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Foreword to the Second Edition

By Isaac Asimov

Mathematics is a unique aspect of human thought, and its history differs
in essence from all other histories.

As time goes on, nearly every field of human endeavor is marked
by changes which can be considered as correction and/or extension. Thus,
the changes in the evolving history of political and military events are
always chaotic; there is no way to predict the rise of a Genghis Khan,
for example, or the consequences of the short-lived Mongol Empire.
Other changes are a matter of fashion and subjective opinion. The cave-
paintings of 25,000 years ago are generally considered great art, and while
art has continuously—even chaotically—changed in the subsequent
millennia, there are elements of greatness in all the fashions. Similarly,
each society considers its own ways natural and rational, and finds the
ways of other societies to be odd, laughable, or repulsive.

But only among the sciences is there true progress; only there is the
record one of continuous advance toward ever greater heights.

And yet, among most branches of science, the process of progress is
one of both correction and extension. Aristotle, one of the greatest minds
ever to contemplate physical laws, was quite wrong in his views on
falling bodies and had to be corrected by Galileo in the 1590s. Galen, the
greatest of ancient physicians, was not allowed to study human cadavers
and was quite wrong in his anatomical and physiological conclusions.
He had to be corrected by Vesalius in 1543 and Harvey in 1628. Even
Newton, the greatest of all scientists, was wrong in his view of the nature
of light, of the achromaticity of lenses, and missed the existence of

Xi



Xii Foreword to the Second Edition

spectral lines. His masterpiece, the laws of motion and the theory of
universal gravitation, had to be modified by Einstein in 1916.

Now we can see what makes mathematics unique. Only in mathe-
matics is there no significant correction—only extension. Once the
Greeks had developed the deductive method, they were correct in what
they did, correct for all time. Euclid was incomplete and his work has
been extended enormously, but it has not had to be corrected. His the-
orems are, every one of them, valid to this day.

Ptolemy may have developed an erroneous picture of the planetary
system, but the system of trigonometry he worked out to help him with
his calculations remains correct forever.

Each great mathematician adds to what came previously, but nothing
needs to be uprooted. Consequently, when we read a book like A History
of Mathematics, we get the picture of a mounting structure, ever taller and
broader and more beautiful and magnificent and with a foundation,
moreover, that is as untainted and as functional now as it was when
Thales worked out the first geometrical theorems nearly 26 centuries ago.

Nothing pertaining to humanity becomes us so well as mathematics.
There, and only there, do we touch the human mind at its peak.



Preface to the Third Edition

During the two decades since the appearance of the second edition of
this work, there have been substantial changes in the course of mathe-
matics and the treatment of its history. Within mathematics, outstanding
results were achieved by a merging of techniques and concepts from
previously distinct areas of specialization. The history of mathematics
continued to grow quantitatively, as noted in the preface to the second
edition; but here, too, there were substantial studies that overcame the
polemics of “internal” versus “external” history and combined a fresh
approach to the mathematics of the original texts with the appropriate
linguistic, sociological, and economic tools of the historian.

In this third edition I have striven again to adhere to Boyer’s approach
to the history of mathematics. Although the revision this time includes
the entire work, changes have more to do with emphasis than original
content, the obvious exception being the inclusion of new findings since
the appearance of the first edition. For example, the reader will find
greater stress placed on the fact that we deal with such a small number of
sources from antiquity; this is one of the reasons for condensing three
previous chapters dealing with the Hellenic period into one. On the other
hand, the chapter dealing with China and India has been split, as content
demands. There is greater emphasis on the recurring interplay between
pure and applied mathematics as exemplified in chapter 14. Some
reorganization is due to an attempt to underline the impact of institu-
tional and personal transmission of ideas; this has affected most of the
pre-nineteenth-century chapters. The chapters dealing with the nineteenth
century have been altered the least, as I had made substantial changes
for some of this material in the second edition. The twentieth-century
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Xiv Preface to the Third Edition

material has been doubled, and a new final chapter deals with recent
trends, including solutions of some longstanding problems and the effect
of computers on the nature of proofs.

It is always pleasant to acknowledge those known to us for having had
an impact on our work. I am most grateful to Shirley Surrette Duffy for
responding judiciously to numerous requests for stylistic advice, even at
times when there were more immediate priorities. Peggy Aldrich Kid-
well replied with unfailing precision to my inquiry concerning certain
photographs in the National Museum of American History. Jeanne
LaDuke cheerfully and promptly answered my appeals for help, espe-
cially in confirming sources. Judy and Paul Green may not realize that a
casual conversation last year led me to rethink some recent material. I
have derived special pleasure and knowledge from several recent pub-
lications, among them Klopfer 2009 and, in a more leisurely fashion,
Szpiro 2007. Great thanks are due to the editors and production team of
John Wiley & Sons who worked with me to make this edition possible:
Stephen Power, the senior editor, was unfailingly generous and diplo-
matic in his counsel; the editorial assistant, Ellen Wright, facilitated
my progress through the major steps of manuscript creation; the senior
production manager, Marcia Samuels, provided me with clear and
concise instructions, warnings, and examples; senior production editors
Kimberly Monroe-Hill and John Simko and the copyeditor, Patricia
Waldygo, subjected the manuscript to painstakingly meticulous scrutiny.
The professionalism of all concerned provides a special kind of
encouragement in troubled times.

I should like to pay tribute to two scholars whose influence on others
should not be forgotten. The Renaissance historian Marjorie N. Boyer
(Mrs. Carl B. Boyer) graciously and knowledgeably complimented
a young researcher at the beginning of her career on a talk presented at a
Leibniz conference in 1966. The brief conversation with a total stranger
did much to influence me in pondering the choice between mathematics
and its history.

More recently, the late historian of mathematics Wilbur Knorr set a
significant example to a generation of young scholars by refusing to
accept the notion that ancient authors had been studied definitively by
others. Setting aside the “magister dixit,” he showed us the wealth of
knowledge that emerges from seeking out the texts.

—Uta C. Merzbach
March 2010



Preface to the Second Edition

This edition brings to a new generation and a broader spectrum of
readers a book that became a standard for its subject after its initial
appearance in 1968. The years since then have been years of renewed
interest and vigorous activity in the history of mathematics. This has
been demonstrated by the appearance of numerous new publications
dealing with topics in the field, by an increase in the number of courses
on the history of mathematics, and by a steady growth over the years in
the number of popular books devoted to the subject. Lately, growing
interest in the history of mathematics has been reflected in other bran-
ches of the popular press and in the electronic media. Boyer’s con-
tribution to the history of mathematics has left its mark on all of these
endeavors.

When one of the editors of John Wiley & Sons first approached me
concerning a revision of Boyer’s standard work, we quickly agreed that
textual modifications should be kept to a minimum and that the changes
and additions should be made to conform as much as possible to Boyer’s
original approach. Accordingly, the first twenty-two chapters have been
left virtually unchanged. The chapters dealing with the nineteenth century
have been revised; the last chapter has been expanded and split into two.
Throughout, an attempt has been made to retain a consistent approach
within the volume and to adhere to Boyer’s stated aim of giving stronger
emphasis on historical elements than is customary in similar works.

The references and general bibliography have been substantially
revised. Since this work is aimed at English-speaking readers, many of
whom are unable to utilize Boyer’s foreign-language chapter references,
these have been replaced by recent works in English. Readers are urged to
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Xvi Preface to the Second Edition

consult the General Bibliography as well, however. Immediately fol-
lowing the chapter references at the end of the book, it contains additional
works and further bibliographic references, with less regard to language.
The introduction to that bibliography provides some overall guidance for
further pleasurable reading and for solving problems.

The initial revision, which appeared two years ago, was designed for
classroom use. The exercises found there, and in the original edition,
have been dropped in this edition, which is aimed at readers outside the
lecture room. Users of this book interested in supplementary exercises
are referred to the suggestions in the General Bibliography.

I express my gratitude to Judith V. Grabiner and Albert Lewis for
numerous helpful criticisms and suggestions. I am pleased to acknowl-
edge the fine cooperation and assistance of several members of the
Wiley editorial staff. I owe immeasurable thanks to Virginia Beets for
lending her vision at a critical stage in the preparation of this manuscript.
Finally, thanks are due to numerous colleagues and students who have
shared their thoughts about the first edition with me. I hope they will find
beneficial results in this revision.

—Uta C. Merzbach
Georgetown, Texas
March 1991



Preface to the First Edition

Numerous histories of mathematics have appeared during this century,
many of them in the English language. Some are very recent, such as
J. F. Scott’s A History of Mathematics'; a new entry in the field,
therefore, should have characteristics not already present in the available
books. Actually, few of the histories at hand are textbooks, at least not in
the American sense of the word, and Scott’s History is not one of them.
It appeared, therefore, that there was room for a new book—one that
would meet more satisfactorily my own preferences and possibly those
of others.

The two-volume History of Mathematics by David Eugene Smith? was
indeed written “for the purpose of supplying teachers and students with a
usable textbook on the history of elementary mathematics,” but it covers
too wide an area on too low a mathematical level for most modern
college courses, and it is lacking in problems of varied types. Florian
Cajori’s History of Mathematics® still is a very helpful reference work;
but it is not adapted to classroom use, nor is E. T. Bell’s admirable
The Development of Mathematics.* The most successful and app-
ropriate textbook today appears to be Howard Eves, An Introduction to
the History of Mathematics,” which 1 have used with considerable
satisfaction in at least a dozen classes since it first appeared in 1953.

'"London: Taylor and Francis, 1958.

“Boston: Ginn and Company, 1923—1925.

*New York: Macmillan, 1931, 2nd edition.

“New York: McGraw Hill, 1945, 2nd edition.

SNew York: Holt, Rinehart and Winston, 1964, revised edition.
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I have occasionally departed from the arrangement of topics in the book
in striving toward a heightened sense of historicalmindedness and have
supplemented the material by further reference to the contributions
of the eighteenth and nineteenth centuries especially by the use of
D. J. Struik, A Concise History of Mathematics.®

The reader of this book, whether layman, student, or teacher of a
course in the history of mathematics, will find that the level of mathe-
matical background that is presupposed is approximately that of a col-
lege junior or senior, but the material can be perused profitably also by
readers with either stronger or weaker mathematical preparation. Each
chapter ends with a set of exercises that are graded roughly into three
categories. Essay questions that are intended to indicate the reader’s
ability to organize and put into his own words the material discussed in
the chapter are listed first. Then follow relatively easy exercises that
require the proofs of some of the theorems mentioned in the chapter or
their application to varied situations. Finally, there are a few starred
exercises, which are either more difficult or require specialized methods
that may not be familiar to all students or all readers. The exercises do
not in any way form part of the general exposition and can be dis-
regarded by the reader without loss of continuity.

Here and there in the text are references to footnotes, generally bib-
liographical, and following each chapter there is a list of suggested
readings. Included are some references to the vast periodical literature in
the field, for it is not too early for students at this level to be introduced
to the wealth of material available in good libraries. Smaller college
libraries may not be able to provide all of these sources, but it is well for
a student to be aware of the larger realms of scholarship beyond the
confines of his own campus. There are references also to works in for-
eign languages, despite the fact that some students, hopefully not many,
may be unable to read any of these. Besides providing important addi-
tional sources for those who have a reading knowledge of a foreign
language, the inclusion of references in other languages may help to
break down the linguistic provincialism which, ostrichlike, takes refuge
in the mistaken impression that everything worthwhile appeared in, or
has been translated into, the English language.

The present work differs from the most successful presently available
textbook in a stricter adherence to the chronological arrangement and a
stronger emphasis on historical elements. There is always the temptation
in a class in history of mathematics to assume that the fundamental
purpose of the course is to teach mathematics. A departure from math-
ematical standards is then a mortal sin, whereas an error in history is
venial. I have striven to avoid such an attitude, and the purpose of the

SNew York: Dover Publications, 1967, 3rd edition.
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book is to present the history of mathematics with fidelity, not only to
mathematical structure and exactitude, but also to historical perspective
and detail. It would be folly, in a book of this scope, to expect that every
date, as well as every decimal point, is correct. It is hoped, however, that
such inadvertencies as may survive beyond the stage of page proof will
not do violence to the sense of history, broadly understood, or to a sound
view of mathematical concepts. It cannot be too strongly emphasized
that this single volume in no way purports to present the history of
mathematics in its entirety. Such an enterprise would call for the con-
certed effort of a team, similar to that which produced the fourth volume
of Cantor’s Vorlesungen iiber Geschichte der Mathematik in 1908 and
brought the story down to 1799. In a work of modest scope the author
must exercise judgment in the selection of the materials to be included,
reluctantly restraining the temptation to cite the work of every produc-
tive mathematician; it will be an exceptional reader who will not note
here what he regards as unconscionable omissions. In particular, the last
chapter attempts merely to point out a few of the salient characteristics
of the twentieth century. In the field of the history of mathematics
perhaps nothing is more to be desired than that there should appear a
latter-day Felix Klein who would complete for our century the type of
project Klein essayed for the nineteenth century, but did not live to
finish.

A published work is to some extent like an iceberg, for what is visible
constitutes only a small fraction of the whole. No book appears until the
author has lavished time on it unstintingly and unless he has received
encouragement and support from others too numerous to be named
individually. Indebtedness in my case begins with the many eager stu-
dents to whom I have taught the history of mathematics, primarily
at Brooklyn College, but also at Yeshiva University, the University
of Michigan, the University of California (Berkeley), and the University of
Kansas. At the University of Michigan, chiefly through the encourage-
ment of Professor Phillip S. Jones, and at Brooklyn College through the
assistance of Dean Walter H. Mais and Professors Samuel Borofsky and
James Singer, I have on occasion enjoyed a reduction in teaching load in
order to work on the manuscript of this book. Friends and colleagues
in the field of the history of mathematics, including Professor Dirk
J. Struik of the Massachusetts Institute of Technology, Professor Kenneth O.
May at the University of Toronto, Professor Howard Eves of
the University of Maine, and Professor Morris Kline at New York
University, have made many helpful suggestions in the preparation
of the book, and these have been greatly appreciated. Materials in
the books and articles of others have been expropriated freely, with little
acknowledgment beyond a cold bibliographical reference, and I take this
opportunity to express to these authors my warmest gratitude. Libraries
and publishers have been very helpful in providing information and
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illustrations needed in the text; in particular it has been a pleasure to have
worked with the staff of John Wiley & Sons. The typing of the final copy,
as well as of much of the difficult preliminary manuscript, was done
cheerfully and with painstaking care by Mrs. Hazel Stanley of Lawrence,
Kansas. Finally, I must express deep gratitude to a very understanding
wife. Dr. Marjorie N. Boyer, for her patience in tolerating disruptions
occasioned by the development of yet another book within the family.

—Carl B. Boyer
Brooklyn, New York
January 1968



Traces

Did you bring me a man who cannot number his fingers?
From the Egyptian Book of the Dead

Concepts and Relationships

Contemporary mathematicians formulate statements about abstract con-
cepts that are subject to verification by proof. For centuries, mathematics
was considered to be the science of numbers, magnitudes, and forms. For
that reason, those who seek early examples of mathematical activity will
point to archaeological remnants that reflect human awareness of opera-
tions on numbers, counting, or “geometric” patterns and shapes. Even
when these vestiges reflect mathematical activity, they rarely evidence
much historical significance. They may be interesting when they show that
peoples in different parts of the world conducted certain actions dealing
with concepts that have been considered mathematical. For such an action
to assume historical significance, however, we look for relationships that
indicate this action was known to another individual or group that engaged
in arelated action. Once such a connection has been established, the door is
open to more specifically historical studies, such as those dealing with
transmission, tradition, and conceptual change.



2 Traces

Mathematical vestiges are often found in the domain of nonliterate
cultures, making the evaluation of their significance even more complex.
Rules of operation may exist as part of an oral tradition, often in musical
or verse form, or they may be clad in the language of magic or ritual.
Sometimes they are found in observations of animal behavior, removing
them even further from the realm of the historian. While studies of
canine arithmetic or avian geometry belong to the zoologist, of the
impact of brain lesions on number sense to the neurologist, and of
numerical healing incantations to the anthropologist, all of these studies
may prove to be useful to the historian of mathematics without being an
overt part of that history.

At first, the notions of number, magnitude, and form may have been
related to contrasts rather than likenesses—the difference between
one wolf and many, the inequality in size of a minnow and a whale, the
unlikeness of the roundness of the moon and the straightness of a pine
tree. Gradually, there may have arisen, out of the welter of chaotic
experiences, the realization that there are samenesses, and from this
awareness of similarities in number and form both science and mathe-
matics were born. The differences themselves seem to point to likenesses,
for the contrast between one wolf and many, between one sheep and a
herd, between one tree and a forest suggests that one wolf, one sheep,
and one tree have something in common—their uniqueness. In the same
way it would be noticed that certain other groups, such as pairs, can be
put into one-to-one correspondence. The hands can be matched against
the feet, the eyes, the ears, or the nostrils. This recognition of an
abstract property that certain groups hold in common, and that we call
“number,” represents a long step toward modern mathematics. It is
unlikely to have been the discovery of any one individual or any single
tribe; it was more probably a gradual awareness that may have devel-
oped as early in man’s cultural development as the use of fire, possibly
some 300,000 years ago.

That the development of the number concept was a long and gradual
process is suggested by the fact that some languages, including Greek,
have preserved in their grammar a tripartite distinction between 1 and 2
and more than 2, whereas most languages today make only the dual
distinction in “number” between singular and plural. Evidently, our very
early ancestors at first counted only to 2, and any set beyond this level
was designated as “many.” Even today, many people still count objects
by arranging them into sets of two each.

The awareness of number ultimately became sufficiently extended
and vivid so that a need was felt to express the property in some way,
presumably at first in sign language only. The fingers on a hand can be
readily used to indicate a set of two or three or four or five objects, the
number 1 generally not being recognized at first as a true “number.” By
the use of the fingers on both hands, collections containing up to ten
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elements could be represented; by combining fingers and toes, one
could count as high as 20. When the human digits were inadequate,
heaps of stones or knotted strings could be used to represent a corre-
spondence with the elements of another set. Where nonliterate peoples
used such a scheme of representation, they often piled the stones in
groups of five, for they had become familiar with quintuples through
observation of the human hand and foot. As Aristotle noted long ago, the
widespread use today of the decimal system is but the result of
the anatomical accident that most of us are born with ten fingers and
ten toes.

Groups of stones are too ephemeral for the preservation of informa-
tion; hence, prehistoric man sometimes made a number record by cutting
notches in a stick or a piece of bone. Few of these records remain today,
but in Moravia a bone from a young wolf was found that is deeply
incised with fifty-five notches. These are arranged in two series, with
twenty-five in the first and thirty in the second: within each series, the
notches are arranged in groups of five. It has been dated as being
approximately 30,000 years old. Two other prehistoric numerical arti-
facts were found in Africa: a baboon fibula having twenty-nine notches,
dated as being circa 35,000 years old, and the Ishango bone, with its
apparent examples of multiplicative entries, initially dated as approxi-
mately 8,000 years old but now estimated to be as much as 30,000 years
old as well. Such archaeological discoveries provide evidence that the
idea of number is far older than previously acknowledged.

Early Number Bases

Historically, finger counting, or the practice of counting by fives and
tens, seems to have come later than counter-casting by twos and threes,
yet the quinary and decimal systems almost invariably displaced the
binary and ternary schemes. A study of several hundred tribes among
the American Indians, for example, showed that almost one-third used
a decimal base, and about another third had adopted a quinary or a
quinary-decimal system; fewer than a third had a binary scheme, and
those using a ternary system constituted less than 1 percent of the group.
The vigesimal system, with the number 20 as a base, occurred in about
10 percent of the tribes.

An interesting example of a vigesimal system is that used by the Maya
of Yucatan and Central America. This was deciphered some time
before the rest of the Maya languages could be translated. In their
representation of time intervals between dates in their calendar, the
Maya used a place value numeration, generally with 20 as the primary
base and with 5 as an auxiliary. (See the following illustration.) Units
were represented by dots and fives by horizontal bars, so that the number
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From the Dresden Codex of the Maya, displaying numbers. The second
column on the left, reading down from above, displays the numbers 9, 9,
16, 0, 0, which stand for 9 X 144,000 +9 X 7,200+ 16 X 360+ 0+ 0
= 1,366,560. In the third column are the numerals 9,9, 9, 16, 0, representing
1,364,360. The original appears in black and red. (Taken from Morley 1915,
p- 266.)

17, for example, would appear as =& (that is, as 3(5) +2). A vertical
positional arrangement was used, w1th the larger units of time above;
hence, the notation ':-+' denoted 352 (that is, 17(20) + 12). Because the
system was primarily y for counting days within a calendar that had 360
days in a year, the third position usually did not represent multiples of
(20)(20), as in a pure vigesimal system, but (18)(20). Beyond this point,
however, the base 20 again prevailed. Within this positional notation,
the Maya indicated missing positions through the use of a symbol,
which appeared in variant forms, somewhat resembling a half-open eye.
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In their scheme, then, the notation
0(18-20) + 13(20) + 0.

3 denoted 17(20-18-20) +
S

Number Language and Counting

It is generally believed that the development of language was essential to
the rise of abstract mathematical thinking. Yet words expressing
numerical ideas were slow in arising. Number signs probably preceded
number words, for it is easier to cut notches in a stick than it is to
establish a well-modulated phrase to identify a number. Had the problem
of language not been so difficult, rivals to the decimal system might have
made greater headway. The base 5, for example, was one of the earliest
to leave behind some tangible written evidence, but by the time that
language became formalized, 10 had gained the upper hand. The modern
languages of today are built almost without exception around the base
10, so that the number 13, for example, is not described as 3 and 5 and 5,
but as 3 and 10. The tardiness in the development of language to cover
abstractions such as number is also seen in the fact that primitive
numerical verbal expressions invariably refer to specific concrete col-
lections—such as “two fishes” or “two clubs”—and later some such
phrase would be adopted conventionally to indicate all sets of two
objects. The tendency for language to develop from the concrete to the
abstract is seen in many of our present-day measures of length. The
height of a horse is measured in “hands,” and the words “foot” and “ell”
(or elbow) have similarly been derived from parts of the body.

The thousands of years required for man to separate out the abstract
concepts from repeated concrete situations testify to the difficulties that
must have been experienced in laying even a very primitive basis for
mathematics. Moreover, there are a great many unanswered questions
relating to the origins of mathematics. It is usually assumed that the subject
arose in answer to practical needs, but anthropological studies suggest the
possibility of an alternative origin. It has been suggested that the art of
counting arose in connection with primitive religious ritual and that the
ordinal aspect preceded the quantitative concept. In ceremonial rites
depicting creation myths, it was necessary to call the participants onto the
scene in a specific order, and perhaps counting was invented to take care of
this problem. If theories of the ritual origin of counting are correct, the
concept of the ordinal number may have preceded that of the cardinal
number. Moreover, such an origin would tend to point to the possibility
that counting stemmed from a unique origin, spreading subsequently to
other areas of the world. This view, although far from established, would
be in harmony with the ritual division of the integers into odd and even, the
former being regarded as male, the latter as female. Such distinctions
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were known to civilizations in all corners of the earth, and myths regarding
the male and female numbers have been remarkably persistent.

The concept of the whole number is one of the oldest in mathematics,
and its origin is shrouded in the mists of prehistoric antiquity. The notion
of a rational fraction, however, developed relatively late and was not in
general closely related to systems for the integers. Among nonliterate
tribes, there seems to have been virtually no need for fractions. For
quantitative needs, the practical person can choose units that are suffi-
ciently small to obviate the necessity of using fractions. Hence, there
was no orderly advance from binary to quinary to decimal fractions, and
the dominance of decimal fractions is essentially the product of the
modern age.

Spatial Relationships

Statements about the origins of mathematics, whether of arithmetic or
geometry, are of necessity hazardous, for the beginnings of the subject
are older than the art of writing. It is only during the last half-dozen
millennia, in a passage that may have spanned thousands of millennia,
that human beings have been able to put their records and thoughts into
written form. For data about the prehistoric age, we must depend on
interpretations based on the few surviving artifacts, on evidence pro-
vided by current anthropology, and on a conjectural backward extra-
polation from surviving documents. Neolithic peoples may have had
little leisure and little need for surveying, yet their drawings and designs
suggest a concern for spatial relationships that paved the way for geo-
metry. Pottery, weaving, and basketry show instances of congruence and
symmetry, which are in essence parts of elementary geometry, and they
appear on every continent. Moreover, simple sequences in design, such
as that in Fig. 1.1, suggest a sort of applied group theory, as well as

FIG. 1.1
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propositions in geometry and arithmetic. The design makes it immedi-
ately obvious that the areas of triangles are to one another as squares on a
side, or, through counting, that the sums of consecutive odd numbers,
beginning from unity, are perfect squares. For the prehistoric period
there are no documents; hence, it is impossible to trace the evolution of
mathematics from a specific design to a familiar theorem. But ideas are
like hardy spores, and sometimes the presumed origin of a concept may
be only the reappearance of a much more ancient idea that had lain
dormant.

The concern of prehistoric humans for spatial designs and relationships
may have stemmed from their aesthetic feeling and the enjoyment of
beauty of form, motives that often actuate the mathematician of today. We
would like to think that at least some of the early geometers pursued their
work for the sheer joy of doing mathematics, rather than as a practical aid
in mensuration, but there are alternative theories. One of these is that
geometry, like counting, had an origin in primitive ritualistic practice. Yet
the theory of the origin of geometry in a secularization of ritualistic
practice is by no means established. The development of geometry may
just as well have been stimulated by the practical needs of construction and
surveying or by an aesthetic feeling for design and order.

We can make conjectures about what led people of the Stone Age to
count, to measure, and to draw. That the beginnings of mathematics are
older than the oldest civilizations is clear. To go further and categori-
cally identify a specific origin in space or time, however, is to mistake
conjecture for history. It is best to suspend judgment on this matter and
to move on to the safer ground of the history of mathematics as found in
the written documents that have come down to us.
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Ancient Egypt

Sesostris ... made a division of the soil of Egypt among the
inhabitants. ... If the river carried away any portion of a man’s lot, .. .
the king sent persons to examine, and determine by measurement the
exact extent of the loss. ... From this practice, I think, geometry first
came to be known in Egypt, whence it passed into Greece.
Herodotus

The Era and the Sources

About 450 Bce, Herodotus, the inveterate Greek traveler and narrative
historian, visited Egypt. He viewed ancient monuments, interviewed
priests, and observed the majesty of the Nile and the achievements of those
working along its banks. His resulting account would become a cornerstone
for the narrative of Egypt’s ancient history. When it came to mathematics,
he held that geometry had originated in Egypt, for he believed that
the subject had arisen there from the practical need for resurveying after the
annual flooding of the river valley. A century later, the philosopher Aristotle
speculated on the same subject and attributed the Egyptians’ pursuit of
geometry to the existence of a priestly leisure class. The debate, extending
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well beyond the confines of Egypt, about whether to credit progress in
mathematics to the practical men (the surveyors, or “rope-stretchers”) or to
the contemplative elements of society (the priests and the philosophers)
has continued to our times. As we shall see, the history of mathematics
displays a constant interplay between these two types of contributors.

In attempting to piece together the history of mathematics in ancient
Egypt, scholars until the nineteenth century encountered two major
obstacles. The first was the inability to read the source materials that
existed. The second was the scarcity of such materials. For more than
thirty-five centuries, inscriptions used hieroglyphic writing, with varia-
tions from purely ideographic to the smoother hieratic and eventually the
still more flowing demotic forms. After the third century ce, when they
were replaced by Coptic and eventually supplanted by Arabic, knowledge
of hieroglyphs faded. The breakthrough that enabled modern scholars
to decipher the ancient texts came early in the nineteenth century when
the French scholar Jean-Frangois Champollion, working with multi-
lingual tablets, was able to slowly translate a number of hieroglyphs. These
studies were supplemented by those of other scholars, including the British
physicist Thomas Young, who were intrigued by the Rosetta Stone, a tri-
lingual basalt slab with inscriptions in hieroglyphic, demotic, and Greek
writings that had been found by members of Napoleon’s Egyptian expe-
dition in 1799. By 1822, Champollion was able to announce a substantive
portion of his translations in a famous letter sent to the Academy of Sci-
ences in Paris, and by the time of his death in 1832, he had published a
grammar textbook and the beginning of a dictionary.

Although these early studies of hieroglyphic texts shed some light on
Egyptian numeration, they still produced no purely mathematical mate-
rials. This situation changed in the second half of the nineteenth century.
In 1858, the Scottish antiquary Henry Rhind purchased a papyrus roll in
Luxor that is about one foot high and some eighteen feet long. Except for a
few fragments in the Brooklyn Museum, this papyrus is now in the British
Museum. It is known as the Rhind or the Ahmes Papyrus, in honor of
the scribe by whose hand it had been copied in about 1650 Bce. The scribe
tells us that the material is derived from a prototype from the Middle
Kingdom of about 2000 to 1800 Bce. Written in the hieratic script,
it became the major source of our knowledge of ancient Egyptian
mathematics. Another important papyrus, known as the Golenishchev or
Moscow Papyrus, was purchased in 1893 and is now in the Pushkin
Museum of Fine Arts in Moscow. It, too, is about eighteen feet long but is
only one-fourth as wide as the Ahmes Papyrus. It was written less carefully
than the work of Ahmes was, by an unknown scribe of circa. 1890 BcE. It
contains twenty-five examples, mostly from practical life and not differing
greatly from those of Ahmes, except for two that will be discussed further
on. Yet another twelfth-dynasty papyrus, the Kahun, is now in London; a
Berlin papyrus is of the same period. Other, somewhat earlier, materials
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are two wooden tablets from Akhmim of about 2000 BcE and a leather roll
containing a list of fractions. Most of this material was deciphered within a
hundred years of Champollion’s death. There is a striking degree of
coincidence between certain aspects of the earliest known inscriptions and
the few mathematical texts of the Middle Kingdom that constitute our
known source material.

Numbers and Fractions

Once Champollion and his contemporaries could decipher inscriptions on
tombs and monuments, Egyptian hieroglyphic numeration was easily dis-
closed. The system, at least as old as the pyramids, dating some 5,000 years
ago, was based on the 10 scale. By the use of a simple iterative scheme and
of distinctive symbols for each of the first half-dozen powers of 10, numbers
greater than a million were carved on stone, wood, and other materials.
A single vertical stroke represented a unit, an inverted wicket was used for
10, a snare somewhat resembling a capital C stood for 100, a lotus flower for
1,000, a bent finger for 10,000, a tadpole for 100,000, and a kneeling figure,
apparently Heh, the god of the Unending, for 1,000,000. Through repetition
of these symbols, the number 12,345, for example, would appear as

r 22297 annnij}

Sometimes the smaller digits were placed on the left, and other times the
digits were arranged vertically. The symbols themselves were occasion-
ally reversed in orientation, so that the snare might be convex toward
either the right or the left.

Egyptian inscriptions indicate familiarity with large numbers at an early
date. A museum at Oxford has a royal mace more than 5,000 years old, on
which a record of 120,000 prisoners and 1,422,000 captive goats appears.
These figures may have been exaggerated, but from other considerations it
is clear that the Egyptians were commendably accurate in counting and
measuring. The construction of the Egyptian solar calendar is an out-
standing early example of observation, measurement, and counting. The
pyramids are another famous instance; they exhibit such a high degree of
precision in construction and orientation that ill-founded legends have
grown up around them.

The more cursive hieratic script used by Ahmes was suitably adapted
to the use of pen and ink on prepared papyrus leaves. Numeration
remained decimal, but the tedious repetitive principle of hieroglyphic
numeration was replaced by the introduction of ciphers or special signs
to represent digits and multiples of powers of 10. The number 4, for
example, usually was no longer represented by four vertical strokes but
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by a horizontal bar, and 7 is not written as seven strokes but as a single
cipher { resembling a sickle. The hieroglyphic form for the number
28 was mnl}!}{; the hieratic form was simply =z. Note that the cipher = for
the smaller digit 8 (or two 4s) appears on the left, rather than on the right.
The principle of cipherization, introduced by the Egyptians some 4,000
years ago and used in the Ahmes Papyrus, represented an important
contribution to numeration, and it is one of the factors that makes our
own system in use today the effective instrument that it is.

