharge notion. They ended up con-
structing an unavoidable set with nearly 1,500 configurations. After
considerable trial and error, and good judgment tweaking their una-
voidable set and their discharging procedure, Appel and Haken used
1,200 hours of computer time to work through the details of a final proof.
Using a specially designed computer program, Appel and Haken

started by showing that there is a specific set of 1,936 configurations,
each of which cannot be part of a smallest-size counterexample to the
four-color theorem. In addition, any configuration must have a portion
like one of these 1,936 configurations. Appel and Haken concluded that
no smallest counterexamples existed because any must contain, yet not
contain, one of these 1,936 (later shrunk to 1,436) configurations. (In other
words, they had found an unavoidable set of reduced configurations.) This
contradiction meant there are no counterexamples at all, and the theorem
is true.
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The four-color theorem was the first major theorem to be proved
using a computer. Reducibility could be verified and counterchecked by
different programs and computers; the unavoidability portion was
checked by hand, the results ending up on 400 pages of microfilm. The
fact that the entire proof could not be verified line by line by hand raised
considerable doubts among mathematicians about whether it could be
considered a proof in the traditional sense. The Appel-Haken procedure
was subjected to scrutiny by numerous groups. Researchers on both sides
of the Atlantic corrected minor flaws and attempted simpler proofs. In
1977, Appel and Haken published the first of several explanations
of their methodology. A major, detailed explanation and guide through
their proof is found in their 1989 book-length publication.
We note two later contributions to the saga of computer-assisted

proofs that did much to quiet the occasionally vociferous doubts con-
cerning the validity of such proofs.
In 1997, Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin

Thomas published a simpler computer-assisted proof of the four-color
problem. They devised an improved algorithm and needed to check only
633 configurations. They pointed out that they used only 32 discharging
rules, as opposed to Appel and Haken’s 300-plus, and could avoid an
“immersion” problem in discharging by confirming a certain conjecture of
Heesch’s. This aspect of the A-H proof had appeared the most troublesome
to Appel and Haken’s critics. Both parts of the proof required a computer.

We should mention that both our programs use only integer arithmetic,

and so we need not be concerned with round-off errors and similar

dangers of floating point arithmetic. However, an argument can be made

that our “proof” is not a proof in the traditional sense, because it contains

steps that can never be verified by humans. In particular, we have not proved

the correctness of the compiler we compiled our programs on, nor have we

proved the infallibility of the hardware we ran our programs on. These

have to be taken on faith, and are conceivably a source of error. However,

from a practical point of view, the chance of a computer error that appears

consistently in exactly the same way on all runs of our programs on all the

compilers under all the operating systems that our programs run on is

infinitesimally small compared to the chance of a human error during

the same amount of case-checking. Apart from this hypothetical possibility

of a computer consistently giving an incorrect answer, the rest of our

proof can be verified in the same way as traditional mathematical proofs.

We concede, however, that verifying a computer program is much

more difficult than checking a mathematical proof of the same length.

[Robertson et al., 1997]

In addition, in 2005, the theorem was proved by Georges Gonthier of
Microsoft Research Cambridge and Benjamin Werner of INRIA with
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general-purpose theorem-proving software. Specifically, they verified the
Robertson, Sanders, Seymour, and Thomas proof using INRIA’s Coq
proof assistant that took away the task of having to check the various
computer programs that were previously used. Gonthier stressed that the
significance of their result lay in the fact that they had approached it as a
programming task, rather than as a mathematical one, and he questioned
whether future proof assistants should not be designed with the pro-
gramming environment in mind, rather than as an attempt to replicate the
mathematical form of a proof.

Classification of Finite Simple Groups

The classification of finite simple groups is embodied in the following
theorem:

Every finite simple group belongs to (is isomorphic to) at least one of the

following sets of groups:

The cyclic groups of prime order;

The alternating groups of degree at least 5;

The simple Lie groups, including the classical groups, as well as the

twisted Lie groups and the Tits group;

or is one of 26 sporadic simple groups.

This classification theorem differs from most theorems in several
respects. Some of the groups were discovered only after a classification
program was underway; the theorem was cobbled together from
numerous articles written by scores of mathematicians after the enter-
prise had begun, and it required general oversight and teams of verifiers
to confirm the validity of the component parts. Once the theorem could
be stated in its present form, a major effort was initiated to unify these
component parts, streamlining and replacing some of the individual
proofs so that the final theorem and its proof could give the appearance
of a cohesive whole.
Certain types of simple groups had been classified decades before the

general classification program was initiated. For example, Elie Cartan
and Wilhelm Killing (1847�1923) classified simple Lie groups in the
1890s, in conjunction with their classification of Lie algebras. The first
sporadic groups, known as the first five Mathieu groups, were discovered
by Émile Mathieu even earlier, when he studied transitive groups in the
1860s. There were other isolated results that would become part of
the classification theorem. What might have initiated a more systematic
approach to the study of abstract groups and of the classification of
simple groups was the work of William Burnside (1852�1927),
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especially after publication in 1897 of his volume on The Theory of
Groups of Finite Order, which was the first English-language textbook
on group theory.
In a series of papers published in the 1890s, Burnside set out to establish

whether, given a number N, a simple group of order N exists. The first of
these papers, published in 1893, contained a proof that the alternating
group A5 is the only finite simple group whose order is the product of four
primes. In another paper, he showed that if a group G of even order has a
cyclic Sylow subgroup, then G cannot be simple. He also conjectured that
every noncommutative finite simple group has even order.
It was Richard Brauer (1901�1977) who tied up several trends leading

to the classification theorem and first enunciated a program to reach that
goal. Among a few relevant highlights of his previous research, we note
his use of the groups that came to be known as “Brauer” groups in
studying the structure of simple algebras. These were Abelian groups
formed by the isomorphism classes of central division algebras over a
perfect field and were central to his study of the structure of simple
algebras. In 1937, in joint work with his doctoral student C. J. Nesbitt,
he used the theory of blocks that remained central in his later studies of
finite simple groups. About 1950, he began to work on an approach to
classifying all finite simple groups. At the 1954 International Congress
of Mathematicians in Amsterdam, he announced his program for this
classification and presented a significant result that would be included in
the joint paper “On Groups of Even Order” that he and another of his
doctoral students, K. A. Fowler, published the following year. This result
stated that there are only finitely many simple groups containing an
involution whose centralizer is a given finite group. Because a group of
odd order is without involutions, this is generally considered the clue
that helped establish the way for a classification program and—along
with intermediate results from Michio Suzuki (1926�1998) and Philip
Hall (1904�1982)—for the famous 255-page memoir by John Thompson
and Walter Feit (1930�2004), in which they proved that finite groups
having odd order are solvable or, equivalently, that every finite simple
group has even order.
In 1960�1961, the University of Chicago held a Group Theory Year.

Daniel Gorenstein (1923�1992), who would soon assume the role of
coordinating the efforts of those involved in the classification project,
cited this as his first encounter with the leaders in the field of simple
group theory. It was at this meeting that Walter Feit and John Thompson
first revealed the odd-order theorem, which lent an aura of feasibility to
the idea of a joint endeavor to settle the classification issue for simple
finite groups. It was obvious, however, that the project required coor-
dination. This, after initial guidance from Brauer, became Gorenstein’s
task. In accepting the Steele prize for exposition in 1989, Gorenstein
himself claimed that
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it was Aschbacher’s entry into the field in the early 1970s that irrevocably

altered the simple group landscape. Quickly assuming a leadership role in

a single minded pursuit of the full classification theorem, he was to carry

the entire “team” along with him over the following decade until the proof

was completed.

The challenge was threefold:

1. It was unclear how many groups would be involved; of the twenty-
six sporadic groups, only five were known; the others were dis-
covered in the course of the project, between 1965 and 1975;

2. The proofs were numerous and long; the Feit-Thompson proof of the
odd-order theorem took up 255 pages but was not the longest; there
were dozens of mathematicians adding hundreds more pages to
the project; verification would be a massive undertaking;

3. The research all seemed to be part of a closed system, with no
apparent external usefulness.

In answer to the criticisms, Gorenstein observed that “all the moves
we were making seemed to be forced. It was not perversity on our part,
but the intrinsic nature of the problem that seemed to be controlling the
directions of our efforts and shaping the techniques being developed.”
Despite all of these difficulties, Daniel Gorenstein felt it safe to

announce in 1983 that the classification had been completed. Verification
had shown up some gaps and minor flaws in some of the proofs, but
these had all been repaired. There was one major concern, however: there
appeared to be a more serious gap in the unpublished proof of the quasi-
thin case. Michael Aschbacher and Steve Smith came to the rescue by
2004, publishing their own two-volume proof of more than 1,200 pages
for this case. After 1985, a concerted effort to simplify and shorten
some of the earlier proofs began, which was partly successful because the
statement of the theorem was now known, as were the families of groups
involved. The final unified version of the proof was still estimated to take
up some 5,000 pages. Nevertheless, acceptance of the proof became more
widespread, and the proof was also made more palatable by the fact that
the classification theorem could be applied in other areas of mathematics.

Fermat’s Last Theorem

Fermat’s so-called Last Theorem asserts that the equation xn 1 yn 5 zn has
no nonzero integral solution for x, y, z when n. 2. In one of the most
famous marginal notations of history, Fermat’s copy of Diophantus’s
Arithmetica indicates that he has a proof, but the margin is too small to
contain it. As we have noted in previous chapters, among the well-known
mathematicians who attempted a proof was Euler, who is credited with
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a proof for n5 3, Sophie Germain and Legendre for n5 5, Dirichlet for
n5 5 and n5 14, and Lamé for n5 7.
In 1847, Lamé presented to the Académie des Sciences a purported proof

of the theorem based on factorization over the complex number field.
Liouville pointed out that this assumed unique factorization, which
prompted a flurry of attempts to prove unique factorization. Soon thereafter,
Kummer informed Liouville, and through him the Academy, of a paper
published three years earlier, in which he had shown that unique factor-
ization fails; he had found a way of circumventing the problem, however,
by the introduction in 1846 of “ideal complex numbers.” Kummer now
proceeded to prove Fermat’s theorem for regular primes. This naturally led
to establishing conditions for the regularity of primes. Later, in 1847,
Kummer proved that a prime p is regular if p does not divide the numerator
of any of the Bernoulli numbers B2, B4, . . . , Bp 3. He had also noted that
several primes do not meet this criterion. This now set up a new, longer-
lasting wave of excitement. For more than a century, there were attempted
proofs that some of the known irregular primes satisfied the equation and
that the number of regular primes is infinite. Eventually, computers were
called into action to show that the theorem holds for values of n up to 4
million—which, of course, still does not constitute a proof. There were
many faulty attempts, many amateurish efforts, but also work by serious
number theorists such as H. A. Vandiver (1882�1973), who spent many
research hours on the apparently intractable theorem.
Unexpectedly, the cavalry came to the rescue from the camp of elliptic

curves and modular forms. There was a conjecture, due to Goro Shimura
and Yutaka Taniyama (1927�1958), that every elliptic curve over the
rationals is modular. This conjecture had been known since the 1950s but
became more widely publicized after André Weil, who had praised Shi-
mura’s work in early reviews, brought supporting examples in 1967. It
was verified for numerous special cases. In 1985, Gerhard Frey, at that
time at the University of Saarbrücken, observed that if the conjecture were
true, this would imply Fermat’s Last Theorem. Serre pinned down this
observation (“all but ε”) with what came to be known as the ε-conjecture,
and within the same year, Ken Ribet, of the University of California at
Berkeley, proved the ε-conjecture and showed that the Taniyama-Shimura
conjecture need be true only for so-called semistable elliptic curves in
order for Fermat’s Last Theorem to hold.
In June 1993, Andrew Wiles gave a series of three lectures at the Isaac

Newton Institute in Cambridge. The third lecture appeared to show that
the Taniyama-Shimura conjecture is true for semistable elliptic curves.
One of the corollaries that Wiles wrote on the blackboard with the words
“I will stop here” was Fermat’s Last Theorem.
Wiles had been interested in Fermat’s theorem since he read about it at

the age of ten. After graduating from Oxford in 1974, he proceeded to
earn his doctorate at Cambridge University, having John Coates as his
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supervisor. By this time, he had read widely on the history of the Fermat
theorem and realized it would be unwise to pursue its proof as a thesis or
an alternate research project. Instead, he worked with John Coates on
the Iwasawa theory of elliptic curves and presented a dissertation
on “Reciprocity Laws and the Conjecture of Birch and Swinnnerton-
Dyer,” areas known to be among the most challenging of the time; his
doctorate was awarded in 1980.
Wiles learned about Ribet’s result in 1986. He described the event in

an interview on PBS’s NOVA program:

It was one evening at the end of the summer of 1986, when I was sipping

iced tea at the house of a friend. Casually, in the middle of a conversation,

this friend told me that Ken Ribet had proved a link between Taniyama-

Shimura and Fermat’s Last Theorem. I was electrified. I knew that

moment that the course of my life was changing because this meant

that to prove Fermat’s Last Theorem, all I had to do was to prove the

Taniyama-Shimura conjecture. It meant that my childhood dream was

now a respectable thing to work on. I just knew that I could never let that

go. . . . Nobody had any idea how to approach Taniyama-Shimura, but at

least it was mainstream mathematics. I could try and prove results, which,

even if they didn’t get the whole thing, would be worthwhile mathe-

matics. So the romance of Fermat, which had held me all my life, was

now combined with a problem that was professionally acceptable.

For the next seven years, Wiles focused intensely on the problem at
hand. He did not discuss it with friends or colleagues because he felt that
any mention of Fermat would cause too much interest and distraction.
Indeed, his 1993 lectures created a sensation that was surpassed only by
word that he had discovered a gap in his proof while preparing the three
lectures for publication. Experts quickly decided that his attempted proof
would go down in history as just another failed effort to settle the
question of Fermat’s Last Theorem. They were wrong. Within a year,
Wiles had fixed the proof. In 1995, “Modular Elliptic Curves and Fer-
mat’s Last Theorem” appeared in the Annals of Mathematics, together
with a supplement, coauthored by his student R. Taylor, “Ring-Theoretic
Properties of Hecke Algebras.”
Subsequently, building in part on Wiles’s work, in 1999 the full

Taniyama-Shimura conjecture was proved. Now a theorem, this pow-
erful statement would have significant consequences for number theory
and for the so-called Langlands program of conjectures concerning
number and representation theory.
From 1995 on, prizes, awards, and a knighthood poured on Wiles, who

was by this time firmly established at Princeton University. Ironically,
the chief award of the international mathematical community, the Fields
medal, was not one of them. As previously noted, this medal is awarded
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at the meetings of the International Congress of Mathematicians to
mathematicians below the age of forty for work done and the promise of
future achievements. Wiles had turned forty in April 1993.