Egyptian hieroglyphic inscriptions have a special notation for unit
fractions—that is, fractions with unit numerators. The reciprocal of any
integer was indicated simply by placing over the notation for the integer
an elongated oval sign. The fraction 3 thus appeared as ;ﬁ{ and 2% was
written as fz. In the hieratic notation, appearing in papyri, the elongated
oval is replaced by a dot, which is placed over the cipher for the cor-
responding integer (or over the right-hand cipher in the case of the
reciprocal of a multidigit number). In the Ahmes Papyrus, for example,
the fraction § appears as ==, and 7 is written as #. Such unit fractions were
freely handled in Ahmes’s day, but the general fraction seems to have
been an enigma to the Egyptians. They felt comfortable with the fraction 3,
for which they had a special hieratic sign z; occasionally, they used special
signs for fractions of the form n/(n + 1), the complements of the unit
fractions. To the fraction 3, the Egyptians assigned a special role in arith-
metic processes, so that in finding one-third of a number, they first found
two-thirds of it and subsequently took half of the result! They knew and
used the fact that two-thirds of the unit fraction 1/p is the sum of the two
unit fractions 1/2p and 1/6p; they were also aware that double the unit
fraction 1/2p is the unit fraction 1 /p. Yet it looks as though, apart from the
fraction 3, the Egyptians regarded the general proper rational fraction of the
form m/n not as an elementary “thing” but as part of an uncompleted
process. Where today we think of 3 as a single irreducible fraction,
Egyptian scribes thought of it as reducible to the sum of three unit frac-
tions, 3 and £ and 1.

To facilitate the reduction of “mixed” proper fractions to the sum of
unit fractions, the Ahmes Papyrus opens with a table expressing 2/n as
a sum of unit fractions for all odd values of n from 5 to 101.
The equivalent of £ is given as i and %, 11 is written as  and &, and 1 is
expressed as 1 and 3. The last item in the table decomposes 1 into wr and
=z and 33 and a. It is not clear why one form of decomposition was
preferred to another of the indefinitely many that are possible. This last
entry certainly exemplifies the Egyptian prepossession for halving and
taking a third; it is not at all clear to us why the decomposition
2/n=1/n+1/2n+1/3n+1/2-3-n is better than 1/n + 1/n. Perhaps
one of the objects of the 2/n decomposition was to arrive at unit frac-
tions smaller than 1/n. Certain passages indicate that the Egyptians had
some appreciation of general rules and methods above and beyond the
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specific case at hand, and this represents an important step in the
development of mathematics.

Arithmetic Operations

The 2/n table in the Ahmes Papyrus is followed by a short n/10 table for
n from 1 to 9, the fractions again being expressed in terms of the
favorites—unit fractions and the fraction %. The fraction 1, for example,
is broken into 3% and i and % Ahmes had begun his work with the
assurance that it would provide a “complete and thorough study of all
things...and the knowledge of all secrets,” and therefore the main
portion of the material, following the 2/n and r/10 tables, consists of
eighty-four widely assorted problems. The first six of these require the
division of one or two or six or seven or eight or nine loaves of bread
among ten men, and the scribe makes use of the #/10 table that he has
just given. In the first problem, the scribe goes to considerable trouble to
show that it is correct to give to each of the ten men one tenth of a loaf!
If one man receives 1 of a loaf, two men will receive % or # and four men
will receive £ of a loaf or 3 + i of a loaf. Hence, eight men will receive
$+% of aloaf or 3 +1% +% of a loaf, and eight men plus two men
will receive 3 +3 + % +m, or a whole loaf. Ahmes seems to have had
a kind of equivalent to our least common multiple, which enabled him to
complete the proof. In the division of seven loaves among ten men,
the scribe might have chosen i + 3 of a loaf for each, but the predilection
for % led him instead to 3 and % of a loaf for each.

The fundamental arithmetic operation in Egypt was addition, and our
operations of multiplication and division were performed in Ahmes’s
day through successive doubling, or “duplation.” Our own word “mul-
tiplication,” or manifold, is, in fact, suggestive of the Egyptian process.
A multiplication of, say, 69 by 19 would be performed by adding 69 to
itself to obtain 138, then adding this to itself to reach 276, applying
duplation again to get 552, and once more to obtain 1104, which is, of
course, 16 times 69. Inasmuch as 19 =16 + 2 + 1, the result of multi-
plying 69 by 19 is 1104 + 138 + 69, that is, 1311. Occasionally, a
multiplication by 10 was also used, for this was a natural concomitant of
the decimal hieroglyphic notation. Multiplication of combinations of
unit fractions was also a part of Egyptian arithmetic. Problem 13 in the
Ahmes Papyrus, for example, asks for the product of i +mz and
1 + 7 +%; the result is correctly found to be 3. For division, the duplation
process is reversed, and the divisor, instead of the multiplicand, is suc-
cessively doubled. That the Egyptians had developed a high degree of
artistry in applying the duplation process and the unit fraction concept is
apparent from the calculations in the problems of Ahmes. Problem 70
calls for the quotient when 100 is divided by 7 +1 + i +§; the result,
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1243 + 4% + 1, is obtained as follows. Doubling the divisor succes-
sively, we first obtain 15 + 7 + 1, then 31 + 3, and finally 63, which is 8
times the divisor. Moreover, 3 of the divisor is known to be 5 + i. Hence,
the divisor when multiplied by 8 + 4 + 3 will total 993, which is i short of
the product 100 that is desired. Here a clever adjustment was made.
Inasmuch as 8 times the divisor is 63, it follows that the divisor when
multiplied by & will produce i. From the 2/n table, one knows that & is
# + m%; hence, the desired quotient is 12 +34+% + s Incidentally, this
procedure makes use of a commutative principle in multiplication, with
which the Egyptians evidently were familiar.

Many of Ahmes’s problems show knowledge of manipulations of
proportions equivalent to the “rule of three.” Problem 72 calls for the
number of loaves of bread of “strength” 45, which are equivalent to 100
loaves of “strength” 10, and the solution is given as 100/ 10 X 45, or 450
loaves. In bread and beer problems, the ‘“strength,” or pesu, is the
reciprocal of the grain density, being the quotient of the number of
loaves or units of volume divided by the amount of grain. Bread and beer
problems are numerous in the Ahmes Papyrus. Problem 63, for example,
requires the division of 700 loaves of bread among four recipients if the
amounts they are to receive are in the continued proportion3 : 3 : 5 : i. The
solution is found by taking the ratio of 700 to the sum of the fractions in
the proportion. In this case, the quotient of 700 divided by 11 is found by
multiplying 700 by the reciprocal of the divisor, which is 3 + 1. The
result is 400; by taking % and 1 and 3 and § of this, the required shares of
bread are found.

"Heap" Problems

The Egyptian problems so far described are best classified as arithmetic,
but there are others that fall into a class to which the term “algebraic” is
appropriately applied. These do not concern specific concrete objects,
such as bread and beer, nor do they call for operations on known
numbers. Instead, they require the equivalent of solutions of linear
equations of the form x + ax = b or x + ax + bx = ¢, where a and b and ¢
are known and x is unknown. The unknown is referred to as “aha,” or
heap. Problem 24, for instance, calls for the value of heap if heap and 7 of
heap is 19. The solution given by Ahmes is not that of modern textbooks
but is characteristic of a procedure now known as the “method of false
position,” or the “rule of false.” A specific value, most likely a false one,
is assumed for heap, and the operations indicated on the left-hand side of
the equality sign are performed on this assumed number. The result
of these operations is then compared with the result desired, and by the
use of proportions the correct answer is found. In problem 24, the ten-
tative value of the unknown is taken as 7, so that x + 7x is 8, instead of
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the desired answer, which was 19. Inasmuch as 8(2 + 1 +3%) =19, one
must multiply 7 by 2 + i + 5 to obtain the correct heap; Ahmes found the
answer to be 16 +31 +3 Ahmes then “checked” his result by showing
that if to 16 +3 +35 one adds 7 of this (which is 2 +3 +35), one does
indeed obtain 19. Here we see another significant step in the develop-
ment of mathematics, for the check is a simple instance of a proof.
Although the method of false position was generally used by Ahmes,
there is one problem (Problem 30) in which x +3x +ix+7x=237 is
solved by factoring the left-hand side of the equation and dividing 37 by
1 +3% +1 47 the result being 16 +% + & + 7

Many of the “aha” calculations in the Rhind (Ahmes) Papyrus appear
to be practice exercises for young students. Although a large proportion
of them are of a practical nature, in some places the scribe seemed to
have had puzzles or mathematical recreations in mind. Thus, Problem 79
cites only “seven houses, 49 cats, 343 mice, 2401 ears of spelt, 16807
hekats.” It is presumed that the scribe was dealing with a problem,
perhaps quite well known, where in each of seven houses there are seven
cats, each of which eats seven mice, each of which would have eaten
seven ears of grain, each of which would have produced seven measures
of grain. The problem evidently called not for the practical answer,
which would be the number of measures of grain that were saved, but for
the impractical sum of the numbers of houses, cats, mice, ears of spelt,
and measures of grain. This bit of fun in the Ahmes Papyrus seems to be
a forerunner of our familiar nursery rhyme:

As I was going to St. Ives,

I met a man with seven wives;
Every wife had seven sacks,
Every sack had seven cats,

Every cat had seven Kkits,

Kits, cats, sacks, and wives,

How many were going to St. Ives?

Geometric Problems

It is often said that the ancient Egyptians were familiar with the
Pythagorean theorem, but there is no hint of this in the papyri that have
come down to us. There are nevertheless some geometric problems in
the Ahmes Papyrus. Problem 51 of Ahmes shows that the area of an
isosceles triangle was found by taking half of what we would call the
base and multiplying this by the altitude. Ahmes justified his method of
finding the area by suggesting that the isosceles triangle can be thought
of as two right triangles, one of which can be shifted in position, so that
together the two triangles form a rectangle. The isosceles trapezoid is
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similarly handled in Problem 52, in which the larger base of a trapezoid
is 6, the smaller base is 4, and the distance between them is 20. Taking
7 of the sum of the bases, “so as to make a rectangle,” Ahmes multiplied
this by 20 to find the area. In transformations such as these, in which
isosceles triangles and trapezoids are converted into rectangles, we may
see the beginnings of a theory of congruence and the idea of proof in
geometry, but there is no evidence that the Egyptians carried such work
further. Instead, their geometry lacks a clear-cut distinction between
relationships that are exact and those that are only approximations.

A surviving deed from Edfu, dating from a period some 1,500 years
after Ahmes, gives examples of triangles, trapezoids, rectangles, and
more general quadrilaterals. The rule for finding the area of the general
quadrilateral is to take the product of the arithmetic means of the
opposite sides. Inaccurate though the rule is, the author of the deed
deduced from it a corollary—that the area of a triangle is half of the sum
of two sides multiplied by half of the third side. This is a striking
instance of the search for relationships among geometric figures, as well
as an early use of the zero concept as a replacement for a magnitude in
geometry.

The Egyptian rule for finding the area of a circle has long been
regarded as one of the outstanding achievements of the time. In Problem
50, the scribe Ahmes assumed that the area of a circular field with a
diameter of 9 units is the same as the area of a square with a side of 8
units. If we compare this assumption with the modern formula A = 772,
we find the Egyptian rule to be equivalent to giving 7 a value of about 3,
a commendably close approximation, but here again we miss any hint
that Ahmes was aware that the areas of his circle and square were not
exactly equal. It is possible that Problem 48 gives a hint to the way in
which the Egyptians were led to their area of the circle. In this problem,
the scribe formed an octagon from a square having sides of 9 units by
trisecting the sides and cutting off the four corner isosceles triangles,
each having an area of 4; units. The area of the octagon, which does not
differ greatly from that of a circle inscribed within the square, is 63 units,
which is not far removed from the area of a square with 8 units on a side.
That the number 4(8/9)* did indeed play a role comparable to our con-
stant 7 seems to be confirmed by the Egyptian rule for the circumference
of a circle, according to which the ratio of the area of a circle to the
circumference is the same as the ratio of the area of the circumscribed
square to its perimeter. This observation represents a geometric rela-
tionship of far greater precision and mathematical significance than the
relatively good approximation for .

Degree of accuracy in approximation is not a good measure of either
mathematical or architectural achievement, and we should not over-
emphasize this aspect of Egyptian work. Recognition by the Egyptians
of interrelationships among geometric figures, on the other hand, has too
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often been overlooked, and yet it is here that they came closest in atti-
tude to their successors, the Greeks. No theorem or formal proof is
known in Egyptian mathematics, but some of the geometric comparisons
made in the Nile Valley, such as those on the perimeters and the areas of
circles and squares, are among the first exact statements in history
concerning curvilinear figures.

The value of % is often used today for 7; but we must recall that
Ahmes’s value for 7 is about 34, not 37. That Ahmes’s value was also
used by other Egyptians is confirmed in a papyrus roll from the twelfth
dynasty (the Kahun Papyrus), in which the volume of a cylinder is found
by multiplying the height by the area of the base, the base being
determined according to Ahmes’s rule.

Associated with Problem 14 in the Moscow Papyrus is a figure that
looks like an isosceles trapezoid (see Fig. 2.1), but the calculations
associated with it indicate that a frustum of a square pyramid is intended.
Above and below the figure are signs for 2 and 4, respectively, and
within the figure are the hieratic symbols for 6 and 56. The directions
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Reproduction (top) of a portion of the Moscow Papyrus, showing the problem of the
volume of a frustum of a square pyramid, together with hieroglyphic transcription
(below)
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2

FIG. 2.1

alongside make it clear that the problem calls for the volume of a
frustum of a square pyramid 6 units high if the edges of the upper and
lower bases are 2 and 4 units, respectively. The scribe directs one to
square the numbers 2 and 4 and to add to the sum of these squares the
product of 2 and 4, the result being 28. This result is then multiplied by a
third of 6, and the scribe concludes with the words “See, it is 56; you
have found it correctly.” That is, the volume of the frustum has been
calculated in accordance with the modern formula V = h(a®> + ab + b*)/ 3,
where £ is the altitude and a and b are the sides of the square bases.
Nowhere is this formula written out, but in substance it evidently was
known to the Egyptians. If, as in the deed from Edfu, one takes b =0,
the formula reduces to the familiar formula, one-third the base times the
altitude, for the volume of a pyramid.

How these results were arrived at by the Egyptians is not known. An
empirical origin for the rule on the volume of a pyramid seems to be a
possibility, but not for the volume of the frustum. For the latter, a theo-
retical basis seems more likely, and it has been suggested that the
Egyptians may have proceeded here as they did in the cases of the iso-
sceles triangle and the isosceles trapezoid—they may mentally have
broken the frustum into parallelepipeds, prisms, and pyramids. On
replacing the pyramids and the prisms by equal rectangular blocks, a
plausible grouping of the blocks leads to the Egyptian formula. One could,
for example, have begun with a pyramid having a square base and with the
vertex directly over one of the base vertices. An obvious decomposition of
the frustum would be to break it into four parts as in Fig. 2.2—a rectan-
gular parallelepiped having a volume b*h, two triangular prisms, each
with a volume of b(a — b)h/ 2, and a pyramid of volume (a — b)*h/ 3. The
prisms can be combined into a rectangular parallelepiped with dimensions
b and a — b and h; and the pyramid can be thought of as a rectangular
parallelepiped with dimensions a — b and a — b and //3. On cutting up
the tallest parallelepipeds so that all altitudes are /3, one can easily
arrange the slabs so as to form three layers, each of altitude /3, and
having cross-sectional areas of a*> and ab and b?, respectively.
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FIG. 2.2

Problem 10 in the Moscow Papyrus presents a more difficult question
of interpretation than does Problem 14. Here the scribe asks for the surface
area of what looks like a basket with a diameter of 41. He proceeds as
though he were using the equivalent of a formula §= (1 — 5y (2x) x,
where x is 41, obtaining an answer of 32 units. Inasmuch as (1 — 3)’ is the
Egyptian approximation of 7/4, the answer 32 would correspond to the
surface of a hemisphere of diameter 43, and this was the interpretation
given to the problem in 1930. Such a result, antedating the oldest known
calculation of a hemispherical surface by some 1,500 years, would have
been amazing, and it seems, in fact, to have been too good to be true. Later
analysis indicates that the “basket” may have been a roof—somewhat like
that of a Quonset hut in the shape of a half-cylinder of diameter 43 and
length 43. The calculation in this case calls for nothing beyond knowledge
of the length of a semicircle, and the obscurity of the text makes it
admissible to offer still more primitive interpretations, including the
possibility that the calculation is only a rough estimate of the area of a
domelike barn roof. In any case, we seem to have here an early estimation
of a curvilinear surface area.

Slope Problems

In the construction of the pyramids, it had been essential to maintain a
uniform slope for the faces, and it may have been this concern that led
the Egyptians to introduce a concept equivalent to the cotangent of an
angle. In modern technologys, it is customary to measure the steepness of
a straight line through the ratio of the “rise” to the “run.” In Egypt, it was
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customary to use the reciprocal of this ratio. There, the word “seqt”
meant the horizontal departure of an oblique line from the vertical
axis for every unit change in the height. The seqt thus corresponded,
except for the units of measurement, to the batter used today by archi-
tects to describe the inward slope of a masonry wall or pier. The vertical
unit of length was the cubit, but in measuring the horizontal distance,
the unit used was the “hand,” of which there were seven in a cubit.
Hence, the seqt of the face of a pyramid was the ratio of run to rise, the
former measured in hands, the latter in cubits.

In Problem 56 of the Ahmes Papyrus, one is asked to find the seqt of a
pyramid that is 250 ells or cubits high and has a square base 360 ells on
a side. The scribe first divided 360 by 2 and then divided the result by
250, obtaining 7 +# + % in ells. Multiplying the result by 7, he gave the
seqt as 5% in hands per ell. In other pyramid problems in the Ahmes
Papyrus, the seqt turns out to be 5%, agreeing somewhat better with that
of the great Cheops Pyramid, 440 ells wide and 280 high, the seqt being
53 hands per ell.

Arithmetic Pragmatism

The knowledge indicated in extant Egyptian papyri is mostly of a
practical nature, and calculation was the chief element in the questions.
Where some theoretical elements appear to enter, the purpose may have
been to facilitate technique. Even the once-vaunted Egyptian geometry
turns out to have been mainly a branch of applied arithmetic. Where
elementary congruence relations enter, the motive seems to be to pro-
vide mensurational devices. The rules of calculation concern specific
concrete cases only. The Ahmes and Moscow papyri, our two chief
sources of information, may have been only manuals intended for stu-
dents, but they nevertheless indicate the direction and tendencies in
Egyptian mathematical instruction. Further evidence provided by
inscriptions on monuments, fragments of other mathematical papyri, and
documents from related scientific fields serves to confirm the general
impression. It is true that our two chief mathematical papyri are from a
relatively early period, a thousand years before the rise of Greek
mathematics, but Egyptian mathematics seems to have remained
remarkably uniform throughout its long history. It was at all stages built
around the operation of addition, a disadvantage that gave to Egyptian
computation a peculiar primitivity, combined with occasionally aston-
ishing complexity.

The fertile Nile Valley has been described as the world’s largest oasis
in the world’s largest desert. Watered by one of the most gentlemanly of
rivers and geographically shielded to a great extent from foreign
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invasion, it was a haven for peace-loving people who pursued, to a large
extent, a calm and unchallenged way of life. Love of the beneficent gods,
respect for tradition, and preoccupation with death and the needs of the
dead all encouraged a high degree of stagnation. Geometry may have been
a gift of the Nile, as Herodotus believed, but the available evidence sug-
gests that Egyptians used the gift but did little to expand it. The mathe-
matics of Ahmes was that of his ancestors and of his descendants. For more
progressive mathematical achievements, one must look to the more tur-
bulent river valley known as Mesopotamia.
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Mesopotamia

How much is one god beyond the other god?
An Old Babylonian astronomical text

The Era and the Sources

The fourth millennium before our era was a period of remarkable cultural
development, bringing with it the use of writing, the wheel, and metals. As in
Egypt during the first dynasty, which began toward the end of this extra-
ordinary millennium, so also in the Mesopotamian Valley there was at the
time a high order of civilization. There the Sumerians had built homes and
temples decorated with artistic pottery and mosaics in geometric patterns.
Powerful rulers united the local principalities into an empire that completed
vast public works, such as a system of canals to irrigate the land and control
flooding between the Tigris and Euphrates rivers, where the overflow of
the rivers was not predictable, as was the inundation of the Nile Valley. The
cuneiform pattern of writing that the Sumerians had developed during
the fourth millennium probably antedates the Egyptian hieroglyphic system.

The Mesopotamian civilizations of antiquity are often referred to as
Babylonian, although such a designation is not strictly correct. The city of

21
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Babylon was not at first, nor was it always at later periods, the center
of the culture associated with the two rivers, but convention has sanctioned
the informal use of the name “Babylonian” for the region during the interval
from about 2000 to roughly 600 Bce. When in 538 Bcg Babylon fell to Cyrus
of Persia, the city was spared, but the Babylonian Empire had come to an
end. “Babylonian” mathematics, however, continued through the Seleucid
period in Syria almost to the dawn of Christianity.

Then, as today, the Land of the Two Rivers was open to invasions from
many directions, making the Fertile Crescent a battlefield with frequently
changing hegemony. One of the most significant of the invasions was that by
the Semitic Akkadians under Sargon I (ca. 2276 2221 BcE), or Sargon the
Great. He established an empire that extended from the Persian Gulf in
the south to the Black Sea in the north, and from the steppes of Persia
in the east to the Mediterranean Sea in the west. Under Sargon, the invaders
began a gradual absorption of the indigenous Sumerian culture, including
the cuneiform script. Later invasions and revolts brought various racial
strains—Ammorites, Kassites, Elamites, Hittites, Assyrians, Medes,
Persians, and others—to political power at one time or another in the valley,
but there remained in the area a sufficiently high degree of cultural unity to
justify referring to the civilization simply as Mesopotamian. In particular,
the use of cuneiform script formed a strong bond.

Laws, tax accounts, stories, school lessons, personal letters—these and
many other records were impressed on soft clay tablets with styluses, and the
tablets were then baked in the hot sun or in ovens. Such written documents
were far less vulnerable to the ravages of time than were Egyptian papyri;
hence, a much larger body of evidence about Mesopotamian mathematics is
available today than exists about the Nilotic system. From one locality alone,
the site of ancient Nippur, we have some 50,000 tablets. The university
libraries at Columbia, Pennsylvania, and Yale, among others, have large
collections of ancient tablets from Mesopotamia, some of them mathema-
tical. Despite the availability of documents, however, it was the Egyptian
hieroglyphic, rather than the Babylonian cuneiform, that was first deci-
phered in modern times. The German philologist F. W. Grotefend had made
some progress in the reading of Babylonian script early in the nineteenth
century, but only during the second quarter of the twentieth century did
substantial accounts of Mesopotamian mathematics begin to appear in
histories of antiquity.

Cuneiform Writing

The early use of writing in Mesopotamia is attested to by hundreds of
clay tablets found in Uruk and dating from about 5,000 years ago. By
this time, picture writing had reached the point where conventionalized
stylized forms were used for many things: = for water, & for eye, and
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combinations of these to indicate weeping. Gradually, the number of
signs became smaller, so that of some 2,000 Sumerian signs originally
used, only a third remained by the time of the Akkadian conquest. Pri-
mitive drawings gave way to combinations of wedges: water became {
and eye s=71~. At first, the scribe wrote from top to bottom in columns
from right to left; later, for convenience, the table was rotated coun-
terclockwise through 90°, and the scribe wrote from left to right in
horizontal rows from top to bottom. The stylus, which formerly had been
a triangular prism, was replaced by a right circular cylinder—or, rather,
two cylinders of unequal radius. During the earlier days of the Sumerian
civilization, the end of the stylus was pressed into the clay vertically to
represent 10 units and obliquely to represent a unit, using the smaller
stylus; similarly, an oblique impression with the larger stylus indicated
60 units and a vertical impression indicated 3,600 units. Combinations of
these were used to represent intermediate numbers.

Numbers and Fractions: Sexagesimals

As the Akkadians adopted the Sumerian form of writing, lexicons were
compiled giving equivalents in the two tongues, and forms of words and
numerals became less varied. Thousands of tablets from about the time of
the Hammurabi dynasty (ca. 1800 1600 Bcg) illustrate a number system
that had become well established. The decimal system, common to most
civilizations, both ancient and modern, had been submerged in Mesopota-
mia under a notation that made fundamental the base 60. Much has been
written about the motives behind this change; it has been suggested that
astronomical considerations may have been instrumental or that the sex-
agesimal scheme might have been the natural combination of two earlier
schemes, one decimal and the other using the base 6. It appears more
likely, however, that the base 60 was consciously adopted and legalized
in the interests of metrology, for a magnitude of 60 units can be sub-
divided easily into halves, thirds, fourths, fifths, sixths, tenths, twelfths,
fifteenths, twentieths, and thirtieths, thus affording ten possible sub-
divisions. Whatever the origin, the sexagesimal system of numeration
has enjoyed a remarkably long life, for remnants survive, unfortunately
for consistency, even to this day in units of time and angle measure,
despite the fundamentally decimal form of mathematics in our society.

Positional Numeration
Babylonian cuneiform numeration, for smaller whole numbers, pro-

ceeded along the same lines as did the Egyptian hieroglyphic, with
repetitions of the symbols for units and tens. Where the Egyptian
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architect, carving on stone, might write 59 as "nﬂr{\'l"':I, the Mesopotamian
scribe could similarly represent the same number on a clay tablet
through fourteen wedge-shaped marks—five broad sideways wedges or
“angle-brackets,” each representing 10 units, and nine thin vertical
wedges, each standing for a unit, all juxtaposed in a neat group as (&,
Beyond the number 59, however, the Egyptian and Babylonian systems
differed markedly. Perhaps it was the inflexibility of the Mesopotamian
writing materials, possibly it was a flash of imaginative insight that
made the Babylonians realize that their two symbols for units and tens
sufficed for the representation of any integer, however large, without
excessive repetitiveness. This was made possible through their invention,
some 4,000 years ago, of the positional notation—the same principle
that accounts for the effectiveness of our present numeral forms. That
is, the ancient Babylonians saw that their symbols could be assigned
values that depend on their relative positions in the representation of a
number. Our number 222 makes use of the same cipher three times, but
with a different meaning each time. Once it represents two units, the
second time it means two 10s, and finally it stands for two 100s (that is,
twice the square of the base 10). In a precisely analogous way, the
Babylonians made multiple use of such a symbol as 1. When they wrote
rrrim, clearly separating the three groups of two wedges each, they
understood the right-hand group to mean two units, the next group to
mean twice their base, 60, and the left-hand group to signify twice the
square of their base. This numeral, therefore, denoted 2(60)* + 2(60) + 2
(or 7,322 in our notation).

A wealth of primary material exists concerning Mesopotamian
mathematics, but, oddly enough, most of it comes from two periods
widely separated in time. There is an abundance of tablets from the first
few hundred years of the second millennium BcE (the Old Babylonian
age), and many tablets have also been found dating from the last few
centuries of the first millennium BcE (the Seleucid period). Most of the
important contributions to mathematics will be found to go back to
the earlier period, but one contribution is not in evidence until almost
300 Bce. The Babylonians seem at first to have had no clear way in
which to indicate an “empty” position—that is, they did not have a zero
symbol, although they sometimes left a space where a zero was intended.
This meant that their forms for the numbers 122 and 7,202 looked very
much alike, for 17 1v might mean either 2(60) + 2 or 2(60)* + 2. Context
in many cases could be relied on to relieve some of the ambiguity, but
the lack of a zero symbol, such as enables us to distinguish at a glance
between 22 and 202, must have been quite inconvenient.

By about the time of the conquest by Alexander the Great, however, a
special sign, consisting of two small wedges placed obliquely, was
invented to serve as a placeholder where a numeral was missing. From
that time on, as long as cuneiform was used, the number 14 1, or
2(60)* + 0(60) + 2, was readily distinguishable from 11, or 2(60) + 2.
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The Babylonian zero symbol apparently did not end all ambiguity, for
the sign seems to have been used for intermediate empty positions only.
There are no extant tablets in which the zero sign appears in a terminal
position. This means that the Babylonians in antiquity never achieved an
absolute positional system. Position was only relative; hence, the symbol
111 could represent 2(60) + 2 or 2(60)* + 2(60) or 2(60)* + 2(60)* or any
one of indefinitely many other numbers in which two successive posi-
tions are involved.

Sexagesimal Fractions

Had Mesopotamian mathematics, like that of the Nile Valley, been based
on the addition of integers and unit fractions, the invention of the
positional notation would not have been greatly significant at the time. It
is not much more difficult to write 98,765 in hieroglyphic notation than
in cuneiform, and the latter is definitely more difficult to write than the
same number in hieratic script. The secret of the superiority of Baby-
lonian mathematics over that of the Egyptians lies in the fact that those
who lived “between the two rivers” took the most felicitous step of
extending the principle of position to cover fractions as well as whole
numbers. That is, the notation 17 yr was used not only for 2(60) + 2, but
also for 2 + 2(60) ! or for 2(60) ' + 2(60) 2 or for other fractional forms
involving two successive positions. This meant that the Babylonians had
at their command the computational power that the modern decimal
fractional notation affords us today. For the Babylonian scholar, as for
the modern engineer, the addition or the multiplication of 23.45 and
9.876 was essentially no more difficult than was the addition or the
multiplication of the whole numbers 2,345 and 9,876, and the Meso-
potamians were quick to exploit this important discovery.

Approximations

An Old Babylonian tablet from the Yale Collection (No. 7289) includes
the calculation of the square root of 2 to three sexagesimal places, the
answer being written 1«{} (§1¢ In modern characters, this number can
be appropriately written as 1;24,51,10, where a semicolon is used to
separate the integral and fractional parts, and a comma is used as a
separatrix for the sexagesimal positions. This form will generally be used
throughout this chapter to designate numbers in sexagesimal notation.
Translating this notation into decimal form, we have 1 + 24(60) ' + 51
(60) 2+ 10(60) >. This Babylonian value for /2 is equal to approximately
1.414222, differing by about 0.000008 from the true value. Accuracy in
approximations was relatively easy for the Babylonians to achieve with
their fractional notation, which was rarely equaled until the time of the
Renaissance.
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The effectiveness of Babylonian computation did not result from their
system of numeration alone. Mesopotamian mathematicians were skillful
in developing algorithmic procedures, among which was a square-root
process often ascribed to later men. It is sometimes attributed to the Greek
scholar Archytas (428 365 BcE) or to Heron of Alexandria (ca. 100 CE);
occasionally, one finds it called Newton’s algorithm. This Babylonian
procedure is as simple as it is effective. Let x = y/a be the root desired,
and let a, be a first approximation to this root; let a second approximation
be found from the equation b, =a/a,. If a, is too small, then b, is too
large, and vice versa. Hence, the arithmetic mean a, =3(a, +b,) is a
plausible next approximation. Inasmuch as a, is always too large, the next
approximation, b, = a/a,, will be too small, and one takes the arithmetic
mean a, =1(a, + b,) to obtain a still better result; the procedure can be
continued indefinitely. The value of v/2 on Yale Tablet 7289 will be found
to be that of a,, where a, = 1;30. In the Babylonian square-root algorithm,
one finds an iterative procedure that could have put the mathematicians of
the time in touch with infinite processes, but scholars of that era did not
pursue the implications of such problems.

The algorithm just described is equivalent to a two-term approxima-
tion to the binomial series, a case with which the Babylonians were
familiar. If v/a?>+b is desired, the approximation a,=a leads to
b=(@+b)/a and a,=(a,+b,)/2=a+ b/(2a), which is in agree-
ment with the first two terms in the expansion of (a* + b)"/? and provides
an approximation found in Old Babylonian texts.

Tables

A substantial proportion of the cuneiform tablets that have been unearthed
are “table texts,” including multiplication tables, tables of reciprocals, and
tables of squares and cubes and of square and cube roots written, of
course, in cuneiform sexagesimals. One of these, for example, carries the
equivalents of the entries shown in the following table:

2 30
3 20
4 15
5 12
6 10
8 7,30
9 6,40
10 6
12 5

The product of elements in the same line is in all cases 60, the Baby-
lonian number base, and the table apparently was thought of as a table
of reciprocals. The sixth line, for example, denotes that the reciprocal of
8is 7/60 + 30/ (60)> It will be noted that the reciprocals of 7 and 11 are
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missing from the table, because the reciprocals of such “irregular”
numbers are nonterminating sexagesimals, just as in our decimal system
the reciprocals of 3, 6, 7, and 9 are infinite when expanded decimally.
Again, the Babylonians were faced with the problem of infinity, but they
did not consider it systematically. At one point, however, a Mesopota-
mian scribe seems to give upper and lower bounds for the reciprocal of
the irregular number 7, placing it between 0;8,34,16,59 and 0;8,34,18.

It is clear that the fundamental arithmetic operations were handled by
the Babylonians in a manner not unlike that which would be employed
today, and with comparable facility. Division was not carried out by the
clumsy duplication method of the Egyptians, but through an easy mul-
tiplication of the dividend by the reciprocal of the divisor, using the
appropriate items in the table texts. Just as today the quotient of 34
divided by 5 is easily found by multiplying 34 by 2 and shifting the
decimal point, so in antiquity the same division problem was carried out
by finding the product of 34 by 12 and shifting one sexagesimal place to
obtain 6g. Tables of reciprocals in general furnished reciprocals only of
“regular” integers—that is, those that can be written as products of twos,
threes, and fives—although there are a few exceptions. One table text
includes the approximations s = ;1,1,1 and a1 = ;0,59,0,59. Here we have
sexagesimal analogues of our decimal expressions 5=.111 and
it = .0909, unit fractions in which the denominator is one more or one
less than the base, but it appears again that the Babylonians did not
notice, or at least did not regard as significant, the infinite periodic
expansions in this connection.

One finds among the Old Babylonian tablets some table texts con-
taining successive powers of a given number, analogous to our modern
tables of logarithms or, more properly speaking, of antilogarithms.
Exponential (or logarithmic) tables have been found in which the first
ten powers are listed for the bases 9 and 16 and 1,40 and 3,45 (all perfect
squares). The question raised in a problem text asking to what power a
certain number must be raised in order to yield a given number is
equivalent to our question “What is the logarithm of the given number in
a system with a certain number as base?” The chief differences between
the ancient tables and our own, apart from matters of language and
notation, are that no single number was systematically used as a base in
various connections and that the gaps between entries in the ancient
tables are far larger than in our tables. Then, too, their “logarithm tables”
were not used for general purposes of calculation, but rather to solve
certain very specific questions.

Despite the large gaps in their exponential tables, Babylonian math-
ematicians did not hesitate to interpolate by proportional parts to
approximate intermediate values. Linear interpolation seems to have
been a commonplace procedure in ancient Mesopotamia, and the posi-
tional notation lent itself conveniently to the rule of three. A clear
instance of the practical use of interpolation within exponential tables is
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seen in a problem text that asks how long it will take money to double at
20 percent annually; the answer given is 3;47,13,20. It seems to be quite
clear that the scribe used linear interpolation between the values for
(1;12)* and (1;12)%, following the compound interest formula a =
P(1 +7r), where r is 20 percent, or &, and reading values from an
exponential table with powers of 1;12.

Equations

One table for which the Babylonians found considerable use is a tabu-
lation of the values of n* + n? for integral values of 7, a table essential in
Babylonian algebra; this subject reached a considerably higher level
in Mesopotamia than in Egypt. Many problem texts from the Old Baby-
lonian period show that the solution of the complete three-term quadratic
equation afforded the Babylonians no serious difficulty, for flexible
algebraic operations had been developed. They could transpose terms
in an equation by adding equals to equals, and they could multiply
both sides by like quantities to remove fractions or to eliminate fac-
tors. By adding 4ab to (a — b)* they could obtain (a + b)?, for they
were familiar with many simple forms of factoring. They did not use
letters for unknown quantities, for the alphabet had not yet been
invented, but words such as “length,” “breadth,” “area,” and “volume”
served effectively in this capacity. That these words may well have
been used in a very abstract sense is suggested by the fact that the
Babylonians had no qualms about adding a “length” to an “area” or an
“area” to a “volume.”

Egyptian algebra had been much concerned with linear equations,
but the Babylonians evidently found these too elementary for much
attention. In one problem, the weight x of a stone is called for if
(x +x/7) +1i(x + x/7) is one mina; the answer is simply given as 48;7,30
gin, where 60 gin make a mina. In another problem in an Old Babylonian
text, we find two simultaneous linear equations in two unknown quantities,
called respectively the “first silver ring” and the “second silver ring.” If
we call these x and y in our notation, the equations are x/7 +y/11 =1 and
6x/7 =10y/11. The answer is expressed laconically in terms of the rule
11 1 y 7 1

a and -
7 T74+11 72 11 7+11 72

In another pair of equations, part of the method of solution is included in
the text. Here i width + length = 7 hands, and length + width = 10 hands.
The solution is first found by replacing each “hand” with 5 “fingers” and
then noticing that a width of 20 fingers and a length of 30 fingers will
satisfy both equations. Following this, however, the solution is found by
an alternative method equivalent to an elimination through combination.
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Expressing all dimensions in terms of hands, and letting the length and the
width be x and y, respectively, the equations become y + 4x =28 and
x +y=10. Subtracting the second equation from the first, one has the
result 3x = 18; hence, x = 6 hands, or 30 fingers, and y = 20 fingers.

Quadratic Equations

The solution of a three-term quadratic equation seems to have exceeded
by far the algebraic capabilities of the Egyptians, but Otto Neugebauer in
1930 disclosed that such equations had been handled effectively by the
Babylonians in some of the oldest problem texts. For instance, one
problem calls for the side of a square if the area less the side is 14,30.
The solution of this problem, equivalent to solving x> —x =870, is
expressed as follows:

Take half of 1, which is 0;30, and multiply 0;30 by 0;30, which is 0;15;
add this to 14,30 to get 14,30;15. This is the square of 29;30. Now add
0;30 to 29;30, and the result is 30, the side of the square.

The Babylonian solution is, of course, exactly equivalent to the for-
mula x=/(p/2) +q+p/2 for a root of the equation x> — px =g,
which is the quadratic formula that is familiar to high school students of
today. In another text, the equation 1x*> + 7x = 6;15 was reduced by the
Babylonians to the standard type x* + px = ¢ by first multiplying through
by 11 to obtain (11x)*>+ 7(11x) = 1,8;45. This is a quadratic in normal
form in the unknown quantity y = 11x, and the solution for y is easily
obtained by the familiar rule y = +/(p/2)* + ¢ — p/2, from which the
value of x is then determined. This solution is remarkable as an instance
of the use of algebraic transformations.

Until modern times, there was no thought of solving a quadratic
equation of the form x*> + px + ¢ = 0, where p and ¢ are positive, for the
equation has no positive root. Consequently, quadratic equations in
ancient and medieval times—and even in the early modern period—
were classified under three types:

1. *+px=g¢q
2. x*=px+gq
3. X +qg=px

All three types are found in Old Babylonian texts of some 4,000 years ago.
The first two types are illustrated by the problems given previously; the
third type appears frequently in problem texts, where it is treated as
equivalent to the simultaneous system x + y = p, xy = ¢q. So numerous are
problems in which one is asked to find two numbers when given their
product and either their sum or their difference that these seem to
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have constituted for the ancients, both Babylonian and Greek, a sort
of “normal form” to which quadratics were reduced. Then, by trans-
forming the simultaneous equations xy = a and x = y = b into the pair of
linear equations x = y = b and x ¥ y = v/b* ¥ 4aq, the values of x and y are
found through an addition and a subtraction. A Yale cuneiform tablet, for
example, asks for the solution of the system x + y = 6;30 and xy = 7;30.
The instructions of the scribe are essentially as follows. First find

_l’_
=315
and then find
x+y .
) =10:334.
Then, + v\
<x2y> — xy =3:345
and
+ 2
\/<x2y> — xy = 1:45.
Hence,
+ i
<xzy> +(552) =315 + 145
and

X y X y)
- =3;15 — 1;45.
< 2 > ( 2

From the last two equations, it is obvious that x = 5 and y = 13. Because the
quantities x and y enter symmetrically in the given conditional equations, it
is possible to interpret the values of x and y as the two roots of the quadratic
equation x> + 7;30 = 6;30x. Another Babylonian text calls for a number that
when added to its reciprocal becomes 2;0,0,33,20. This leads to a quadratic
of type 3, and again we have two solutions, 1;0,45 and 0;59,15,33,20.

Cubic Equations

The Babylonian reduction of a quadratic equation of the form
ax* + bx = ¢ to the normal form y* + by = ac through the substitution
y =ax shows the extraordinary degree of flexibility in Mesopotamian
algebra. There is no record in Egypt of the solution of a cubic equation,
but among the Babylonians there are many instances of this.
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Pure cubics, such as x* =0;7,30, were solved by direct reference to
tables of cubes and cube roots, where the solution x = 0;30 was read off.
Linear interpolation within the tables was used to find approximations
for values not listed in the tables. Mixed cubics in the standard form
x*+ x> =a were solved similarly by reference to the available tables,
which listed values of the combination n® + n* for integral values of
n from 1 to 30. With the help of these tables, they easily read off
that the solution, for example, of x* + x> =4,12 is equal to 6. For still
more general cases of equations of the third degree, such as
144x° + 12x> =21, the Babylonians used their method of substitution.
Multiplying both sides by 12 and using y = 12x, the equation becomes
y* +y? = 4,12, from which y is found to be equal to 6, hence x is just z or 0;30.
Cubics of the form ax® + bx* = ¢ are reducible to the Babylonian normal
form by multiplying through by a>/b* to obtain (ax/b)* + (ax/b)*=
ca*/ b*, a cubic of standard type in the unknown quantity ax/ b. Reading off
from the tables the value of this unknown quantity, the value of x is deter-
mined. Whether the Babylonians were able to reduce the general four-
term cubic, ax® + bx? + ex = d, to their normal form is not known. It is
not too unlikely that they could reduce it, as is indicated by the fact that a
solution of a quadratic suffices to carry the four-term equation to the
three-term form px® + gx*> = r, from which, as we have seen, the normal
form is readily obtained. There is, however, no evidence now available to
suggest that the Mesopotamian mathematicians actually carried out such
a reduction of the general cubic equation.

With modern symbolism, it is a simple matter to see that (ax)® + (ax)? = b
is essentially the same type of equation as y* + y* = b, but to recognize this
without our notation is an achievement of far greater significance for the
development of mathematics than even the vaunted positional principle in
arithmetic that we owe to the same civilization. Babylonian algebra had
reached such an extraordinary level of abstraction that the equations
ax*+ bx*=c¢ and ax®+ bx* = ¢ were recognized as nothing worse than
quadratic equations in disguise—that is, quadratics in x*> and x*.

Measurements: Pythagorean Triads

The algebraic achievements of the Babylonians are admirable, but the
motives behind this work are not easy to understand. It has commonly been
supposed that virtually all pre-Hellenic science and mathematics were
purely utilitarian, but what sort of real-life situation in ancient Babylon
could possibly lead to problems involving the sum of a number and its
reciprocal or a difference between an area and a length? If utility was the
motive, then the cult of immediacy was less strong than it is now, for direct
connections between purpose and practice in Babylonian mathematics are
far from apparent. That there may well have been toleration for, if not
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encouragement of, mathematics for its own sake is suggested by a tablet (No.
322) in the Plimpton Collection at Columbia University. The tablet dates
from the Old Babylonian period (ca. 1900 1600 BcE), and the tabulations it
contains could easily be interpreted as a record of business accounts. Ana-
lysis, however, shows that it has deep mathematical significance in the theory
of numbers and that it was perhaps related to a kind of proto-trigonometry.
Plimpton 322 was part of a larger tablet, as is illustrated by the break along
the left-hand edge, and the remaining portion contains four columns of
numbers arranged in fifteen horizontal rows. The right-hand column contains
the digits from 1 to 15, and, evidently, its purpose was simply to identify in
order the items in the other three columns, arranged as follows:

1,59,0,15 1,59 2,49 1
1,56,56,58,14,50,6,15 56,7 1,20,25 2
1,55,7,41,15,33,45 1,16,41 1,50,49 3
1,53,10,29,32,52,16 3,31,49 59,1 4
1,48,54,1,40 1,5 1,37 5
1,47,6,41,40 5,19 8,1 6
1,43,11,56,28,26,40 38,11 59,1 7
1,41,33,59,3,45 13,19 20,49 8
1,38,33,36,36 8,1 12,49 9
1,35,10,2,28,27,24,26,40 1,22,41 2,16,1 10
1,33,45 45,0 1,150 11
1,29,21,54,2,15 27,59 48,49 12
1,27,0,3,45 241 4,49 13
1,25,48,51,35,6,40 29,31 53,49 14
1,23,13,46,40 56 1,46 15

The tablet is not in such excellent condition that all of the numbers can
still be read, but the clearly discernible pattern of construction in the table
made it possible to determine from the context the few items that were
missing because of small fractures. To understand what the entries in
the table probably meant to the Babylonians, consider the right triangle
ABC (Fig. 3.1). If the numbers in the second and third columns (from left
to right) are thought of as the sides a and c, respectively, of the right
triangle, then the first, or left-hand, column contains in each case the
square of the ratio of ¢ to b. The left-hand column, therefore, is a short
table of values of sec> A, but we must not assume that the Babylonians
were familiar with our secant concept. Neither the Egyptians nor the
Babylonians introduced a measure of angles in the modern sense.
Nevertheless, the rows of numbers in Plimpton 322 are not arranged in
haphazard fashion, as a superficial glance might imply. If the first comma
in column one (on the left) is replaced by a semicolon, it is obvious that
the numbers in this column decrease steadily from top to bottom. More-
over, the first number is quite close to sec* 45°, and the last number in the
column is approximately sec?31°, with the intervening numbers close to
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FIG. 3.1

the values of sec?’A as A decreases by degrees from 45° to 31°. This
arrangement obviously is not the result of chance alone. Not only was the
arrangement carefully thought out, but the dimensions of the triangle were
also derived according to a rule. Those who constructed the table evi-
dently began with two regular sexagesimal integers, which we shall call
p and g, with p > ¢, and then formed the triple of numbers p* — ¢* and
2pq and p* + ¢* The three integers thus obtained are easily seen to form a
Pythagorean triple, in which the square of the largest is equal to the sum of
the squares of the other two. Hence, these numbers can be used as the
dimensions of the right triangle ABC, with a = p*> — ¢* and b = 2pq and
¢ =p*+ ¢*. Restricting themselves to values of p less than 60 and to
corresponding values of ¢ such that 1 <p/q <1+ /2, that is, to right
triangles for which a < b, the Babylonians presumably found that there
were just 38 possible pairs of values of p and ¢ satisfying the conditions,
and for these they apparently formed the 38 corresponding Pythagorean
triples. Only the first 15, arranged in descending order for the ratio
(p*+ g¢»/2pgq, are included in the table on the tablet, but it is likely that
the scribe had intended to continue the table on the other side of the tablet.
It has also been suggested that the portion of Plimpton 322 that has broken
off from the left side contained four additional columns, in which were
tabulated the values of p and ¢ and 2pg and what we should now call
tan’ A.

The Plimpton Tablet 322 might give the impression that it is an
exercise in the theory of numbers, but it is likely that this aspect of the
subject was merely ancillary to the problem of measuring the areas of
squares on the sides of a right triangle. The Babylonians disliked
working with the reciprocals of irregular numbers, for these could not be
expressed exactly in finite sexagesimal fractions. Hence, they were
interested in values of p and ¢ that should give them regular integers
for the sides of right triangles of varying shapes, from the isosceles right
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Plimpton 322

triangle down to one with a small value for the ratio a/b. For example,
the numbers in the first row are found by starting with p =12 and g =5,
with the corresponding values a=119 and b=120 and c=1609.
The values of a and c¢ are precisely those in the second and third
positions from the left in the first row on the Plimpton tablet; the ratio
c*/b* =28561/14400 is the number 1;59,0,15 that appears in the first
position in this row. The same relationship is found in the other fourteen
rows; the Babylonians carried out the work so accurately that the ratio
¢’/b? in the tenth row is expressed as a fraction with eight sexagesimal
places, equivalent to about fourteen decimal places in our notation.

So much of Babylonian mathematics is bound up with tables of
reciprocals that it is not surprising to find that the items in Plimpton 322
are related to reciprocal relationships. If a =1, then 1 = (c + b)(c — b),
so that ¢ + b and ¢ — b are reciprocals. If one starts with ¢ + b = n, where
n is any regular sexagesimal, then ¢ —b=1/n; hence, a=1 and
b=%n—1/n) and ¢c=1(n+1/n) are a Pythagorean fraction triple,
which can easily be converted to a Pythagorean integer triple by mul-
tiplying each of the three by 2n. All triples in the Plimpton tablet are
easily calculated by this device.

The account of Babylonian algebra that we have given is representa-
tive of their work, but it is not intended to be exhaustive. There are in the
Babylonian tablets many other things, although none so striking as those
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in the Plimpton Tablet 322; as in this case, many are still open to
multiple interpretations. For instance, in one tablet the geometric pro-
gression 1 +2 + 22+ ... +2° is summed, and in another the sum of the
series of squares 1> + 22+ 32>+ ... + 102 is found. One wonders whether
the Babylonians knew the general formulas for the sum of a geometric
progression and the sum of the first n perfect squares. It is quite possible
that they did, and it has been conjectured that they were aware that the
sum of the first n perfect cubes is equal to the square of the sum of
the first n integers. Nevertheless, it must be borne in mind that tablets
from Mesopotamia resemble Egyptian papyri in that only specific cases
are given, with no general formulations.

Polygonal Areas

It used to be held that the Babylonians were better in algebra than were the
Egyptians, but that they had contributed less to geometry. The first half of
this statement is clearly substantiated by what we have learned in previous
paragraphs; attempts to bolster the second half of the comparison generally
are limited to the measure of the circle or to the volume of the frustum of
a pyramid. In the Mesopotamian Valley, the area of a circle was generally
found by taking three times the square of the radius, and in accuracy this
falls considerably below the Egyptian measure. Yet the counting of deci-
mal places in the approximations for 7 is scarcely an appropriate measure
of the geometric stature of a civilization, and a twentieth-century discovery
has effectively nullified even this weak argument.

In 1936, a group of mathematical tablets was unearthed at Susa, a
couple of hundred miles from Babylon, and these include significant
geometric results. True to the Mesopotamian penchant for making tables
and lists, one tablet in the Susa group compares the areas and the squares
of the sides of the regular polygons of three, four, five, six, and seven
sides. The ratio of the area of the pentagon, for example, to the square on
the side of the pentagon is given as 1;40, a value that is correct to two
significant figures. For the hexagon and the heptagon, the ratios
are expressed as 2;37,30 and 3;41, respectively. In the same tablet, the
scribe gives 0;57,36 as the ratio of the perimeter of the regular hexagon
to the circumference of the circumscribed circle, and from this, we can
readily conclude that the Babylonian scribe had adopted 3;7,30, or 33, as
an approximation for m. This is at least as good as the value adopted
in Egypt. Moreover, we see it in a more sophisticated context than in
Egypt, for the tablet from Susa is a good example of the systematic
comparison of geometric figures. One is almost tempted to see in it the
genuine origin of geometry, but it is important to note that it was not so
much the geometric context that interested the Babylonians as the
numerical approximations that they used in mensuration. Geometry for
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FIG. 3.2

them was not a mathematical discipline in our sense, but a sort of applied
algebra or arithmetic in which numbers are attached to figures.

There is some disagreement as to whether the Babylonians were
familiar with the concept of similar figures, although this appears to be
likely. The similarity of all circles seems to have been taken for granted in
Mesopotamia, as it had been in Egypt, and the many problems on triangle
measure in cuneiform tablets seem to imply a concept of similarity. A
tablet in the Baghdad Museum has a right triangle ABC (Fig. 3.2) with
sides a = 60 and b =45 and ¢ =75, and it is subdivided into four smaller
right triangles, ACD, CDE, DEF, and EFB. The areas of these four tri-
angles are then given as 8,6 and 5,11;2,24 and 3,19;3,56,9,36 and
5,53;53,39,50,24, respectively. From these values, the scribe computed the
length of AD as 27, apparently using a sort of “similarity formula”
equivalent to our theorem that areas of similar figures are to each other as
squares on corresponding sides. The lengths of CD and BD are found to be
36 and 48, respectively, and through an application of the “similarity
formula” to triangles BCD and DCE, the length of CE is found to be
21;36. The text breaks off in the middle of the calculation of DE.

Geometry as Applied Arithmetic

Measurement was the keynote of algebraic geometry in the Mesopota-
mian Valley, but a major flaw, as in Egyptian geometry, was that the
distinction between exact and approximate measures was not made clear.
The area of a quadrilateral was found by taking the product of the
arithmetic means of the pairs of opposite sides, with no warning that
this is in most cases only a crude approximation. Again, the volume of
a frustum of a cone or a pyramid was sometimes found by taking the
arithmetic mean of the upper and lower bases and multiplying by
the height; sometimes, for a frustum of a square pyramid with areas a*
and b? for the lower and upper bases, the formula

a+b\
V= h
(")
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was applied. For the latter, however, the Babylonians also used a rule

equivalent to
a+bY 1[/a—bY
V=h + =
() +07)]

a formula that is correct and reduces to the one used by the Egyptians.

It is not known whether Egyptian and Babylonian results were always
independently discovered, but in any case, the latter were definitely more
extensive than the former, in both geometry and algebra. The Pytha-
gorean theorem, for example, does not appear in any form in surviving
documents from Egypt, but tablets even from the Old Babylonian period
show that in Mesopotamia the theorem was widely used. A cuneiform
text from the Yale Collection, for example, contains a diagram of a
square and its diagonals in which the number 30 is written along one side
and the numbers 42;25,35 and 1;24,51,10 appear along a diagonal. The
last number obviously is the ratio of the lengths of the diagonal and a
side, and this is so accurately expressed that it agrees with /2 to within
about a millionth. The accuracy of the result was made possible by
knowledge of the Pythagorean theorem. Sometimes, in less precise
computations, the Babylonians used 1;25 as a rough-and-ready approx-
imation to this ratio. Of more significance than the precision of the values,
however, is the implication that the diagonal of any square could be found
by multiplying the side by \/2. Thus, there seems to have been some
awareness of general principles, despite the fact that these are exclusively
expressed in special cases.

Babylonian recognition of the Pythagorean theorem was by no means
limited to the case of a right isosceles triangle. In one Old Babylonian
problem text, a ladder or a beam of length 0;30 stands against a wall; the
question is, how far will the lower end move out from the wall if
the upper end slips down a distance of 0;6 units? The answer is correctly
found by use of the Pythagorean theorem. Fifteen hundred years later,
similar problems, some with new twists, were still being solved in
the Mesopotamian Valley. A Seleucid tablet, for example, proposes the
following problem. A reed stands against a wall. If the top slides down 3
units when the lower end slides away 9 units, how long is the reed? The
answer is given correctly as 15 units.

Ancient cuneiform problem texts provide a wealth of exercises in what
we might call geometry, but which the Babylonians probably thought of
as applied arithmetic. A typical inheritance problem calls for the parti-
tion of a right-triangular property among six brothers. The area is given
as 11,22,30 and one of the sides is 6,30; the dividing lines are to be
equidistant and parallel to the other side of the triangle. One is asked to
find the difference in the allotments. Another text gives the bases of
an isosceles trapezoid as 50 and 40 units and the length of the sides
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as 30; the altitude and the area are required (van der Waerden 1963,
pp. 76 77).

The ancient Babylonians were aware of other important geometric
relationships. Like the Egyptians, they knew that the altitude in an
isosceles triangle bisects the base. Hence, given the length of a chord in a
circle of known radius, they were able to find the apothem. Unlike the
Egyptians, they were familiar with the fact that an angle inscribed in
a semicircle is a right angle, a proposition generally known as the
Theorem of Thales, despite the fact that Thales lived more than a mil-
lennium after the Babylonians had begun to use it. This misnaming of a
well-known theorem in geometry is symptomatic of the difficulty in
assessing the influence of pre-Hellenic mathematics on later cultures.
Cuneiform tablets had a permanence that could not be matched by
documents from other civilizations, for papyrus and parchment do not so
easily survive the ravages of time. Moreover, cuneiform texts continued
to be recorded down to the dawn of the Christian era, but were they read
by neighboring civilizations, especially the Greeks? The center of
mathematical development was shifting from the Mesopotamian Valley
to the Greek world half a dozen centuries before the beginning of our
era, but reconstructions of early Greek mathematics are rendered
hazardous by the fact that there are virtually no extant mathematical
documents from the pre-Hellenistic period. It is important, therefore, to
keep in mind the general characteristics of Egyptian and Babylonian
mathematics so as to be able to make at least plausible conjectures
concerning analogies that may be apparent between pre-Hellenic con-
tributions and the activities and attitudes of later peoples.

There is a lack of explicit statements of rules and of clear-cut distinc-
tions between exact and approximate results. The omission in the tables of
cases involving irregular sexagesimals seems to imply some recognition
of such distinctions, but neither the Egyptians nor the Babylonians appear
to have raised the question of when the area of a quadrilateral (or of a
circle) is found exactly and when only approximately. Questions about the
solvability or unsolvability of a problem do not seem to have been raised,
nor was there any investigation into the nature of proof. The word “proof™
means various things at different levels and ages; hence, it is hazardous to
assert categorically that pre-Hellenic peoples had no concept of proof, nor
any feeling of the need for proof. There are hints that these people were
occasionally aware that certain area and volume methods could be justi-
fied through a reduction to simpler area and volume problems. Moreover,
pre-Hellenic scribes not infrequently checked or “proved” their divisions
by multiplication; occasionally, they verified the procedure in a problem
through a substitution that verified the correctness of the answer. Never-
theless, there are no explicit statements from the pre-Hellenic period that
would indicate a felt need for proofs or a concern for questions of logical
principles. In Mesopotamian problems, the words “length” and “width”



Geometry as Applied Arithmetic 39

should perhaps be interpreted much as we interpret the letters x and y, for
the writers of cuneiform tablets may well have moved on from specific
instances to general abstractions. How else does one explain the addition
of a length to an area? In Egypt also, the use of the word for quantity is not
incompatible with an abstract interpretation such as we read into it today.
In addition, there were in Egypt and Babylonia problems that have the
earmarks of recreational mathematics. If a problem calls for a sum of cats
and measures of grain, or of a length and an area, one cannot deny to the
perpetrator either a modicum of levity or a feeling for abstraction. Of
course, much of pre-Hellenic mathematics was practical, but surely not all
of it. In the practice of computation, which stretched over a couple of
millennia, the schools of scribes used plenty of exercise material, often,
perhaps, simply as good clean fun.



A

Hellenic Traditions

To Thales ... the primary question was not What do we know but How do
we know it. [Emphasis added.]
Aristotle

The Era and the Sources

The intellectual activity of the river valley civilizations in Egypt and
Mesopotamia had lost its verve well before the Christian era, but as
learning in the river valleys declined, and as bronze gave way to iron in
weaponry, vigorous new cultures sprang up all along the shores of the
Mediterranean Sea. To indicate this change in the centers of civilization,
the interval from roughly 800 BcE to 800 cE is sometimes known as the
Thalassic Age (that is, the “sea” age). There was no sharp disruption to
mark the transition in intellectual leadership from the valleys of the Nile,
Tigris, and Euphrates rivers to the shores of the Mediterranean. Egyptian
and Babylonian scholars continued to produce papyrus and cuneiform
texts for many centuries after 800 BCE, but a new civilization meanwhile
was rapidly preparing to take over scholarly hegemony, not only around
the Mediterranean but, ultimately, in the chief river valleys as well. To

40
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indicate the source of the new inspiration, the first portion of the
Thalassic Age is labeled the Hellenic era, so that the older cultures are
consequently known as pre-Hellenic. The Greeks of today still call
themselves Hellenes. Greek history is traceable back into the second
millennium BCE, when several waves of invaders pressed down from the
north. They brought with them no known mathematical or literary tra-
dition. They seem to have been very eager to learn, however, and it did
not take them long to improve on what they absorbed. It is presumed that
some rudiments of computation traveled along trade routes. This is true
of the early Greek alphabets that had been taken over and expanded from
the existing alphabet of the Phoenicians, which consisted only of con-
sonants. The alphabet seems to have originated between the Babylonian
and Egyptian worlds, possibly in the region of the Sinai Peninsula,
through a process of drastic reduction in the number of cuneiform or
hieratic symbols. This alphabet found its way to the new colonies—
Greek, Roman, and Carthaginian—through the activities of traders.
Before long, Greek traders, businessmen, and scholars made their way to
the centers of learning in Egypt and Babylonia. There they made contact
with pre-Hellenic mathematics, but they were not willing merely to
receive long-established traditions, for they made the subject so thor-
oughly their own that it soon took a drastically different form.

The first Olympic Games were held in 776 BcE, and by then, an
absorbing Greek literature had already developed. Of Greek mathe-
matics at the time we know nothing. Presumably, it lagged behind the
development of literary forms; the latter lend themselves more readily to
continuity of oral transmission. It would be almost another two centuries
before there was any word, even indirectly, concerning Greek mathe-
matics. Then, during the sixth century BCE, there appeared two men, Thales
and Pythagoras, to whom are ascribed definite mathematical discoveries.
They are somewhat indistinct figures, historically. No mathematical
masterpiece from either one has survived, nor is it even established that
either Thales or Pythagoras ever composed such a work. Nevertheless, the
earliest Greek accounts of the history of mathematics, which no longer
survive, ascribed to Thales and Pythagoras a number of very definite
discoveries in mathematics. We outline these contributions in this chapter,
but the reader should understand that it is largely persistent tradition, rather
than any extant historical document, on which the account is based.

To a certain extent, this situation prevails regarding any written
mathematical treatises or other works throughout the fifth century BcE.
There are virtually no extant mathematical or scientific documents until
we encounter those from the days of Plato in the fourth century BCE.
Nevertheless, during the last half of the fifth century, there circulated
persistent and consistent reports concerning a handful of mathematicians
who evidently were intensely concerned with problems that formed the
basis for most of the later developments in geometry. We shall therefore
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refer to this period as the “Heroic Age of Mathematics,” for seldom,
either before or since, have men with so little to work with tackled
mathematical problems of such fundamental significance. No longer
was mathematical activity centered almost entirely in two regions nearly
at opposite ends of the Greek world; it flourished all around the
Mediterranean. In what is now southern Italy, there were Archytas of
Tarentum (born ca. 428 BCE) and Hippasus of Metapontum (fl. ca. 400
BCE); at Abdera in Thrace, we find Democritus (born ca. 460 BCE); nearer
the center of the Greek world, on the Attic peninsula, there was Hippias
of Elis (born ca. 460 BCE); and in nearby Athens, there lived at various
times during the pivotal last half of the fifth century BcE three scholars
from other regions: Hippocrates of Chios (fl. ca. 430 BCE), Anaxagoras of
Clazomenae (fl. 428 BCE), and Zeno of Elea (fl. ca. 450 Bcg). Through the
work of these seven men, we shall describe the fundamental changes in
mathematics that took place a little before the year 400 BCE. Again, we
must remember that although the histories of Herodotus and Thucydides
and the plays of Aeschylus, Euripides, and Aristophanes have in some
measure survived, scarcely a line is extant of what was written by
mathematicians of the time.