Poincaré’s Query

In the decade from 1895 to 1904, Henri Poincaré published a series of
fundamental memoirs that laid much of the foundation for analysis situs,
otherwise known as combinatorial or algebraic topology. The initial,
introductory publication of 1895 appeared in the Journal de l’École
Polytechnique; more than 120 pages long, it was followed by a series of
additions and corrections that were spread among the publications of the
Circolo Matematico of Palermo, the London Mathematical Society, and
the Société Mathématique de France, along with supplements in the
Comptes rendus of the Académie des Sciences of Paris. As noted in
chapter 23, it was in these memoirs that Poincaré established relation-
ships between Betti numbers, the fundamental group, and other concepts
basic to homology theory.
In the second supplement (1900) to the 1895 memoir, Poincaré had

stated that every torsion-free polyhedron with Betti numbers equal to 1 is
simply connected. By the time of the fifth supplement in 1904, he produced
a counterexample that came to be known as “Poincaré’s homology
sphere”; it consisted of two suitably connected double tori. Although it can
be constructed in numerous different ways, Poincaré’s homology sphere is
still the only known three-dimensional manifold that has the same
homology as the 3-sphere without being homeomorphic to it. His coun-
terexample led Poincaré to close the memoir with the following query:

Is it possible that the fundamental group of [the manifold] V reduces to

the identity substitution and yet V is not simply connected [is not

homeomorphic to the 3-sphere]?

We note with interest that Poincaré’s query, unlike Newton’s queries in
his appendix to the Opticks, is not formulated in the negative, suggesting
a positive response, but as a neutral question. Nevertheless, this is the
statement that was to become famous as “Poincaré’s Conjecture.”
It was only in the 1930s, more than twenty years after Poincaré’s

death, that the question sparked substantial interest among topologists.
One of the first noted practitioners of this growing field who announced
that he had a proof of the Poincaré conjecture was J. H. C. Whitehead
(1904�1960). Deeper study showed him that he was mistaken.
In the process, he discovered some interesting examples of simply

connected noncompact 3-manifolds not homeomorphic to R3, the pro-
totype of which is now called the Whitehead manifold.

596 Re c en t Tr end s



Numerous topologists followed Whitehead in the unsuccessful quest
for an answer to Poincaré’s query. As an example, we mention three who
earned their degrees under the supervision of R. L. Moore (1882�1974)
in Texas: R H Bing (1914�1986), E. E. Moise, and Steve Armentrout.
Bing had some measure of success by proving a watered-down version
of the conjecture. In 1958, he established that if every simple closed
curve of a compact 3-manifold is contained in a 3-ball, then the manifold
is homeomorphic to the 3-sphere.
Although attempts to resolve the Poincaré conjecture for dimension 3

seemed to go nowhere, the question arose what could be said for higher
dimensions. Here, there are simply connected manifolds that are not
homeomorphic to an n-sphere. It did not seem that a homotopy n-sphere
exists that is homeomorphic to an n-sphere. In 1961, however, Stephen
Smale proved the so-called generalized Poincaré conjecture for dimen-
sions higher than 4; in 1982, Michael Freedman proved the conjecture
for dimension 4.
In the 1970s, William Thurston provided a conjecture on classifying

3-manifolds. He suggested that any 3-manifold can be uniquely divided so
that each part has one of eight specified geometries. One is quickly
reminded of the uniformization theorem for two dimensions where a
similar division involves three geometries. Thurston’s so-called geome-
trization conjecture became known in a set of lectures of 1980 and was
published in 1982. Although there was no obvious relationship between it
and the Poincaré conjecture, as John Morgan noted, Thurston’s work
helped build a growing consensus that the Poincaré conjecture, as well
as Thurston’s own conjecture, are true; by 2006, Thurston’s had been
confirmed for six of the eight geometries. The two remaining difficult
cases were those of spherical and hyperbolic geometries. Thurston devoted
himself to studies of the hyperbolic case, which has metrics of constant
negative curvature, as opposed to the spherical with metric of constant
positive curvature that would apply to the Poincaré conjecture.
In 1982, Richard Hamilton introduced the Ricci flow on a manifold.

The Ricci flow equation is considered a nonlinear generalization of the
heat equation. Hamilton showed that it could be used to prove special
cases of the Poincaré conjecture, but he encountered difficulties with
certain singularities, which kept him from a full proof of the conjecture.
Another twenty years would pass before the long-awaited proof
appeared—this time on the Internet.
The author of this unusual proof was one Grigori Perelman of

St. Petersburg, known to his associates as Grisha. He is the son of an
electrical engineer and a mathematics teacher. When he was sixteen, he
came to public attention by earning a gold medal at the Mathematical
Olympiad in Budapest. He attended St. Petersburg University, where
he received his doctorate, then obtained a position at the Steklov Insti-
tute, initially in the department of geometry and topology, then in the
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department of partial differential equations. He spent the years 1992 to
1995 in the United States, first at the Courant Institute and at Stony
Brook, then on a two-year fellowship at the University of California,
Berkeley. At the end of this period, after refusing several offers for
positions from American universities, he returned home and remained in
virtual seclusion from 1995 to 2002.
While at Berkeley, Perelman had gained a reputation for brilliance and

eccentricity. He produced much but published little. For a long time, he
appeared to have little interest in the Poincaré conjecture. This changed,
however, after he heard Hamilton repeatedly express his conviction that
the solution to solving the Poincaré problem would be found by someone
who could resolve the singularity issues tied to the Ricci flow. This
appealed to Perelman: something to be tackled as a problem in differential
equations by a person with a sound background in topology—a perfect
fit for himself. Without letting his colleagues suspect what had engaged
him for eight years, he ended his self-imposed exile in November 2002 by
putting on the arXiv Web site the first of three papers on Ricci flow. None
of the papers mentioned Poincaré or the conjecture by name; the fact that
he was also proving Thurston’s geometrization conjecture appeared only
as a casual mention in the first paper. He made no effort to submit the
papers for publication. Yet it was clear to specialists in the field what this
undertaking was all about, and very soon several experts began the task of
filling in details of Perelman’s sketchy proofs, all noting that these fol-
lowed within the framework of his own techniques.
Three years after Perelman’s third paper had been placed on the arXiv

Web site, the matter became very public. Earlier, there had been notices
in the mathematical literature that Perelman appeared to have a proof,
but that it had not yet been verified, although, between 2003 and 2005,
several workshops were held to study the three papers. Now, in 2006,
verification was at hand.
In May, Bruce Kleiner and John W. Lott placed a paper on the arXiv

Web site that took care of the details of Perelman’s proof for the difficult
geometrization conjecture.
In the June issue of the Asian Journal of Mathematics appeared a

paper by Huai-Dong Cao and Xi-Ping Zhu with a proof of the Poincaré
and the geometrization conjectures. On June 20, Shing-Tung Yau gave a
lecture on the Poincaré conjecture at an International Conference on
String Theory in Beijing, in which he praised his students Cao and Zhu
for having solved the conjecture, noting that Chinese mathematicians
had reason to be proud of this great success. Yau (b. 1949), a 1982 Fields
medal winner, has made major contributions to partial differential
equations, differential geometry, and mathematical physics. Based in the
United States, he has been a supporter of mathematics education in
China and in 2004 was honored for his contribution to Chinese mathe-
matics in the Great Hall of the People in Beijing.
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In July, John Morgan and Gang Tian provided a proof of the Poincaré
conjecture on the arXiv Web site, which appeared in book form the
following year.
In August, the International Congress of Mathematicians (ICM) met in

Madrid. It awarded the Fields medal to Perelman—but Perelman refused
to accept the award. This may not have come as a total surprise to those
who remembered that ten years earlier, he had refused a prestigious
award given by the European Mathematical Society. John Morgan, the
author of the proof posted the previous month, gave a talk about
the conjecture at the ICM, stating in no uncertain terms that Perelman
had solved the Poincaré conjecture. Meanwhile, the August issue of the
New Yorker contained a detailed article describing the Beijing Congress,
stressing Yau’s dismissive reference to Perelman, questioning his role in
the rapid acceptance of the Cao-Zhu paper, and portraying him in an
unflattering cartoon. Yau attempted to refute the article with a threatened
lawsuit, as well as several interviews and a clarifying publication.
Perelman, who had disproved the claim that he never spoke to reporters
by giving the New Yorker interviewers a pleasant tour of the sights of
St. Petersburg, resigned his position at the Steklov Institute and con-
tinued to live peacefully at home with his mother.

Future Outlook

Among its more notable aspects, contemporary mathematics has fea-
tured a resurgence of geometry, albeit in modern garb, and progress in the
settling of numerous famous problems. As the twentieth century drew to a
close, attitudes concerning the future of mathematics displayed neither
the pessimism of those late-eighteenth-century thinkers who stated that
most major problems had been solved nor the optimism of Hilbert at the
end of the nineteenth century, when he proclaimed that all problems
could be solved. Occasionally, it appears as if the dominant question is
whether mathematical problems should be solved. For mathematical
teaching and research in many sectors are caught between the Scylla and
Charybdis of those who condemn the subject because of applications that
make it a potential conveyor of human destruction and those who wish to
strip it of anything but its applications so as to render it more socially
useful, whether for medicine or war. Yet, history appears to support the
reflection of André Weil that “the great mathematician of the future, as
of the past, will flee the well-trodden path. It is by unexpected rap-
prochements, which our imagination would not have known how to arrive
at, that he will solve, in giving them another twist, the great problems
which we shall bequeath to him.” Looking ahead, Weil was also con-
fident of one further thing: “In the future, as in the past, the great ideas
must be simplifying ideas.”
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General Bibliography

In contrast to the chapter references, this section includes traditional and recent

works in a variety of languages. In general, books listed here pertain to more

than one or two of the chapters in this book.

Those seeking guidance to further reading should note that in addition to the

following bibliographical references, there are several periodicals that publish

abstracts of new or recent publications.We single outHistoriaMathematica, which

has a comprehensive, concisely annotated listing of recent works in the history of

mathematics at the end of each issue. The abstract editor, Albert C. Lewis, prepared

cumulative author and subject indexes covering volumes 1�13. These splendid

sources are found in volume 13, issue 4, and volume 14, issue 1, respectively.

Another readily available source is section 01 ofMathematical Reviews; in recent

years, especially, this has become very useful. The annual cumulative bibliography

of Isis is still the main source for publications in the history of science and

technology that may not appear in the more mathematically oriented journals.

For earlier work, May 1973 is very comprehensive and well indexed. It is

heavily based on reviews in Mathematical Reviews and the Jahrbuch über

Fortschritte der Mathematik. It omits the titles of journal articles, however; does

not always indicate the language of the material listed; and provides few

comments on individual listings. For that reason, the newcomer to the field is

better served by Dauben 1985, which is very selective but heavily annotated and

provides an easy, relatively portable guide to reading in specific areas and to

further bibliographical sources.

Readers interested in biographies arewell served by theDictionary of Scientific

Biography (Gillispie 1970�1980). We do not list here standard reference works,

such as the major “national” biographical dictionaries found in most libraries,

although they often contain useful information about mathematicians.
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The Internet provides many new and changing sources of materials. Although

these vary widely in reliability, the reader should be aware of one of the most

trustworthy sites: for years, John J. O’Connor and Edmund F. Robertson have

maintained the MacTutor History of Mathematics Archive at St. Andrews

University. Few reference sources equal it.

The availability of primary source material depends greatly on the size and

scope of the reader’s library. It is usually worthwhile to browse in the author

and serial indexes; even a small library may hold surprises. In recent years, there

has been a considerable increase in collected or selected works published. Also,

there have been more English-language translations of mathematical authors. For

the earlier periods, numerous English-language editions and translations have

been listed as part of our chapter bibliographies. For other source materials in the

English language, covering broader periods or topics, see Birkhoff 1973, Calinger

1982, Midonick 1985, Smith 1959, Struik 1986, and van Heijenoort 1967.

Many students of the history of mathematics are interested in solving

historical problems. This can be approached in two ways. One is to use the

techniques at the disposal of those with whom the problems are associated

historically; the other one is to use present-day methods. Often, it is instructive

to do both. Sometimes the two approaches coincide. One gains great under-

standing of our mathematical predecessors by the historical approach. This is

difficult to carry out, however, particularly for the period preceding Euler. To do

so, it is generally best to go back to the work of the author or the group with

whom we associate the problem. The original source is often not accessible;

many later translations, especially those of the Ancients, tend to distort the

problems by modernizing the language or the notation used by the original

author, a difficulty that is compounded in most modern secondary accounts. This

does not mean one should simply desist from historical problem solving; rather,

one should keep in mind the differences between a modernized approach and

the original and analyze one’s attacks on the problem accordingly. Conversely, it

can be enjoyable to take theorems or problems from a contemporary textbook

and consider to what extent they would have been meaningful to a mathema-

tician in a specified period and place of history or how they might have been

solved or proved by a certain group. Better yet, one can formulate one’s own

mathematical statements, proofs, and solutions in accordance with a historical

period or tradition. This is somewhat analogous to composing a rondo in the style

of Mozart and has similar drawbacks and advantages.

Readers interested in historical problems are referred to three types of

sources. First, there are primary sources; for the last century, at least, even

smaller libraries often contain old textbooks with problems and examples.

Recalling that our textbook tradition of problems dates back only a little more

than a century, we list Gregory 1846 and Scott 1924 in the following

bibliography. The former, which is scarce, illustrates the type of “examples”

that supplemented regular textbooks until after 1850. The latter, more readily

available, is a pioneering example of a “modern” textbook in its use of problems

that illustrate several areas of late-nineteenth-century mathematics. Then, there
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are problem collections. Dorrie 1965 and Tietze 1965 are examples of

collections of historical problems. Polya is an example of contemporary

problems, the historical roots of which frequently provide food for thought.

Finally, there are problems linked to historical accounts such as those in Burton

1985 and Eves 1983. These make clear the relationship to the source, but the

cautionary remarks about modernized adaptations apply to both.

American Mathematical Society. Semicentennial Addresses (New York:

American Mathematical Society, 1938).
Historical surveys by E. T. Bell and G. D. Birkhoff; other articles of interest.

Anderson, M., V. Katz, and R. Wilson, eds. Sherlock Holmes in Babylon and

Other Tales of Mathematical History (Washington, DC: Mathematical

Association of America, 2004).

Archibald, R. C. Outline of the History of Mathematics (Buffalo, NY: Slaught

Memorial Papers of the Mathematical Association of America, 1949).
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(New York: Arno Press, 1980; reprint of American Mathematical Society

1938 ed.).
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Ball, W. W. R. A History of the Study of Mathematics at Cambridge (Mansfield

Center, CT: Martino Publications, 2004; reprint of Cambridge University

Press 1889 ed.).
Still the most informative general work on the topic.

and H. S. M. Coxeter. Mathematical Recreations and Essays, 12th ed.

(Toronto: University of Toronto Press, 1974).
Very popular; contains considerable history; first edition in 1892.

Baron, M. E. The Origins of the Infinitesimal Calculus (New York: Dover,

1987; paperback reprint of 1969 ed.).

Bell, E. T. Men of Mathematics (New York: Simon and Schuster, 1965; seventh

paperback printing of 1937 ed.).
Readability exceeds reliability; assumes relatively little mathematical background.

. Development of Mathematics, 2nd ed. (New York: Dover, 1992;

paperback reprint of 1945 ed.).
Readable, opinionated account; especially useful for modern mathematics, for a reader with
mathematical background.

Berggren, J. L., and B. R. Goldstein, eds. From Ancient Omens to Statistical

Mechanics: Essays on the Exact Sciences Presented to Asger Aaboe

(Copenhagen: Munksgaard, 1987).

Birkhoff, G., with U. Merzbach, ed. A Source Book in Classical Analysis

(Cambridge, MA: Harvard University Press, 1973).
Eighty-one selections ranging from Laplace, Cauchy, Gauss, and Fourier to Hilbert, Poincaré,
Hadamard, Lerch, and Fejer, among others.
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Bochenski, I. M. A History of Formal Logic, trans. I. Thomas (Notre Dame, IN:

University of Notre Dame Press, 1961).

Bolzano, B. Paradoxes of the Infinite, trans. D. A. Steele (London: Routledge

and Kegan Paul, 1950).

Bonola, R. Non-Euclidean Geometry (New York: Dover, 1955; paperback

reprint of 1912 ed.).
Many historical references.

Bos, H. J. M. Lectures in the History of Mathematics (Providence, RI: American

Mathematical Society; London: London Mathematical Society, 1993).

Bourbaki, N. Elements of the History of Mathematics, trans. John Meldrum

(Berlin, New York: Springer-Verlag, 1994; reprint of 1974 French ed.).
Not a connected history but accounts of certain aspects, especially of modern times.

Boyer, C. B.History of AnalyticGeometry (NewYork: ScriptaMathematica, 1956.

. The History of the Calculus and Its Conceptual Development (New York:

Dover, 1959; paperback ed. of The Concepts of the Calculus).
The standard work on the subject.

Braunmühl, A. von. Vorlesungen über Geschichte der Trigonometrie, 2 vols. in

1 (Wiesbaden: Sandig, 1971; reprint of the B. G. Teubner 1900�1903 ed.).

Bunt, L. N. H., P. S. Jones, and J. D. Bedient. The Historical Roots of Ele-

mentary Mathematics (Englewood, NJ: Prentice Hall, 1976).
Topical treatment; all but the last chapter relates elementary mathematics to major works of
antiquity; the last chapter deals with numeration and arithmetic.

Burckhardt, J. J., E. A. Fellmann, and W. Habicht, eds. Leonhard Euler.

Beiträge zu Leben und Werk. Gedenkband des Kantons Basel-Stadt (Basel:

Birkhäuser, 1983).
A splendid, multilingual one-volume compendium.

Burnett, Charles, et al., eds. Studies in the History of the Exact Sciences in

Honour of David Pingree (Leiden: Brill, 2004).

Burton, D. M. The History of Mathematics. An Introduction, 6th ed. (New York:

McGraw-Hill, 2007; reprint of 1985 ed.).
An episodic, readable account, with many mathematical exercises.

Cajori, F. The Early Mathematical Sciences in North and South America

(Boston: Gorham, 1928).

. A History of Elementary Mathematics (Mineola, NY: Dover, 2004; rev.

and enl. reprint of the 1917 ed.).

. A History of Mathematical Notations, 2 vols. (New York; Dover Pub-

lications, 1993; reissue of 1974 ed., which was a reprint of 1928�1929 ed.).
The definitive work on the subject.

. A History of Mathematics (New York: Chelsea, 1985).
One of the most comprehensive, nontechnical, single-volume sources in English.
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Cajori, Florian. History of Mathematics in the United States (Washington, DC:

Government Printing Office, 1890).

Calinger, R., ed. Classics of Mathematics (Oak Park, IL: Moore Publishing,

1982, reissued 1995).

Calinger, R., with J. E. Brown and T. R. West. A Contextual History of

Mathematics: To Euler (Upper Saddle River, NJ: Prentice Hall, 1999).

Campbell, P., and L. Grinstein. Women of Mathematics. New York: Greenwood

Press, 1987.

Cantor, M. Vorlesungen über Geschichte der Mathematik, 4 vols. (Leipzig:

Teubner, 1880�1908).
The most extensive history of mathematics so far published. Enestrom's corrections in Bibliotheca
Mathematica should be used in conjunction. Some volumes are in a second edition, and the whole
is available in a reprint.

Carruccio, E. Mathematics and Logic in History and in Contemporary Thought,

trans. I. Quigly (New Brunswick, NJ: Aldine, 2006; reissue of 1964 ed.).
An eclectic survey. Italian authors predominate in the bibliography.

Chasles, M. Aperçu historique sur I’origine et le developpement des méthodes

en géométrie, 3rd ed. (Paris: Gauthier-Villars, 1889).
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Clagett, M. Greek Science in Antiquity (New York: Collier, 1996).

Cohen, M. R., and I. E. Drabkin, eds. A Source Book in Greek Science

(Cambridge, MA: Harvard University Press, 1958; reprint of the 1948 ed.).
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Essays in Honor of Dirk J. Struik (Dordrecht & Boston: D. Reidel, 1974).
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NJ: Wiley-Interscience, 2005).

Coolidge, J. L. History of the Conic Sections and Quadric Surfaces (Oxford:

Clarendon, 1945).

. A History of Geometrical Methods (New York: Dover, 1963; paper-

back reissue of 1940 ed.).
An excellent work presupposing mathematical background.

. The Mathematics of Great Amateurs (New York: Dover, 1963;

paperback reprint of 1949 ed.).

Dantzig, T. Mathematics in Ancient Greece (Mineola, NY: Dover, 2006; for-

merly The Bequest of the Greeks, Greenwood, 1969, which was a reprint of

the 1955 Scribner ed.).
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Selective Bibliography (New York and London: Garland, 1985).
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(San Diego: Academic Press, 1996).
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Knobloch, Merzbach, Neumann, Schneider, Scriba, and Vogel.
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1981).

Demidov, S. S., M. Folkerts, D. E. Rowe, and C. J. Scriba, eds. Amphora:

Festschift für Hans Wussing zu seinem 65. Geburtstag (Basel/Berlin/Boston:

Birkhäuser, 1992).

Dickson, L. E. History of the Theory of Numbers, 3 vols. (New York: Chelsea,

1966; reprint of 1919�1923 Carnegie Institution ed.).
Definitive source survey, arranged by topics.

Dieudonné, J. A., ed. Abregé d’histoire des mathématiques 1700�1900, 2 vols.

(Paris: Hermann, 1978).
Reliable mathematically oriented treatment of topics leading to present-day mathematics.

. History of Algebraic Geometry, trans. J. D. Sally (Monterey, CA:

Wadsworth Advanced Books, 1985).
Excellent mathematically oriented presentation using contemporary terminology and notation.

Dold-Samplonius, Yvonne, et al., eds. From China to Paris: 2000 Years

Transmission of Mathematical Ideas (Stuttgart: Steiner Verlag, 2002).

Dörrie, H. 100 Great Problems of Elementary Mathematics: Their History and

Solution, trans. D. Antin (New York: Dover, 1965).

Dugas, R. A History of Mechanics (New York: Central Book Co., 1955).
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(New York: Wiley, 1990).
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Johns Hopkins University Press, 2003).

Edwards, C. H., Jr. The Historical Development of the Calculus (New York/

Heidelberg: Springer-Verlag, 1979).

Edwards, H. M. Fermat’s Last Theorem. A Genetic Introduction to Algebraic

Number Theory (New York: Springer-Verlag, 1977).
Carefully crafted introduction to the work of some major figures in the history of algebraical
number theory; a model of the genetic method.

Elfving, G. The History of Mathematics in Finland 1828�1918 (Helsinki:

Frenckell, 1981).

Encyclopédie des sciences mathématiques pures et appliquées (Paris: Gauthier-

Villars, 1904�1914).
Essentially a partial translation of the following, left incomplete because of the advent of World
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Encyklopaedie der mathematischen Wissenschaften (Leipzig: Teubner,
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Engel, F., and P. Stäckel. Die Theorie der Parallellinien von Euklid bis auf Gauss,

2 vols. in 1 (New York: Johnson Reprint Corp., 1968; reprint of the 1895 ed.).

Eves, H. An Introduction to the History of Mathematics: With Cultural

Connections by J. H. Eves, 6th ed. (Philadelphia: Saunders, 1990).
A notably successful textbook.

Folkerts, M., and U. Lindgren, eds. Mathemata: Festschrift für Helmuth

Gericke (Stuttgart: Franz Steiner, 1985).
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1968; reprint of the 1843 ed.).
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Scribner, 1970�1980).
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1980 ed.).
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Poincaré (Boston: Birkhäuser, 1985).
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London, England: London Mathematical Society, 2008).
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Marie, M. Histoire des sciences mathématiques et physiques, 12 vols. (Paris:

Gauthier-Villars, 1883�1888).
Not a systematic history, but a series of biographies, chronologically arranged, listing the chief
works of the individuals.

Gene ra l B ib l i o graph y 641



May, K. O. Bibliography and Research Manual of the History of Mathematics

(Toronto: University of Toronto Press, 1973).
Very comprehensive; see introductory comments to this bibliography.

Mehrtens, H., H. Bos, and I. Schneider, eds. Social History of Nineteenth

Century Mathematics (Boston/Basel/Stuttgart: Birkhäuser, 1981).
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Tannery, P.Mémoires scientifiques, 13 vols. (Paris: Gauthier-Villars, 1912�1934).
These volumes contain many articles on the history of mathematics, especially on Greek antiquity
and on the seventeenth century, by one of the great authorities in the field.

Tarwater, J. D., J. T. White, and J. D. Miller, eds. Men and Institutions in

American Mathematics, Texas Tech University Graduate Studies No. 13

(Lubbock: Texas Tech Press, 1976).
Bicentennial contributions by M. Stone, G. Birkhoff, S. Bochner, D. J. Struik, P. S. Jones, C.
Eisele, A. C. Lewis, and R. W. Robinson.

Taylor, E. G. R. The Mathematical Practitioners of Hanoverian England

(Cambridge, UK: Cambridge University Press, 1966).

. The Mathematical Practitioners of Tudor and Stuart England,

1485�1714 (Cambridge, UK: Cambridge University Press, 1954).

Thomas, I., ed. Selections Illustrating the History of Greek Mathematics, 2 vols.

(Cambridge, MA: Loeb Classical Library, 1939�1941).
Tietze, H. Famous Problems of Mathematics (New York: Graylock, 1965).

Todhunter, I. History of the Calculus of Variations during the Nineteenth

Century (New York: Chelsea, n.d.; reprint of the 1861 ed.).
Old but a standard work.

. A History of the Mathematical Theories of Attraction and the Figure of

the Earth (New York: Dover, 1962; reprint of 1873 ed.).

. A History of the Mathematical Theory of Probability from the Time

of Pascal to That of Laplace (New York: Chelsea, 1949; reprint of the

Cambridge 1865 ed.).
A thorough and standard work.

. A History of the Theory of Elasticity and of the Strength of Materials,

2 vols. (New York: Dover, 1960).

Toeplitz, O. The Calculus, a Genetic Approach (Chicago: University of

Chicago Press, 1963).

Tropfke, J. Geschichte der Elementarmathematik, 2nd ed., 7 vols. (Berlin and

Leipzig: Vereinigung wissenschaftlicher Verleger, 1921�1924).

Gene ra l B ib l i o graph y 645



An important history for the elementary branches. Some volumes appeared in an incomplete third
edition.

Truesdell, C. Essays in the History of Mechanics (Berlin/Heidelberg: Springer-

Verlag, 1968).

Turnbull, H. W. The Great Mathematicians (New York: NYU Press, 1969).

Van Brummelen, G. The Mathematics of the Heavens and the Earth: The

Early History of Trigonometry (Princeton, NJ: Princeton University Press,

2009).

Van Brummelen, G., and M. Kinyon, eds. Mathematics and the Historian’s

Craft: The Kenneth O. May Lectures (New York: Springer, 2005).
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postulates vs., 94�95

Babbage, Charles, 295, 461, 462, 561
Babylonian mathematics, 21�39, 40, 41, 43, 45,

47, 48, 51, 52, 64, 70, 77, 93, 105, 107,
113, 147, 152, 156, 157, 159, 161, 163,
178, 180, 191, 192, 196�197, 208, 211,
259, 369

Bachet, Claude Gaspard de, 326, 328
Bacon, Francis, 280
Bacon, Roger, 223, 235
Baghdad, 205�206, 210, 213
Baire, René, 565
Baker, Alan, 562
Banach, Stefan, 574
Barrow, Isaac, 348, 356�358, 362, 363, 364,

382, 384, 390
Basel, University of, 397, 399, 407
bases, number, 3�6, 60
Bayes, Thomas, 444
Bede, Venerable, 224, 225
Beijing Congress (2004), 598, 599
Beltrami, Eugenio, 421, 497, 500
Berkeley, George, 378�379, 381
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Berlin
Academy of Sciences, 372, 389, 407, 414,

416, 420, 426, 427, 432, 534
University of, 469, 515, 521, 528, 529,

531�533, 542
Berlin papyrus, 9
Bernays, P., 564
Bernoulli, Daniel, 397, 398, 406, 407, 411, 415,

416, 429, 450
Bernoulli, Jacques, 339, 373, 390�400, 403,

405, 406, 410, 411
Bernoulli, Jean, 373, 375, 378, 390�400, 404,

405, 406, 410, 411, 413
Bernoulli, Jean II, 397
Bernoulli, Nicolaus, 373, 397, 403, 406,

407, 416
Bernoulli genealogical chart, 391
Bertrand, L. F., 467�468
Bessarion, B., 246�247
Bessel, F. W., 458
Betti, Enrico, 553, 596
Bézout, Etienne, 427�429, 433, 446
Bézout theorem, 377
Bhaskara, 199�202
binary system, 3, 6, 388�389, 575
Bing, R H, 597
binomial theorem, 184�185, 196, 222, 353,

354, 360�363, 384, 387, 393, 475
Biot, Jean Baptiste, 437, 438, 484
Birkhoff, George David, 545, 577, 588, 589
Biruni, al , 122, 186, 188, 189, 191,

217�218
Black Death, 244, 245
blocks, theory of, 592
Blumenthal, Otto, 577
Bobillier, Étienne, 491
Bôcher, Maxime, 545
Boethius, 171�172, 224, 225, 233, 237, 249
Bologna, University at, 235, 256, 257, 263, 286,

303, 339, 497
Bolyai, Farkas, 471, 494�497, 535, 560
Bolyai, Janos, 495�496, 497
Bolzano, Bernhard, 457�458, 488, 522, 523,

526, 534, 535, 538, 539, 560
Bolzano Weierstrass theorem, 534
Bombelli, Rafael, 260�262, 285
Bonaccio, 229
bookkeeping, double entry, 252, 283
Book of the Dead (Egypt), 1
Boole, George, 506�509, 519, 523, 556, 560
Borel, Armand, 579, 583
Borel, Émile, 565, 566, 574
Bosse, Abraham, 3323
bounds, 575�576
Bouquet, Jean Claude, 459, 532, 543, 551
Bourbaki, Nicolas, 578�580, 582
Bowditch, Nathaniel, 530
brachistochrone, 371, 392, 396
Bradwardine, Thomas, 237�238, 244, 262
Brahe, Tycho, 279, 287, 298

Brahmagupta, 197�208, 214, 216, 217
Brauer, Richard, 571, 577, 592
Brianchon, Charles Jules, 484, 486
Briggs, Henry, 282, 288�289, 292,

295, 348, 355
Bring, E. S., 398
Briot, C. A., 459, 532, 543, 551
British Association for the Advancement of

Science, 462, 506
“broken bamboo” problem, 176�177, 201
broken chord theorem, 122
Brouncker, William, 355�356
Brouwer, L. E. J., 534, 562, 569, 571
Bruhat, François, 579
Brunelleschi, Filippo, 266
Brunswick, Duke of, 465, 466, 471
Buffon, Georges Louis Leclerc, Comte de,