Firsthand mathematical sources from the fourth century BCE are almost
as scarce, but this inadequacy is made up for in large measure by accounts
written by philosophers who were au courant with the mathematics of
their day. We have most of what Plato wrote and about half of the work of
Aristotle; with the writings of these intellectual leaders of the fourth
century BCE as a guide, we can give a far more dependable account of what
happened in their day than we could about the Heroic Age.

Thales and Pythagoras

Accounts of the origins of Greek mathematics center on the so-called
Ionian and Pythagorean schools and the chief representative of each—
Thales and Pythagoras—although, as just noted, reconstructions of their
thought rest on fragmentary reports and traditions built up during later
centuries. The Greek world had its center between the Aegean and
Ionian seas for many centuries, but Hellenic civilization was far from
localized there. By about 600 Bck, Greek settlements were scattered
along the borders of most of the Black Sea and the Mediterranean Sea,
and it was in these outskirts that a new surge in mathematics developed.
In this respect, the sea-bordering colonists, especially in Ionia, had two
advantages: they had the bold and imaginative spirit typical of pioneers,
and they were in closer proximity to the two chief river valleys where
knowledge thrived. Thales of Miletus (ca. 624 548 BCE) and Pythagoras
of Samos (ca. 580 500 Bce) had a further advantage: they were in a
position to travel to centers of ancient learning and there acquire
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firsthand information on astronomy and mathematics. In Egypt, they are
said to have learned geometry; in Babylon, under the enlightened
Chaldean ruler Nebuchadnezzar, Thales may have come in touch with
astronomical tables and instruments. Tradition has it that in 585 BcE,
Thales amazed his countrymen by predicting the solar eclipse of that
year. The historicity of this tradition is very much open to question,
however.

What is really known about the life and work of Thales is very little
indeed. Ancient opinion is unanimous in regarding Thales as an unusually
clever man and the first philosopher—by general agreement, the first
of the Seven Wise Men. He was regarded as “a pupil of the Egyptians and
the Chaldeans,” an assumption that appears plausible. The proposition
now known as the theorem of Thales—that an angle inscribed in a
semicircle is a right angle—may well have been learned by Thales during
his travels to Babylon. Tradition goes further, however, and attributes to
him some sort of demonstration of the theorem. For this reason, Thales
has frequently been hailed as the first true mathematician—as the origi-
nator of the deductive organization of geometry. This report, or legend,
was embellished by adding to this theorem four others that Thales is said
to have proved:

1. A circle is bisected by a diameter.

2. The base angles of an isosceles triangle are equal.

3. The pairs of vertical angles formed by two intersecting lines are
equal.

4. If two triangles are such that two angles and a side of one are equal,
respectively, to two angles and a side of the other, then the triangles
are congruent.

There is no document from antiquity that can be pointed to as evidence
of this achievement, yet the tradition has been persistent. About the
nearest one can come to reliable evidence on this point is derived from a
source a thousand years after the time of Thales. A student of Aristotle’s
by the name of Eudemus of Rhodes (fl. ca. 320 Bce) wrote a history of
mathematics. This has been lost, but before it disappeared, someone had
summarized at least part of the history. The original of this summary has
also been lost, but during the fifth century of our era, information from
the summary was incorporated by the Neoplatonic philosopher Proclus
(410 485) into the early pages of his Commentary on the First Book of
Euclid’s Elements.

Designations of Thales as the first mathematician largely hinge on the
remarks of Proclus. Later in his Commentary, Proclus—again depending
on Eudemus—attributes to Thales the four theorems mentioned pre-
viously. There are other scattered references to Thales in ancient
sources, but most of these describe his more practical activities. They do
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not establish the bold conjecture that Thales created demonstrative
geometry, but in any case, Thales is the first man in history to whom
specific mathematical discoveries have been attributed.

That it was the Greeks who added the element of logical structure to
geometry is virtually universally admitted today, but the big question
remains whether this crucial step was taken by Thales or by others
later—perhaps as much as two centuries later. On this point, we must
suspend final judgment until there is additional evidence on the devel-
opment of Greek mathematics.

Pythagoras is scarcely less controversial a figure than Thales, for he
has been more thoroughly enmeshed in legend and apotheosis. Thales
had been a man of practical affairs, but Pythagoras was a prophet and a
mystic, born at Samos, one of the Dodecanese islands not far from
Miletus, the birthplace of Thales. Although some accounts picture
Pythagoras as having studied under Thales, this is rendered unlikely by
the half-century difference in their ages. Some similarity in their inter-
ests can readily be accounted for by the fact that Pythagoras also traveled
to Egypt and Babylon—possibly even to India. During his peregrina-
tions, he evidently absorbed not only mathematical and astronomical
information but also much religious lore. Pythagoras was, incidentally,
virtually a contemporary of Buddha, Confucius, and Laozi (Lao-tzu); the
century was a crucial time in the development of religion, as well as of
mathematics. When Pythagoras returned to the Greek world, he settled at
Croton on the southeastern coast of what is now Italy, but at that time
was known as Magna Graecia. There he established a secret society that
somewhat resembled an Orphic cult, except for its mathematical and
philosophical basis.

That Pythagoras remains a very obscure figure is due in part to the loss
of documents from that age. Several biographies of Pythagoras were
written in antiquity, including one by Aristotle, but these have not sur-
vived. A further difficulty in clearly identifying the figure of Pythagoras
lies in the fact that the order he established was communal as well as
secret. Knowledge and property were held in common, hence attribution
of discoveries was not to be made to a specific member of the school. It
is best, consequently, not to speak of the work of Pythagoras, but rather
of the contributions of the Pythagoreans, although in antiquity it was
customary to give all credit to the master.

Perhaps the most striking characteristic of the Pythagorean order was
the confidence it maintained in the pursuit of philosophical and mathe-
matical studies as a moral basis for the conduct of life. The very words
“philosophy” (or “love of wisdom”) and “mathematics” (or “that which
is learned”) are supposed to have been coined by Pythagoras himself to
describe his intellectual activities.

It is evident that the Pythagoreans played an important role in the
history of mathematics. In Egypt and Mesopotamia, the elements of
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arithmetic and geometry were primarily exercises in the application
of numerical procedures to specific problems, whether concerned with
beer or pyramids or the inheritance of land; we find nothing resembling
a philosophical discussion of principles. Thales is generally regarded as
having made a beginning in this direction, although tradition supports
the view of Eudemus and Proclus that the new emphasis in mathematics
was due primarily to the Pythagoreans. With them, mathematics was
more closely related to a love of wisdom than to the exigencies of
practical life. That Pythagoras was one of the most influential figures in
history is difficult to deny, for his followers, whether deluded or inspired,
spread their beliefs throughout most of the Greek world. The harmonies
and mysteries of philosophy and mathematics were essential parts of the
Pythagorean rituals. Never before or since has mathematics played so
large a role in life and religion as it did among the Pythagoreans.

The motto of the Pythagorean school is said to have been “All is
number.” Recalling that the Babylonians had attached numerical mea-
sures to things around them, from the motions of the heavens to the
values of their slaves, we may perceive in the Pythagorean motto a
strong Mesopotamian affinity. The very theorem to which the name of
Pythagoras still clings quite likely was derived from the Babylonians. It
has been suggested, as justification for calling it the Theorem of
Pythagoras, that the Pythagoreans first provided a demonstration, but this
conjecture cannot be verified. It is reasonable to assume that the earliest
members of the Pythagorean school were familiar with geometric
properties known to the Babylonians, but when the Eudemus-Proclus
summary ascribes to them the construction of the “cosmic figures” (that
is, the regular solids), there is room for doubt. The cube, the octahedron,
and the dodecahedron could perhaps have been observed in crystals,
such as those of pyrite (iron disulfide), but a scholium in Euclid’s Ele-
ments XII reports that the Pythagoreans knew only three of the regular
polyhedra: the tetrahedron, the cube, and the dodecahedron. Familiarity
with the last figure is rendered plausible by the discovery near Padua of
an Etruscan dodecahedron of stone dating from before 500 BcE. It is not
improbable, therefore, that even if the Pythagoreans did not know of the
octahedron and the icosahedron, they knew of some of the properties of
the regular pentagon. The figure of a five-pointed star (which is formed
by drawing the five diagonals of a pentagonal face of a regular dode-
cahedron) is said to have been the special symbol of the Pythagorean
school. The star pentagon had appeared earlier in Babylonian art, and it
is possible that here, too, we find a connecting link between pre-Hellenic
and Pythagorean mathematics.

One of the tantalizing questions in Pythagorean geometry concerns the
construction of a pentagram or a star pentagon. If we begin with a regular
polygon ABCDE (Fig. 4.1) and draw the five diagonals, these diagonals
intersect in points A'B'C'D'E’, which form another regular pentagon.
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FIG. 4.1

Noting that the triangle BCD’, for example, is similar to the isosceles
triangle BCE, and noting also the many pairs of congruent triangles in the
diagram, it is not difficult to see that the diagonal points A'B'C’'D’E’ divide
the diagonals in a striking manner. In each case, a diagonal point divides a
diagonal into two unequal segments such that the ratio of the whole
diagonal is to the larger segment as this segment is to the smaller segment.
This subdivision of a diagonal is the well-known “golden section” of a line
segment, but this name was not used until a couple of thousand years
later—just about the time when Johannes Kepler wrote lyrically:

Geometry has two great treasures: one is the Theorem of Pythagoras; the
other, the division of a line into extreme and mean ratio. The first we may
compare to a measure of gold; the second we may name a precious jewel.

To the ancient Greeks, this type of subdivision soon became so familiar
that no need was felt for a special descriptive name; hence, the longer
designation ‘“the division of a segment in mean and extreme ratio”
generally was replaced by the simple words “the section.”

One important property of “the section” is that it is, so to speak, self-
propagating. If a point P, divides a segment RS (Fig. 4.2) in mean and
extreme ratio, with RP, the longer segment, and if on this larger segment we
mark off a point P, such that RP, = P,S, then segment RP, will in turn be
subdivided in mean and extreme ratio at point P,. Again, on marking off on
RP, point P; such that RP, = P,P,, segment RP, will be divided in mean and
extreme ratio at P;. This iterative procedure can be carried out as many times
as desired, the result being an ever smaller segment RP, divided in mean and
extreme ratio by point P,.,. Whether the earlier Pythagoreans noticed this
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unending process or drew significant conclusions from it is not known.
Even the more fundamental question of whether the Pythagoreans of about
500 BcE could divide a given segment into mean and extreme ratio cannot be
answered with certainty, although the probability that they could and did
seems to be high. The construction required is equivalent to the solution of a
quadratic equation. To show this, let RS = a and RP, = x in Fig. 4.2. Then,
by the property of the golden section, a:x = x: (a — x), and on multiplying
means and extremes we have the equation x*> = a*> — ax. This is a quadratic
equation of type 1, as described in chapter 3, and Pythagoras could have
learned from the Babylonians how to solve this equation algebraically. If a is
a rational number, however, then there is no rational number x satisfying the
equation. Did Pythagoras realize this? It seems unlikely. Perhaps instead of
the Babylonian algebraic type of solution, the Pythagoreans may have
adopted a geometric procedure similar to that found in Euclid’s Elements
IL.11 and VIL.30. To divide a line segment AB in mean and extreme ratio,
Euclid first constructed on the segment AB the square ABCD (Fig. 4.3).
Then, he bisected AC at point E, drew line segment EB, and extended line
CEA to F so that EF = EB. When the square AFGH is completed, point H
will be the point desired, for one can readily show that AB:AH = AH: HB.
Knowing what solution, if any, the earlier Pythagoreans used for the golden
section would go far toward clarifying the problem of the level and the
characteristics of pre-Socratic mathematics. If Pythagorean mathematics
began under a Babylonian aegis, with strong faith that all is number, how
(and when) did it happen that this gave way to the familiar emphasis on pure
geometry that is so firmly enshrined in the classical treatises?

Number Mysticism

Number mysticism was not original with the Pythagoreans. The number
7, for example, had been singled out for special awe, presumably on
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account of the seven wandering stars or planets from which the week
(hence our names for the days of the week) is derived. The Pythagoreans
were not the only people who fancied that the odd numbers had male
attributes and the even female—with the related (and not unprejudiced)
assumption, found as late as Shakespeare, that “there is divinity in odd
numbers.” Many early civilizations shared various aspects of numerol-
ogy, but the Pythagoreans carried number worship to its extreme, basing
their philosophy and their way of life on it. The number 1, they argued, is
the generator of numbers and the number of reason; the number 2 is
the first even or female number, the number of opinion; 3 is the first
true male number, the number of harmony, being composed of unity
and diversity; 4 is the number of justice or retribution, indicating the
squaring of accounts; 5 is the number of marriage, the union of the first
true male and female numbers; and 6 is the number of creation. Each
number in turn had its peculiar attributes. The holiest of all was the
number 10, or the tetractys, for it represented the number of the universe,
including the sum of all of the possible geometric dimensions. A single
point is the generator of dimensions, two points determine a line of
dimension one, three points (not on a line) determine a triangle with area
of dimension two, and four points (not in a plane) determine a tetra-
hedron with volume of dimension three; the sum of the numbers
representing all dimensions, therefore, is the reversed number 10. It is a
tribute to the abstraction of Pythagorean mathematics that the veneration
of the number 10 evidently was not dictated by the anatomy of the
human hand or foot.

Arithmetic and Cosmology

In Mesopotamia, geometry had been not much more than number
applied to spatial extension; it appears that, at first, it may have been
much the same among the Pythagoreans—but with a modification.
Number in Egypt had been the domain of the natural numbers and the
unit fractions; among the Babylonians, it had been the field of all rational
fractions. In Greece, the word “number” was used only for the integers.
A fraction was not looked on as a single entity but as a ratio or rela-
tionship between two whole numbers. (Greek mathematics, in its earlier
stages, frequently came closer to the “modern” mathematics of today
than to the ordinary arithmetic of a generation ago.) As Euclid later
expressed it (Elements V.3), “A ratio is a kind of relation in respect of
size of two magnitudes of the same kind.” Such a view, focusing
attention on the connection between pairs of numbers, tends to sharpen
the theoretical or rational aspects of the number concept and to deem-
phasize the role of number as a tool in computation or approximation in
mensuration. Arithmetic now could be thought of as an intellectual
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discipline as well as a technique, and a transition to such an outlook
seems to have been nurtured in the Pythagorean school.

If tradition is to be trusted, the Pythagoreans not only established
arithmetic as a branch of philosophy; they seem to have made it the basis of
a unification of all aspects of the world around them. Through patterns of
points, or unextended units, they associated number with geometric
extension; this in turn led them to an arithmetic of the heavens. Philolaus
(died ca. 390 BcE), a later Pythagorean who shared the veneration of the
tetractys or decad, wrote that it was “great, all-powerful and all-producing,
the beginning and the guide of the divine as of the terrestrial life.” This
view of the number 10 as the perfect number, the symbol of health and
harmony, seems to have provided the inspiration for the earliest nongeo-
centric astronomical system. Philolaus postulated that at the center of the
universe, there was a central fire about which the earth and the seven
planets (including the sun and the moon) revolved uniformly. Inasmuch as
this brought to only nine the number of heavenly bodies (other than the
sphere of fixed stars), the Philolaic system assumed the existence of a tenth
body—a “counterearth” collinear with the earth and the central fire—
having the same period as the earth in its daily revolution about the central
fire. The sun revolved about the fire once a year, and the fixed stars were
stationary. The earth in its motion maintained the same uninhabited face
toward the central fire, hence neither the fire nor the counterearth was ever
seen. The postulate of uniform circular motion that the Pythagoreans
adopted was to dominate astronomical thought for more than 2,000 years.
Copernicus, almost 2,000 years later, accepted this assumption without
question, and it was the Pythagoreans to whom Copernicus referred to
show that his doctrine of a moving earth was not so new or revolutionary.

The thoroughness with which the Pythagoreans wove number into their
thought is well illustrated by their concern for figurate numbers. Although no
triangle can be formed by fewer than three points, it is possible to have tri-
angles of a larger number of points, such as six, ten, or fifteen (see Fig. 4.4).
Numbers such as 3, 6, 10, and 15 or, in general, numbers given by the formula

_|_
N=1+2+3+--.+n=—”(”2 D

were called triangular, and the triangular pattern for the number 10, the
holy tetractys, vied with the pentagon for veneration in Pythagorean
number theory. There were, of course, indefinitely many other categories
of privileged numbers. Successive square numbers are formed from the
sequence 1 +3+5+7+ --- + (2n — 1), where each odd number in turn
was looked on as a pattern of dots resembling a gnomon (the Babylonian
shadow clock) placed around two sides of the preceding square pattern of
dots (see Fig. 4.4). Hence, the word “gnomon” (related to the word for
“knowing”) came to be attached to the odd numbers themselves.
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The sequence of even numbers, 2+4+6+ --- +2n=n(n+1),
produces what the Greeks called “oblong numbers,” each of which is
double a triangular number. Pentagonal patterns of points illustrated the
pentagonal numbers given by the sequence

~1
N=1+4+7+-.-+(3n—2)=7"(3”2 )

and hexagonal numbers were derived from the sequence
1+54+9+ -+ (4n—3)=2n"—n.

In a similar manner, polygonal numbers of all orders are designated; the
process, of course, is easily extended to three-dimensional space, where
one deals with polyhedral numbers. Emboldened by such views, Philo-
laus is reported to have maintained that

All things which can be known have number; for it is not possible that
without number anything can be either conceived or known.

The dictum of Philolaus seems to have been a tenet of the Pythagorean
school; hence, stories arose about the discovery by Pythagoras of some
simple laws of music. Pythagoras is reputed to have noticed that when
the lengths of vibrating strings are expressible as ratios of simple whole
numbers, such as 2 to 3 (for the fifth) or as 3 to 4 (for the fourth), the tones
will be harmonious. If, in other words, a string sounds the note C when
plucked, then a similar string twice as long will sound the note C an
octave below, and tones between these two notes are emitted by strings
whose lengths are given by intermediate ratios: 16:9 for D, 8:5 for E,
3:2for F,4:3 for G, 6:5 for A, and 16:15 for B, in ascending order.
Here we have perhaps the earliest quantitative laws of acoustics—possibly
the oldest of all quantitative physical laws. So boldly imaginative were the
early Pythagoreans that they hastily extrapolated to conclude that
the heavenly bodies in their motions similarly emitted harmonious tones,
the “harmony of the spheres.” Pythagorean science, like Pythagorean
mathematics, seems to have been an odd congeries of sober thought and
fanciful speculation. The doctrine of a spherical earth is often ascribed to
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Pythagoras, but it is not known whether this conclusion was based on
observation (perhaps of new constellations as Pythagoras traveled south-
ward) or on imagination. The very idea that the universe is a “cosmos,” or
a harmoniously ordered whole, seems to be a related Pythagorean con-
tribution—one that at the time had little basis in direct observation but that
has been enormously fruitful in the development of astronomy. As we
smile at ancient number fancies, we should at the same time be aware of
the impulse these gave to the development of both mathematics and sci-
ence. The Pythagoreans were among the earliest people to believe that the
operations of nature could be understood through mathematics.

Proportions

Proclus, quoting perhaps from Eudemus, ascribed to Pythagoras two
specific mathematical discoveries: (1) the construction of the regular
solids and (2) the theory of proportionals. Although there is question
about the extent to which this is to be taken literally, there is every
likelihood that the statement correctly reflects the direction of Pytha-
gorean thought. The theory of proportions clearly fits into the pattern of
early Greek mathematical interests, and it is not difficult to find a likely
source of inspiration. It is reported that Pythagoras learned in Mesopotamia
of three means—the arithmetic, the geometric, and the subcontrary
(later called the harmonic)—and of the “golden proportion” relating two
of these: the first of two numbers is to their arithmetic mean as their
harmonic mean is to the second of the numbers. This relationship is the
essence of the Babylonian square-root algorithm; hence, the report is at
least plausible. At some stage, however, the Pythagoreans generalized
this work by adding seven new means to make ten in all. If b is the
mean of a and ¢, where a <c, then the three quantities are related
according to one of the following ten equations:

b— b—
O L=
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The first three equations are, of course, the equations for the arithmetic, the
geometric, and the harmonic means, respectively.

It is difficult to assign a date to the Pythagorean study of means, and
similar problems arise with respect to the classification of numbers. The
study of proportions or the equality of ratios presumably formed at first a
part of Pythagorean arithmetic or theory of numbers. Later, the quan-
tities a, b, and c entering in such proportions were more likely to be
regarded as geometric magnitudes, but the period in which the change
took place is not clear. In addition to the polygonal numbers mentioned
previously and the distinction between odd and even, the Pythagoreans
at some stage spoke of odd-odd and even-odd numbers, based on whether
the number in question was the product of two odd numbers or of an odd
and an even number, so that sometimes the name “even number” was
reserved for integral powers of two. By the time of Philolaus, the dis-
tinction between prime and composite numbers seems to have become
important. Speusippus, a nephew of Plato and his successor as head of the
Academy, asserted that 10 was “perfect” for the Pythagoreans because,
among other things, it is the smallest integer »n for which there are just as
many primes between 1 and n as nonprimes. (Occasionally, prime numbers
were called linear, inasmuch as they are usually represented by dots in one
dimension only.) Neopythagoreans sometimes excluded 2 from the list of
primes on the ground that 1 and 2 are not true numbers, but the generators
of the odd and even numbers. The primacy of the odd numbers was
assumed to be established by the fact that odd + odd is even, whereas
even + even remains even.

To the Pythagoreans has been attributed the rule for Pythagorean triads
given by (m*>—1)/2, m, (m*+ 1)/2, where m is an odd integer, but
inasmuch as this rule is so closely related to the Babylonian examples, it is
perhaps not an independent discovery. Also ascribed to the Pythagoreans,
with doubt as to the period in question, are the definitions of perfect,
abundant, and deficient numbers, based on whether the sum of the proper
divisors of the number is equal to, greater than, or less than the number
itself. According to this definition, 6 is the smallest perfect number, with
28 next. That this view was probably a later development in Pythagorean
thought is suggested by the early veneration of 10 rather than 6. Hence,
the related doctrine of “amicable” numbers is also likely to have been a
later notion. Two integers a and b are said to be “amicable” if a is the sum
of the proper divisors of b and if b is the sum of the proper divisors of a.
The smallest such pair are the integers 220 and 284.

Numeration

The Hellenes were celebrated as shrewd traders and businessmen, and
there must have been a lower level of arithmetic or computation that
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satisfied the needs of the vast majority of Greek citizens. Number activ-
ities of this type would have been beneath the notice of philosophers, and
recorded accounts of practical arithmetic were unlikely to find their way
into the libraries of scholars. If, then, there are not even fragments
surviving of the more sophisticated Pythagorean works, it is clear that
it would be unreasonable to expect manuals of trade mathematics to
survive the ravages of time. Hence, it is not possible to tell at this
distance how the ordinary processes of arithmetic were carried out in
Greece 2,500 years ago. About the best one can do is to describe the
systems of numeration that appear to have been in use.

In general, there seem to have been two chief systems of numeration in
Greece: one, probably the earlier, is known as the Attic (or Herodianic)
notation; the other is called the Ionian (or alphabetic) system. Both
systems are, for integers, based on the 10 scale, but the former is the
more primitive, being based on a simple iterative scheme found in
the earlier Egyptian hieroglyphic numeration and in the later Roman
numerals. In the Attic system, the numbers from 1 to 4 were represented
by repeated vertical strokes. For the number 5 a new symbol—the
first letter II (or I') of the word for five, “pente”—was adopted. (Only
capital letters were used at the time, both in literary works and in
mathematics, lowercase letters being an invention of the later ancient or
early medieval period.) For numbers from 6 through 9, the Attic system
combined the symbol I' with unit strokes, so that 8, for example, was
written as . For positive integral powers of the base (10), the initial
letters of the corresponding number words were adopted—a for deka
(10), H for hekaton (100), x for khilioi (1,000), and m for myrioi (10,000).
Except for the forms of the symbols, the Attic system is much like the
Roman, but it had one advantage. Where the Latin word adopted dis-
tinctive symbols for 50 and 500, the Greeks wrote these numbers
by combining letters for 5, 10, and 100, using @ (or 5 times 10) for 50,
and @ (or 5 times 100) for 500. In the same way, they wrote [ for 5,000
and [ for 50,000. In Attic script, the number 45,678, for example, would
appear as

MMMM AR H@aa M

The Attic system of notation (also known as Herodianic, inasmuch as it
was described in a fragment attributed to Herodian, a grammarian of the
second century) appears in inscriptions at various dates from 454 to 95
BCE, but by the early Alexandrian Age, at about the time of Ptolemy
Philadelphius, it was being displaced by the Ionian or alphabetic numerals.
Similar alphabetic schemes were used at one time or another by various
Semitic peoples, including the Hebrews, the Syrians, the Aramaeans, and
the Arabs—as well as by other cultures, such as the Gothic—but these
would seem to have been borrowed from the Greek notation. The Ionian
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system probably was used as early as the fifth century BCE and perhaps as
early as the eighth century BCE. One reason for placing the origin of the
notation relatively early is that the scheme called for twenty-seven letters
of the alphabet—nine for the integers less than 10, nine for multiples of 10
that are less than 100, and nine for multiples of 100 that are less than
1,000. The classical Greek alphabet contains only twenty-four letters;
hence, use was made of an older alphabet that included three additional
archaic letters—F (vau or digamma or stigma), 9 (koppa), and A
(sampi)—to establish the following association of letters and numbers:

Z H O I K A M N
7 8 9 10 20 30 40 50

9 P T T X ¥ QO A
100 200 300 400 500 600 700 800 900

F
6
2

2 1l
-
<
o0
<o
O
(e}

After the introduction of small letters in Greece, the association of
letters and numbers appeared as follows:
a«a f oy 0 € ¢ & n 0 1 K A H V¥
1 2 3 4 5 6 7 8 9 10 20 30 40 50

E o mo ¢ p g 7 v 1) X v ) ™
60 70 80 90 100 200 300 400 500 600 700 800 900

Because these forms are more familiar today, we shall use them here.
For the first nine multiples of 1,000, the Ionian system adopted the first
nine letters of the alphabet, a partial use of the positional principle, but
for added clarity, these letters were preceded by a stroke or accent:

1 lﬂ 'y 0 & & /C n 0
1000 2000 3000 4000 5000 6000 7000 8000 9000

Within this system, any number less than 10,000 was easily written
with only four characters. The number 8888, for example, would appear
as ~4jwnn or as #wnr, the accent sometimes being omitted when the
context was clear. The use of the same letters for thousands as for units
should have suggested to the Greeks the full-fledged positional scheme
in decimal arithmetic, but they do not seem to have appreciated the
advantages of such a move. That they had such a principle more or less
in mind is evident not only in the repeated use of the letters « through 6
for units and thousands, but also in the fact that the symbols are arranged
in order of magnitude, from the smallest on the right to the largest on the
left. At 10,000, which for the Greeks was the beginning of a new count
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or category (much as we separate thousands from lower powers by a
comma), the Ionian Greek notation adopted a multiplicative principle.
A symbol for an integer from 1 to 9999, when placed above the letter M,
or after it, separated from the rest of the number by a dot, indicated the
product of the integer and the number 10,000—the Greek myriad. Thus,
the number 88888888 would appear as M.pwny - nwnn. Where still
larger numbers are called for, the same principle could be applied to the
double myriad, 100000000 or 10®% Early Greek notations for integers
were not excessively awkward, and they served their purposes effec-
tively. It was in the use of fractions that the systems were weak.

Like the Egyptians, the Greeks were tempted to use unit fractions, and
for these they had a simple representation. They wrote down the
denominator and then simply followed this with a diacritical mark or
accent to distinguish it from the corresponding integer. Thus, 3 would
appear as \&'. This could, of course, be confused with the number 305,
but context or the use of words could be assumed to make the situation
clear. In later centuries, general common fractions and sexagesimal
fractions were in use; these will be discussed below in connection with
the work of Archimedes, Ptolemy, and Diophantus, for there are extant
documents that, while not actually dating from the time of these men, are
copies of works written by them—a situation strikingly different from
that concerning mathematicians of the Hellenic period.

Arithmetic and Logistic

Because documents from the period are entirely missing, there is far
more uncertainty about Greek mathematics from 600 to 450 BCE than
about Babylonian algebra or Egyptian geometry from about 1700 BCE.
Not even mathematical artifacts have survived from the early days of
Greece. It is evident that some form of counting board or abacus was
used in calculation, but the nature and operation of the device must be
inferred from the Roman abacus and from some casual references in
works by Greek authors. Herodotus, writing in the early fifth century
BCE, said that in counting with pebbles, as in writing, the Greek hand
moved from left to right, the Egyptian from right to left. A vase from a
somewhat later period pictures a collector of tribute with a counting
board, which was used not only for integral decimal multiples of the
drachma but for nondecimal fractional subdivisions. Beginning on the
left, the columns designate myriads, thousands, hundreds, and tens of
drachmas respectively, the symbols being in Herodianic notation. Then,
following the units column for drachmas, there are columns for obols
(six obols = one drachma), for the half obol, and for the quarter obol.
Here we see how ancient civilizations avoided an excessive use of
fractions: they simply subdivided units of length, weight, and money so
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effectively that they could calculate in terms of integral multiples of the
subdivisions. This undoubtedly is the explanation for the popularity in
antiquity of duodecimal and sexagesimal subdivisions, for the decimal
system here is at a severe disadvantage. Decimal fractions were rarely
used, either by the Greeks or by other Western peoples, before the period
of the Renaissance. The abacus can be readily adapted to any system of
numeration or to any combination of systems; it is likely that the
widespread use of the abacus accounts at least in part for the amazingly
late development of a consistent positional system of notation for inte-
gers and fractions. In this respect, the Pythagorean Age contributed little
if anything.

The point of view of the Pythagoreans seems to have been so over-
whelmingly philosophical and abstract that technical details in compu-
tation were relegated to a separate discipline, called logistic. This dealt
with the numbering of things, rather than with the essence and properties
of number as such, matters of concern in arithmetic. That is, the ancient
Greeks made a clear distinction between mere calculation, on the one
hand, and what today is known as the theory of numbers, on the other.
Whether such a sharp distinction was a disadvantage to the historical
development of mathematics may be a moot point, but it is not easy to
deny to the early Ionian and Pythagorean mathematicians the primary
role in establishing mathematics as a rational and liberal discipline. It is
obvious that tradition can be quite inaccurate, but it is seldom entirely
misdirected.

Fifth-Century Athens

The fifth century BCE was a crucial period in the history of Western
civilization, for it opened with the defeat of the Persian invaders and
closed with the surrender of Athens to Sparta. Between these two events
lay the great Age of Pericles, with its accomplishments in literature and
art. The prosperity and intellectual atmosphere of Athens during the
century attracted scholars from all parts of the Greek world, and
a synthesis of diverse aspects was achieved. From Ionia came men such
as Anaxagoras, with a practical turn of mind; from southern Italy came
others, such as Zeno, with stronger metaphysical inclinations. Demo-
critus of Abdera espoused a materialistic view of the world, while
Pythagoras in Italy held idealistic attitudes in science and philosophy. In
Athens, one found eager devotees of old and new branches of learning,
from cosmology to ethics. There was a bold spirit of free inquiry that
sometimes came into conflict with established mores.

In particular, Anaxagoras was imprisoned in Athens for impiety in
asserting that the sun was not a deity but a huge red-hot stone as big as
the whole Peloponnesus, and that the moon was an inhabited earth that
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borrowed its light from the sun. He well represents the spirit of rational
inquiry, for he regarded as the aim of his life the study of the nature of
the universe—a purposefulness that he derived from the Ionian tradition
of which Thales had been a founder. The intellectual enthusiasm of
Anaxagoras was shared with his countrymen through the first scientific
best-seller—a book On Nature—which could be bought in Athens for
only a drachma. Anaxagoras was a teacher of Pericles, who saw to it that
his mentor was ultimately released from prison. Socrates was at first
attracted to the scientific ideas of Anaxagoras but found the naturalistic
Ionian view less satisfying than the search for ethical verities. Greek
science had been rooted in a highly intellectual curiosity that is often
contrasted with the utilitarian immediacy of pre-Hellenic thought;
Anaxagoras clearly represented the typical Greek motive—the desire to
know. In mathematics also, the Greek attitude differed sharply from that
of the earlier potamic cultures. The contrast was clear in the contribu-
tions generally attributed to Thales and Pythagoras, and it continues to
show through in the more reliable reports about what went on in Athens
during the Heroic Age. Anaxagoras was primarily a natural philosopher,
rather than a mathematician, but his inquiring mind led him to share in
the pursuit of mathematical problems.

Three Classical Problems

We are told by Plutarch that while Anaxagoras was in prison, he
occupied himself with an attempt to square the circle. Here we have
the first mention of a problem that was to fascinate mathematicians for
more than 2,000 years. There are no further details concerning the origin
of the problem or the rules governing it. At a later date, it came to be
understood that the required square, exactly equal in area to the circle,
was to be constructed by the use of a compass and a straightedge alone.
Here we see a type of mathematics that is quite unlike that of the
Egyptians and the Babylonians. It is not the practical application of a
science of number to a facet of life experience, but a theoretical question
involving a nice distinction between accuracy in approximation and
exactitude in thought.

Anaxagoras died in 428 BCE, the year that Archytas was born, just one
year before Plato’s birth and one year after Pericles’ death. It is said that
Pericles died of the plague that carried off perhaps a quarter of the
Athenian population, and the deep impression that this catastrophe
created is perhaps the origin of a second famous mathematical problem.
It is reported that a delegation had been sent to the oracle of Apollo at
Delos to inquire how the plague could be averted, and the oracle had
replied that the cubical altar to Apollo must be doubled. The Athenians
are said to have dutifully doubled the dimensions of the altar, but this
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was of no avail in curbing the plague. The altar had, of course, been
increased eightfold in volume, rather than twofold. Here, according to
the legend, was the origin of the “duplication of the cube” problem,
one that henceforth was usually referred to as the “Delian problem”—
given the edge of a cube, construct with compasses and straightedge
alone the edge of a second cube having double the volume of the first.

At about the same time, there circulated in Athens still a third celebrated
problem: given an arbitrary angle, construct by means of compasses and
straightedge alone an angle one-third as large as the given angle. These
three problems—the squaring of the circle, the duplication of the cube, and
the trisection of the angle—have since been known as the “three famous (or
classical) problems” of antiquity. More than 2,200 years later, it was to be
proved that all three of the problems were unsolvable by means of
straightedge and compass alone. Nevertheless, the better part of Greek
mathematics and of much later mathematical thought was suggested by
efforts to achieve the impossible—or, failing this, to modify the rules. The
Heroic Age failed in its immediate objective, under the rules, but
the efforts were crowned with brilliant success in other respects.

Quadrature of Lunes

Somewhat younger than Anaxagoras and coming originally from about
the same part of the Greek world was Hippocrates of Chios. He should
not be confused with his still more celebrated contemporary, the phy-
sician Hippocrates of Cos. Both Cos and Chios are islands in the
Dodecanese group, but in about 430 Bcg, Hippocrates of Chios left his
native land for Athens in his capacity as a merchant. Aristotle reported
that Hippocrates was less shrewd than Thales and that he lost his money
in Byzantium through fraud; others say that he was beset by pirates.
In any case, the incident was never regretted by the victim, for he
counted this his good fortune, in that as a consequence he turned to
the study of geometry, in which he achieved remarkable success—a
story typical of the Heroic Age. Proclus wrote that Hippocrates com-
posed an “Elements of Geometry,” anticipating by more than a century
the better-known Elements of Euclid. Yet the textbook of Hippocrates—
as well as another reported to have been written by Leon, a later
associate of the Platonic school—has been lost, although it was known
to Aristotle. In fact, no mathematical treatise from the fifth century
has survived, but we do have a fragment concerning Hippocrates that
Simplicius (fl. ca. 520 ce) claims to have copied literally from the
History of Mathematics (now lost) by Eudemus. This brief statement,
the nearest thing we have to an original source on the mathematics of
the time, describes a portion of the work of Hippocrates dealing with the
quadrature of lunes. A lune is a figure bounded by two circular arcs of
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unequal radii; the problem of the quadrature of lunes undoubtedly arose
from that of squaring the circle. The Eudemian fragment attributes to
Hippocrates the following theorem:

Similar segments of circles are in the same ratio as the squares on their
bases.

The Eudemian account reports that Hippocrates demonstrated this by
first showing that the areas of two circles are to each other as the squares
on their diameters. Here Hippocrates adopted the language and the
concept of proportion that played so large a role in Pythagorean thought.
In fact, it is thought by some that Hippocrates became a Pythagorean.
The Pythagorean school in Croton had been suppressed (possibly
because of its secrecy, perhaps because of its conservative political
tendencies), but the scattering of its adherents throughout the Greek
world served only to broaden the influence of the school. This influence
undoubtedly was felt, directly or indirectly, by Hippocrates.

The theorem of Hippocrates on the areas of circles seems to be the
earliest precise statement on curvilinear mensuration in the Greek world.
Eudemus believed that Hippocrates gave a proof of the theorem, but a
rigorous demonstration at that time (say, about 430 Bcg) would appear to
be unlikely. The theory of proportions at that stage probably was
established only for commensurable magnitudes. The proof as given in
Euclid XII.2 comes from Eudoxus, a man who lived halfway in time
between Hippocrates and Euclid. Just as much of the material in the first
two books of Euclid seems to stem from the Pythagoreans, however, so it
would appear reasonable to assume that the formulations, at least,
of much of Books III and IV of the Elements came from the work of
Hippocrates. Moreover, if Hippocrates did give a demonstration of
this theorem on the areas of circles, he may have been responsible for
the introduction into mathematics of the indirect method of proof.
That is, the ratio of the areas of two circles is equal to the ratio of the
squares on the diameters or it is not. By a reductio ad absurdum from
the second of the two possibilities, the proof of the only alternative is
established.

From this theorem on the areas of circles, Hippocrates readily found
the first rigorous quadrature of a curvilinear area in the history of
mathematics. He began with a semicircle circumscribed about an isos-
celes right triangle, and on the base (hypotenuse) he constructed a
segment similar to the circular segments on the sides of the right triangle
(Fig. 4.5). Because the segments are to each other as squares on their
bases and from the Pythagorean theorem as applied to the right triangle,
the sum of the two small circular segments is equal to the larger circular
segment. Hence, the difference between the semicircle on AC and
the segment ADCE equals triangle ABC. Therefore, the lune ABCD is
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precisely equal to triangle ABC, and because triangle ABC is equal to the
square on half of AC, the quadrature of the lune has been found.

Eudemus also described a Hippocratean lune quadrature based on an
isosceles trapezoid, ABCD, inscribed in a circle so that the square on the
longest side (base), AD, is equal to the sum of the squares on the three
equal shorter sides, AB and BC and CD (Fig. 4.6). Then, if on side AD
one constructs a circular segment, AEDF, similar to those on the three
equal sides, lune ABCDE is equal to trapezoid ABCDF.

That we are on relatively firm ground historically in describing the
quadrature of lunes by Hippocrates is indicated by the fact that scholars
other than Simplicius also refer to this work. Simplicius lived in the sixth
century, but he depended not only on Eudemus (fl. ca. 320 BcE) but also
on Alexander of Aphrodisias (fl. ca. 200 cg), one of the chief com-
mentators on Aristotle. Alexander described two quadratures other than
those given previously. (1) If on the hypotenuse and the sides of an
isosceles right triangle one constructs semicircles (Fig. 4.7), then the
lunes created on the smaller sides together equal the triangle. (2) If on a
diameter of a semicircle one constructs an isosceles trapezoid with three
equal sides (Fig. 4.8), and if on the three equal sides semicircles are
constructed, then the trapezoid is equal in area to the sum of four cur-
vilinear areas: the three equal lunes and a semicircle on one of the equal
sides of the trapezoid. From the second of these quadratures, it would
follow that if the lunes can be squared, the semicircle—hence, the cir-
cle—can also be squared. This conclusion seems to have encouraged

FIG. 4.7
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Hippocrates, as well as his contemporaries and early successors, to hope
that ultimately the circle would be squared.

The Hippocratean quadratures are significant not so much as attempts
at circle-squaring as indications of the level of mathematics at the time.
They show that Athenian mathematicians were adept at handling trans-
formations of areas and proportions. In particular, there was evidently
no difficulty in converting a rectangle of sides a and b into a square.
This required finding the mean proportional or geometric mean between a
and b. That is, if a:x = x: b, geometers of the day easily constructed the
line x. It was natural, therefore, that geometers should seek to generalize
the problem by inserting two means between two given magnitudes a and
b. That is, given two line segments a and b, they hoped to construct two
other segments x and y such that a: x = x:y = y: b. Hippocrates is said to
have recognized that this problem is equivalent to that of duplicating the
cube, for if b = 2a, the continued proportions, on the elimination of y,
lead to the conclusion that x* = 2a°.

There are three views on what Hippocrates deduced from his quad-
rature of lunes. Some have accused him of believing that he could square
all lunes, hence also the circle; others think that he knew the limitations
of his work, concerned as it was with only some types of lunes. At least
one scholar has held that Hippocrates knew he had not squared the circle
but tried to deceive his countrymen into thinking that he had succeeded.
There are other questions, too, concerning Hippocrates’ contributions,
for to him has been ascribed, with some uncertainty, the first use of
letters in geometric figures. It is interesting to note that whereas he
advanced two of the three famous problems, he seems to have made no
progress in the trisecting of the angle, a problem studied somewhat later
by Hippias of Elis.

Hippias of Elis

Toward the end of the fifth century BCE, a group of professional teachers
quite unlike the Pythagoreans flourished in Athens. Disciples of Pytha-
goras had been forbidden to accept payment for sharing their knowledge
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with others. The Sophists, however, openly supported themselves by
tutoring fellow citizens—not only in honest intellectual endeavor, but
also in the art of “making the worse appear the better.” To a certain
extent, the accusation of shallowness directed against the Sophists was
warranted, but this should not conceal the fact that Sophists were usually
very broadly informed in many fields and that some of them made real
contributions to learning. Among these was Hippias, a native of Elis who
was active in Athens in the second half of the fifth century Bce. He is one
of the earliest mathematicians of whom we have firsthand information,
for we learn much about him from Plato’s dialogues. We read, for
example, that Hippias boasted that he had made more money than any
two other Sophists. He is said to have written much, from mathematics
to oratory, but none of his work has survived. He had a remarkable
memory, he boasted immense learning, and he was skilled in handicrafts.
To this Hippias (there are many others in Greece who bore the same
name), we apparently owe the introduction into mathematics of the first
curve beyond the circle and the straight line; Proclus and other com-
mentators ascribe to him the curve since known as the trisectrix or
quadratrix of Hippias. This is drawn as follows: In the square ABCD
(Fig. 4.9), let side AB move down uniformly from its present position
until it coincides with DC, and let this motion take place in exactly the
same time that side DA rotates clockwise from its present position until it
coincides with DC. If the positions of the two moving lines at any given
time are given by A'B" and DA", respectively, and if P is the point of
intersection of A’B’ and DA", the locus of P during the motions will be
the trisectrix of Hippias—curve APQ in the figure. Given this curve, the
trisection of an angle is carried out with ease. For example, if PDC is the
angle to be trisected, one simply trisects segments B'C and A'D at points
R, S, T, and U. If lines TR and US cut the trisectrix in V and W,
respectively, lines VD and WD will, by the property of the trisectrix,
divide angle PDC in three equal parts.
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The curve of Hippias is generally known as the quadratrix, because it
can be used to square the circle. Whether Hippias himself was aware of
this application cannot now be determined. It has been conjectured that
Hippias knew of this method of quadrature but that he was unable to
justify it. Since the quadrature through Hippias’s curve was specifically
given later by Dinostratus, we shall describe this work below.

Hippias lived at least as late as Socrates (d. 399 BcE), and from the pen
of Plato we have an unflattering account of him as a typical Sophist—
vain, boastful, and acquisitive. Socrates is reported to have described
Hippias as handsome and learned but boastful and shallow. Plato’s
dialogue on Hippias satirizes his show of knowledge, and Xenophon’s
Memorabilia includes an unflattering account of Hippias as one who
regarded himself an expert in everything from history and literature to
handicrafts and science. In judging such accounts, however, we must
remember that Plato and Xenophon were uncompromisingly opposed to
the Sophists in general. It is also well to bear in mind that both Prota-
goras, the “founding father of the Sophists,” and Socrates, the arch
opponent of the movement, were antagonistic to mathematics and the
sciences. With respect to character, Plato contrasts Hippias with
Socrates, but one can bring out much the same contrast by comparing
Hippias with another contemporary—the Pythagorean mathematician
Archytas of Tarentum.

Philolaus and Archytas of Tarentum

Pythagoras is said to have retired to Metapontum toward the end of his
life and to have died there about 500 Bck. Tradition holds that he left no
written works, but his ideas were carried on by a large number of eager
disciples. The center at Croton was abandoned when a rival political
group from Sybaris surprised and murdered many of the leaders, but
those who escaped the massacre carried the doctrines of the school to
other parts of the Greek world. Among those who received instruction
from the refugees was Philolaus of Tarentum, and he is said to have
written the first account of Pythagoreanism—permission having been
granted, so the story goes, to repair his damaged fortunes. Apparently, it
was this book from which Plato derived his knowledge of the Pytha-
gorean order. The number fanaticism that was so characteristic of the
brotherhood evidently was shared by Philolaus, and it was from his
account that much of the mystical lore concerning the tetractys was
derived, as well as knowledge of the Pythagorean cosmology. The
Philolaecan cosmic scheme is said to have been modified by two later
Pythagoreans, Ecphantus and Hicetas, who abandoned the central fire
and the counterearth and explained day and night by placing a rotating
earth at the center of the universe. The extremes of Philolaean number
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worship also seem to have undergone some modification, more espe-
cially at the hands of Archytas, a student of Philolaus’s at Tarentum.

The Pythagorean sect had exerted a strong intellectual influence
throughout Magna Graecia, with political overtones that may be described
as a sort of “reactionary international,” or perhaps better as a cross between
Orphism and Freemasonry. At Croton, political aspects were especially
noticeable, but at outlying Pythagorean centers, such as Tarentum, the
impact was primarily intellectual. Archytas believed firmly in the efficacy
of number; his rule of the city, which allotted him autocratic powers, was
just and restrained, for he regarded reason as a force working toward social
amelioration. For many years in succession, he was elected general, and he
was never defeated, yet he was kind and a lover of children, for whom he is
reported to have invented “Archytas’s rattle.” Possibly also the mechanical
dove, which he is said to have fashioned of wood, was built to amuse the
young folk.

Archytas continued the Pythagorean tradition in placing arithmetic above
geometry, but his enthusiasm for number had less of the religious and
mystical admixture found earlier in Philolaus. He wrote on the application of
the arithmetic, geometric, and subcontrary means to music, and it was
probably either Philolaus or Archytas who was responsible for changing the
name of the last one to “harmonic mean.” Among his statements in this
connection was the observation that between two whole numbers in the ratio
n:(n + 1), there could be no integer that is a geometric mean. Archytas gave
more attention to music than had his predecessors, and he felt that this
subject should play a greater role than literature in the education of children.
Among his conjectures was one that attributed differences in pitch to varying
rates of motion resulting from the flow that caused the sound. Archytas
seems to have paid considerable attention to the role of mathematics in the
curriculum, and to him has been ascribed the designation of the four bran-
ches in the mathematical quadrivium—arithmetic (or numbers at rest),
geometry (or magnitudes at rest), music (or numbers in motion), and
astronomy (or magnitudes in motion). These subjects, together with the
trivium consisting of grammar, rhetoric, and dialectics (which Aristotle
traced back to Zeno), later constituted the seven liberal arts; hence, the
prominent role that mathematics has played in education is in no small
measure due to Archytas.

It is likely that Archytas had access to an earlier treatise on the ele-
ments of mathematics, and the iterative square-root process often known
as Archytas’s had been used long before in Mesopotamia. Nevertheless,
Archytas was a contributor of original mathematical results. The most
striking contribution was a three-dimensional solution of the Delian
problem, which may be most easily described, somewhat anachronisti-
cally, in the modern language of analytic geometry. Let a be the edge of
the cube to be doubled, and let the point (a, 0, 0) be the center of three
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mutually perpendicular circles of radius a and each lying in a plane
perpendicular to a coordinate axis. Through the circle perpendicular
to the x-axis, construct a right circular cone with vertex (0, 0, 0); through
the circle in the xy-plane, pass a right circular cylinder; and let the
circle in the xz-plane be revolved about the z-axis to generate a torus.
The equations of these three surfaces are, respectively, x*=y*+ 22
and 2ax = x>+ y* and (x> + y* + 72> = 4a*(x* + y*). These three surfaces
intersect in a point whose x-coordinate is av/12; hence, the length of this
line segment is the edge of the cube desired.

The achievement of Archytas is the more impressive when we recall
that his solution was worked out synthetically without the aid of
coordinates. Nevertheless, Archytas’s most important contribution to
mathematics may have been his intervention with the tyrant Dionysius
to save the life of his friend Plato. The latter remained to the end of
his life deeply committed to the Pythagorean veneration of number and
geometry, and the supremacy of Athens in the mathematical world of the
fourth century BCE resulted primarily from the enthusiasm of Plato,
the “maker of mathematicians.” Before taking up the role of Plato in
mathematics, however, it is necessary to discuss the work of an earlier
Pythagorean—an apostate by the name of Hippasus.

Hippasus of Metapontum (or Croton), roughly contemporaneous with
Philolaus, is reported to have originally been a Pythagorean but to have
been expelled from the brotherhood. One account has it that the
Pythagoreans erected a tombstone to him, as though he were dead;
another story reports that his apostasy was punished by death at sea in a
shipwreck. The exact cause of the break is unknown, in part because of
the rule of secrecy, but there are three suggested possibilities. According
to one, Hippasus was expelled for political insubordination, having
headed a democratic movement against the conservative Pythagorean
rule. A second tradition attributes the expulsion to disclosures con-
cerning the geometry of the pentagon or the dodecahedron—perhaps a
construction of one of the figures. A third explanation holds that
the expulsion was coupled with the disclosure of a mathematical dis-
covery of devastating significance for Pythagorean philosophy—the
existence of incommensurable magnitudes.

Incommensurability

It had been a fundamental tenet of Pythagoreanism that the essence of
all things, in geometry as well as in the practical and theoretical affairs
of man, is explainable in terms of arithmos, or intrinsic properties of
whole numbers or their ratios. The dialogues of Plato show, however,
that the Greek mathematical community had been stunned by a disclosure
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that virtually demolished the basis for the Pythagorean faith in whole
numbers. This was the discovery that within geometry itself, the whole
numbers and their ratios are inadequate to account for even simple
fundamental properties. They do not suffice, for example, to compare the
diagonal of a square or a cube or a pentagon with its side. The line
segments are incommensurable, no matter how small a unit of measure is
chosen.

The circumstances surrounding the earliest recognition of incommen-
surable line segments are as uncertain as is the time of the discovery.
Ordinarily, it is assumed that the recognition came in connection with the
application of the Pythagorean theorem to the isosceles right triangle.
Aristotle referred to a proof of the incommensurability of the diagonal of a
square with respect to a side, indicating that it was based on the distinction
between odd and even. Such a proof is easy to construct. Let d and s be the
diagonal and the side of a square, and assume that they are commensur-
able—that is, that the ratio d/ s is rational and equal to p/ ¢, where p and g
are integers with no common factor. Now, from the Pythagorean theorem it
is known that d*> = s*> + 5% hence, (d/s)* = p*/ ¢>* =2, or p>* = 24*. There-
fore, p> must be even; hence, p must be even. Consequently, ¢ must be odd.
Letting p = 2r and substituting in the equation p*> = 2¢? we have 4r2 = 242,
or g = 2r* Then ¢*> must be even; hence, ¢ must be even. Yet g was pre-
viously shown to be odd, and an integer cannot be both odd and even. It
follows, therefore, by the indirect method, that the assumption that d and s
are commensurable must be false.

In this proof, the degree of abstraction is so high that the possibility
that it was the basis for the original discovery of incommensurability has
been questioned. There are, however, other ways in which the discovery
could have come about. Among these is the simple observation that
when the five diagonals of a regular pentagon are drawn, these diagonals
form a smaller regular pentagon (Fig. 4.10), and the diagonals of the
second pentagon in turn form a third regular pentagon, which is still
smaller. This process can be continued indefinitely, resulting in penta-
gons that are as small as desired and leading to the conclusion that the
ratio of a diagonal to a side in a regular pentagon is not rational. The
irrationality of this ratio is, in fact, a consequence of the argument
presented in connection with Fig. 4.2, in which the golden section
was shown to repeat itself over and over again. Was it perhaps this
property that led to the disclosure, possibly by Hippasus, of incom-
mensurability? There is no surviving document to resolve the question,
but the suggestion is at least a plausible one. In this case, it would not
have been /2 but /5 that first disclosed the existence of incommen-
surable magnitudes, for the solution of the equation a: x = x: (a — x) leads
to (v/5 — 1)/2 as the ratio of the side of a regular pentagon to a diagonal.
The ratio of the diagonal of a cube to an edge is v/3, and here, too, the
specter of the incommensurable rears its ugly head.
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A geometric proof somewhat analogous to that for the ratio of the
diagonal of a pentagon to its side can also be provided for the ratio of
the diagonal of a square to its side. If in the square ABCD (Fig. 4.11)
one lays off on the diagonal AC the segment AP = AB and at P erects the
perpendicular PQ, the ratio of CQ to PC will be the same as the ratio of
AC to AB. Again, if on CQ one lays off QR = QP and constructs RS
perpendicular to CR, the ratio of hypotenuse to side again will be what it
was before. This process, too, can be continued indefinitely, thus
affording a proof that no unit of length, however small, can be found so
that the hypotenuse and a side will be commensurable.

Paradoxes of Zeno

The Pythagorean doctrine that “Numbers constitute the entire heaven”
was now faced with a very serious problem indeed, but it was not the
only one, for the school was also confronted with arguments pro-
pounded by the neighboring Eleatics, a rival philosophical movement.
Ionian philosophers of Asia Minor had sought to identify a first prin-
ciple for all things. Thales had thought to find this in water, but others
preferred to think of air or fire as the basic element. The Pythagoreans
had taken a more abstract direction, postulating that number in all of its
plurality was the basic stuff behind phenomena; this numerical ato-
mism, beautifully illustrated in the geometry of figurate numbers, had
come under attack by the followers of Parmenides of Elea (fl. ca. 450
BCE). The fundamental tenet of the Eleatics was the unity and perma-
nence of being, a view that contrasted with the Pythagorean ideas of
multiplicity and change. Of Parmenides’ disciples, the best known was
Zeno the Eleatic (fl. ca. 450 BCE), who propounded arguments to prove
the inconsistency in the concepts of multiplicity and divisibility. The
method Zeno adopted was dialectical, anticipating Socrates in this
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indirect mode of argument: starting from his opponent’s premises, he
reduced these to an absurdity.

The Pythagoreans had assumed that space and time can be thought of
as consisting of points and instants, but space and time also have a
property, more easily intuited than defined, known as “continuity.” The
ultimate elements making up a plurality were assumed, on the one hand,
to have the characteristics of the geometric unit—the point—and, on the
other, to have certain characteristics of the numeric units or numbers.
Aristotle described a Pythagorean point as “unity having position” or as
“unity considered in space.” It has been suggested that it was against
such a view that Zeno propounded his paradoxes, of which those on
motion are cited most frequently. As they have come down to us, through
Aristotle and others, four of them seem to have caused the most trouble:
(1) the Dichotomy, (2) the Achilles, (3) the Arrow, and (4) the Stade. The
first argues that before a moving object can travel a given distance, it
must first travel half of this distance, but before it can cover this, it must
travel the first quarter of the distance, and before this, the first eighth, and
so on, through an infinite number of subdivisions. The runner wishing to
get started must make an infinite number of contacts in a finite time, but it
is impossible to exhaust an infinite collection, hence the beginning of
motion is impossible. The second of the paradoxes is similar to the first,
except that the infinite subdivision is progressive, rather than regressive.
Here Achilles is racing against a tortoise that has been given a head start,
and it is argued that Achilles, no matter how swiftly he may run, can
never overtake the tortoise, no matter how slow it may be. By the time
that Achilles will have reached the initial position of the tortoise, the
latter will have advanced some short distance, and by the time that
Achilles will have covered this distance, the tortoise will have advanced
somewhat farther, and so the process continues indefinitely, with the
result that the swift Achilles can never overtake the slow tortoise.

The Dichotomy and the Achilles argue that motion is impossible
under the assumption of the infinite subdivisibility of space and time; the
Arrow and the Stade, on the other hand, argue that motion is equally
impossible if one makes the opposite assumption—that the subdivisibility
of space and time terminates in indivisibles. In the Arrow, Zeno argues
that an object in flight always occupies a space equal to itself, but that
which always occupies a space equal to itself is not in motion. Hence, the
flying arrow is at rest at all times, so that its motion is an illusion.

Most controversial of the paradoxes on motion and most awkward to
describe is the Stade (or Stadium), but the argument can be phrased
somewhat as follows. Let A,, A,, A;, A, be bodies of equal size that
are stationary; let B,, B,, Bs;, B, be bodies, of the same size as the A’s,
that are moving to the right so that each B passes each A in an instant—the
smallest possible interval of time. Let C,, C,, C;, C, also be of equal size
with the A’s and B’s and let them move uniformly to the left with respect
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to the A’s so that each C passes each A in an instant of time. Let us assume
that at a given time, the bodies occupy the following relative positions:

Al Ay | Ay | Ay

B, { B, | B; | B,

C G | G| Cy

Then, after the lapse of a single instant—that is, after an indivisible
subdivision of time—the positions will be as follows:

Al A | 4 | A,

Bl Bz B3 B4

GG |GG

It is clear, then, that C, will have passed two of the B’s; hence, the
instant cannot be the minimum time interval, for we can take as a new
and smaller unit the time it takes C, to pass one of the B’s.

The arguments of Zeno seem to have had a profound influence on the
development of Greek mathematics, comparable to that of the discovery of
the incommensurable, with which they may have been related. Originally,
in Pythagorean circles, magnitudes were represented by pebbles or calculi,
from which our word “calculation” comes, but by the time of Euclid there
is a complete change in point of view. Magnitudes are not in general
associated with numbers or pebbles, but with line segments. In the Ele-
ments, even the integers themselves are represented by segments of lines.
The realm of number continued to have the property of discreteness, but
the world of continuous magnitudes (and this includes most of pre-
Hellenic and Pythagorean mathematics) was a thing apart from number
and had to be treated through geometric method. It seemed to be geometry,
rather than number, that ruled the world. This was perhaps the most far-
reaching conclusion of the Heroic Age, and it is not unlikely that this was
due in large measure to Zeno of Elea and Hippasus of Metapontum.
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Deductive Reasoning

There are several conjectures as to the causes leading to the conversion
of the mathematical prescriptions of pre-Hellenic peoples into the
deductive structure that appears in Greece. Some have suggested that
Thales in his travels had noted discrepancies in pre-Hellenic mathe-
matics—such as the Egyptian and Babylonian rules for the area of a
circle—and that he and his early successors therefore saw the need for a
strict rational method. Others, more conservative, would place the
deductive form much later—perhaps even as late as the early fourth
century, following the discovery of the incommensurable. Other sug-
gestions find the cause outside mathematics. One, for example is that
deduction may have come out of logic, in attempts to convince an
opponent of a conclusion by looking for premises from which the con-
clusion necessarily follows.

Whether deduction came into mathematics in the sixth century BCE
or the fourth and whether incommensurability was discovered before or
after 400 BCE, there can be no doubt that Greek mathematics had
undergone drastic changes by the time of Plato. The dichotomy between
number and continuous magnitude required a new approach to the
Babylonian algebra that the Pythagoreans had inherited. The old prob-
lems in which, given the sum and the product of the sides of a rectangle,
the dimensions were required had to be dealt with differently from the
numerical algorithms of the Babylonians. A “geometric algebra” had to
take the place of the older “arithmetic algebra,” and in this new algebra
there could be no adding of lines to areas or adding of areas to volumes.
From now on, there had to be a strict homogeneity of terms in equations,
and the Mesopotamian normal forms, xy =A, x *y=>b, were to be
interpreted geometrically. The obvious conclusion, which the reader can
arrive at by eliminating y, is that one must construct on a given line b a
rectangle whose unknown width x must be such that the area of the
rectangle exceeds the given area A by the square x* or (in the case of
the minus sign) falls short of the area A by the square x* (Fig. 4.12). In
this way, the Greeks built up the solution of quadratic equations by their
process known as ‘“the application of areas,” a portion of geometric
algebra that is fully covered by Euclid’s Elements. Moreover, the
uneasiness resulting from incommensurable magnitudes led to an
avoidance of ratios, insofar as possible, in elementary mathematics. The
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linear equation ax = bc, for example, was looked on as an equality of
the areas ax and bc, rather than as a proportion—an equality between the
two ratios a:b and c:x. Consequently, in constructing the fourth pro-
portion, x in this case, it was usual to construct a rectangle OCDB with
sides b= OB and ¢ = OC (Fig. 4.13) and then along OC to lay off
OA = a. One completes rectangle OAEB and draws the diagonal OF
cutting CD at P. It is now clear that CP is the desired line x, for rectangle
OARS is equal in area to rectangle OCDB. Not until Book V of the
Elements did Euclid take up the difficult matter of proportionality.
Greek geometric algebra strikes the modern reader as excessively
artificial and difficult; to those who used it and became adept at handling
its operations, however, it probably appeared to be a convenient tool.
The distributive law a(b + ¢ + d) = ab + ac + ad undoubtedly was far
more obvious to a Greek scholar than to the beginning student of algebra
today, for the former could easily picture the areas of the rectangles in
this theorem, which simply says that the rectangle on a and the sum of
segments b, ¢, d is equal to the sum of the rectangles on a and each of
the lines b, ¢, d taken separately (Fig. 4.14). Again, the identity
(a + b)* = a®+ 2ab + b* becomes obvious from a diagram that shows the
three squares and the two equal rectangles in the identity (Fig. 4.15); and
a difference of two squares a*> — b*> = (a + b)(a — b) can be pictured in a
similar fashion (Fig. 4.16). Sums, differences, products, and quotients of

a b
b c d
a* ab |a
al ab ac ad
ab b* | b

FIG. 4.14 FIG. 4.15
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line segments can easily be constructed with a straightedge and a
compass. Square roots also afford no difficulty in geometric algebra. If
one wishes to find a line x such that x> = ab, one simply follows the
procedure found in elementary geometry textbooks today. One lays off on
a straight line the segment ABC, where AB =a and BC = b (Fig. 4.17).
With AC as the diameter, one constructs a semicircle (with center O) and
at B erects the perpendicular BP, which is the segment x desired. It is
interesting that here, too, the proof as given by Euclid, probably following
the earlier avoidance of ratios, makes use of areas rather than proportions.
If in our figure we let PO =AO = CO = r and BO = s, Euclid would say
essentially that x> =r* — s> = (r — s)(r + 5) = ab.