397�398
Buffon Laplace needle problem, 444
Bürgi, Jobst, 282�283, 285, 289�290, 291
Burnside, William, 591�592
Byerly, William Elwood, 545
Byzantium, 126�127, 173�174, 193, 205, 223,

226, 245

calculating machine, 290�295, 333, 461, 575,
582. See also computer

Calculator (Richard Suiseth), 241�242
calculus, 73, 115, 125, 323, 341, 375, 431,

439�440, 455�462
controversies about, 378�379, 398�399,

400, 401, 462
differential, 114, 323, 326, 357, 358, 365,

381, 383, 385�395, 401, 409, 414, 426,
455�456, 459, 572, 573

discovery of, 323, 362�368, 382�383,
385�387, 389, 399

exponential, 396
fundamental theorem of, 326
generalization of, 575
integral, 82, 83, 117�118, 298, 358, 365,

386, 388, 390, 395
name origin of, 386, 392
See also variations, calculus of

calendar, 4, 10, 224
California, University of, Berkeley, 594, 598
Cambridge, University of, 235, 262, 271, 348,

356, 358, 370, 377, 517, 529, 530, 587,
594

Isaac Newton Institute, 594
King’s College, 584
St. John’s College, 517
Trinity College, 358, 359, 461, 509, 515, 517,

520
Campanus of Novara, 234, 235, 249
Cantor, Georg, 238, 509, 523, 525, 533, 536,

538�542, 552, 557, 560, 564, 570
theory of sets, 534, 542, 543, 565, 569

Cantor Dedekind axiom, 537
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Cantor Heine development, 536
Cao, Huai Dong, 598, 599
Cardan, Jerome, 221, 255�260, 261, 264, 298,

334, 370, 409
Carmichael, R. D., 577
Carnot, Hippolyte, 439
Carnot, Lazare, 423, 428, 430, 431, 438�443,

446, 449, 483, 484, 505
Carnot, Sadi, 439
Carroll, Lewis. See Dodgson, C. L.
Cartan, Elie, 571, 573, 591
Cartan, Henri, 578, 580
Cartesianism. See Descartes, René
Cartier, Pierre, 579
cartography, 138, 155�156, 269�271
four color problem, 587�591

Cassiodorus, 224
Castelli, Benedetto, 306
Castelnuovo, Guido, 502, 581
casting out nines, 197
Cataldi, Pietro Antonio, 355
category theory, 580�581
catenary, 302, 346, 391
catoptrics. See reflection, law of
Cauchy, Augustin Louis, 452�461, 475,

477, 478, 479, 482, 485, 494,
517, 532, 534, 535, 536, 538, 543,
544, 551, 560

Cauchy integral theorem, 459�460, 568
Cauchy Kowalewski theorem, 459
Cauchy Riemann equations, 426, 496, 528
Cavalieri, Bonaventura, 303�306, 307, 324,

329, 339, 352, 354, 356, 358, 392
Geometria Indivisibilibus, 299, 303�305,

349
Cavalieri’s principle, 73
Cayley, Arthur, 436, 489, 493�494, 498, 502,

515�517, 556, 587
celestial mechanics. See astronomy
Ceva, Giovanni, 402�403
chain conditions, 522, 571
Champollion, Jean François, 9, 10
chance, laws of. See probability
change, rate of, 236, 359
Charlemagne, 224�225
Chasles, Michel, 487
Chebyshev, Pafnuty Lvovich, 415, 468,

574, 575
Chevalier, A., 480
Chevalley, C., 562, 578
Chicago, University of, 578, 592
Chinese mathematics
ancient, 175�182, 192, 195, 197, 202, 277
contemporary, 598�599
medieval, 182�185, 219�220, 222

chi square test, 574
Chou Pei Suan Ching, 175�176, 182
Christoffel, E. B., 572
Chuquet, Nicolas, 249�253, 261, 262
Church, A., 584

cipherization, 11
ciphers, 178, 191, 192, 193, 249
circle, 78, 264, 297, 338
arc chord ratio, 145�153, 189
Archimedean measurement of, 113, 235
area of, 15, 16, 35, 59, 101, 106, 117, 176,

190, 201, 298
circumference of, 113, 152, 190, 202
conchoid of, 316, 332
Cotes’s property of, 376
diameter bisection of, 43
Euclidean geometry of, 95, 101, 153
nine point, 486
properties of, 486
radius of, 152
squaring of, 57�61, 63, 74, 80, 87�88, 114,

165, 172, 243, 313, 338�339, 347, 354,
387, 421, 546

360 degree, 151�152
“Circle of Apollonius,” 128, 280
Clagett, Marshall, 239
Clairaut, Alexis Claude, 401�402, 419,

435, 472
Clairaut le cadet, 402
classification theorem, 591�593
Clavius, Christopher, 286, 309
Clebsch, Alfred, 502, 554, 556
Clifford, William Kingdon, 514,

519�520
Coates, John, 594�595
Cohen, Paul, 560
Colbert, Jean Baptiste, 337
Collège de France, 450, 546
Collège de Navarre, 271, 429
Collins, John, 353, 364, 382
color, nature of, 360, 367
Columbus, Christopher, 155, 252
Commandino, Federigo, 272
compass, invention of, 235
compasses
Euclidean, 95
Galilean, 291�292
polygon construction with, 465

complexity theory, 586
compound interest, 393
computation, aids to. See abacus; adding

machine; calculating machine;
computer; slide rule

computer, 582�584, 586, 589�591, 594
Condorcet, Nicolas, 423, 424,

429�430, 434
congresses. see international mathematical

congresses
conic sections, 2, 85�87, 91, 115�118,

123, 130�141, 165, 168, 170,
218, 219, 265, 296�302, 317�318,
322, 331�334, 337�338, 367, 377,
437, 498

arithmetization of, 349�350
continuity principle, 197, 331
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conic sections (continued)
definitions of, 131, 132, 340, 349
equation of, 419
intersecting, 120, 137�140
magna problema, 334
nomenclature change, 131
projections, 484, 485�487
refraction, 511
See also ellipse; hyperbola; parabola

connection, concept of, 572, 573
conoid, 351�352
Conon of Alexandria, 114
conservation laws, 564
Constantinople, 173�174

mathematical palimpsest, 126�127
contact, angle of. See angle, horn
continuation, analytic, 474, 532
continuity, 68, 70

axiom of, 81�83, 212
definition of, 456, 457, 537, 569
Kepler’s principle of, 297, 330, 331
of line segment, 536�538
of magnitudes, 70, 238, 526
of points, 569, 570
Poncelet’s principle of, 485�486
of quantity, 239
See also functions, continuous

continuum, real number, 560
contraries, concordance of, 243
convergence, 404�405, 412�413, 452, 468,

532�536
definition of, 457, 458
tests of, 458, 459, 468
uniform, 459, 468, 532

Coolidge, Julian Lowell, 486
coordinates, 141, 240, 340

barycentric, 490�491
Bernoulli, 392�393, 400
bipolar, 368
Cartesian, 319�320, 369, 420, 491, 493
curvilinear, 544
Euler, 419
of fourth degree surface, 341
homogeneous, 490�494
imaginary, 493
intrinsic, 442
negative, 317, 324, 368
polar, 368�369, 392�393, 399�400, 402,

404, 419, 487
trilinear, 490

Copernicus, Nicholas, 49, 154, 221, 262,
263�264, 300

Coq proof assistant, 591
correspondence

one to one, 2, 303, 457, 523, 537, 539
rule of, 452, 487

Cosali, Giovanni di, 239
cosines

law of, 100, 264, 441
power series, 202

“cosmic figures,” 45
cosmogony, 552
cosmology. See astronomy
Cotes, Roger, 375�376, 401, 410, 519
Coulomb, Jean, 578
counting, 1, 2�4, 5, 10, 55, 224
counting board. See abacus
Courant, Richard, 577
Craig, John, 287
Cramer, Gabriel, 379�381, 429
Cramer Euler paradox, 377, 490
Cramer’s rule, 379�380, 428
Crelle, August Leopold, 452, 463, 473, 475,

476, 480, 492, 494, 498, 514, 515, 531,
536, 539, 541

Cremona, Luigi, 488�489, 497
cryptananalysis, 584
cube, 45, 78, 106, 143, 160, 327
Babylonian tables, 26
Cartesian parabola, 314
duplication of. See Delian problem

cube root, 180, 260�261, 276
irreducible case, 361

cubic
Tschirnhaus, 399
curves, 369�370, 376
See also equations, cubic

cuneiform tablets, 22�39, 41, 152
curvature
curves of double, 253, 402, 472
Gaussian, 472, 473

curve of Hippias. See quadratrix of Hippias
curves, 88, 170, 265, 267, 302, 377, 421, 434,

441�442, 472, 497
area under, 324�325, 363
birational transformations, 502�503, 554
classification of, 169, 314�317
continuity of, 457, 525
cubic, 369�370, 376
cycloidal, 343�345, 392
definition of, 84
determination of, 368
differential geometry, 472
distribution of, 374
dual origin of, 487, 492
elliptic, 594, 595
Euler theory of, 419�420
gauche. See curvature, curves of double
intersection of, 429
involutes and evolutes of, 345�347
length of, 298, 351
logarithmic spiral, 392�393
minimal, 563
Newton graphs of, 368
nonalgebraic, 347
order of, 492�493
Pappus problem, 168�169, 314�315
parametric representation of, 419�420
plane coordinates of, 134, 168, 347
Plücker’s equations, 492�493
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points of inflection, 342
polar coordinates of, 399
properties of, 131, 133�134, 140�141, 318
of quickest descent, 371
rank of, 554
rectification of, 307, 315�316, 346�347,

351, 353, 395, 403
representation of, 240, 307
rose petal, 404
sine, 329�330
spiric sections, 168
tangents to, 114, 135�136, 306, 307,

318�319, 323�324, 329, 330, 333, 342,
345, 354, 384, 442

velocity time, 240
See also measurement, curvilinear

cybernetics, 583
cycloid, 302, 306, 329, 343�346, 351, 371, 420
Pascal contest, 336, 343, 347, 351, 384

d’Alembert. See Alembert, Jean Le Rond d’
Darboux, Gaston, 573
Darwin, Charles, 552, 574
Darwin, George H., 552
Debeaune, Florimond, 326, 340
decimal point, 252, 286
decimal system, 3, 5, 10, 23, 25, 27, 56, 178,

180
numeration, 53, 54, 191�192, 193, 286
See also fractions, decimal

DeDecker, Ezechiel, 289
Dedekind, Richard, 520�521, 522, 527, 533,

536�539, 541, 542, 554, 555, 557,
571, 576

Dedekind cut, 537, 538
deduction, 156, 310, 558
origin of, 70�72

Dehn, Max, 561
Delamain, Richard, 293
Delambre, J. B. J., 471
Delian problem, 58, 61, 64�65, 74, 84, 86�87,

120, 310, 313, 319
Deligne, Pierre, 582
Delsarte, Jean, 578
Democritus of Abdera, 42, 56, 72�74, 123
De Moivre, Abraham, 372�376, 379, 401, 410
De Morgan, Augustus, 229, 506, 507, 508,

509�510, 514, 515, 517, 587
Demosthenes, 89
Denjoy, Arnaud, 567
derivative, 431, 442, 459
definition of, 456, 457, 569

Desargues, Girard, 297, 308, 330�332, 333,
337, 485�486, 487, 491, 514

Descartes, René, 107, 137, 169, 219, 275, 307,
308, 309�320, 326, 329, 330, 331, 337,
338, 339, 342�343, 345, 346, 349, 350,
358, 366, 367, 386, 388, 401, 402, 409,
420, 434, 460, 491, 493

Discours de la méthode, 310, 311, 313
folium of, 324, 369
La Géométrie, 272, 286, 311�322, 339�340,

341, 342
ovals of, 318�319, 368
rule of signs, 261, 319, 371

Descartes Euler number, 553
determinants, 387�388, 428�429, 436,

453�454, 493�494, 515, 519, 575
definition of, 453
functional, 454, 478
name derivation, 453

Dettonville, Amos, 384
deviation, angle of, 442
de Witt. See Witt, Jan de
diameters, conjugate, 134�136
Diaz, Juan, 276
Dickson, Leonard Eugene, 570�571
Diderot, Denis, 425, 429
Dieudonné, Jean, 548, 578
difference engine, 295
differential, 564, 573, 581. See also calculus,

differential
differential equations, 392, 427�431, 446, 454,

466, 509, 574
automorphic functions, 550�551
Bernoulli, 415
Cauchy Lipschitz, 459
Cauchy Riemann, 426, 496, 528
d’Alembert, 415, 426, 427
Euler, 414�415
given monodromy group, 563
hypergeometric, 532
Kutta Runge, 575
Laplace, 444
Legendre, 447
linear, 509, 530, 532
partial, 415, 427, 454, 459, 529, 544, 551
Poincaré, 550�551, 553
Poisson brackets, 461
Riccati, 403, 415
second order ordinary, 544

differentiation
assumption of, 561�562
distributions of, 574
Fermat, 322�325, 326, 409
Newton, 362, 363, 365

dimensions
three, 266, 267, 493�494, 512, 513�514
four, 493�494, 498

Dinostratus, 63, 75, 84, 87�88
Dionysius, 65
Diophantine equations. See equations,

Diophantine
Diophantus of Alexandria, 55, 160�164, 169,

171, 173, 174, 199�200, 206, 207, 231,
247, 285, 323, 328, 554, 562

Arithmetica, 160, 161�164, 217, 277,
326, 593

problem of, 181
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Dirac delta function, 574, 575
Dirichlet, P. G. Lejeune, 450, 452, 459,

461�463, 468, 470, 480, 482, 497,
521, 522, 527�533, 534, 538, 542,
544, 555, 593

Dirichlet principle, 532, 533, 563
discharge notion, 589
distribution, 102, 374, 461, 574�575
divine proportion, 267
division

Babylonian, 27
Egyptian, 12
Euclid’s algorithm, 103
galley, 195�197
long, 195�197
symbol for, 274
by zero, 200

Dixmier, Jacques, 579
dodecahedron, 45, 65, 75, 78, 106, 107

Apollonian proof, 129
Dodgson, C. L. (Lewis Carroll), 520
Douglas, Jesse, 585
Du Bois Reymond, Paul, 529
Dubreil, Paul, 578
Duilier, Nicolas Fatio de, 372
Dupin, Charles, 484
Dürer, Albrecht, 264, 267�268

earth, size and shape of, 143�144, 552
eccentricity, 129, 130, 154
École Militaire de Mezières, 433, 438
École Normale, 430, 435, 450, 479, 546
École Polytechnique, 293, 430, 435�437, 439,

449, 450, 452, 454, 455, 460, 479, 484,
485, 487, 491, 501, 546, 550

E conjecture, 594
econometrics, 583
Ecphantus, 63
Eddington, A. S., 572
Edinburgh Mathematical Society, 548
Edinburgh University, 356, 376
Egypt, mathematics in ancient, 8�20, 21�25,

32, 35, 36, 38�41, 43, 45, 48, 53, 55, 73,
118, 159, 173. See also Alexandria

Ehresmann, Charles, 578
Eilenberg, Samuel, 579, 580�581
Einstein, Albert, 528, 564, 572
Eisenstein, Ferdinand Gotthold, 462, 469,

474
elasticity, 454, 461, 469
elimination, 428�429
ellipse, 116, 131�134, 139, 140, 173, 296, 297,

318�319, 340, 349, 366, 403
area of, 117, 298
Copernican theorem, 264
discovery of, 84�86
quadrature of, 353, 354

ellipsoid, 125, 420
Engel, F., 514

Enriques, Federigo, 502, 581
Entscheidungsproblem, 584
epicycle, 129, 130, 154, 221
epicycloid, 267
equality sign, 261�262, 274, 276, 311�312,

388, 510
equant, 154
equations
approximate solution. See Horner’s method
Bernoulli, 392
cubic, 30�31, 120, 173, 218�219, 231,

255�261, 273, 275�277, 280, 310, 313,
371, 398

determinate, 161�162, 318, 319,
321�322, 387

differential. See differential equations
Diophantine (indeterminate), 162�164,

199�200, 217, 232, 554, 562
hyperbolic, 132, 134, 529
hypergeometric, 532
integral, 563�564, 568
Laplace, 445
linear, 13, 28, 71, 173, 199, 200, 321,

414�415, 432, 509, 530, 532
Pell, 121, 163, 199�200, 201�202
polynomial, 370, 398, 399, 426, 432, 481,

517�518, 521, 582
potential, 544
quadratic, 29�30, 47, 70, 93, 102, 105,

128, 131, 157, 198�202, 207�209,
212, 217, 218, 233, 249, 255, 259,
274, 312, 313, 420

quartic, 255, 259�260, 273, 277, 310
quintic, 260, 398, 432, 475, 481, 547
representation of, 274�275
rule of signs, 261, 319, 371
simultaneous, 121, 163, 176, 379�380,

428
third degree, 218�219
trigonometric solution, 280�281
Tschirnhaus transformations, 398�399
wave, 528�529, 530, 544

Eratosthenes, 87, 123, 143�144, 145, 155,
160, 170

sieve of, 144, 160
Erlanger Program, 514
Erlangen, University of, 499, 502, 556
error theory, 374, 460, 471
Euclid of Alexandria, 43�44, 48, 59, 71, 80,

90�108, 111, 130, 153, 158, 161, 164,
168, 170�173, 187, 205, 213, 226, 227,
233�237, 242, 272, 356, 358, 400, 409,
412, 418, 440�441, 468, 469, 487,
499�500, 546, 558, 570, 579

fifth postulate of. See parallel postulate
lost works of, 91, 128, 149, 170, 381
theorem of, 96, 98, 106, 153, 412
works of

Data, 91, 92�93
Division of Figures, 91, 92, 232, 248
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Elements, 45, 47, 48, 58, 59, 70, 77,
82�83, 90, 91, 92, 93�108, 111, 122,
129, 130, 147, 153, 157, 171, 172, 173,
189, 210, 212, 249, 381, 483

Optics, 91�92
Phaenomena, 91

Euclid of Megara, 91
Eudemus of Rhodes, 43�44, 45, 51, 58�60,

154, 171, 172�173
Eudoxus of Cnidus, 59, 75, 79�84, 88, 106,

115, 116, 129, 130, 145, 154, 409
axiom of, 81�83, 101�102, 103, 157
proofs of, 123

Euler, Leonhard, 107, 310, 352, 376�379, 388,
393, 405�422, 425�432, 437, 445,
447�449, 458�460, 470, 472, 475, 486,
517, 546, 550, 552, 553, 588, 589

Algebra, 418�419
Fermat conjectures, 328, 418, 468, 593�594
Introductio, 408, 409, 410, 411, 419�420,

435
Eutocius, 87, 120, 123, 131, 132, 173, 174, 213
evolute, 345�347
exhaustion, method of, 81�83, 84, 106,

115�116, 234, 296, 306, 307
exponents
laws of, 162, 238, 250
notation of, 250, 350, 360, 410, 413

Fagnano, G. C., 403
false, rule of, 13�14
Feit, Walter, 592, 593
Feller, William, 577
Fermat, Pierre de, 306�308, 320�331, 334,

335, 337, 340, 342, 344�347, 349, 350,
352, 356�358, 363, 400, 409, 433, 434,
478, 493, 554

Fermat conjectures, 328, 417, 418, 468
Fermat’s Last Theorem, 164, 327�328, 341,

418, 448
proof attempts, 460, 468, 469, 521�522, 546,

593�594
proof of, 593�596

Fermat’s lesser theorem, 328, 417
Ferrari, Ludovico, 255, 257, 259�260, 273
Ferro, Scipione del, 256
Feuerbach, Karl Wilhelm, 486, 490
Fibonacci, 132, 229�232, 235, 243
Liber abaci, 229�231, 249, 251
Practica geometriae, 232

field
abstract definitions, 555
algebraic, 571
number, 520�521, 522, 557, 558

Fields, John Charles, 584
Fields medals, 585, 595�596, 598
Finck, Thomas, 278
finger counting, 2�3, 28, 224
Fior, Antonio Mario, 256

Fischer, Ernst, 568
fluxions (fluents), 359, 362�364, 368,

378�379, 381, 386, 387, 390, 511
symbols replacing, 461, 462, 504�505

foci (focus), 297
Fontana. See Tartaglia, Niccolo
formalists, 579
forms
concept of, 1, 2
latitude of, 239�241, 319�320, 409
permanency of equivalent, 505
representations of, 556
science of, 513
theory of, 518�519

four color conjecture, 587�591
Fourier, J. B., 450�452, 460, 479, 528, 530,

532�534. See also series, Fourier
Fowler, K. A., 592
fractions
ancient avoidance of, 55�56
concept of, 10, 11, 25, 33, 48, 152, 159,

180, 259
continued, 355
cross multiplication of, 80�81
decimal, 6, 25, 56, 192, 222, 230, 254, 264,

273, 277, 283�286, 290
horizontal bar in, 229
infinite continued, 410
notation of, 56, 192, 229, 230, 238, 285, 350,

360, 362
powers of, 238, 354
rational, 6, 48, 105, 375, 539
sexagesimal, 25, 33, 55, 152, 159, 178, 193,

222, 230, 231, 283
unit, 11, 12, 18, 48, 55, 159, 212, 230

Fraenkel, A., 571, 583
France, mathematics in pre and

postrevolutionary, 423�466
Franklin, Philip, 589
Fréchet, Maurice, 568, 569, 574
Frederick the Great, 420, 430, 432
Fredholm, Ivor, 563, 568
Freedman, Michael, 597
Frege, F. L. G., 523�524, 560
Frey, Gerhard, 594
Frobenius, G., 532, 571, 575, 576
Fuchs, Lazarus, 532, 555
Fueter, R., 558
functions
Abelian, 475, 477, 478, 502, 517, 531, 532,

547, 553
analytic, 568�570
automorphic, 550�551
complex, 454, 455, 458�460, 477, 502,

533, 544
concept of, 91, 118, 365, 396, 409, 419,

455�456, 506, 533, 569
continuous, 456, 457�458, 526, 533�534,

553, 561
definition of, 452
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functions (continued)
derived, 367, 431
Dirac delta, 574, 575
Dirichlet, 452, 534
discontinuity points, 566�567
elliptic, 447, 448, 475�478, 531, 543�544,

547, 550
Euler beta, 352
functional vs., 569
graphic representation of, 239�241, 307,

319�320
hyperbolic, 374, 421�422, 531, 597
Mathieu, 544
notation for, 531
pathological, 457�458, 564�565
Poincaré, 553
potential, 445
propositional, 510
real variable, 431, 458, 459
transcendental. See transcendental functions
zeta, 528, 576, 582
zeta Fuchsian, 550

function theory, 320, 385, 446,
520, 522

arithmetization of, 557
Riemann, 534, 573
set theory application to, 566, 568

functor, 580�581

Galileo Galilei, 239�241, 263, 282, 283,
290�292, 296, 299, 300�308, 316,
319, 329, 346, 358, 366, 397, 457,
536, 538

Galois, Évariste, 432, 479�482, 504, 520,
521, 522, 547, 551

Galton, Francis, 574
game theory, 583
Gang Tian, 599
Gauss, Carl Friedrich, 448, 453, 455, 457, 458,

460�462, 464�477, 479�482, 489,
490, 494�497, 500�501, 511, 521,
527�530, 535, 538, 560, 561, 572

Disquisitiones Arithmeticae, 466�467, 468,
469�470, 474, 475, 480, 515, 547

Poincaré compared with, 549�550
Gelfond, Aleksander Osipovich, 562
geodesics, 472, 498
geodesy, 157, 158, 447, 474, 552
geometrization conjecture, 597
geometry

affine, 500, 514
algebraic, 273, 277, 501�503, 520, 581�582
analytic, 128�129, 137, 141, 168, 169,

239�240, 277, 305�306, 310�311,
317�326, 330, 337, 339�342, 348, 349,
368�369, 371, 381, 395, 419�420, 438,
441, 485

ancient Egyptian, 8, 14�19, 20, 32, 35, 36,
43, 45, 73

ancient Greek, 16, 43�52, 58�59, 61,
65�67, 70, 72�74, 77�78, 84�88,
90�108, 111, 113�115, 128�129, 156,
157, 161, 164�165, 171, 172, 331, 381,
400, 409, 487, 498, 499�500

Arabic, 209�212, 218, 220�221
arithmetization of, 311, 492, 526, 558
as quadrivium subject, 64, 74, 224
axioms of, 315, 558�559
Babylonian, 35�39, 43, 45, 48, 156
Cartesian, 310�311, 322, 339, 340, 342, 386,

401, 409
Chinese ancient and medieval, 176�177
deductive, 156, 558
descriptive, 434�437, 449
differential, 396, 471, 472, 498�501, 572�573
elliptic, 500
enumerative, 487, 563
Eulerian notation, 409
famous problems, 220
Hilbert, 558�559
hyperbolic, 351, 420, 500�501
inversive, 488
Lobachevskian, 494�495, 498, 512, 520,

554, 560
Mascheroni principle, 338
medieval Hindu, 187�191, 201�202
modern, 483�503, 515, 599
n dimensional, 464, 493�494, 512�514, 553
non Euclidean, 404, 421, 464, 471, 472,

494�498, 500�501, 553, 558�561
ordinary vs. differential, 472
original meaning of word, 157
origins of, 1, 6�7, 21
projective, 330�336, 484�487, 489,

491�492, 500
Renaissance, 252�253, 264�265, 267�269,

272�273, 276�277
Riemannian, 496�498, 573
solid analytic, 76, 78, 94, 102, 106�107, 164,

165, 170, 304�305, 322, 337, 341, 351,
399�400, 402, 419, 420, 432, 435�436,
438, 488

synthetic, 437, 441, 485�489, 493
Gerard of Cremona, 227, 235
Gerbert, 225
Gergonne, Joseph Diaz, 473, 486, 489, 490,

491, 492
Germain, Sophie, 450, 469, 594
Gerson, Levi ben. See Levi ben Gerson
Gibbs, Josiah Willard, 514�515, 574
Girard, Albert, 275�276, 280, 286, 370
theorem of, 426

Glasgow, University of, 376, 381
Gleason, Andrew, 562
gnomon, 49, 216, 217
Gödel, Kurt, 560�561, 577
Goldbach, Christian, 408, 414, 418
golden section, 46, 47, 84, 153, 253
iterative property of, 99�100
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Golenishchev Papyrus, 9, 16�18, 19
goniometry, 277, 279, 280
Gonthier, Georges, 590�591
Gordan, Paul, 502, 556
Gorenstein, Daniel, 592�593
Göttingen, University of, 465, 496, 497, 576,

501, 502, 515, 521, 524, 527, 528, 533,
537, 538, 545, 557, 569, 573, 576

Göttingen Gesellschaft der Wissenschaften,
473, 495

Göttingen Observatory, 470, 471
Goursat, Édouard, 459, 543, 578
Grandi, Guido, 404
graphs
of complex numbers, 454�455, 462, 473, 511
of curves, 368
of functions, 239�241, 307, 319�320

Grassmann, Hermann, 512�514, 515, 517
Grassmann, Justus, 513
gravitation, law of, 360, 366, 367, 445
general relativity, 572

gravity, center of, 218, 253, 296
Greece, mathematics in ancient, 2, 40�174,

197, 200, 205, 208�210, 213,
216�218, 506

Golden Age of, 89
Heroic Age of, 42, 57�74
Silver Age of, 159�174
time span of, 142

Greek Anthology, 161, 173
Green, George, 461, 462, 530
Green’s theorem, 462, 529
Gregory, D. F., 506
Gregory, David, 353
Gregory, James, 202, 353�354, 355, 356, 358,

359, 362, 363, 364, 371, 377, 380, 385,
387, 397

Gregory of St. Vincent, 325�326, 339, 355, 358
Gresham College, 288, 292, 366
Gröbner bases, 582
Grosseteste, Robert, 235
Grotefend, F. W., 22
Grothendieck, Alexander, 579, 581�582
groups, finite, 571, 582, 591�593
group theory, 432, 481�482, 499�500, 520,

526, 581, 583
abstract definitions, 555
classification theorem, 591�593
continuous transformation, 553, 562
dual group, 522
number field, 521
topology, 562
See also Lie groups

Group Theory Year (1960�1961), 592
Gudermann, Christoph, 531
Guldin, Paul, 170
Gunter, Edmund, 282, 292, 295
Gunters scale, 290, 292�293
Guthrie, Francis, 587
Guthrie, Frederick, 587

Haar, Alfred, 567
Hachette, Jean Nicolas Pierre, 436
Hadamard, Jacques, 468, 568�569, 577
Haitham, ibn al . See Alhazen
Haken, Wolfgang, 589
Hall, Philip, 592
Halle, University of, 521, 533, 542
Halley, Edmund, 127, 130, 366, 367, 372, 378
Hamel, G., 561
Hamilton, Richard, 597, 598
Hamilton, William (1788�1856), 506, 507
Hamilton, William Rowan (1805�1865), 506,

510�512, 513, 514, 515, 517, 519, 529,
530, 535, 587

Hamilton Jacobi theory, 529
Hankel, Hermann, 514, 535, 537
Hardy, G. H., 576
harmonics, 50�52, 64, 113, 544. See also series,

harmonic
harmony of the spheres, 50
Haroun al Raschid, 205
Harriot, Thomas, 255, 274, 276, 350, 473
Harvard University, 519, 545
Hasse, Helmut, 571
Hausdorff, Felix, 569�570, 577
Haytham, al . See Alhazen
heap problems, 13�14
heat, 533, 544, 597
Heawood, Percy John, 587, 588
Hecke, Erich, 542, 558, 576
Heesch, Heinrich, 589, 590
Heiberg, J. L., 125
Heine, Eduard, 532, 533, 536, 544, 566
Heine Borel function, 566
Helmholtz, Hermann, 529
hemisphere, area of, 18, 343
Hensel, Kurt, 571
heptagon, 268, 276�277
Hermann, Jacob, 399�400, 403
Hermann the Dalmation, 227
Hermite, Charles, 533, 543, 546�547, 550, 557,

565, 575
Herodian, 53
Herodianic notation. See Attic numeration
Herodotus, 8, 20, 42, 55, 179
Heron of Alexandria, 26, 144, 156�159, 167,

211�212, 232, 247, 443
Heron’s formula, 121�122, 156�157, 198, 217
Herschel, John, 461, 462, 506
Hesse, Otto, 502
Hessenberg, Gerhard, 572
Heuraet, Heinrich van, 346, 347
hexagon, 113, 153
Pascal’s theorem, 332�333, 484, 488