Democritus of Abdera

The Heroic Age in mathematics produced half a dozen great figures,
and among them must be included a man who is better known as a
chemical philosopher. Democritus of Abdera (ca. 460 370 BcE) is today
celebrated as a proponent of a materialistic atomic doctrine, but in his
time he had also acquired a reputation as a geometer. He is reported to
have traveled more widely than anyone of his day—to Athens, Egypt,
Mesopotamia, and possibly India—acquiring what learning he could, but
his own achievements in mathematics were such that he boasted that not
even the “rope-stretchers” in Egypt excelled him. He wrote a number of
mathematical works, not one of which is extant today.

The key to the mathematics of Democritus is to be found in his
physical doctrine of atomism. All phenomena were to be explained, he
argued, in terms of indefinitely small and infinitely varied (in size and
shape), impenetrably hard atoms moving about ceaselessly in empty
space. The physical atomism of Leucippus and Democritus may have
been suggested by the geometric atomism of the Pythagoreans, and it is
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not surprising that the mathematical problems with which Democritus
was chiefly concerned were those that demand some sort of infinitesimal
approach. The Egyptians, for example, were aware that the volume of a
pyramid is one-third the product of the base and the altitude, but a proof
of this fact almost certainly was beyond their capabilities, for it requires
a point of view equivalent to the calculus. Archimedes later wrote that
this result was due to Democritus but that the latter did not prove it
rigorously. This creates a puzzle, for if Democritus added anything to the
Egyptian knowledge here, it must have been some sort of demonstration,
albeit inadequate. Perhaps Democritus showed that a triangular prism
can be divided into three triangular pyramids that are equal in height and
area of the base and then deduced, from the assumption that pyramids of
the same height and equal bases are equal, the familiar Egyptian
theorem.

This assumption can be justified only by the application of infinite-
simal techniques. If, for example, one thinks of two pyramids of equal
bases and the same height as composed of indefinitely many infinitely
thin equal cross-sections in one-to-one correspondence (a device
usually known as Cavalieri’s principle, in deference to the seventeenth-
century geometer), the assumption appears to be justified. Such a fuzzy
geometric atomism might have been at the base of Democritus’s
thought, although this has not been established. In any case, following
the paradoxes of Zeno and the awareness of incommensurables, such
arguments based on an infinity of infinitesimals were not acceptable.
Archimedes consequently could well hold that Democritus had not
given a rigorous proof. The same judgment would be true with respect
to the theorem, also attributed by Archimedes to Democritus, that the
volume of a cone is one-third the volume of the circumscribing
cylinder. This result was probably looked on by Democritus as a cor-
ollary to the theorem on the pyramid, for the cone is essentially a
pyramid whose base is a regular polygon of infinitely many sides.

Democritean geometric atomism was immediately confronted with
certain problems. If the pyramid or the cone, for example, is made up of
indefinitely many infinitely thin triangular or circular sections parallel to
the base, a consideration of any two adjacent laminae creates a paradox.
If the adjacent sections are equal in area, then, because all sections are
equal, the totality will be a prism or a cylinder and not a pyramid or a
cone. If, on the other hand, adjacent sections are unequal, the totality will
be a step pyramid or a step cone and not the smooth-surfaced figure
one has in mind. This problem is not unlike the difficulties with the
incommensurable and with the paradoxes of motion. Perhaps, in his On
the Irrational, Democritus analyzed the difficulties here encountered, but
there is no way of knowing what direction his attempts may have taken.
His extreme unpopularity in the two dominant philosophical schools of
the next century, those of Plato and Aristotle, may have encouraged the
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disregard of Democritean ideas. Nevertheless, the chief mathematical
legacy of the Heroic Age can be summed up in six problems: the squaring
of the circle, the duplication of the cube, the trisection of the angle, the
ratio of incommensurable magnitudes, the paradoxes on motion, and the
validity of infinitesimal methods. To some extent, these can be asso-
ciated, although not exclusively, with men considered in this chapter:
Hippocrates, Archytas, Hippias, Hippasus, Zeno, and Democritus. Other
ages were to produce a comparable array of talent, but perhaps never
again was any age to make so bold an attack on so many fundamental
mathematical problems with such inadequate methodological resources.
It is for this reason that we have called the period from Anaxagoras to
Archytas the Heroic Age.

Mathematics and the Liberal Arts

We included Archytas among the mathematicians of the Heroic Age, but
in a sense he really is a transition figure in mathematics during Plato’s
time. Archytas was among the last of the Pythagoreans, both literally and
figuratively. He could still believe that number was all-important in life
and in mathematics, but the wave of the future was to elevate geometry
to the ascendancy, largely because of the problem of incommensur-
ability. On the other hand, Archytas is reported to have established the
quadrivium—arithmetic, geometry, music, and astronomy—as the core
of a liberal education, and here his views were to dominate much of
pedagogical thought to our day. The seven liberal arts, which remained a
shibboleth for almost two millennia, were made up of Archytas’s
quadrivium and the trivium of grammar, rhetoric, and Zeno’s dialectic.
Consequently, one may with some justice hold that the mathematicians
of the Heroic Age were responsible for much of the direction in Western
educational traditions, especially as transmitted through the philosophers
of the fourth century BCE.

The Academy

The fourth century BcE had opened with the death of Socrates, a scholar
who adopted the dialectic method of Zeno and repudiated the Pytha-
goreanism of Archytas. Socrates admitted that in his youth, he had been
attracted by such questions as why the sum 2 + 2 was the same as the
product 2 X 2, as well as by the natural philosophy of Anaxagoras, but
on realizing that neither mathematics nor science could satisfy his desire
to know the essence of things, he gave himself up to his characteristic
search for the good.
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In the Phaedo of Plato, the dialogue in which the last hours of Socrates
are so beautifully described, we see how deep metaphysical doubts
precluded a Socratic concern with either mathematics or natural science:

I cannot satisfy myself that, when one is added to one, the one to which
the addition is made becomes two, or that the two units added together
make two by reason of the addition. I cannot understand how when
separated from the other, each of them was one and not two, and now,
when they are brought together, the mere juxtaposition or meeting of
them should be the cause of their becoming two.

Hence, the influence of Socrates in the development of mathematics
was negligible, if not actually negative. This makes it all the more
surprising that it was his student and admirer Plato who became the
mathematical inspiration of the fourth century Bc.

Although Plato himself made no specific outstanding contribution to
technical mathematical results, he was the center of the mathematical
activity of the time and guided and inspired its development. Over the
doors of his school, the Academy in Athens, was inscribed the motto “Let
no one ignorant of geometry enter here.” His enthusiasm for the subject
led him to become known not as a mathematician, but as “the maker of
mathematicians.”

The men whose work we shall describe (in addition to that of Plato and
Aristotle) lived between the death of Socrates in 399 BcE and the death
of Aristotle in 322 Bce. They are Theodorus of Cyrene (fl. ca. 390 Bcg),
Theaetetus (ca. 414 369 Bce), Eudoxus of Cnidus (d. ca. 355 BCE),
Menaechmus (fl. ca. 350 Bce) and his brother Dinostratus (fl. ca. 350
BCE), and Autolycus of Pitane (fl. ca. 330 BCE).

These six mathematicians were not scattered throughout the Greek
world, as had been those in the fifth century BcE; they were associated
more or less closely with the Academy. It is clear that Plato’s high regard
for mathematics did not come from Socrates; in fact, the earlier Platonic
dialogues seldom refer to mathematics. The one who converted Plato to a
mathematical outlook was undoubtedly Archytas, a friend whom he vis-
ited in Sicily in 388 BCE. Perhaps it was there that Plato learned of the five
regular solids, which were associated with the four elements of Empe-
docles in a cosmic scheme that fascinated men for centuries. Possibly, it
was the Pythagorean regard for the dodecahedron that led Plato to look on
this, the fifth and last, regular solid as a symbol of the universe. Plato put
his ideas on the regular solids into a dialogue titled the Timaeus, pre-
sumably named for a Pythagorean who serves as the chief interlocutor. It
is not known whether Timaeus of Locri really existed or whether Plato
invented him as a character through whom to express the Pythagorean
views that still were strong in what is now southern Italy. The regular
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polyhedra have often been called “cosmic bodies” or “Platonic solids”
because of the way in which Plato in the Timaeus applied them to the
explanation of scientific phenomena. Although this dialogue, probably
written when Plato was near seventy, provides the earliest definite evi-
dence for the association of the four elements with the regular solids,
much of this fantasy may be due to the Pythagoreans.

Proclus attributes the construction of the cosmic figures to Pythagoras,
but the scholiast Suidas reported that Plato’s friend Theaetetus (ca. 414
BCE 369 BCE) and the son of one of the richest patricians in Attica first
wrote on them. A scholium (of uncertain date) to Book XIII of Euclid’s
Elements reports that only three of the five solids were due to the
Pythagoreans, and that it was through Theaetetus that the octahedron and
the icosahedron became known. It seems likely that in any case,
Theaetetus made one of the most extensive studies of the five regular
solids, and to him probably is due the theorem that there are five and
only five regular polyhedra. Perhaps he is also responsible for the cal-
culations in the Elements of the ratios of the edges of the regular solids to
the radius of the circumscribed sphere.

Theaetetus was a young Athenian who died from a combination of
dysentery and wounds received in battle, and the Platonic dialogue
bearing his name was a commemorative tribute by Plato to his friend.
In the dialogue, purporting to take place some thirty years earlier,
Theaetetus discusses with Socrates and Theodorus the nature of
incommensurable magnitudes. It has been assumed that this discussion
somewhat took the form that we find in the opening of Book X of
the Elements. Here distinctions are made not only between commen-
surable and incommensurable magnitudes, but also between those that
while incommensurable in length are, or are not, commensurable in
square. Surds such as v/3 and /5 are incommensurable in length, but
they are commensurable in square, for their squares have the ratio 3 to 5.
The magnitudes \/ 1++/3 and \/ 1++/5, on the other hand, are
incommensurable both in length and in square.
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The dialogue that Plato composed in memory of his friend Theaetetus
contains information on another mathematician whom Plato admired and
who contributed to the early development of the theory of incommen-
surable magnitudes. Reporting on the then recent discovery of what we
call the irrationality of v/2, Plato in the Theaetetus says that his teacher,
Theodorus of Cyrene—of whom Theaetetus was also a pupil—was the
first to prove the irrationality of the square roots of the nonsquare
integers from 3 to 17 inclusive. It is not known how he did this or why
he stopped with v/17. The proof, in any case, would have been con-
structed along the lines of that for v/2 as given by Aristotle and inter-
polated in later versions of Book X of the Elements. References in
ancient historical works indicate that Theodorus made discoveries
in elementary geometry that later were incorporated into Euclid’s
Elements, but the works of Theodorus are lost.

Plato is important in the history of mathematics largely for his role as
inspirer and director of others, and perhaps to him is due the sharp
distinction in ancient Greece between arithmetic (in the sense of the
theory of numbers) and logistic (the technique of computation). Plato
regarded logistic as appropriate for the businessman and for the man of
war, who “must learn the art of numbers or he will not know how to
array his troops.” The philosopher, on the other hand, must be an
arithmetician “because he has to arise out of the sea of change
and lay hold of true being.” Moreover, Plato says in the Republic,
“Arithmetic has a very great and elevating effect, compelling the mind to
reason about abstract number.” So elevating are Plato’s thoughts con-
cerning numbers that they reach the realm of mysticism and apparent
fantasy. In the last book of the Republic, he refers to a number that he
calls “the lord of better and worse births.” There has been much spec-
ulation concerning this “Platonic number,” and one theory is that it is
the number 60* = 12,960,000—important in Babylonian numerology and
possibly transmitted to Plato through the Pythagoreans. In the Laws, the
number of citizens in the ideal state is given as 5040 (that is,
7-6-5-4-3-2-1). This is sometimes referred to as the Platonic
nuptial number, and various theories have been advanced to suggest
what Plato had in mind.

As in arithmetic, where Plato saw a gulf separating the theoretical and
the computational aspects, so also in geometry he espoused the cause of
pure mathematics as against the materialistic views of the artisan or the
technician. Plutarch, in his Life of Marcellus, speaks of Plato’s indig-
nation at the use of mechanical contrivances in geometry. Apparently,
Plato regarded such use as “the mere corruption and annihilation of the
one good of geometry, which was thus shamefully turning its back upon
the unembodied objects of pure intelligence.” Plato may consequently
have been largely responsible for the prevalent restriction in Greek
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geometric constructions to those that can be effected by straightedge and
compasses alone. The reason for the limitation is not likely to have been
the simplicity of the instruments used in constructing lines and circles,
but rather the symmetry of the configurations. Any one of the infinitely
many diameters of a circle is a line of symmetry of the figure; any point
on an infinitely extended straight line can be thought of as a center of
symmetry, just as any line perpendicular to the given line is a line with
respect to which the given line is symmetric. Platonic philosophy,
with its apotheosization of ideas, would quite naturally find a favored
role for the line and the circle among geometric figures. In a somewhat
similar manner, Plato glorified the triangle. The faces of the five regular
solids in Plato’s view were not simple triangles, squares, and pentagons.
Each of the four faces of the tetrahedron, for example, is made up of six
smaller right triangles, formed by altitudes of the equilateral triangular
faces. The regular tetrahedron he therefore thought of as made up of
twenty-four scalene right triangles in which the hypotenuse is double one
side; the regular octahedron contains 8 X 6 or 48 such triangles, and the
icosahedron is made up of 20 X 6 or 120 triangles. In a similar way
the hexahedron (or cube) is constructed of twenty-four isosceles right
triangles, for each of the six square faces contains four right triangles
when the diagonals of the squares are drawn.

To the dodecahedron, Plato had assigned a special role as repre-
sentative of the universe, cryptically saying that “God used it for the
whole” (Timaeus 55C). Plato looked on the dodecahedron as composed
of 360 scalene right triangles, for when the five diagonals and the five
medians are drawn in each of the pentagonal faces, each of the twelve
faces will contain thirty right triangles. The association of the first four
regular solids with the traditional four universal elements provided Plato
in the Timaeus with a beautifully unified theory of matter, according to
which everything was constructed of ideal right triangles. The whole of
physiology, as well as the sciences of inert matter, is based in the
Timaeus on these triangles.

Pythagoras is reputed to have established mathematics as a liberal
subject, but Plato was influential in making the subject an essential part
of the curriculum for the education of statesmen. Influenced perhaps by
Archytas, Plato would add to the original subjects in the quadrivium a
new subject, stereometry, for he believed that solid geometry had not
been sufficiently emphasized. Plato also discussed the foundations of
mathematics, clarified some of the definitions, and reorganized the
assumptions. He emphasized that the reasoning used in geometry does
not refer to the visible figures that are drawn but to the absolute ideas
that they represent. The Pythagoreans had defined a point as ‘“unity
having position,” but Plato would rather think of it as the beginning of a
line. The definition of a line as “breadthless length” seems to have
originated in the school of Plato, as well as the idea that a line “lies
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evenly with the points on it.” In arithmetic, Plato emphasized not only
the distinction between odd and even numbers, but also the categories
“even times even,” “odd times even,” and “odd times odd.” Although we
are told that Plato added to the axioms of mathematics, we do not have
an account of his premises.

Few specific mathematical contributions are attributed to Plato.
A formula for Pythagorean triples—(2n)* + (n*> — 1)> = (n*> + 1), where n
is any natural number—bears Plato’s name, but this is merely a slightly
modified version of a result known to the Babylonians and the Pytha-
goreans. Perhaps more genuinely significant is the ascription to Plato of
the so-called analytic method. In demonstrative mathematics one begins
with what is given, either generally in the axioms and the postulates or
more specifically in the problems at hand. Proceeding step by step, one
then arrives at the statement that was to have been proved. Plato seems
to have pointed out that often it is pedagogically convenient, when a
chain of reasoning from premises to conclusion is not obvious, to reverse
the process. One might begin with the proposition that is to be proved
and from it deduce a conclusion that is known to hold. If, then, one can
reverse the steps in this chain of reasoning, the result is a legitimate
proof of the proposition. It is unlikely that Plato was the first to note the
efficacy in the analytic point of view, for any preliminary investigation
of a problem is tantamount to this. What Plato is likely to have done is to
formalize this procedure or perhaps to give it a name.

The role of Plato in the history of mathematics is still bitterly disputed.
Some regard him as an exceptionally profound and incisive thinker;
others picture him as a mathematical pied piper who lured men away
from problems that concerned the world’s work and who encouraged
idle speculation. In any case, few would deny that Plato had a tre-
mendous effect on the development of mathematics. The Platonic
Academy in Athens became the mathematical center of the world, and it
was from this school that the leading teachers and research workers
came during the middle of the fourth century. Of these, the greatest was
Eudoxus of Cnidus (408? 3357 BcE), a man who was at one time a pupil
of Plato and who became the most renowned mathematician and
astronomer of his day.

Eudoxus

We sometimes read of the “Platonic reform” in mathematics, and although
the phrase tends to exaggerate the changes taking place, the work of
Eudoxus was so significant that the word “reform” is not inappropriate. In
Plato’s youth, the discovery of the incommensurable had caused a veri-
table logical scandal, for it had raised havoc with theorems involving
proportions. Two quantities, such as the diagonal and the side of a square,



80 Hellenic Traditions

are incommensurable when they do not have a ratio such as a (whole)
number has to a (whole) number. How, then, is one to compare ratios of
incommensurable magnitudes? If Hippocrates really did prove that the
areas of circles are to each other as squares on their diameters, he must
have had some way of handling proportions or the equality of ratios. We
do not know how he proceeded or whether to some extent he anticipated
Eudoxus, who gave a new and generally accepted definition of equal
ratios. Apparently, the Greeks had made use of the idea that four quantities
are in proportion, a : b = ¢ : d, if the two ratios a : b and c : d have the same
mutual subtraction. That is, the smaller in each ratio can be laid off on the
larger the same integral number of times, and the remainder in each case
can be laid off on the smaller the same integral number of times, and the
new remainder can be laid off on the former remainder the same integral
number of times, and so on. Such a definition would be awkward to use,
and it was a brilliant achievement of Eudoxus to discover the theory of
proportion used in Book V of Euclid’s Elements.

The word “ratio” essentially denoted an undefined concept in Greek
mathematics, for Euclid’s “definition” of ratio as a kind of relation in
size between two magnitudes of the same type is quite inadequate. More
significant is Euclid’s statement that magnitudes are said to have a ratio
to one another if a multiple of either can be found to exceed the other.
This is essentially a statement of the so-called axiom of Archimedes—a
property that Archimedes himself attributed to Eudoxus. The Eudoxian
concept of ratio consequently excludes zero and clarifies what is meant
by magnitudes of the same kind. A line segment, for example, is not to
be compared, in terms of ratio, with an area; nor is an area to be com-
pared with a volume.

Following these preliminary remarks on ratios, Euclid gives in Defi-
nition 5 of Book V the celebrated formulation by Eudoxus:

Magnitudes are said to be in the same ratio, the first to the second and
the third to the fourth, when, if any equimultiples whatever be taken of the
first and the third, and any equimultiples whatever of the second and
fourth, the former equimultiples alike exceed, are alike equal to, or are
alike less than, the latter equimultiples taken in corresponding order
(Heath 1981, vol. 2, p. 114).

That is, a/b=c/d if and only if given integers m and n, whenever
ma < nb, then mc < nd, or if ma = nb, then mc = nd, or if ma > nb, then
mc > nd.

The Eudoxian definition of equality of ratios is not unlike the process
of cross-multiplication that is used today for fractions—a/b=c/d
according as ad = bc—a process equivalent to a reduction to a common
denominator. To show that § is equal to 3, for example, we multiply 3 and
6 by 4, to obtain 12 and 24, and we multiply 4 and 8 by 3, obtaining the
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same pair of numbers 12 and 24. We could have used 7 and 13 as our
two multipliers, obtaining the pair 21 and 42 in the first case and 52 and
104 in the second, and as 21 is less than 52, so is 42 less than 104. (We
have here interchanged the second and third terms in Eudoxus’s defi-
nition to conform to the common operations as usually used today, but
similar relationships hold in either case.) Our arithmetical example does
not do justice to the subtlety and efficacy of Eudoxus’s thought, for the
application here appears to be trivial. To gain a heightened appreciation
of his definition, it would be well to replace a, b, ¢, d by surds or, better
still, to let a and b be spheres and ¢ and d cubes on the radii of the spheres.
Here a cross-multiplication becomes meaningless, and the applicability of
Eudoxus’s definition is far from obvious. In fact, it will be noted that
strictly speaking, the definition is not far removed from the nineteenth-
century definitions of real number, for it separates the class of rational
numbers m/n into two categories, according as ma =nb or ma > nb.
Because there are infinitely many rational numbers, the Greeks by
implication were faced with the concept they wished to avoid—that of an
infinite set—but at least it was now possible to give satisfactory proofs of
theorems that involved proportions.

Method of Exhaustion

A crisis resulting from the incommensurable had been successfully met,
thanks to the imagination of Eudoxus, but there remained another
unsolved problem—the comparison of curved and straight-line config-
urations. Here, too, it seems to have been Eudoxus who supplied the key.
Earlier mathematicians apparently suggested that one try inscribing
and circumscribing rectilinear figures in and about the curved figure and
continue to multiply indefinitely the number of sides, but they did not
know how to clinch the argument, for the concept of a limit was
unknown at the time. According to Archimedes, it was Eudoxus who
provided the lemma that now bears Archimedes’ name—sometimes
known as the axiom of continuity—which served as the basis for the
method of exhaustion, the Greek equivalent of the integral calculus.
The lemma or axiom states that given two magnitudes having a ratio
(that is, neither being zero), one can find a multiple of either one that will
exceed the other. This statement excluded a fuzzy argument about
indivisible line segments, or fixed infinitesimals, that was sometimes
maintained in Greek thought. It also excluded the comparison of the
so-called angle of contingency or “horn angle” (formed by a curve C and
its tangent T at a point P on C) with ordinary rectilinear angles. The horn
angle seemed to be a magnitude different from zero, yet it does not
satisfy the axiom of Eudoxus with respect to the measures of rectilinear
angles.
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From the axiom of Eudoxus (or Archimedes) it is an easy step, by a
reductio ad absurdum, to prove a proposition that formed the basis of the
Greek method of exhaustion:

If from any magnitude there be subtracted a part not less than its half, and
if from the remainder one again subtracts not less than its half, and if this
process of subtraction is continued, ultimately there will remain a mag-
nitude less than any preassigned magnitude of the same kind.

This proposition, which we shall refer to as the “exhaustion property,”
is equivalent to Euclid X.1 and to the modern statement that if M is a
given magnitude, € is a preassigned magnitude of the same kind, and r is
a ratio such that 3 =r <1, then we can find a positive integer N such that
M(1 —r)"<e for all positive integers n>N. That is, the exhaustion
property is equivalent to the modern statement that lim,, , ., M (1 — r)" = 0.
Moreover, the Greeks made use of this property to prove theorems about
the areas and the volumes of curvilinear figures. In particular, Archimedes
ascribed to Eudoxus the earliest satisfactory proof that the volume of the
cone is one-third the volume of the cylinder having the same base and
altitude, a statement that would seem to indicate that the method of
exhaustion was derived by Eudoxus. If so, then it is to Eudoxus (rather than
to Hippocrates) that we probably owe the Euclidean proofs of theorems
concerning areas of circles and volumes of spheres. Facile earlier sug-
gestions had been made that the area of a circle could be exhausted by
inscribing in it a regular polygon and then increasing the number of sides
indefinitely, but the Eudoxian method of exhaustion first made such a
procedure rigorous. (It should be noted that the phrase “method of
exhaustion” was not used by the ancient Greeks, being a modern invention,
but the phrase has become so well established in the history of mathematics
that we shall continue to make use of it.) As an illustration of the way in
which Eudoxus probably carried out the method, we give here, in some-
what modernized notation, the proof that areas of circles are to each other
as squares on their diameters. The proof, as it is given in Euclid, Elements
XII.2, is probably that of Eudoxus.

Let the circles be ¢ and C, with diameters d and D and areas a and A. It
is to be proved that a/A = d?/D*. The proof is complete if we proceed
indirectly and disprove the only other possibilities, namely, a/A <d?*/ D?
and a/A>d?*/D* Hence, we first assume that a/A>d?*/ D> Then,
there is a magnitude @' <a such that a'/A=d*/D* Let a—a’ be a
preassigned magnitude € > 0. Within the circles ¢ and C inscribe regular
polygons of areas p, and P,, having the same number of sides n, and
consider the intermediate areas outside the polygons but inside the cir-
cles (Fig. 4.18). If the number of sides should be doubled, it is obvious
that from these intermediate areas, we would be subtracting more than
the half. Consequently, by the exhaustion property, the intermediate



The Academy 83

FIG. 4.18

areas can be reduced through successive doubling of the number of
sides (i.e., by letting n increase) until a —p,<<e. Then, because
a —a =eg, we have p, > a’. Now, from earlier theorems it is known that
p.!/ P, = d*/ D* and because it was assumed that @'/ A = d?/ D?, we have
p./P,=a'lA. Hence, if p,>a’, as we have shown, we must conclude
that P, > A. Inasmuch as P, is the area of a polygon inscribed within the
circle of area A, it is obvious that P, cannot be greater than A. Because a
false conclusion implies a false premise, we have disproved the possi-
bility that a/A > d?/D* In an analogous manner, we can disprove the
possibility that a/A <d?/ D? thereby establishing the theorem that areas
of circles are to each other as squares on their diameters.

Mathematical Astronomy

The property that we have just demonstrated appears to have been the first
precise theorem concerning the magnitudes of curvilinear figures; it marks
Eudoxus as the apparent anticipator of the integral calculus, the greatest
contribution to mathematics made by associates of the Platonic Academy.
Eudoxus, moreover, was by no means only a mathematician; in the his-
tory of science, he is known as the father of scientific astronomy. Plato is
said to have proposed to his associates that they attempt to give a geo-
metric representation of the movements of the sun, the moon, and the five
known planets. It evidently was tacitly assumed that the movements were
to be compounded of uniform circular motions. Despite such a restriction,
Eudoxus was able to give for each of the seven heavenly bodies a satis-
factory representation through a composite of concentric spheres with
centers at the earth and with varying radii, each sphere revolving uniformly
about an axis fixed with respect to the surface of the next larger sphere. For
each planet, then, Eudoxus gave a system known to his successors as
“homocentric spheres”; these geometric schemes were combined by
Aristotle into the well-known Peripatetic cosmology of crystalline spheres
that dominated thought for almost 2,000 years.
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Eudoxus was without doubt the most capable mathematician of the
Hellenic Age, but all of his works have been lost. In his astronomical
scheme, Eudoxus had seen that by a combination of circular motions,
he could describe the motions of the planets in looped orbits along a
curve known as the hippopede, or horse fetter. This curve, resembling a
figure eight on a sphere, is obtained as the intersection of a sphere and a
cylinder tangent internally to the sphere—one of the few new curves that
the Greeks recognized. At the time, there were only two means of
defining curves: (1) through combinations of uniform motions and (2) as
the intersections of familiar geometric surfaces. The hippopede of
Eudoxus is a good example of a curve that is derivable in either of these
two ways. Proclus, who wrote some 800 years after the time of Eudoxus,
reported that Eudoxus had added many general theorems in geometry
and had applied the Platonic method of analysis to the study of the
section (probably the golden section), but Eudoxus’s two chief claims to
fame remain the theory of proportions and the method of exhaustion.

Menaechmus

Eudoxus is to be remembered in the history of mathematics not only for his
own work but also through that of his pupils. In Greece, there was a strong
thread of continuity of tradition from teacher to student. Thus, Plato
learned from Archytas, Theodorus, and Theaetetus; the Platonic influence
in turn was passed on through Eudoxus to the brothers Menaechmus and
Dinostratus, both of whom achieved eminence in mathematics. We saw
that Hippocrates of Chios had shown that the duplication of the cube could
be achieved provided that one could find and was permitted to use curves
with the properties expressed in the continued proportion a/x =x/y=y/
2a; we also noted that the Greeks had only two approaches to the discovery
of new curves. It was consequently a signal achievement on the part of
Menaechmus when he disclosed that curves having the desired property
were near at hand. In fact, there was a family of appropriate curves
obtainable from a single source—the cutting of a right circular cone by a
plane perpendicular to an element of the cone. That is, Menaechmus is
reputed to have discovered the curves that were later known as the ellipse,
the parabola, and the hyperbola.

Of all of the curves, other than circles and straight lines, that are
apparent to the eye in everyday experience, the ellipse should be the
most obvious, for it is present by implication whenever a circle is viewed
obliquely or whenever one saws diagonally through a cylindrical log.
Yet the first discovery of the ellipse seems to have been made by
Menaechmus as a mere by-product in a search in which it was the
parabola and the hyperbola that proffered the properties needed in
the solution of the Delian problem.
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Beginning with a single-napped right circular cone having a right
angle at the vertex (that is, a generating angle of 45°), Menaechmus
found that when the cone is cut by a plane perpendicular to an element,
the curve of intersection is such that in terms of modern analytic geo-
metry, its equation can be written in the form y*=Ix, where [/ is a
constant, depending on the distance of the cutting plane from the vertex.
We do not know how Menaechmus derived this property, but it depends
only on theorems from elementary geometry. Let the cone be ABC and
let it be cut in the curve EDG by a plane perpendicular to the element
ADC of the cone (Fig. 4.19). Then, through P, any point on the curve, pass
a horizontal plane cutting the cone in the circle PVR, and let Q be the other
point of intersection of the curve (parabola) and the circle. From the
symmetries involved, it follows that line PQ L RV at O. Hence, OP is the
mean proportional between RO and OV. Moreover, from the similarity of
triangles OVD and BCA it follows that OV/ DO = BC/AB, and from the
similarity of triangles R'DA and ABC it follows that R°'D/AR' = BC/AB.
If OP =y and OD = x are coordinates of point P, we have y> = RO - OV,
or, on substituting equals,

/. 2
y2 =R'D-OV =AR'- % -DO- E = ﬂx.
AB AB AB?
Inasmuch as segments AR’, BC, and AB are the same for all points P on the
curve EQDPG, we can write the equation of the curve, a “section of a right-
angled cone,” as y* = [x, where [ is a constant, later to be known as the latus
rectum of the curve. In an analogous way, we can derive an equation of the
form y*>=Ix— b’x*/a* for a “section of an acute-angled cone” and an
equation of the form y* = Ix + b°x*/ a* for a “section of an obtuse-angled

FIG. 4.19
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cone,” where a and b are constants and the cutting plane is perpendicular to
an element of the acute-angled or obtuse-angled right circular cone.

Duplication of the Cube

Menaechmus had no way of foreseeing the hosts of beautiful properties
that the future would disclose. He had hit on the conics in a successful
search for curves with the properties appropriate to the duplication of the
cube. In terms of modern notation, the solution is easily achieved. By
shifting the cutting plane (Fig. 4.19), we can find a parabola with any
latus rectum. If we wish to duplicate a cube of edge a, we locate on a
right-angled cone two parabolas, one with latus rectum a and another with
latus rectum 2a. If, then, we place these with vertices at the origin and
with axes along the y- and x-axes, respectively, the point of intersection of
the two curves will have coordinates (x, y) satisfying the continued pro-
portion a/x =x/y =y/2a (Fig. 4.20); that is, x = av/2, x, y = av/4. The
x-coordinate, therefore, is the edge of the cube sought.