Hicetas, 63
hieroglyphics, 9, 10�11, 21, 22, 41, 53
Hilbert, David, 543, 555�564, 574, 577, 599
twenty three problems of, 559�563

Hilbert space, 568, 583
Hill, George Will, 530
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Hindu Arabic numerals, 206, 210, 214, 215,
254

introduced into Europe, 225, 228, 229, 230,
231, 249

Hindu mathematics. See India, mathematics in
Hindu numerals, 94, 178, 191�193, 206, 210,

214, 215
Hipparchus of Nicaea, 138, 146�147, 148, 149,

152, 154, 155, 159, 214
Hippasus of Metapontum, 42, 65, 66, 69,

74, 561
Hippias of Elis, 42, 61�63, 74, 87, 88
Hippocrates of Chios, 42, 58�61, 80, 84,

172�173
Hippopede of Eudoxus, 84
Hölder, Otto, 571
Hood, Thomas, 290
Hooke, Robert, 358, 366, 368
Hopf, Heinz, 571
Horner, W. G., 183
Horner’s method, 181, 184, 222, 231, 277

Newton’s method similarity, 369
House of Wisdom, 205�206, 213
Hrabanus Maurus, 225
Hudde, Johann, 340, 341, 355
Hudde’s rules, 341, 342
Hulagu Khan, 220�221
Humanism, 243, 246, 269
Humboldt, Alexander von, 462, 482
Humboldt, Wilhelm von, 462
Hurwitz, Adolf, 554, 555, 557, 559
Huygens, Christiaan, 231, 334, 339, 340,

342�347, 354, 358, 366, 373, 382, 383,
389, 391, 472

Hypatia, 171, 172
hyperbola, 84, 86, 116, 117, 139, 165,

265, 280, 326, 340, 349, 400,
500�501

Apollonian nomenclature, 130�132, 296
as double branched curve, 137
equation of, 132, 134, 529
equilateral, 135
infinitesimals, 297
quadrature of, 341, 353, 354
volume of, 125
See also functions, hyperbolic

hyperboloid, 351, 420
hypercomplex systems, 571
Hypsicles, 107, 147

icosahedron, 45, 76, 78, 106, 107, 129
ideal, 521, 522, 576

complex numbers, 522, 594
point, 485�486

incommensurability, 65�67, 70, 73, 74, 76, 77,
79�81, 94, 101, 103, 105�106, 143,
188, 561

India, mathematics in, 94, 151, 159, 178,
186�208, 210, 214�218

induction
axiom of, 524
Bernoulli proof, 393
Fermatian, 327, 328, 350
Pascal explanation, 334
transfinite, 561
Wallis method, 350, 352

inequality, Bernoulli, 390
infinite processes, 327, 328, 353�355,

409�410, 464, 568
infinite sets
Cantorian, 238, 523, 539�542, 543
subset correspondence, 457, 539

infinitesimal, 81, 89, 296�297, 299�303,
306, 307, 316, 326, 330, 347, 348,
352�353, 356, 384�385, 387, 390,
431, 440

axiom of Archimedes, 116
definition of, 455, 456
symbol for, 408
validity of, 73, 74, 361, 362, 400

infinity, 27, 73, 241, 301, 331, 538�539
“completed,” 541
orders of, 427
points at, 297, 485�486, 487, 491, 493,

495, 497
of prime pairs, 562
of primes, 103�104, 412, 448, 468, 594
of real numbers, 457
symbol for, 350, 408
of unknowns, 568
zero divisor, 200

inscriptions, 9�11, 191
Institut National des Sciences et des Arts,

424, 468
integers, 48, 52�56, 82, 102, 103, 191�193,

418, 457, 542, 546, 564
algebraic, 521
definition of, 523
Gaussian, 467, 521
odd and even, 5, 52, 160
ordered pairs of, 511, 523
perfect squares, 302�303, 432, 457
ratios of, 160, 546

integral
Cauchy, 456, 459�460, 528, 568
Chebyshev, 415
Denjoy, 567
domain, 521
double, 502
elliptic, 447, 448, 476, 477, 478
Euler, 415, 447
generalization of, 567
Haar, 567
invariants, 556
Lebesgue Stieltjes, 567, 568
Poisson, 461
powers, 353
Riemann, 528, 534, 565, 566, 567,

568
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integration, 324�325, 375, 456, 565, 574
theories of, 567�568

interest, compound, 393
international mathematical congresses,

549, 556, 559, 584�585, 592,
596, 599

International Mathematical Union, 574
Internet, 586, 597, 598, 599
interpolation, 27�28, 350, 352, 353, 360, 361
intuitionists, 579
invariants
algebraic, 517
differential, 564
theory of, 555, 556�557
topographical, 569

inverse square law, 366
inversion, 363, 380, 477, 478, 488, 530
involute, 331, 345�347
Ionian school, 42, 56, 57, 67
Ionic numeration, 53�55, 152, 191, 192, 214,

227�228
Attic transition to, 112

Irish Academy, 511, 512
irrationality, 77, 231, 238�239, 342, 350,

421, 546
Isidore of Miletus, 107, 173�174
Isidore of Seville, 224, 225
Islamic mathematics, 151, 156�157, 159, 179,

197, 203�222, 273
binomial theorem, 185
gelosia multiplication, 195
medieval Christian world, 226�229, 232,

246, 253
See also Arabic numerals

isochrone, 391�392
Ivory, James, 461
Iwasawa, 595

Jacobi, Carl Gustav Jacob, 454, 461, 462, 470,
476�478, 479, 493, 502, 527, 528, 529,
547, 554

Jacobian determinants, 454, 478
Jacob’s staff, 243
Janiszewski, Zygmunt, 570
Jerrard, G. B., 399
Jevons, W. S., 509
Ji Kang, 175
John of Halifax. See Sacrobosco
John of Seville, 227
John Philoponus. See Philoponus, John
Jones, William, 408
Jordan, Camille, 544, 565
Jordanus Nemorarius, 232�234, 256, 272,

283, 332

Kagan, W. F., 561
Kahun Papyrus, 9, 16
Kant, Immanuel, 445, 510, 555, 559

Karkhi, al , 214, 217
Karosthi script, 191
Kashi, Jamshid al , 185, 221�222, 259�260
Keill, John, 372
Kelvin, Lord (William Thomson), 450, 462,

488, 529�530
Kempe, Alfred Bray, 587�588
Kempe chains, 588, 589
Kepler, Johann, 46, 106�107, 283, 294,

296�299, 303, 330, 331, 354, 366, 367,
385, 491

Khwarizmi, al , 205, 206�212
Al jabr, 206�212, 213, 217, 218, 226, 227,

249, 252�254, 258, 311, 409
Killing, Wilhelm, 591
Kindi, al , 205
kinematics, 307
kinetic energy, 347, 389, 564, 574
Kirchhoff, Gustav, 529
Klein, Felix, 484, 499�501, 514, 520, 526, 534,

545, 555, 557, 564
Klein bottle, 500
Kleiner, Bruce, 598
knots, 529
Koch, Helge von, 568
Kolmogorov, A. N., 569, 574
Königsberg, University of, 502, 528, 555, 557
Korkin, A. N., 575
Koszul, Jean Louis, 579
Kovalevskaya, Sofia, 459, 533
Kremer, Gerhard. See Mercator, Gerard
Kronecker, Leopold, 520, 542�543, 547, 562
Krull, Wolfgang, 571
Kublai Khan, 183, 220
Kummer, Ernst Eduard, 520�522, 542, 594
Kutta Runge method, 575

Lacroix, Sylvestre François, 437, 438, 462
Lagrange, Joseph Louis, 423�425, 430�433,

435, 437, 438, 445, 446, 449, 450, 453,
455, 458, 459, 461, 469, 470, 478, 479,
481, 493, 499, 501, 506, 529, 534, 547

Laguerre, Edmond, 489
Lahire, Philippe de, 332, 337�338, 437
Lalouvère, Antoine de, 336, 347
Lambert, Johann Heinrich, 220, 420�422,

494, 546
Lamé, Gabriel, 489�490, 544, 594
Landau, Edmund, 576
Lang, Serge, 579
Langlands program, 595
Laplace, Pierre Simon, 323, 423, 425, 433,

443�446, 453, 460, 461, 552
Mécanique céleste, 445, 446, 447, 450,

459, 530
latitude, 155, 240, 270, 271
lattice, 195, 286, 522
Laue, Max von, 572
Laurent, H., 543
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Laurent, Pierre Alphonse, 544
Lavoisier, A. L., 425, 433
least constraint, principle of, 473
least squares, 444, 447, 465, 470, 527
Lebesgue, Henri, 565�568, 574
Lefrançois, F. L., 437, 438
Legendre, Adrien Marie, 423�425, 430, 444,

446�450, 460, 466, 467, 469, 475�479,
494, 546, 594

Leibniz, Gottfried, 127, 202, 294, 296, 328, 333,
336, 360, 365�366, 371, 372, 381�395,
390, 399�401, 404�405, 409�411,
417, 426, 462, 504�505, 507, 526,
536, 560

Leipzig, University of, 246, 382, 528, 535
Lejeune Dirichlet. See Dirichlet, P. G. Lejeune
lemniscate, 392, 403, 477
length standardization, 424�425
Leonardo da Vinci, 236, 253, 267
Leonardo of Pisa. See Fibonacci
Leray, Jean, 578, 581
Leucippus, 72
lever, law of the, 110, 112, 123
Levi, Beppo, 502
Levi ben Gerson, 242�243
Levi Civita, Tullio, 572
Leyden, University of, 339, 340
L’Hospital, G. F. A. de, 387�388, 394�395,

399, 400�401
Lie groups, 553, 562, 573, 580, 591
limaçon of Pascal, 332
limit, concept of, 364, 426�427, 455�456, 457,

536, 537, 568, 569
Lindemann, Ferdinand, 536, 543, 546, 555, 557
line, Euler, 437, 486
Liouville, Joseph, 450, 462, 480, 482, 488, 530,

544, 545�546, 547, 594
Lipschitz, Rudolf, 459
Listing, J. B., 529, 552
Littlewood, J. E., 576
Liu Hui, 180, 181, 182
Li Zhi, 182�183
Lobachevsky, Nikolai Ivanovich, 468, 483,

494�498, 512, 520, 535, 554, 560
locus problem, three and four line. See

Pappus, problem of
logarithms, 37, 113, 250, 281, 286�295, 303,

396, 404�405, 413
calculus, 375
Euler notation, 408, 409, 410, 413�414
function graph, 307
Mercator’s series, 355, 356
name origin, 287
spiral, 316, 392�393
table construction, 294�295

logic
algebra of, 389, 506�509
deductive, 70
mathematical, 523�524, 560�561, 564,

583, 584

mathematics vs., 519
symbolic, 389, 506, 525

London, University of, University College, 509,
517, 574, 587

London Mathematical Society, 548, 587, 588
longitude, 155, 239, 240, 270
Lott, John W., 598
Luca di Borgo. See Pacioli, Luca
Lull, Ramon, 243
lune, quadrature of, 58�61, 80,

172�173, 253
Luxor Papyrus, 9
Luzin, N. N., 568, 569

Mac Lane, Saunders, 580
Maclaurin, Colin, 376�377, 378�381, 394,

399, 407, 429
Maclaurin series, 354, 377, 378, 379
magic square, 177, 183, 214, 267, 268, 327
Magini, G. A., 286
Malcev, Anatoly Ivanovich, 562
Mamun, al , 205, 207
Mandelbrojt, S., 578
manifolds, 569, 573, 580, 581, 582
Cantor theory of, 541
Clifford and Klein, 520
three dimensional, 596�599

Mannheim, Amédée, 293
Mannigfaltigkeitslehre, 541
Mansur, al , 205
mapmaking. See cartography
Marcellus, 109�110
Markov, A. A., 574, 575�576
Mascheroni, Lorenzo, 338
Mason, Max, 545
mathematics
definition of, 1, 44, 507
formalists vs. intuitionists, 579
golden ages of, 89, 183�184, 464�482,

483�503
in liberal arts curriculum, 78
origins of, 1�7, 42�52, 187
recent trends in, 586�599
simultaneity of discovery in, 346, 366,

382�383, 457�458, 459, 462, 468, 473,
477, 494, 495�496, 532

three classical problems, 57�58, 165
See also applied mathematics

Mathieu, Émile, 544, 591
matrices, 515, 516�517, 519
Hermitian, 547

Maurolico, Francesco, 264, 272
maxima and minima, 323�324, 356
Maxwell, James Clerk, 530
Maya number system, 3�5
Mazurkiewicz, Stefan, 570
mean
arithmetic, 51, 52, 64
geometric, 51, 52, 61, 113
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harmonic, 51, 52, 64, 113
Pythagorean, 160
ratio, 46
theory of, 166

mean value theorem, Cauchy’s, 456
measurement, 10, 19, 159, 172, 243
Babylonian, 28, 29, 32�36, 45, 157
curvilinear, 59�60, 81�83, 82, 113,

544
Euclidean, 106
French reforms, 424�425
Heron’s Metrica, 157, 158, 232
Hindu, 187

measure theory, 565, 567, 573�575
mechanical calculation. See calculating

machines
medieval mathematics
Byzantine, 126�127, 174
Chinese, 182�185
European, 223�244, 246
Hindu, 193, 200�202
Islamic, 203�222, 253
time span of, 223

Menaechmus, 75, 84�87, 88, 133, 218,
310

Menelaus of Alexandria, 147�149, 160,
164, 442

theorem of, 147�149, 403
Mengenlehre, 541
Mengoli, Pietro, 338�339, 341, 355, 390
mensuration. See measurement
Méray, H. C. R. (Charles), 533, 535, 536
Mercator, Gerard, 269�271
Mercator, Nicolaus, 355, 356, 364, 385
Méré, Chevalier de, 334
Mersenne, Marin, 306, 308, 309, 316, 324, 326,

328, 329, 342�343, 353
Mersenne group, 329, 332
Mertens, Franz, 556
Merton rule, 236, 239, 240
Mesopotamian mathematics. See Babylonian

mathematics
metamathematics, 561
metric system, 423�424
Metrodorus, 173
Middle Ages. See medieval mathematics
Minkowski, Hermann, 555�556, 557, 559,

564, 576
minus symbol, 253, 255, 274
Mittag Leffler, Gösta, 530, 533, 584
Möbius, August Ferdinand, 474, 490�491, 493,

500, 514, 552
Möbius strip, 491
Moerbeke. See William of Moerbeke
Mohenjo Daro inscriptions, 191
Mohr, Georg, 338
Moigno, Abbé, 544
Moise, E. E., 597
Molien, Theodor, 571
Molk, J., 543�544

Monge, Gaspard, 423, 425, 428, 433�438, 439,
441, 443, 449�451, 472, 483�485, 489,
493, 501