It is probable that Menaechmus knew that the duplication could also
be achieved by the use of a rectangular hyperbola and a parabola. If the
parabola with equation y*> = (a/2)x and the hyperbola xy = a* are placed
on a common coordinate system, the point of intersection will have
coordinates x = av/2, y = a+v/2, the x-coordinate being the side of the
cube desired. Menaechmus was probably acquainted with many of
the now-familiar properties of the conic sections, including the asymp-
totes of the hyperbola, which would have permitted him to operate with
the equivalents of the modern equations that we used earlier. Proclus
reported that Menaechmus was one of those who “made the whole
of geometry more perfect,” but we know little about his actual work. We
do know that Menaechmus taught Alexander the Great, and legend
attributes to Menaechmus the celebrated comment, when his royal
pupil asked for a shortcut to geometry: “O King, for traveling over the
country there are royal roads and roads for common citizens; but in

FIG. 4.20
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geometry there is one road for all.” Among the chief authorities for
attributing to Menaechmus the discovery of conic sections is a letter
from Eratosthenes to King Ptolemy Euergetes, quoted some 700 years
later by Eutocius, in which several duplications of the cube are men-
tioned. Among them is one by Archytas’s unwieldy construction and
another by “cutting the cone in the triads of Menaechmus.”

Dinostratus and the Squaring of the Circle

Dinostratus, a brother of Menaechmus, was also a mathematician; one of
the brothers “solved” the duplication of the cube, the other “solved” the
squaring of the circle. The quadrature became a simple matter once a
striking property of the end point Q of the trisectrix of Hippias had been
noted, apparently by Dinostratus. If the equation of the trisectrix
(Fig. 4.21) is wrsin 6 = 2af, where « is the side of the square ABCD
associated with the curve, the limiting value of r as 6 tends toward zero
is 2a/m. This is obvious to one who has had calculus and recalls that
limy _, ¢sin@/6 =1 for radian measure. The proof, as given by Pappus
and probably due to Dinostratus, is based only on considerations from
elementary geometry. The theorem of Dinostratus states that side a is the
mean proportlonal between the segment DQ and the arc of the quarter
circle AC; that is, AC/AB AB/DQ. Using a typically Greek indirect
proof, we establish the theorem by demolishing the alternatives. Hence,
assume first that AC/AB = AB/DR where DR > DQ. Then, let the circle
with center D and radius DR intersect the trisectrix at S and side AD of
the square at 7. From S drop the perpendicular SU to side CD. Inasmuch
as it was known to Dinostratus that corresponding arcs of circles are to
each other as the radii, we have AC /AB = TIS[DR and because by
hypothesis AC/AB =AB/DR, it follows that TR = AB. But from the
definitional property of the trisectrix it is known that TR / SR = AB /SU.
Hence, because TR = AB, it must follow that SR = SU, which obviously
is false, because the perpendicular is shorter than any other line or curve
from point S to line DC. Hence, the fourth term DR in the proportion
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AC J/AB = AB/DR cannot be greater than DQ. In a similar manner, we
can prove that this fourth proportional cannot be less than DQ; hence,
Dinostratus’s theorem is established—that is, AC /AB = AB/DQ.

Given the intersection point Q of the trisectrix with DC, we then have
a proportion involving three straight-line segments and the circular arc
AC. Hence, by a simple geometric construction of the fourth term in a
proportion, a line segment b equal in length to AC can easily be drawn.
On drawing a rectangle with 2b as one side and a as the other, we have
a rectangle exactly equal in area to the area of the circle with radius a; a
square equal to the rectangle is easily constructed by taking as the side of
the square the geometric mean of the sides of the rectangle. Inasmuch as
Dinostratus showed that the trisectrix of Hippias serves to square the
circle, the curve more commonly came to be known as the quadratrix. It
was, of course, always clear to the Greeks that the use of the curve in the
trisection and quadrature problems violated the rules of the game—that
only circles and straight lines were permitted. The “solutions” of Hippias
and Dinostratus, as their authors realized, were sophistic; hence, the
search for further solutions, canonical or illegitimate, continued, with
the result that several new curves were discovered by Greek geometers.

Autolycus of Pitane

A few years after Dinostratus and Menaechmus, in the second half of
the fourth century BcE, there flourished an astronomer who has the dis-
tinction of having written the oldest surviving Greek mathematical
treatise. Autolycus of Pitane is the author of a treatise, On the Moving
Sphere, that formed part of a collection known as the “Little Astronomy,”
which was widely used by ancient astronomers. On the Moving Sphere is
not a profound and probably not a very original work, for it includes little
beyond elementary theorems on the geometry of the sphere that would be
needed in astronomy. Its chief significance lies in the fact that it indi-
cates that Greek geometry had reached the form that we regard as typical
of the classical age. Theorems are clearly enunciated and proved.
Moreover, the author uses without proof or indication of source other
theorems that he regards as well known. We conclude, therefore, that in
Greece in his day, about 320 BCE, a thoroughly established textbook
tradition in geometry existed.

Aristotle
Aristotle (384 322 BCE), that most widely learned scholar, like Eudoxus,

was a student of Plato’s and, like Menaechmus, a tutor of Alexander the
Great. Aristotle was primarily a philosopher and a biologist, but he was



Aristotle 89

thoroughly au courant with the activities of the mathematicians. He may
have taken a role in one of the leading controversies of the day, for to
him was ascribed a treatise titled On Indivisible Lines. Modern scho-
larship questions the authenticity of this work, but, in any case, it
probably was the result of discussions carried on in the Aristotelian
Lyceum. The thesis of the treatise is that the doctrine of indivisibles
espoused by Xenocrates, a successor of Plato as head of the Academy, is
untenable. Xenocrates thought that the notion of an indivisible, or fixed
infinitesimal of length or area or volume, would resolve the paradoxes,
such as those of Zeno, that plagued mathematical and philosophical
thought. Aristotle, too, devoted much attention to the paradoxes of Zeno,
but he sought to refute them on the basis of common sense. He hesitated
to follow Platonic mathematicians into the abstractions and technicalities
of the day and made no lasting contribution to the subject. Through his
foundation of logic and his frequent allusion to mathematical concepts
and theorems in his voluminous works, Aristotle can be regarded as
having contributed to the development of mathematics. The Aristotelian
discussion of the potentially and actually infinite in arithmetic and
geometry influenced many later writers on the foundations of mathe-
matics, but Aristotle’s statement that mathematicians “do not need the
infinite or use it” should be compared with the assertions of our day that
the infinite is the mathematician’s paradise. Of more positive sig-
nificance is Aristotle’s analysis of the roles of definitions and hypotheses
in mathematics.

In 323 BcE, Alexander the Great suddenly died, and his empire fell
apart. His generals divided the territory over which the young conqueror
had ruled. In Athens, where Aristotle had been regarded as a foreigner,
the philosopher found himself unpopular now that his powerful soldier-
student was dead. He left Athens and died the following year.
Throughout the Greek world, the old order was changing, politically and
culturally. Under Alexander, there had been a gradual blending of
Hellenic and Oriental customs and learning, so that it was more
appropriate to speak of the newer civilization as Hellenistic, rather than
Hellenic. Moreover, the new city of Alexandria, established by the world
conqueror, now took the place of Athens as the center of the mathe-
matical world. In the history of civilization, it is therefore customary to
distinguish two periods in the Greek world, with the almost simultaneous
deaths of Aristotle and Alexander (as well as that of Demosthenes) as a
convenient dividing line. The earlier portion is known as the Hellenic
Age, the later as the Hellenistic or Alexandrian Age. In the next few
chapters, we describe the mathematics of the first century of the new era,
often known as the Golden Age of Greek mathematics.
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Euclid of Alexandria

Ptolemy once asked Euclid whether there was any shorter way to a
knowledge of geometry than by a study of the Elements, whereupon
Euclid answered that there was no royal road to geometry.

Proclus Diadochus

Alexandria

The death of Alexander the Great had led to internecine strife among the
generals in the Greek army, but after 300 BCE, control of the Egyptian
portion of the empire was firmly in the hands of the Ptolemies, the
Macedonian rulers of Egypt. Ptolemy I laid the foundations for two
institutions at Alexandria that would make it the leading center of
scholarship for generations. They were the Museum and the Library,
both amply endowed by him and his son, Ptolemy II, who brought to this
great research center men of outstanding scholarship in a variety of
fields. Among these was Euclid, the author of the most successful
mathematics textbook ever written—the Elements (Stoichia). Consider-
ing the fame of the author and of his best-seller, remarkably little is
known of Euclid’s life. He was so obscure that no birthplace is
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associated with his name. Although editions of the Elements often bore
the identification of the author as Euclid of Megara and a portrait of
Euclid of Megara appears in histories of mathematics, this is a case of
mistaken identity.

From the nature of his work, it is presumed that Euclid of Alexandria
had studied with students of Plato, if not at the Academy itself. There is a
tale told of him that when one of his students asked of what use was the
study of geometry, Euclid asked his slave to give the student three pence,
“since he must needs make gain of what he learns.”

Lost Works

Of what Euclid wrote, more than half has been lost, including some of
his more important compositions, such as a treatise on conics in four
books. Both this work and an earlier lost treatise on Solid Loci (the
Greek name for the conic sections) by the somewhat older geometer
Aristaeus were soon superseded by the more extensive work on conics
by Apollonius. Among Euclid’s lost works are also one on Surface Loci,
another on Pseudaria (or fallacies), and three books on Porisms. It is not
even clear from ancient references what material these contained. As far
as we know, the Greeks did not study any surface other than that of a
solid of revolution.

The loss of the Euclidean Porisms is particularly tantalizing. Pappus
later reported that a porism is intermediate between a theorem, in which
something is proposed for demonstration, and a problem, in which
something is proposed for construction. Others have described a porism
as a proposition in which one determines a relationship between known
and variable or undetermined quantities, perhaps the closest approach
in antiquity to the concept of function.

Extant Works

Five works by Euclid have survived to our day: the Elements, the Data,
the Division of Figures, the Phaenomena, and the Optics. The last-
mentioned is of interest as an early work on perspective, or the geometry
of direct vision. The ancients had divided the study of optical phenomena
into three parts: (1) optics (the geometry of direct vision), (2) catoptrics
(the geometry of reflected rays), and (3) dioptrics (the geometry of
refracted rays). A Catoptrica sometimes ascribed to Euclid is of doubtful
authenticity, being perhaps by Theon of Alexandria, who lived some six
centuries later. Euclid’s Optics is noteworthy for its espousal of an
“emission” theory of vision, according to which the eye sends out rays that
travel to the object, in contrast to a rival Aristotelian doctrine in which an
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activity in a medium travels in a straight line from the object to the eye. It
should be noted that the mathematics of perspective (as opposed to the
physical description) is the same, no matter which of the two theories is
adopted. Among the theorems found in Euclid’s Optics is one widely used
in antiquity—tan o/tan 8 <a/ 3 if 0 <a < <mw/2. One object of the
Optics was to combat an Epicurean insistence that an object was just as
large as it looked, with no allowance to be made for the foreshortening
suggested by perspective.

The Euclidean Division of Figures is a work that would have been lost
had it not been for the learning of Arabic scholars. It has not survived in
the original Greek, but before the disappearance of the Greek versions,
an Arabic translation had been made (omitting some of the original
proofs “because the demonstrations are easy”), which in turn was later
translated into Latin and ultimately into current modern languages. This
is not atypical of other ancient works. The Division of Figures includes a
collection of thirty-six propositions concerning the division of plane
configurations. For example, Proposition 1 calls for the construction of
a straight line that shall be parallel to the base of a triangle and shall
divide the triangle into two equal areas. Proposition 4 requires a bisec-
tion of a trapezmd abqd (Fig. 5.1) by a line parallel to the bases the
required line zi is found by determining z such that ze* = z(eb +ea’).
Other propositions call for the division of a parallelogram into two equal
parts by a line drawn through a given point on one of the sides (Pro-
position 6) or through a given point outside the parallelogram (Propo-
sition 10). The final proposition asks for the division of a quadrilateral in
a given ratio by a line through a point on one of the sides of the
quadrilateral.

Somewhat similar in nature and purpose to the Division of Figures is
Euclid’s Data, a work that has come down to us through both the Greek
and the Arabic. It seems to have been composed for use at the Museum
of Alexandria, serving as a companion volume to the first six books of
the Elements in much the way that a manual of tables supplements a
textbook. It opens with fifteen definitions concerning magnitudes and
loci. The body of the text comprises ninety-five statements concerning
the implications of conditions and magnitudes that may be given in a
problem. The first two state that if two magnitudes a and b are given,

FIG. 5.1
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their ratio is given, and that if one magnitude is given and also its ratio to
a second, the second magnitude is given. There are about two dozen
similar statements, serving as algebraic rules or formulas. After this, the
work lays out simple geometric rules concerning parallel lines and
proportional magnitudes, while reminding the student of the implications
of the data given in a problem, such as the advice that when two line
segments have a given ratio then one knows the ratio of the areas of
similar rectilinear figures constructed on these segments. Some of the
statements are geometric equivalents of the solution of quadratic equa-
tions. For example, we are told that if a given (rectangular) area AB is
laid off along a line segment of given length AC (Fig. 5.2) and if the area
BC by which the area AB falls short of the entire rectangle AD is given,
the dimensions of the rectangle BC are known. The truth of this
statement is easily demonstrated by modern algebra. Let the length of
AC be a, the area of AB be b?, and the ratio of FC to CD be c:d. Then, if
FC=x and CD =y, we have x/y=c/d and (@ x)y = b*. Eliminat-
ing y, we have (a —x)dx=b* or dx*—adx+ b’c=0, from which
x=a/2+ \/(a/2)’ — b>c/d. The geometric solution given by Euclid is
equivalent to this, except that the negative sign before the radical is used.
Statements 84 and 85 in the Data are geometric replacements of the
familiar Babylonian algebraic solutions of the systems xy =a? x £ y
= b, which again are the equivalents of solutions of simultaneous
equations. The last few statements in the Data concern relationships
between linear and angular measures in a given circle.

The Elements

The Elements was a textbook and by no means the first one. We know
of at least three earlier such Elements, including that by Hippocrates of
Chios, but there is no trace of these or of other potential rivals from
ancient times. The Elements of Euclid so far outdistanced competitors
that it alone survived. The Elements was not, as is sometimes thought, a
compendium of all geometric knowledge; it was instead an introductory
textbook covering all elementary mathematics—that is, arithmetic (in
the sense of the English “higher arithmetic” or the American “theory
of numbers”), synthetic geometry (of points, lines, planes, circles, and
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spheres), and algebra (not in the modern symbolic sense, but an
equivalent in geometric garb). It will be noted that the art of calculation
is not included, for this was not a part of mathematical instruction; nor
was the study of the conics or higher plane curves part of the book, for
these formed a part of more advanced mathematics. Proclus described
the Elements as bearing to the rest of mathematics the same sort of
relation as that which the letters of the alphabet have in relation to
language. Were the Elements intended as an exhaustive store of infor-
mation, the author might have included references to other authors,
statements of recent research, and informal explanations. As it is, the
Elements is austerely limited to the business in hand—the exposition in
logical order of the fundamentals of elementary mathematics. Occa-
sionally, however, later writers interpolated into the text explanatory
scholia, and such additions were copied by later scribes as part of the
original text. Some of these appear in every one of the manuscripts now
extant. Euclid himself made no claim to originality, and it is clear that
he drew heavily from the works of his predecessors. It is believed
that the arrangement is his own, and, presumably, some of the proofs
were supplied by him, but beyond that, it is difficult to estimate the
degree of originality that is to be found in this, the most renowned
mathematical work in history.

Definitions and Postulates

The Elements is divided into thirteen books or chapters, of which the first
half-dozen are on elementary plane geometry, the next three on the
theory of numbers, the tenth on incommensurables, and the last three
chiefly on solid geometry. There is no introduction or preamble to
the work, and the first book opens abruptly with a list of twenty-three
definitions. The weakness here is that some of the definitions do not
define, inasmuch as there is no prior set of undefined elements in terms
of which to define the others. Thus, to say, as does Euclid, that “a point is
that which has no part,” or that “a line is breadthless length,” or that “a
surface is that which has length and breadth only,” is scarcely to define
these entities, for a definition must be expressed in terms of things that
precede and are better known than the things defined. Objections can
easily be raised on the score of logical circularity to other so-called
definitions of Euclid, such as “The extremities of a line are points,”
or “A straight line is a line which lies evenly with the points on itself,” or
“The extremities of a surface are lines,” all of which may have been due
to Plato.

Following the definitions, Euclid lists five postulates and five common
notions. Aristotle had made a sharp distinction between axioms (or
common notions) and postulates; the former, he said, must be convincing
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in themselves—truths common to all studies—but the latter are less
obvious and do not presuppose the assent of the learner, for they pertain
only to the subject at hand. We do not know whether Euclid distinguished
between two types of assumptions. Surviving manuscripts are not in
agreement here, and in some cases, the ten assumptions appear together
in a single category. Modern mathematicians see no essential difference
between an axiom and a postulate. In most manuscripts of the Elements,
we find the following ten assumptions:

Postulates. Let the following be postulated:

To draw a straight line from any point to any point.

To produce a finite straight line continuously in a straight line.

To describe a circle with any center and radius.

That all right angles are equal.

That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight
lines, if produced indefinitely, meet on that side on which the angles
are less than the two right angles.

M INES

Common notions:

Things which are equal to the same thing are also equal to one another.
If equals be added to equals, the wholes are equal.

If equals be subtracted from equals, the remainders are equal.
Things which coincide with one another are equal to one another.
The whole is greater than the part.

NS

Aristotle had written that “other things being equal, that proof is the
better which proceeds from the fewer postulates,” and Euclid evidently
subscribed to this principle. For example, Postulate 3 is interpreted in the
very limited literal sense, sometimes described as the use of the Eucli-
dean (collapsible) compass, whose legs maintain a constant opening so
long as the point stands on the paper, but fall back on each other when
they are lifted. That is, the postulate is not interpreted to permit the use
of a pair of dividers to lay off a distance equal to one line segment on a
noncontiguous longer line segment, starting from an end point. It is
proved in the first three propositions of Book I that the latter construction
is always possible, even under the strict interpretation of Postulate 3. The
first proposition justifies the construction of an equilateral triangle ABC
on a given line segment AB by constructing through B a circle with a
center at A and another circle through A with a center at B, and letting C
be the point of intersection of the two circles. (That they do intersect is
tacitly assumed.) Proposition 2 then builds on Proposition 1 by showing
that from any point A as extremity (Fig. 5.3), one can lay off a straight
line segment equal to a given line segment BC. First, Euclid drew AB,
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FIG. 5.3

and on this he constructed the equilateral triangle ABD, extending the
sides DA and DB to E and F, respectively. With B as center, describe
the circle through C, intersecting BF in G; then, with D as center, draw a
circle through G, intersecting DE in H. Line AH is then easily shown
to be the line required. Finally, in Proposition 3 Euclid made use of
Proposition 2 to show that given any two unequal straight lines, one can
cut off from the greater a segment equal to the smaller.

Scope of Book |

In the first three propositions, Euclid went to great pains to show that a very
restricted interpretation of Postulate 3 nevertheless implies the free use of a
compass as is usually done in laying off distances in elementary geometry.
Nevertheless, by modern standards of rigor, the Euclidean assumptions are
woefully inadequate, and in his proofs Euclid often makes use of tacit
postulates. In the first proposition of the Elements, for example, he assumes
without proof that the two circles will intersect in a point. For this and
similar situations, it is necessary to add to the postulates one equivalent
to a principle of continuity. Moreover, Postulates 1 and 2, as they were
expressed by Euclid, guarantee neither the uniqueness of the straight line
through two noncoincident points nor even its infinitude; they simply assert
that there is at least one and that it has no termini.

Most of the propositions in Book I of the Elements are well known to
anyone who has had a high school course in geometry. Included are
the familiar theorems on the congruence of triangles (but without an
axiom justifying the method of superposition), on simple constructions
by straightedge and compass, on inequalities concerning angles and
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sides of a triangle, on properties of parallel lines (leading to the fact that
the sum of the angles of a triangle is equal to two right angles), and on
parallelograms (including the construction of a parallelogram having
given angles and equal in area to a given triangle or a given rectilinear
figure). The book closes (in Propositions 47 and 48) with the proof of the
Pythagorean theorem and its converse. The proof of the theorem as given
by Euclid was not that usually given in textbooks of today, in which
simple proportions are applied to the sides of similar triangles formed by
dropping an altitude on the hypotenuse. For the Pythagorean theorem,
Euclid used instead the beautiful proof with a figure sometimes descri-
bed as a windmill or the peacock’s tail or the bride’s chair (Fig. 5.4). The
proof is accomplished by showing that the square on AC is equal to twice
the triangle FAB or to twice the triangle CAD or to the rectangle AL, and
that the square on BC is equal to twice the triangle ABK or to twice the
triangle BCE or to the rectangle BL. Hence, the sum of the squares is
equal to the sum of the rectangles—that is, to the square on AB. It has
been assumed that this proof was original with Euclid, and many con-
jectures have been made as to the possible form of earlier proofs. Since
the days of Euclid, many alternative proofs have been proposed.

It is to Euclid’s credit that the Pythagorean theorem is immediately
followed by a proof of the converse: If in a triangle the square on one of
the sides is equal to the sum of the squares on the other two sides, the
angle between these other two sides is a right angle. Not infrequently in
modern textbooks, the exercises following the proof of the Pythagorean
theorem are such that they require not the theorem itself but the still
unproved converse. There may be many a minor flaw in the Elements,
but the book had all of the major logical virtues.

H

FIG. 54
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Geometric Algebra

Book II of the Elements is a short one, containing only fourteen pro-
positions, not one of which plays any role in modern textbooks, yet in
Euclid’s day this book was of great significance. This sharp discrepancy
between ancient and modern views is easily explained—today we have
symbolic algebra and trigonometry, which have replaced the geometric
equivalents from Greece. For instance, Proposition 1 of Book II states,
“If there be two straight lines, and one of them be cut into any number of
segments whatever, the rectangle contained by the two straight lines
is equal to the rectangles contained by the uncut straight line and each
of the segments.” This theorem, which asserts (Fig. 5.5) that AD
(AP+ PR+ RB)=AD-AP + AD- PR + AD - RB, is nothing more than a
geometric statement of one of the fundamental laws of arithmetic known
today as the distributive law: a(b + ¢ + d) = ab + ac + ad. In later books
of the Elements (V and VII), we find demonstrations of the commutative
and associative laws for multiplication. In Euclid’s day magnitudes were
pictured as line segments satisfying the axioms and the theorems of
geometry.

Book II of the Elements, which is a geometric algebra, served much the
same purpose as does our symbolic algebra. There can be little doubt that
modern algebra greatly facilitates the manipulation of relationships among
magnitudes. Yet, it is undoubtedly also true that a Greek geometer versed
in the fourteen theorems of Euclid’s “algebra” was far more adept in
applying these theorems to practical mensuration than is an experienced
geometer of today. Ancient geometric algebra was not an ideal tool, but it
was far from ineffective and its visual appeal to an Alexandrian schoolboy
must have been far more vivid than its modern algebraic counterpart can
ever be. For example, Elements 11.5 contains what we should regard as an
impractical circumlocution for a®> — b* = (a + b)(a — b):

If a straight line be cut into equal and unequal segments, the rectangle
contained by the unequal segments of the whole, together with the square
on the straight line between the points of section, is equal to the square on
the half.

FIG. 5.5
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The diagram that Euclid uses in this connection played a key role
in Greek algebra; hence, we reproduce it with further explanation.
(Throughout this chapter, the translations and most of the diagrams
are based on the Thirteen Books of Euclid’s Elements, as edited by
T. L. Heath.) If in the diagram (Fig. 5.6) we let AC=CB=a,
and CD = b, the theorem asserts that (a + b)(a — b) + b> = a*. The geo-
metric verification of this statement is not difficult; however,
the significance of the diagram lies not so much in the proof of the
theorem as in the use to which similar diagrams were put by Greek
geometric algebraists. If the Greek scholar were required to construct a
line x having the property expressed by ax x> = b? where a and b are
line segments with a > 2b, he would draw line AB=a and bisect it at C.
Then, at C he would erect a perpendicular CP equal in length to b; with
P as center and radius a /2, he would draw a circle cutting AB in point D.
Then, on AB he would construct rectangle ABMK of width BM=BD and
complete the square BDHM. This square is the area x*, having the property
specified in the quadratic equation. As the Greeks expressed it, we have
applied to the segment AB (= a) a rectangle AH (= ax — x*), which is
equal to a given square (b*) and falls short (of AM) by a square DM. The
demonstration of this is provided by the proposition cited earlier (IL.5), in
which it is clear that the rectangle ADHK equals the concave polygon
CBFGHL—that is, it differs from (a/2)* by the square LHGE, the side of
which by construction is CD = +/(a/2)* — b*.

The figure used by Euclid in Elements 11.11 and again in VI.30 (our
Fig. 5.7) is the basis for a diagram that appears today in many geometry
books to illustrate the iterative property of the golden section. To
the gnomon BCDFGH (Fig. 5.7), we add point L to complete the rec-
tangle CDFL (Fig. 5.8), and within the smaller rectangle LBGH, which is
similar to the larger rectangle LCDF, we construct, by making GO = GL,
the gnomon LBMNOG similar to gnomon BCDFGH. Now within the

A c D B
K H M
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E G F



100 Euclid of Alexandria

D E A F

K 7] G
C B
FIG. 5.7

rectangle BHOP, which is similar to the larger rectangles CDFL and
LBHG, we construct the gnomon PBHQORN similar to the gnomons
BCDFGH and LBMNOG. Continuing indefinitely in this manner, we
have an unending sequence of nested similar rectangles tending toward a
limiting point Z. It turns out that Z, which is easily seen to be the point of
intersection of lines FB and DL, is also the pole of a logarithmic spiral
tangent to the sides of the rectangles at points C, A, G, P, M, Q, ... Other
striking properties can be found in this fascinating diagram.
Propositions 12 and 13 of Book II are of interest because they adum-
brate the concern with trigonometry that was shortly to blossom in Greece.
These propositions will be recognized by the reader as geometric
formulations—first for the obtuse angle and then for the acute angle—of
what later became known as the law of cosines for plane triangles:
Proposition 12. In obtuse-angled triangles, the square on the side sub-
tending the obtuse angle is greater than the squares on the sides containing
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the obtuse angle by twice the rectangle contained by one of the sides
about the obtuse angle, namely, that on which the perpendicular falls, and the
straight line cut off outside by the perpendicular toward the obtuse angle.

Proposition 13. In acute-angled triangles, the square on the side sub-
tending the acute angle is less than the squares on the sides containing
the acute angle by twice the rectangle contained by one of the sides of the
acute angle, namely, that on which the perpendicular falls, and the straight
line cut off within by the perpendicular toward the acute angle.

The proofs of Propositions 12 and 13 are analogous to those used today
in trigonometry through double application of the Pythagorean theorem.

Books Il and IV

It has generally been supposed that the contents of the first two books of
the Elements are largely the work of the Pythagoreans. Books III and IV,
on the other hand, deal with the geometry of the circle, and here the
material is presumed to have been drawn primarily from Hippocrates of
Chios. The two books are not unlike the theorems on circles contained in
textbooks of today. The first proposition of Book III, for example, calls for
the construction of the center of a circle, and the last, Proposition 37, is the
familiar statement that if from a point outside a circle a tangent and a
secant are drawn, the square on the tangent is equal to the rectangle on the
whole secant and the external segment. Book IV contains sixteen pro-
positions, largely familiar to modern students, concerning figures in-
scribed in, or circumscribed about, a circle. Theorems on the measure of
angles are reserved until after a theory of proportions has been established.

Theory of Proportion

Of the thirteen books of the Elements, those most admired have been the
fifth and the tenth—the one on the general theory of proportion and
the other on the classification of incommensurables. The discovery of the
incommensurable had threatened a logical crisis that cast doubt on
proofs appealing to proportionality, but the crisis had been successfully
averted through the principles enunciated by Eudoxus. Nevertheless,
Greek mathematicians tended to avoid proportions. We have seen that
Euclid put off their use as long as possible, and such a relationship
among lengths as x:a = b:c would be thought of as an equality of the
areas cx = ab. Sooner or later, however, proportions are needed, and so
Euclid tackled the problem in Book V of the Elements. Some com-
mentators have gone so far as to suggest that the whole book, consisting
of twenty-five propositions, was the work of Eudoxus, but this seems to
be unlikely. Some of the definitions—such as that of a ratio—are so
vague as to be useless. Definition 4, however, is essentially the axiom of
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Eudoxus and Archimedes: “Magnitudes are said to have a ratio to one
another which are capable, when multiplied, of exceeding one another.”
Definition 5, the equality of ratios, is precisely that given earlier in
connection with Eudoxus’s definition of proportionality.

Book V deals with topics of fundamental importance in all mathe-
matics. It opens with propositions that are equivalent to such things as
the left-hand and right-hand distributive laws for multiplication over
addition, the left-hand distributive law for multiplication over subtrac-
tion, and the associative law for multiplication (ab)c = a(bc). Then the
book lays out rules for “greater than” and “less than” and the well-
known properties of proportions. It is often asserted that Greek geo-
metric algebra could not rise above the second degree in plane geometry
or above the third degree in solid geometry, but this is not really the case.
The general theory of proportions would permit work with products of
any number of dimensions, for an equation of the form x*=abcd is
equivalent to one involving products of ratios of lines such as x/a-x/b
=c/x-dl/x.

Having developed the theory of proportions in Book V, Euclid
exploited it in Book VI by proving theorems concerning ratios and
proportions related to similar triangles, parallelograms, and other poly-
gons. Noteworthy is Proposition 31, a generalization of the Pythagorean
theorem: “In right-angled triangles the figure on the side subtending
the right angle is equal to the similar and similarly described figures
on the sides containing the right angle.” Proclus credits this extension to
Euclid himself. Book VI also contains (in Propositions 28 and 29) a
generalization of the method of application of areas, for the sound basis
for proportion given in Book V now enabled the author to make free
use of the concept of similarity. The rectangles of Book II are now
replaced by parallelograms, and it is required to apply to a given straight
line a parallelogram equal to a given rectilinear figure and deficient
(or exceeding) by a parallelogram similar to a given parallelogram.
These constructions, like those of 1.5 6, are in reality solutions of the
quadratic equations bx = ac = x?, subject to the restriction (implied in
I1X.27) that the discriminant is not negative.

Theory of Numbers

The Elements of Euclid is often mistakenly thought of as restricted to
geometry. We already have described two books (II and V) that are
almost exclusively algebraic; three books (VII, VIII, and IX) are devoted
to the theory of numbers. The word “number,” to the Greeks, always
referred to what we call the natural numbers—the positive whole
numbers or integers. Book VII opens with a list of twenty-two definitions
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distinguishing various types of numbers—odd and even, prime and
composite, plane and solid (that is, those that are products of two or three
integers)—and finally defining a perfect number as “that which is equal
to its own parts.” The theorems in Books VII, VIII, and IX are likely to
be familiar to the reader who has had an elementary course in the theory
of numbers, but the language of the proofs will certainly be unfamiliar.
Throughout these books, each number is represented by a line segment,
so that Euclid will speak of a number as AB. (The discovery of the
incommensurable had shown that not all line segments could be asso-
ciated with whole numbers, but the converse statement—that numbers
can always be represented by line segments—obviously remains true.)
Hence, Euclid does not use the phrases “is a multiple of” or “is a factor
of,” for he replaces these by “is measured by” and “measures,”
respectively. That is, a number n is measured by another number m if
there is a third number & such that n = km.

Book VII opens with two propositions that constitute a celebrated
rule in the theory of numbers, which today is known as “Euclid’s
algorithm” for finding the greatest common divisor (measure) of two
numbers. It is a scheme suggestive of a repeated inverse application of
the axiom of Eudoxus. Given two unequal numbers, one subtracts the
smaller a from the larger b repeatedly until a remainder r, less than
the smaller is obtained; then, one repeatedly subtracts this remainder r,
from a until a remainder r, <r, results; then, one repeatedly subtracts r,
from r,; and so on. Ultimately, the process will lead to a remainder r,,
which will measure r, ,, hence all preceding remainders, as well as a and
b; this number r, will be the greatest common divisor of a and b. Among
succeeding propositions, we find equivalents of familiar theorems in
arithmetic. Thus, Proposition 8 states that if an = bm and cn = dm, then
(a — ¢)n = (b — d)m; Proposition 24 states that if a and b are prime to c,
then ab is prime to c¢. The book closes with a rule (Proposition 39) for
finding the least common multiple of several numbers.