Montgomery, Deane, 562
Moore, E. H., 570�571
Moore, R. L., 597
Mordell, Louis Joel, 554
Morgan, John, 597, 599
Morgenstern, Oskar, 583
Moscow Papyrus, 9, 16�18, 19
“moving frame” notion, 573
Müller, Johann. See Regiomontanus
multinomial theorem, 387, 393
multiplication, 98, 102, 511�514, 521
Babylonian, 26
devices for, 194�195, 286
Egyptian, 12, 13
of fractions, 25, 80�81
gelosia (lattice), 195, 286
Hindu, 194�195
of matrices, 516
of negative numbers, 381
of quaternions, 511�512
symbol for, 274, 276, 508
tables, 26, 160, 286

multipliers, Lagrange, 432�433
Murphy, Robert, 506
Musa brothers, 205, 213
music, 74, 172, 224
Pythagorean laws of, 50, 64, 160

mysticism, number, 47�48, 63, 64, 65, 67,
77, 160

Napier, John, 282, 286�289, 290, 295, 355
Napoleon I, 9, 423, 424, 439, 445, 450, 485
Nash, John Forbes, 283
Nasir Eddin. See Tusi, Nasir al Din al
n body problem, 470, 551
nebular hypothesis, 444�445
needle problem, Buffon Laplace, 444
Neil, William, 346, 347, 351
Neoplatonism, 143, 160, 171, 174, 243
Neopythagoreans, 52, 150, 225
Nesbitt, C. J., 592
Neugebauer, Otto, 29, 577
Neumann, Carl, 502
Neumann, Franz, 502, 528
Neumann, John von, 562, 564, 583, 584
neusis, 121
Newson, Mary Winston, 559
Newton, Isaac, 85, 202, 296, 310, 314, 336, 342,

348, 354�356, 358�372, 375�377,
381�388, 392, 393, 399, 409, 410, 417,
441, 445, 457, 462, 469, 511, 526

Arithmetica Universalis, 129, 370�371, 379
De Analysi, 361�363, 364, 369, 382�383
De Quadratura Curvarum, 364, 368,

372, 426
Enumeratio Curvarum, 368, 376
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Newton, Isaac (continued)
Method of Fluxions, 364, 368, 369, 370,

381, 390
Opticks, 368, 370, 596
Principia, 137, 347, 364�368, 370, 371, 372,

375, 381, 447
Newton’s method, 359, 360�364, 369�370
Newton’s parallelogram, 369�370
New York Mathematical Society, 548
Neyman, Jerzy, 577
Nicholas of Cusa, 243
Nicomachus of Gerasa, 159�160, 172, 174, 233
Nieuwentijt, Bernard, 399
Nine Chapters on the Mathematical Art,

176�177, 180, 181, 182, 185
Noether, Emmy, 522, 564, 571, 577
Noether, Max, 502, 564
nonagon, 268�269
Nordheim, L., 564
notation, 273

algebraic and arithmetic, 13�14, 162�164,
236, 250, 252�255, 261�262, 274, 276,
285�286, 311�312, 380, 388, 408, 409,
508�510

analytic geometry, 489�490
calculus, 385�386, 461, 462
determinants, 454, 493�494, 515, 519
differential, 431
Euler, 408�409, 410, 416, 422
exponential, 250, 350, 360, 410, 413
fluxional, 362, 363�364, 381
Gauss, 448
German, 253�255
hyperbolic function, 421, 422
for infinity, 350, 408
Leibniz, 386�387, 388, 504�505
Peano axioms, 524
Plücker’s abridged, 489�490
Stevin, 285�286
zero symbol, 192�193, 227, 229

null set, 508, 509
number

abundant, 52
algebraic, 540, 545
amicable, 52, 213, 327
ancient Greek concept of, 48, 56,

102�103, 112
axiom of, 524
Bernoulli, 373, 393�394, 594
Betti, 553, 596
cardinal, 5, 523, 541, 542
complex. See subhead imaginary below
composite, 52, 103, 160
concept of, 1, 2�5, 32, 48, 570
continuous magnitude vs., 70
deficient, 52
even, 5, 48, 50, 52, 66, 79, 103, 104, 160
Fermat, 328, 418
figurate, 160, 327, 391, 460
hypercomplex, 571

imaginary, 260, 261, 285, 374, 388,
413�414, 426, 441, 454�455, 462, 473,
511, 514, 521, 522, 523, 579, 594

infinite, 303, 408
irrational, 105, 199, 255, 260, 421, 535�537,

543, 545, 546
large, 128, 394, 461
Liouville, 545�546
Mersenne, 328
negative, 180, 198, 250, 255, 258�259, 260,

281, 381, 396, 404�405, 413, 426
oblong, 50
odd, 5, 48, 49, 52, 66, 79, 103, 104, 160
orders of, 112�113
perfect, 52, 103, 104, 160, 225, 233, 327, 418
Platonic, 77
positive, 198
prime, 52, 103�104, 144, 160, 269, 327, 328,

412, 417, 448�449, 467�469,
527�528, 576, 594

rational, 81, 232, 521, 523, 535�537,
540, 546

real, 81, 105, 260, 341, 452, 457, 511, 521,
523, 534�540, 542, 545�546, 560

transcendental, 354, 546, 555
transfinite, 541�543, 560�561
triangular, 49, 339, 383
whole, 6, 66, 103, 105, 523

numbers, theory of, 56, 77, 93, 94, 102�105,
112, 157, 159, 164, 433, 452, 465, 480,
522, 526, 527, 542, 546, 547, 554, 585

Euler, 412�413, 417�418
Fermat, 326�328, 330, 335, 417, 468
Gauss, 466�470, 473
Hilbert, 557�558, 562�563, 564
Legendre, 446, 448�449
Pythagorean, 47�51, 52, 66, 67, 74, 160
Taniyma Shimura conjecture, 595

numerals. See Arabic numerals; Hindu Arabic
numerals; Roman numerals

numeration, 5�6, 9, 21�24, 41, 45, 224
ancient Egyptian, 10�11, 23�24, 48, 53
ancient Greek, 52�56, 112, 152, 191, 192,

214, 227�228
Babylonian, 23�24, 191
binary, 3, 6, 388�389
Brahmi, 191, 192
Chinese, 177�180, 192
decimal, 191�192, 252, 284�285
European, 225, 233
sexagesimal. See fractions, sexagesimal
See also positional principle

numerology, 48, 77

octahedron, 45, 76, 78, 106
octonions, 520
odd order theorem, 592, 593
Ohm, Martin, 533
Olbers, Heinrich Wilhelm, 470
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Oldenburg, Henry, 360, 364, 366, 382, 384, 399,
410�411

Olivier, Theodore, 484
Omar Khayyam, 184, 203, 218�222, 252,

255, 310
Oresme, Nicole, 237�244, 250, 285, 298, 301,

303, 307, 319�320, 339, 350, 390
Osgood, W. F., 563
Osiander, Andreas, 264
Ostrogradsky, Mikhail, 450, 462
Otho, Valentin, 264, 281
Oughtred, William, 276, 282, 293, 311, 348, 358
Oxford University, 235, 244, 262, 288, 292,

348, 351, 356, 517, 594
Merton College, 236, 239

Pachymeres, Georgio, 174
Pacioli, Luca, 251�253, 255, 262, 263, 264,

267, 283
Padua, 247, 263, 291, 397, 399, 403
Painlevé, Paul, 551, 554, 566
palimpsest, 125�126
Pappus, problem of, 136�137, 168�169,

310�311, 331, 334, 338
Cartesian generalization of, 314�315,

321, 367
Newton solution of, 367

Pappus of Alexandria, 87, 121, 128, 129, 137,
139, 142, 161, 164�171, 172, 213, 236,
265, 275, 276, 310�311

Mathematical Collection, 128, 164�170,
250, 272, 320

Treasury of Analysis, 169�170
papyrus, 9�19, 20, 22, 35, 38, 173
parabola, 84, 86, 111�112, 125, 130�132,

138�140, 218, 235, 265, 296, 301�302,
305, 310, 331, 340, 349, 400

area of, 116, 123�124
Cartesian, 314�315
Neil’s, 346, 347
as path of projectile, 301, 308
property of, 170, 173
quadrature of, 115�117, 307, 353
semicubical, 346�347, 351, 392
two foci of, 297

paraboloid, 420
parallel, 323, 485, 572
parallelograms, 97, 102, 304�305
Newton’s, 369�370

parallel postulate, 220�221, 242, 331,
403�404, 421, 448, 495, 501, 553

contrary assumptions, 495, 512
Gauss unpublished paper, 471, 476, 494
Hilbert’s, 558
proof attempts, 421, 494, 495

parameter
concept of, 233
method of variation of, 432
unknown quantity vs., 274

Paris, University of, 233, 235, 236, 244, 424,
545, 550, 568, 578

Parmenides of Elea, 67
parsimony, principle of, 338
Pascal, Blaise, 294, 300, 308, 328, 332�336,

333, 334, 336, 337, 342, 343, 347, 350,
351, 382, 384, 393, 401

Pascal, Etienne, 332
Pascal’s theorem, 332�333, 335
Brianchon modern form of, 484

Pascal’s triangle, 183, 184, 185, 196, 219, 222,
335, 361

first depiction of, 254, 269, 270
infinite series summation, 383, 384
new properties of, 334

Paul of Alexandria, 188�189
Peacock, George, 461�462, 505�506, 507,

510, 514, 515, 522�523
Peano, Giuseppe, 524�525, 558, 560
Pearson, Karl, 574
Peirce, Benjamin, 517, 519
Peirce, Benjamin O., 545
Peirce, Charles S., 509, 517, 519, 523, 586, 587
Peirce, James Mills, 545
Pell, John, 199. See also equations, Pell
Pellos, Francesco, 252
pendulum, 343�346, 347, 424
pentagon, 45�46, 50, 65, 67, 106, 153, 267
pentagonal number. See number, figurate
pentagram, 45�46
Perelman, Grigori, 597�598, 599
Pericles, 56, 57
Peripatetics, 83, 110, 172, 272, 309, 346
permutations, 373, 393, 480, 481
Perseus, 168
perspective, 91, 92, 253, 265�269, 330�331,

377, 487
Petersburg paradox, 397�398
Peurbach, Georg, 246, 247
Pfaff, Johann Friedrich, 466
Phidias, 145
Philolaus of Tarentum, 49�50, 52, 63, 64, 65
Philoponus, John, 174, 236
physics, 110�112, 218, 257, 381
atomic, 574
mathematical, 445, 447, 461, 497, 528�532,

552, 564
Newtonian, 364, 366�367, 445

pi
continued fraction method, 355
irrationality of, 421, 546
symbol for, 408
transcendence of, 354, 546, 555
value of, 16, 35, 113, 128, 153�154, 157,

180�181, 190, 193, 197, 202
Piazzi, Giuseppe, 470
Picard, Émile, 502, 551
Piero della Francesca, 266�267
Pisa, University of, 291, 497
Pitiscus, Bartholomaeus, 281
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place value. See positional principle
plane, 498, 499�500, 558, 559, 570, 579

Gaussian, 473, 528
law of inclined, 159, 168, 232�233, 256, 283

plane curves, 134, 168, 347, 472
equations of, 391�392

Planudes, Maximos, 174
Plateau’s problem, 585
Plato, 41, 42, 52, 57, 62, 63, 65�66, 70, 73, 74,

75�79, 83, 84, 88, 89, 116, 143, 154,
158, 172, 173

Plato of Tivoli, 227
Plimpton Collection, 32�34, 252
Plücker, Julius, 377, 489�493, 498�499, 526
plus symbol, 255, 274
Plutarch, 57, 77, 145
Poincaré, Henri, 526, 530, 532, 533, 543, 547,

549�555, 563, 568, 569, 574
query of, 596�599

Poincaré, Raymond, 550
point, ideal and imaginary. See infinity, points at
Poisson, Siméon Denis, 460�461, 462,

528, 529
pole and polar. See coordinates, polar
polygons, 45, 113, 121, 202, 243, 253

area of, 35�36, 157
construction of, 465, 468, 469, 481
star, 237�238

polyhedra, 563, 596
convex, 121�122, 453
regular, 45, 76, 106�107
semiregular, 164

polyhedral formula, Descartes Euler, 107,
310, 460

generalization of, 553
Poncelet, Jean Victor, 485�487, 489, 491, 492,

501, 505
Pontryagin, Lev Semenovich, 562
Posidonius, 155
positional principle, 23�26, 45, 152, 178,

191�193, 217, 229�230, 286
zero placeholder, 192�193

Possel, René de, 578
postulates, 79, 111

axioms vs., 94�95
Euclidean, 95�97
Peano, 524
See also parallel postulate

powers
fractional, 238, 354
irrational, 238�239, 350

prime number theorem, 448, 467, 576
Princeton University, 584, 595
printing, 245�246, 247, 252
probability, 334�335, 340, 341, 373�375, 393,

394, 416, 429, 433, 508, 573�575, 583
Laplace, 443�444, 552
Petersburg paradox, 397�398
Poincaré, 552, 574

“Problem of Apollonius,” 129, 138

Proclus, 43�44, 45, 51, 58, 76, 84, 86, 94, 102,
143, 159, 171, 174

product, infinite, 410
progressions, 190
geometric, 35, 255, 287
See also series

projections, 269, 330�331
Mercator, 271

proof, 1, 14, 15, 73
Apollonian, 138�139
Appel Haken procedure, 590
Archimedean, 123�126
computer based, 584, 589�591, 594
Euclidean, 95�97, 101
indirect method, 59
infinite descent, 327�328
by nines, 197
standards for, 586�587, 589
varying meanings of, 38

proportion, 13�14, 71, 79�81, 84, 93,
101�103, 237, 238, 250

Pythagorean theory of, 51�55, 59
prosthaphaeresis, 278�279, 287
Psellus, Michael Constantine, 174
pseudosphere, 421, 497�498
Ptolemy formulas, 150�151
Ptolemy of Alexandria, 55, 129, 130, 138, 144,

147, 149�156, 159, 161, 171, 181, 189,
193, 213, 221, 243, 246�248, 267, 269,
270, 279, 300

Almagest, 149�151, 153, 154, 155, 156, 171,
172, 205, 216, 226, 227, 246, 247

Amalemma, 155
Geography, 155�156
Optics, 156, 218
Tetrabiblos, 156, 205

Puiseux, Victor, 544
Puissant, Louis, 437
pyramid, 16�19, 123
definition of, 106
volume of, 16�17, 36�37, 73, 180�181, 190

Pythagoras of Samos, 41, 42, 44�57, 59, 76,
78, 160

Pythagoreans, 42, 44�57, 59, 61�70, 72,
74�78, 101, 105, 131, 160, 460

Pythagorean theorem, 14, 36, 45, 59, 66, 147,
153, 175, 176, 201, 211

Euclid’s proof of, 97
generalizations of, 102, 166�167, 213,

213�214, 436
three dimensional analogue, 232

Pythagorean triples, 79, 187, 199, 327

Qin Jiushao, 183
quadrangle, Lambert’s, 220
quadratrix, 316
quadratrix of Hippias, 62�63, 87, 88
quadratures, 58�61, 80, 87, 172�173, 253,

306�308, 341, 347, 361, 380
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Archimedes, 115�188, 235, 307, 353
Barrow, 356, 358
Gregory, 353�354
integral calculus, 386
See also circle, squaring of; reciprocity laws,

quadratic
quadrilateral, 201, 217
area of, 15, 36, 198
Saccheri, 220, 221, 403�404, 421
“theorem” on the, 220

quadrivium, 64, 74, 78, 174, 224
quantum theory, 515, 583
quaternions, 511�512, 514�515, 519
of color problem, 587�591

Ramanujan, Srinivasa, 576
Ramus (Pierre de la Ramée), 271�272, 329
reciprocals
Babylonian tables, 26�27, 34
differential of, 365
figurate numbers, 391
sums of, 383�384, 394, 410�411

reciprocity laws, 562
quadratic, 448, 465, 467�468, 558

Recorde, Robert, 245, 262�263, 276, 388
rectangle, 70
area of, 15, 176
square conversion, 61

reducibility, 588, 589
reductio ad absurdum, 59, 82, 106, 114, 116,

299, 403, 539�540
reflection, 218, 371
law of, 91, 158

refraction, 511
Regiomontanus, 246�249, 252, 253, 261, 263,

264, 271, 277, 326
De Triangulis, 247�248, 263
Epitome of Ptolemy’s Almagest, 247

regression, 574
relativity, theory of general, 497, 528, 564,

572
Renaissance mathematics, 217, 245�281,

320, 330
Rheticus, Georg Joachim, 263�264, 277
Rhind, Henry, 9. See also Ahmes Papyrus
Ribet, Ken, 594, 595
Riccati, Jacopo, 403, 415
Riccati, Vincenzo, 422
Ricci, Michelangelo, 353
Ricci Curbastro, Gregorio, 572
Ricci flow equation, 597, 598
Richardson, G. R. D., 545
Riemann, G. F. B., 472, 474, 482, 496�498,

501�502, 503, 514, 520, 527�529,
531�535, 553, 572, 573

Cauchy Riemann equation, 426, 496, 528
See also integral, Riemann; surfaces,

Riemann
Riemann’s conjecture, 528, 582

Riemann’s zeta function, 528
Riese, Adam, 253�254
Riesz, Friedrich, 568
ring formation, 521
ring theory, 571
Robert of Chester, 227
Robertson, Neil, 590, 591
Roberval, Gilles Persone de, 306, 307, 308,

328�330, 332, 336, 337, 342, 346
Roche, Etienne de la, 250, 261
rod numerals, 178�180, 192
Rolle, Michel, 400, 401, 456
Roman numerals, 53, 228, 233, 253, 285
Rome, mathematics in ancient, 55, 109�110,

142�143, 159, 171�174, 204. See also
Boethius

Rome, University of, 497, 572
Roomen, Adriaen van, 280
Rosetta Stone, 9
roulette. See cycloid
Royal Society, 347, 348, 351, 353, 355, 360,

366, 371, 372, 375�377, 380, 382, 468,
506, 588

“rubber sheet geometry,” 553
Rudolff, Christoph, 264
Rudolph of Bruges, 227
Ruffini, Paolo, 475
rule of false, 13�14
rule of three, 13, 27, 176, 190�191
Russell, Bertrand, 523, 524, 528, 537,

560�561

Saccheri, Girolamo, 220, 221, 403�404, 420,
421, 494

Sacrobosco, 228�229, 247
Saks, Stanislaw, 577
Salmon, George, 510
Samuel, Pierre, 579
Sanders, Daniel P., 590, 591
Saunderson, Nicholas, 380
Sauter Bourbaki, Charles Denis, 578
Schering, Ernst Christian Julius, 533
Scheutz, Georg and Edvard, 295
Schickard, Wilhelm, 294
Schmidt, Erhard, 563
Scholasticism, 236�244, 257, 269, 506
Schooten, Frans van, 339�340, 341, 342, 346,

347, 358
Schouten, J. A., 572
Schröder, E., 509
Schubert, Hermann, 563
Schur, Issai, 475�476
Schwartz, Laurent, 574�575, 579
Schwarz, H. A., 532, 533
Sebokt, Severus, 192, 210
sections. See conic sections; golden section
Seidel, P. L. V., 532
Seleucid period, 22, 24, 37
seqt, 18
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sequence, 286�287
Fibonacci, 230�231
probability, 416

series, 183, 184, 354, 355
Bernoulli, 396
binomial, 26, 210, 219, 410
Dirichlet, 528
divergent, 390, 404�405, 412�413, 426, 566
expansion, 202
Fourier, 450�452, 532, 534, 544
harmonic, 242, 339, 390, 394, 412
infinite, 116, 238, 241�242, 302�303, 339,

341, 353, 356, 359�365, 367, 369, 375,
379, 381�387, 386, 390, 394, 399, 401,
404�405, 410�414, 458, 470, 531�537

Maclaurin, 354, 377, 378, 379
semiconvergent, 531
sine, 202
Taylor, 354, 377�378, 397, 459, 544
See also convergence; progression

Serre, Jean Pierre, 579, 581, 594
Serret, Joseph Alfred, 544
Servois, François Joseph, 505, 506
sets, 2, 3, 5, 452, 526, 565, 566, 568

avoidable, 588
power of, 541
See also infinite sets

set theory, 507�509, 523, 539�543, 559, 560,
566, 568, 573�575, 583

Cantor, 534, 541�543, 565, 569
Severi, Francesco, 502, 581
sexagesimals. See fractions, sexagesimal
Seymour, Paul, 590, 591
shadow length theory, 216, 217
sheaves, 581
Shimura, Goro, 594, 595
“shoemaker’s knife” problem, 120�121, 167
Siddhantas, 188�189, 193, 194, 205, 217
Sierpinski, Waclaw, 570
similarity, 2, 36, 579

symbol for, 388
Simplicius, 58, 60, 172, 173, 174
Simpson, Thomas, 380, 381
Simson, Robert, 381, 419
Sindhind. See Brahmagupta
sine, 3, 189, 193�194, 242�243, 264, 277, 288,

329�330, 336
law of, 145, 216, 248
power series, 202
See also tables, sine

slide rule, 290, 292�293
Sluse, René François de, 342, 356

pearls of, 342
Smale, Stephen, 597
Smith, Steve, 593
Snell, Willebrord, 311
societies, mathematical, 548�549, 557
Socrates, 57, 63, 67, 74�75, 76
Sorbonne, 487, 547, 552, 566

sound, 366, 445, 528�529
space
Banach, 574
Hilbert, 568, 583
Plücker definition, 498
Riemannian, 497, 528, 573
vector, 513�514, 574�575, 580, 581

spectral sequences, 581
Speidell, John, 289
Speusippus, 52
sphere, 50�51, 88, 106, 107, 116�120, 138,

299, 420, 437, 544
homocentric, 83, 130, 154
volume of, 119�120, 124�125, 201
wreath of, 283

spiral, 165, 168, 305
Archimedean, 113�115, 118, 392, 419
logarithmic, 316, 392�393
rectification of, 307, 316

star polygon, 237�238
Staudt, K. G. C. von, 489
Steiner, Jakob, 487�489, 493, 542
Steinitz, Ernst, 571
Steklov Institute, 597, 599
Stern, Moritz, 527
Stevin, Simon, 282�286, 296, 350
Stieltjes, T. J., 531, 567
Stifel, Michael, 254�255, 262, 274, 286
Stirling, James, 373, 376, 378
Stokes, George Gabriel, 459, 530, 531, 532
St. Petersburg Academy, 389, 406, 407, 409,

415, 417�419
St. Petersburg University, 397, 399, 468, 575,

597
Strassburg (Strasbourg), University of, 557,

578
Struik, Dirk, 572
Sturm, Jean Jacques François, 450, 543,

544�545
subtraction symbols, 253, 261, 274
Suidas, 76, 149
Suiseth, Richard, 241�242
Sulvasutras, 187, 188
Sumerians, 21, 22�23
surfaces, 91, 419, 435, 496�498
abstract nature of, 569
analytic example of, 337
area of, 18, 170
Eulerian categories of, 420, 472, 588
one sided, 491
properties of, 472, 473
Riemann, 496, 497, 502, 520, 528, 532�533,

569, 573, 574, 585
theory of, 484, 498

Susa tablets, 35
Suzuki, Michio, 592
Sylvester II, Pope, 225
Sylvester, James Joseph, 517, 556
symbolic algebra. See algebra, symbolic
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tables
astronomical, 231
Babylonian, 25�28, 32�34, 35, 43, 147
chord, 147, 150, 151�154, 193
logarithm, 294�295, 303
multiplication, 26, 160, 286
sine, 154, 193�194, 216, 222, 242�243, 248,

295, 303
trigonometric, 146�147, 150, 263, 264, 277

tablets. See cuneiform tablets
Tait, Peter Guthrie, 529, 530, 587, 588�589
tangent, 129, 137�138, 140, 216, 306, 308
Barrow method, 356, 357�358
trigonometric, 216, 248, 295, 303
See also curves, tangents to

Taniyama, Yutaka, 594, 595
Tannery, Jules, 543�544, 566
Tarski, Alfred, 577
Tartaglia, Niccolo, 255�257, 260, 261, 272
Tate, John, 579
Taylor, Brook, 354, 377�378, 396, 397,

459, 544
Taylor, R., 595
Tchebycheff. See Chebyshev, Pafnuty Lvovich
telescope, 371
tensors, 514, 572�573
tetractys, 63
tetrahedron, 78, 106
centroid of, 436, 437
Hilbert problem, 561
volume of, 181, 449, 460

Thabit ibn Qurra, 130, 205, 213�214, 216,
227

Thales of Miletus, 40�45, 56�58, 67
theorems of, 38, 43, 147, 153

Theaetetus, 75, 76�77, 84, 106, 409
Theodorus of Cyrene, 75, 76, 77, 84
Theon of Alexandria, 91, 107, 147, 171
Thomas, Charles X., 294
Thomas, Robin, 590, 591
Thomas Aquinas, 235, 238
Thompson, John, 592, 593
Thomson, William. See Kelvin, Lord
three, rule of, 13, 176, 190�191
three and four line locus. See Pappus,

problem of
three body problem, 552
Thurston, William, 597, 598
Timaeus of Locri, 75
topology, 552�553, 568, 569�570, 571, 585
algebraic (combinatorial), 552�553, 569,

580�581, 582, 596�597
groups, 562
Poincaré’s query, 596�599
point set, 552, 553, 569, 570

Torricelli, Evangelista, 306�308, 316, 329, 336,
339, 342, 353, 356, 363

tractrix, 348, 391, 497
trajectories, 371

transcendental functions, 117, 316, 354, 369,
385, 386, 409, 419, 540�541, 562

elementary, 410, 414
Euler identities, 413�414
higher, 238�239, 350, 415, 477
pi as, 354, 546, 555

transfinite ordinal. See number, transfinite
transform, Laplace, 444
transformations, 15, 29, 61, 184, 481, 488�491,

499�500
affine, 500
angle preserving, 488
birational, 502�503
Cayley, 515�517, 519
Cremona, 488�489
inversion, 488
stereographic, 138, 155�156
topographic, 553, 562
Tschirnhaus, 398�399
See also geometry, projective

transversals, 148, 442�443
trapezoid, area of, 14�15, 16, 60, 176, 190
“Treasury of Analysis,” 128
triangle
area of, 7, 14, 15, 36, 121�122, 156�158,

176, 190, 449, 486
center of gravity, 296
congruent, 43, 46, 96
Desargues theorem, 332
differential, 240
Euclid, 100�101, 106, 147
Euler line of the, 419
harmonic, 383�384
infinitesimal, 384�385
isosceles, 14�15, 38, 43, 46, 66, 78,

121, 562
law of cosines, 100
Menelaus theorem, 148�149
oblique, 277�278
Pascal’s. See Pascal’s triangle
Platonic idealization, 78
Regiomontanus, 247�248
right, 33�34, 66, 78, 153, 157�158,

176�177, 264, 421
trigonometry, 410, 419
ancient Greek, 98, 101, 122, 145, 146�152,

159, 189
first table, 146�147
hyperbolic, 422
infinite series, 534
inverse functions, 396
lines, 151�152
medieval European, 242�243
medieval Hindu, 189, 193�194, 197
medieval Islamic, 216�217, 218, 220,

221, 227
naming of, 281
natural logarithms of, 289
periodicity of functions, 375

I n de x 667



trigonometry (continued)
Renaissance, 248, 263�264, 264, 273,

277�281
six functions of, 264
See also tables, trigonometric

Trinity College (Dublin), 510, 511
trisectrix. See quadratrix
Tschirnhaus, Ehrenfried Walter von,

398�399
Turin Academy, 430, 432
Turing, Alan, 584
Tusi, Nasir al Din al , 220�221, 248, 337, 403

theorem of, 221, 248, 264

unified field theory, 573
uniformization, 459, 468, 532, 563
Uruk clay tablets, 22�23
Uryson, Pavel, 569

Vallée Poussin, C. J. de la, 468, 487
Vandermonde, Alexandre Théophile, 453
Vandiver, H. A., 594
vanishing points, principle of, 377
Varahamihira, 188
variations, calculus of, 396, 431�432, 435,

563, 568
Varignon, Pierre, 400, 401
Veblen, Oswald, 588, 589
vector analysis, 512, 515, 519, 530
vectors. See space, vectors
velocity, 392

diagram of, 301
See also derivative; fluxions

Vienna, University of, 246, 247
Viète, François, 273�281, 283�285, 291, 313,

320, 321, 341, 342, 351, 353, 358, 370,
388, 396, 398, 409, 505

Vitruvius, 143
Vlacq, Adriaan, 289
Voltaire, 109, 372, 425, 429
volume, 16�17, 36, 107, 180�181, 181

barrel, 299
cone, 73, 82, 124
cylinder, 16, 73, 82, 117�118, 124, 267
hyperbola, 125
pyramid, 16�17, 36�37, 73, 180�181
quasi atomic, 303
solids, 125, 299, 303, 304�305
spherical segment, 119�120, 124�125
tetrahedron, 181, 449, 460

von. See under name following this prefix

Waerden, B. L. van der, 571, 581
Wallis, John, 221, 336, 347, 348�353, 355, 356,

358, 360, 361, 372, 390, 415, 539
Arithmetica Infinitorum, 347, 351, 358, 393
Conics, 347, 349

Waring, Edward, 418, 433, 458
Waring’s problem, 418, 564
wave equation, 528�529, 530, 544

Weber, Heinrich, 520, 522, 528, 555, 557
Weber, Wilhelm, 474, 527, 528, 554
Wedderburn, J. H. M., 571
Weierstrass, Karl, 458, 522, 528, 531�538, 542,

557, 563
Weigel, Erhard, 294
Weil, André, 554, 578, 581, 582, 594,

599
Werner, Benjamin, 590�591
Werner, Johannes, 264�265, 267, 272
Werner formulas, 279
Wessel, Caspar, 455, 473, 511
Weyl, Hermann, 569, 572, 573, 577
Whitehead, Alfred North, 504, 560�561
Whitehead, J. H. C., 596�597
Widman, Johann, 253
Wiener, H., 559
Wiener, Norbert, 483�484, 583�584
Wiles, Andrew, 594�596
William of Moerbeke, 235�236, 255
Wilson, John, 418
Wilson’s theorem, 418, 433
Wingate, Edmund, 292�293
Witt, Jan de, 340, 341, 349
World War II, 577, 582, 584, 585
Wren, Christopher, 351
Wright, Edward, 271, 289
Wright, Thomas, 445

Xenocrates, 89
Xenophon, 63

Yale Collection, 25, 26, 36
Yang Hui, 183, 184
Yau, Shing Tung, 598, 599
Young, Thomas, 9

Zach, Franz Xaver von, 474
Zariski, Oscar, 581
Zenodorus, 168
Zeno of Elea, 42, 56, 64, 538
paradoxes of, 67�69, 73, 74, 89
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