Book VIII is one of the less rewarding of the thirteen books of the
Elements. It opens with propositions on numbers in continued proportion
(geometric progression) and then turns to some simple properties of
squares and cubes, closing with Proposition 27: “Similar solid numbers
have to one another the ratio which a cube number has to a cube
number.” This statement simply means that if we have a “solid number”
ma - mb - mc and a “similar solid number” na - nb - nc, then their ratio will
be m?:n*—that is, as a cube is to a cube.

Book IX, the last of the three books on the theory of numbers, contains
several theorems that are of special interest. Of these, the most cele-
brated is Proposition 20: “Prime numbers are more than any assigned
multitude of prime numbers.” Euclid here gives the well-known ele-
mentary proof that the number of primes is infinite. The proof is indirect,
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for one shows that the assumption of a finite number of primes leads to a
contradiction. Let P be the product of all of the primes, assumed to be
finite in number, and consider the number N =P + 1. Now, N cannot
be prime, for this would contradict the assumption that P was the product
of all primes. Hence, N is composite and must be measured by some
prime p. But p cannot be any of the prime factors in P, for then it would
have to be a factor of 1. Hence, p must be a prime different from all of
those in the product P; therefore, the assumption that P was the product
of all of the primes must be false.

Proposition 35 of this book contains a formula for the sum of numbers
in geometric progression, expressed in elegant but unusual terms:

If as many numbers as we please be in continued proportion, and there be
subtracted from the second and the last numbers equal to the first, then as
the excess of the second is to the first, so will the excess of the last be to
all those before it.

This statement is, of course, equivalent to the formula

ap+1 — a4 a, — a,

)

a +a,+ - +a, a,

which in turn is equivalent to

_a—ar"

S, = )
1—r

The following and last proposition in Book IX is the well-known for-
mula for perfect numbers: “If as many numbers as we please, beginning
from unity, be set out continuously in double proportion until the sum of
all becomes prime, and if the sum is multiplied by the last, the product
will be perfect.” That is, in modern notation, if §,=1+2+2>+ ... +
2" '=2"—1is prime, then 2" '(2"— 1) is a perfect number. The proof
is easily established in terms of the definition of a perfect number given
in Book VII. The ancient Greeks knew the first four perfect numbers:
6, 28, 496, and 8128. Euclid did not answer the converse question—
whether his formula provides all perfect numbers. It is now known that
all even perfect numbers are of Euclid’s type, but the question of the
existence of odd perfect numbers remains an unsolved problem. Of
the two dozen perfect numbers now known, all are even, but to conclude
by induction that all must be even would be hazardous.

In Propositions 21 through 36 of Book IX, there is a unity that
suggests that these theorems were at one time a self-contained math-
ematical system, possibly the oldest in the history of mathematics and
stemming presumably from the middle or early fifth century Bck. It has
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even been suggested that Propositions 1 through 36 of Book IX were
taken over by Euclid, without essential changes, from a Pythagorean
textbook.

Incommensurability

Book X of the Elements was, before the advent of early modern algebra,
the most admired—and the most feared. It is concerned with a sys-
tematic classification of incommensurable line segments of the forms
a* /b, Ja* /b, \/a+ /b and \//a+ /b, where a and b, when of
the same dimension, are commensurable. Today, we would be inclined
to think of this as a book on irrational numbers of the types above, where
a and b are rational numbers, but Euclid regarded this book as a part of
geometry, rather than of arithmetic. In fact, Propositions 2 and 3 of the
book duplicate for geometric magnitudes the first two propositions of
Book VII, where the author had dealt with whole numbers. Here he
proves that if to two unequal line segments one applies the process
described previously as Euclid’s algorithm, and if the remainder never
measures the one before it, the magnitudes are incommensurable. Pro-
position 3 shows that the algorithm, when applied to two commensurable
magnitudes, will provide the greatest common measure of the segments.

Book X contains 115 propositions—more than any other—most of
which contain geometric equivalents of what we now know arithmeti-
cally as surds. Among the theorems are counterparts of rationalizing
denominators of fractions of the form a/(b = /c) and a/(Vb * \/c).
Line segments given by square roots, or by square roots of sums of
square roots, are about as easily constructed by straightedge and com-
passes as are rational combinations. One reason that the Greeks turned to
a geometric, rather than an arithmetic, algebra was that in view of the
lack of the real-number concept, the former appeared to be more general
than the latter. The roots of ax — x> = b?, for example, can always be
constructed (provided that a > 2b). Why, then, should Euclid have gone
to great lengths to demonstrate, in Propositions 17 and 18 of Book X, the
conditions under which the roots of this equation are commensurable
with a? He showed that the roots are commensurable or incommensur-
able, with respect to a, according as v/a? — 4b* and a are commensurable
or incommensurable. It has been suggested that such considerations
indicate that the Greeks also used their solutions of quadratic equations
for numerical problems, much as the Babylonians had in their system of
equations x + y = a, xy = b*. In such cases, it would be advantageous to
know whether the roots will or will not be expressible as quotients of
integers. A close study of Greek mathematics seems to give evidence
that beneath the geometric veneer, there was more concern for logistic
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and numerical approximations than the surviving classical treatises
portray.

Solid Geometry

The material in Book XI, containing thirty-nine propositions on the
geometry of three dimensions, will be largely familiar to one who has
taken a course in the elements of solid geometry. Again, the definitions
are easily criticized, for Euclid defines a solid as “that which has length,
breadth, and depth” and then tells us that “an extremity of a solid is a
surface.” The last four definitions are of four of the regular solids. The
tetrahedron is not included, presumably because of an earlier definition
of a pyramid as “a solid figure, contained by planes, which is con-
structed from one plane to any point.” The eighteen propositions of
Book XII are all related to the measurement of figures, using the
method of exhaustion. The book opens with a careful proof of the
theorem that areas of circles are to each other as squares on the dia-
meters. Similar applications of the typical double reductio ad absurdum
method are then applied to the volumetric mensuration of pyramids,
cones, cylinders, and spheres. Archimedes ascribed the rigorous proofs
of these theorems to Eudoxus, from whom Euclid probably adapted
much of this material.

The last book is devoted entirely to properties of the five regular
solids. The closing theorems are a fitting climax to a remarkable treatise.
Their object is to “comprehend” each of the regular solids in a sphere—
that is, to find the ratio of an edge of the solid to the radius of the cir-
cumscribed sphere. Such computations are ascribed by Greek com-
mentators to Theaetetus, to whom much of Book XIII is probably due. In
preliminaries to these computations, Euclid referred once more to the
division of a line in mean and extreme ratio, showing that “the square on
the greater segment added to half the whole is five times the square
on the half’—as is easily verified by solving a/x =x/(a — x)—and
citing other properties of the diagonals of a regular pentagon. Then, in
Proposition 10, Euclid proved the well-known theorem that a triangle
whose sides are respectively sides of an equilateral pentagon, hexagon,
and decagon inscribed in the same circle is a right triangle. Propositions
13 through 17 express the ratio of edge to diameter for each of the
inscribed regular solids in turn: e/d is /2 for the tetrahedron, v/} for
the octahedron, v/4 for the cube or hexahedron, \/ 5++53) /10 for the
icosahedron, and (/5 — 1) /2+/3 for the dodecahedron. Finally, in Pro-
position 18, the last in the Elements, it is easily proved that there can be
no regular polyhedron beyond these five. About 1,900 years later, the
astronomer Kepler was so struck by this fact that he built a cosmology



The Elements 107

on the five regular solids, believing that they must have been the
Creator’s key to the structure of the heavens.

Apocrypha

In ancient times, it was not uncommon to attribute to a celebrated author
works that were not by him; thus, some versions of Euclid’s Elements
include a fourteenth and even a fifteenth book, both shown by later
scholars to be apocryphal. The so-called Book XIV continues Euclid’s
comparison of the regular solids inscribed in a sphere, the chief results
being that the ratio of the surfaces of the dodecahedron and the icosa-
hedron inscribed in the same sphere is the same as the ratio of their
volumes, the ratio being that of the edge of the cube to the edge of
the icosahedron, that is, \/10/ [3(5 \/5)]. This book may have been
composed by Hypsicles (fl. ca. 150 BcE) on the basis of a treatise (now
lost) by Apollonius comparing the dodecahedron and the icosahedron.
Hypsicles is also the author of an astronomical work, De ascensionibus,
an adaptation for the latitude of Alexandria of a Babylonian technique
for computing the rise times of the signs of the zodiac; this work also
contains the division of the ecliptic into 360 degrees.

The spurious Book XV, which is inferior, is thought to have been
(at least in part) the work of a student of Isidore of Miletus’s (fl. ca.
532 cE), the architect of the Hagia Sophia at Constantinople. This
book also deals with the regular solids, showing how to inscribe
certain of them within others, counting the number of edges and solid
angles in the solids, and finding the measures of the dihedral angles of
faces meeting at an edge. It is of interest to note that despite such
enumerations, all of the ancients apparently missed the so-called
polyhedral formula, known to René Descartes and later enunciated by
Leonhard Euler.

Influence of the Elements

The Elements of Euclid was composed in about 300 BcE and was copied
and recopied repeatedly after that. Errors and variations inevitably crept
in, and some later editors, notably Theon of Alexandria in the late fourth
century, sought to improve on the original. Later accretions, generally
appearing as scholia, add supplementary information, often of a histor-
ical nature, and in most cases they are readily distinguished from the
original. The transmission of translations from Greek to Latin, starting
with Boethius, has been traced in some detail. Numerous copies of the
Elements have also come down to us through Arabic translations, later
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turned into Latin, largely in the twelfth century, and finally, in the six-
teenth century, into the vernacular. The study of transmission of these
variants presents continuing challenges.

The first printed version of the Elements appeared at Venice in 1482,
one of the very earliest of mathematical books to be set in type. It has
been estimated that since then, at least a thousand editions have been
published. Perhaps no book other than the Bible can boast so many
editions, and, certainly, no mathematical work has had an influence
comparable to that of Euclid’s Elements.
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Archimedes of Syracuse

There was more imagination in the head of Archimedes
than in that of Homer.
Voltaire

The Siege of Syracuse

During the Second Punic War, the city of Syracuse was caught in the
power struggle between Rome and Carthage, and the city was besieged
by the Romans for three years beginning in 214 Bce. We are told that
throughout the siege, Archimedes, the leading mathematician of the age,
invented ingenious war machines to keep the enemy at bay—catapults to
hurl stones; ropes, pulleys, and hooks to raise and smash the Roman
ships; devices to set fire to the ships. Ultimately, however, during the
sack of the city in 212, Archimedes was slain by a Roman soldier,
despite orders from the Roman general Marcellus that the life of the
geometer be spared. Inasmuch as Archimedes at the time is reported to
have been seventy-five years old, he was most likely born in 287 BcE. His
father was an astronomer, and Archimedes also established a reputation
in astronomy. Marcellus is said to have reserved for himself, as booty,

109



110 Archimedes of Syracuse

ingenious planetaria that Archimedes had constructed to portray the
motions of the heavenly bodies. Accounts of the life of Archimedes are
in agreement, however, in depicting him as placing less value in his
mechanical contrivances than in the unusually innovative approach to
abstract products of his thought. Even when dealing with levers and
other simple machines, he was reputedly more concerned with general
principles than with practical applications. Nearly a dozen works survive
that illustrate the problems that interested him.

On the Equilibriums of Planes

Archimedes was not the first to use the lever or even the first to for-
mulate the general law of the lever. Aristotelian works contain the
statement that two weights on a lever balance when they are inversely
proportional to their distances from the fulcrum, and the Peripatetics
associated the law with their assumption that vertical rectilinear motion
is the only natural terrestrial motion. Archimedes, on the other hand,
deduced the law from a more plausible static postulate—that bilaterally
symmetric bodies are in equilibrium. That is, let one assume that a
weightless bar four units long and supporting three unit weights, one at
either end and one in the middle (Fig. 6.1), is balanced by a fulcrum at
the center. By the Archimedean axiom of symmetry, the system is in
equilibrium. But the principle of symmetry also shows that considering
only the right-hand half of the system, the balancing effect will remain the
same if the two weights two units apart are brought together at the mid-
point of the right-hand side. This means that a unit weight two units from
the fulcrum will support on the other arm a weight of two units that is one
unit from the fulcrum. Through a generalization of this procedure,
Archimedes established the law of the lever on static principles alone,
without recourse to the Aristotelian kinematic argument. After examining
the history of these concepts during the medieval period, one concludes
that a conjunction of static and kinematic views produced advances in
both science and mathematics.

Archimedes’ work on the law of the lever is part of his treatise, in two
books, On the Equilibriums of Planes. This is not the oldest extant book on
what may be called physical science, for about a century earlier, Aristotle
had published an influential work, in eight books, titled Physics. But
whereas the Aristotelian approach was speculative and nonmathematical,

[ [ [ ]
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the Archimedean development was similar to the geometry of Euclid. From
a set of simple postulates, Archimedes deduced deep conclusions, estab-
lishing the close relationship between mathematics and mechanics that was
to become so significant for both physics and mathematics.

On Floating Bodies

Archimedes can well be called the father of mathematical physics, not
only for his On the Equilibriums of Planes, but also for another treatise,
in two books, On Floating Bodies. Again, beginning from a simple
postulate about the nature of fluid pressure, he obtained some very deep
results. Among the earlier propositions are two that formulate the well-
known Archimedean hydrostatic principle:

Any solid lighter than a fluid will, if placed in a fluid, be so far immersed
that the weight of the solid will be equal to the weight of the fluid dis-
placed (L.5).

A solid heavier than a fluid will, if placed in it, descend to the bottom of
the fluid, and the solid will, when weighed in the fluid, be lighter than its
true weight by the weight of the fluid displaced (1.7).

The mathematical derivation of this principle of buoyancy is
undoubtedly the discovery that led the absentminded Archimedes to
jump from his bath and run home naked, shouting, “Eureka!” (“I have
found it!”). It is also possible, although less likely, that the principle
aided him in checking on the honesty of a goldsmith suspected of
fraudulently substituting some silver for gold in a crown (or, more likely,
a wreath) made for King Hieron II of Syracuse. Such fraud could
easily have been detected by the simpler method of comparing the
densities of gold, silver, and the crown by measuring displacements
of water when equal weights of each are in turn immersed in a vessel
full of water.

The Archimedean treatise On Floating Bodies contains much more
than the simple fluid properties so far described. Virtually the whole of
Book II, for example, is concerned with the position of equilibrium
of segments of paraboloids when placed in fluids, showing that the position
of rest depends on the relative specific gravities of the solid paraboloid and
the fluid in which it floats. Typical of these is Proposition 4:

Given a right segment of a paraboloid of revolution whose axis a is
greater than ip (where p is the parameter), and whose specific gravity is
less than that of a fluid but bears to it a ratio not less than (¢ ip)’ : @, if
the segment of the paraboloid be placed in the fluid with its axis at any
inclination to the vertical, but so that its base does not touch the surface
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of the fluid, it will not remain in that position but will return to the position
in which its axis is vertical.

Still more complicated cases, with long proofs, follow. It was probably
through his Alexandrian contacts that Archimedes became interested in
the technical problem of raising water from the Nile River to irrigate the
arable portions of the valley; for this purpose he invented a device, now
known as the Archimedean screw, made up of helical pipes or tubes
fastened to an inclined axle with a handle by which it was rotated. He is
supposed to have boasted that if he were given a lever long enough and a
fulcrum on which to rest it, he could move the earth.

The Sand-Reckoner

A clear distinction was made in Greek antiquity not only between theory
and application, but also between routine mechanical computation and
the theoretical study of the properties of number. The former, for which
Greek scholars are said to have shown scorn, was given the name logistic,
while arithmetic, an honorable philosophical pursuit, was understood to be
concerned solely with the latter.

Archimedes lived at about the time that the transition from Attic to
Ionian numeration was effected, and this may account for the fact that he
stooped to make a contribution to logistic. In a work titled the Psammites
(Sand-Reckoner), Archimedes boasted that he could write down a number
greater than the number of grains of sand required to fill the universe. In
doing so, he referred to one of the boldest astronomical speculations of
antiquity—that in which Aristarchus of Samos, toward the middle of the
third century BCE, proposed putting the earth in motion about the sun.
Aristarchus asserted that a lack of parallax can be attributed to the enor-
mity of the distance of the fixed stars from the earth. Now, to make good
his boast, Archimedes had to provide against all possible dimensions for
the universe, so he showed that he could enumerate the grains of sand
needed to fill even Aristarchus’s immense world.

For the universe of Aristarchus, which is to the ordinary universe as
the latter is to the earth, Archimedes showed that not more than 10%
grains of sand are required. Archimedes did not use this notation but
instead described the number as ten million units of the eighth order of
numbers (where the numbers of second order begin with a myriad-
myriads and the numbers of eighth order begin with the seventh power of
a myriad-myriads). To show that he could express numbers ever so much
larger even than this, Archimedes extended his terminology to call
all numbers of order less than a myriad-myriads those of the first period, the
second period consequently beginning with the number (10°%)'*, one that
would contain 800,000,000 ciphers. That is, his system would go up to a
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number that would be written as 1 followed by some eighty thousand
million millions of ciphers. It was in connection with this work on huge
numbers that Archimedes mentioned, all too incidentally, a principle that
later led to the invention of logarithms—the addition of “orders” of
numbers (the equivalent of their exponents when the base is 100,000,000)
corresponds to finding the product of the numbers.

Measurement of the Circle

In his approximate evaluation of the ratio of the circumference to dia-
meter for a circle, Archimedes again showed his skill in computation.
Beginning with the inscribed regular hexagon, he computed the peri-
meters of polygons obtained by successively doubling the number of
sides until one reached ninety-six sides. His iterative procedure for these
polygons was related to what is sometimes called the Archimedean
algorithm. One sets out the sequence P, p., Pa., Paus Pans Pan - - . , Where P,
and p, are the perimeters of the circumscribed and inscribed regular
polygons of n sides. Beginning with the third term, one calculates any
term from the two preceding terms by taking alternately their harmonic
and geometric means. That is, P,, = 2p,P,/ (p, + P.), p», = \/P.P>,, and so
on. If one prefers, one can use instead the sequence a,, A,, ., Az ..,
where a, and A, are the areas of the inscribed and circumscribed regular
polygons of n sides. The third and successive terms are calculated by taking
alternately the geometric and harmonic means, so that a,, = \/a,A,,
A,, =2A,a,,/(A, +a,,), and so on. His method for computing square
roots, in finding the perimeter of the circumscribed hexagon, and for the
geometric means was similar to that used by the Babylonians. The result of
the Archimedean computation on the circle was an approximation to the
value of 7 expressed by the inequality 37 <7 < 3%, a better estimate than
those of the Egyptians and the Babylonians. (It should be borne in mind that
neither Archimedes nor any other Greek mathematician ever used our
notation 7 for the ratio of circumference to diameter in a circle.) This result
was given in Proposition 3 of the treatise on the Measurement of the Circle,
one of the most popular of the Archimedean works during the medieval
period.

On Spirals

Archimedes, like his predecessors, was attracted by the three famous
problems of geometry, and the well-known Archimedean spiral provided
solutions to two of these (but not, of course, with straightedge and
compass alone). The spiral is defined as the plane locus of a point that
when starting from the end point of a ray or half line, moves uniformly
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along this ray, while the ray in turn rotates uniformly about its end point.
In polar coordinates, the equation of the spiral is r = af. Given such a
spiral, the trisection of an angle is easily accomplished. The angle is so
placed that the vertex and the initial side of the angle coincide with
the initial point O of the spiral and the initial position OA of the rotating
line. Segment OP, where P is the intersection of the terminal side of
the angle with the spiral, is then trisected at points R and S (Fig. 6.2),
and circles are drawn with O as center and OR and OS as radii. If these
circles intersect the spiral in points U and V, lines OH and OV will trisect
the angle AOP.

Greek mathematics has sometimes been described as essentially static,
with little regard for the notion of variability, but Archimedes, in his
study of the spiral, apparently found the tangent to a curve through
kinematic considerations akin to the differential calculus. Thinking of a
point on the spiral r = af as subjected to a double motion—a uniform
radial motion away from the origin of coordinates and a circular motion
about the origin—he seems to have found (through the parallelogram of
velocities) the direction of motion (hence of the tangent to the curve) by
noting the resultant of the two component motions. This appears to be the
first instance in which a tangent was found to a curve other than a circle.

Archimedes’ study of the spiral, a curve that he ascribed to his friend
Conon of Alexandria, was part of the Greek search for solutions of the
three famous problems. The curve lends itself so readily to angle mul-
tisections that it may well have been devised by Conon for this purpose.
As in the case of the quadratrix, however, it can also serve to square the
circle, as Archimedes showed. At point P let the tangent to the spiral
OPR be drawn and let this tangent intersect in point Q the line through O
that is perpendicular to OP. Then, as Archimedes showed, the straight-
line segment OQ (known as the polar subtangent for point P) is equal
in length to the circular arc PS of the circle with center O and radius OP
(Fig. 6.3) that is intercepted between the initial line (polar axis) and line
OP (radius vector). This theorem, proved by Archimedes through a typical
double reductio ad absurdum demonstration, can be verified by a student
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of the calculus who recalls that tan 1) = r/r, where r = f(0) is the polar
equation of a curve, ¥ is the derivative of r with respect to 6, and ) is the
angle between the radius vector at a point P and the tangent line to the
curve at the point P. A large part of the work of Archimedes is such that it
would now be included in a calculus course; this is particularly true of the
work On Spirals. If point P on the spiral is chosen as the intersection of
the spiral with the 90° line in polar coordinates, the polar subtangent OQ
will be precisely equal to a quarter of the circumference of the circle of
radius OP. Hence, the entire circumference is easily constructed as four
times the segment OQ, and by Archimedes’ theorem, a triangle equal in
area to the area of the circle is found. A simple geometric transformation
will then produce a square in place of the triangle, and the quadrature of
the circle is effected.

Quadrature of the Parabola

The work On Spirals was much admired but little read, for it was gen-
erally regarded as the most difficult of all Archimedean works. Of the
treatises concerned chiefly with “the method of exhaustion,” the most
popular was Quadrature of the Parabola. The conic sections had been
known for almost a century when Archimedes wrote it, yet no progress
had been made in finding their areas. It took the greatest mathematician
of antiquity to square a conic section—a segment of the parabola—
which he accomplished in Proposition 17 of the work in which the
quadrature was the goal. The proof by the standard Eudoxean method of
exhaustion is long and involved, but Archimedes rigorously proved that
the area K of a parabolic segment APBQC (Fig. 6.4) is four-thirds the
area of a triangle 7 having the same base and equal height. In the suc-
ceeding (and last) seven propositions, Archimedes gave a second but
different proof of the same theorem. He first showed that the area of
the largest inscribed triangle, ABC, on the base AC is four times the sum
of the corresponding inscribed triangles on each of the lines AB and BC
as base. If you continue the process suggested by this relationship, it
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becomes clear that the area K of the parabolic segment ABC is given by
the sum of the infinite series T+7T/4+T /4 + --- +T /4" + ---,
which, of course, is 7. Archimedes did not refer to the sum of the
infinite series, for infinite processes were frowned on in his day; instead,
he proved by a double reductio ad absurdum that K can be neither more
nor less than $7T. (Archimedes, like his predecessors, did not use the
name “parabola” but the word “orthotome,” or “section of a right cone.”)

In the preamble to Quadrature of the Parabola, we find the assump-
tion or lemma that is usually known today as the axiom of Archimedes:
“That the excess by which the greater of two unequal areas exceeds
the less can, by being added to itself, be made to exceed any given
finite area.” This axiom in effect rules out the fixed infinitesimal or
indivisible that had been much discussed in Plato’s day. Archimedes
freely admitted that

the earlier geometers have also used this lemma, for it is by the use of this
same lemma that they have shown that circles are to one another in the
duplicate ratio of their diameters, and that spheres are to one another in
the triplicate ratio of their diameters, and further that every pyramid is one
third part of the prism which has the same base with the pyramid and
equal height; also, that every cone is one third part of the cylinder having
the same base as the cone and equal height they proved by assuming a
certain lemma similar to that aforesaid.

The “earlier geometers” mentioned here presumably included Eudoxus
and his successors.

On Conoids and Spheroids

Archimedes apparently was unable to find the area of a general segment
of an ellipse or a hyperbola. Finding the area of a parabolic segment by
modern integration involves nothing worse than polynomials, but the
integrals arising in the quadrature of a segment of an ellipse or a
hyperbola (as well as the arcs of these curves or the parabola) require
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transcendental functions. Nevertheless, in his important treatise On
Conoids and Spheroids, Archimedes found the area of the entire ellipse:
“The areas of ellipses are as the rectangles under their axes” (Proposi-
tion 6). This is, of course, the same as saying that the area of x*/a> +
y?/b* =1 1is mab or that the area of an ellipse is the same as the area of a
circle whose radius is the geometric mean of the semiaxes of the ellipse.
Moreover, in the same treatise Archimedes showed how to find the
volumes of segments cut from an ellipsoid or a paraboloid or a hyper-
boloid (of two sheets) of revolution about the principal axis. The process
that he used is so nearly the same as that in modern integration that we
shall describe it for one case. Let ABC be a paraboloidal segment (or
paraboloidal “conoid”) and let its axis be CD (Fig. 6.5); about the solid
circumscribe the circular cylinder ABFE, also having CD as axis. Divide
the axis into n equal parts of length £, and through the points of division
pass planes parallel to the base. On the circular sections that are cut from
the paraboloid by these planes, construct inscribed and circumscribed
cylindrical frusta, as shown in the figure. It is then easy to establish,
through the equation of the parabola and the sum of an arithmetic pro-
gression, the following proportions and inequalities:

Cylinder ABEF n*h - n’h
Inscribed figure ~ h+2h+3h+ - +(n—1)h "~ in’h’
Cylinder ABEF n*h n*h

< .
Circumscribed figure h+2h+3h+ - +nh in'h

Archimedes had previously shown that the difference in volume
between the circumscribed and inscribed figures was equal to the volume
of the lowest slice of the circumscribed cylinder; by increasing the
number n of subdivisions on the axis, thereby making each slice thinner,
the difference between the circumscribed and inscribed figures can be
made less than any preassigned magnitude. Hence, the inequalities lead to
the necessary conclusion that the volume of the cylinder is twice the
volume of the conoidal segment. This work differs from the modern
procedure in integral calculus chiefly in the lack of the concept of limit of

FIG. 6.5
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a function—a concept that was so near at hand and yet was never for-
mulated by the ancients, not even by Archimedes, the man who came
closest to achieving it.

On the Sphere and Cylinder

Archimedes composed many marvelous treatises; his successors were
inclined to admire most the one On Spirals. The author himself seems to
have been partial to another, On the Sphere and Cylinder. Archimedes
requested that on his tomb be carved a representation of a sphere
inscribed in a right circular cylinder the height of which is equal to its
diameter, for he had discovered and proved that the ratio of the volumes
of cylinder and sphere is the same as the ratio of the areas—that is,
3 to 2. This property, which Archimedes discovered subsequent to his
Quadrature of the Parabola, remained unknown, he said, to geometers
before him. It had once been thought that the Egyptians knew how to
find the area of a hemisphere, but Archimedes now appears to be the first
one to have known and proved that the area of a sphere is just four times
the area of a great circle of the sphere. Moreover, Archimedes showed
that “the surface of any segment of a sphere is equal to a circle whose
radius is equal to the straight line drawn from the vertex of the segment
to the circumference of the circle which is the base of the segment.”
This, of course, is equivalent to the more familiar statement that
the surface area of any segment of a sphere is equal to that of the curved
surface of a cylinder whose radius is the same as that of the sphere and
whose height is the same as that of the segment. That is, the surface area
of the segment does not depend on the distance from the center of the
sphere, but only on the altitude (or thickness) of the segment. The crucial
theorem on the surface of the sphere appears in Proposition 33, fol-
lowing a long series of preliminary theorems, including one that is
equivalent to an integration of the sine function:

If a polygon be inscribed in a segment of a circle LAL’ so that all its sides
excluding the base are equal and their number even, as LK...A...K'L,
A being the middle point of the segment; and if the lines BB', CC,...
parallel to the base LL" and joining pairs of angular points be drawn, then
(BB'+CC' +---+LM):AM = A'B: BA, where M is the middle point of
LL" and AA’ is the diameter through M [Fig. 6.6].

This is the geometric equivalent of the trigonometric equation

.0 .20 .n—1 1 . n60 1—cosb 0
sin— + sin— + -+ + sin 0+ —sin— = ———cot—
n n n 2 n 2 2n
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From this theorem, it is easy to derive the modern expression
fgp sinxdx = 1 — cos ¢ by multiplying both sides of the previous equation
by 0/n and taking limits as n increases indefinitely. The left-hand side
becomes

lim Zsin(x,-Axi),
i1

n— oo

where x,=if/nfori=1,2,...n, Ax;=0/nfori=1,2,...n 1, and
Ax, = 0/2n. The right-hand side becomes

0 0
(I —cosf) lim —cot— =1 —cosb.
n—w 2n  2n

The equivalent of the special case fg sinxdx =1 — cosm =2 had been
given by Archimedes in the preceding proposition.

An interesting light on Greek geometric algebra is cast by a problem in
Book II of On the Sphere and Cylinder. In Proposition 2, Archimedes
justified his formula for the volume of a segment of a given sphere; in
Proposition 3, he showed that to cut a given sphere by a plane so that
the surfaces of the segments are in a given ratio, one simply passes a
plane perpendicular to a diameter through a point on the diameter that
divides the diameter into two segments having the desired ratio. He then
showed in Proposition 4 how to cut a given sphere so that the volumes of
the two segments are in a given ratio—a far more difficult problem. In
modern notation, Archimedes was led to the equation

4a>  (3a—x)(m+n)

X2 ma ’
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where m:n is the ratio of the segments. This is a cubic equation, and
Archimedes attacked its solution as had his predecessors in solving the
Delian problem—through intersecting conics. Interestingly, the Greek
approach to the cubic was quite different from that to the quadratic
equation. By analogy with the “application of areas” in the latter case,
we would anticipate an “application of volumes,” but this was not
adopted. Through substitutions, Archimedes reduced his cubic equation
to the form x*(c — x) = db* and promised to give separately a complete
analysis of this cubic with respect to the number of positive roots. This
analysis had apparently been lost for many centuries when Eutocius,
an important commentator of the early sixth century, found a fragment
that seems to contain the authentic Archimedean analysis. The solution
was carried out by means of the intersection of the parabola cx* = b%y
and the hyperbola (¢ — x)y = cd. Going further, he found a condition on
the coefficients that determines the number of real roots satisfying the
given requirements—a condition equivalent to finding the discriminant,
27b*d — 4c¢*, of the cubic equation b*d = x*(c — x). Inasmuch as all cubic
equations can be transformed to the Archimedean type, we have here the
essence of a complete analysis of the general cubic.

Book of Lemmas

Most of the Archimedean treatises that we have described are a part of
advanced mathematics, but the great Syracusan was not above proposing
elementary problems. In his Book of Lemmas, for example, we find a
study of the so-called arbelos, or “shoemaker’s knife.” The shoemaker’s
knife is the region bounded by the three semicircles tangent in pairs in
Fig. 6.7, the area in question being that which lies inside the largest
semicircle and outside the two smallest. Archimedes showed in Propo-
sition 4 that if CD is perpendicular to AB, the area of the circle with CD
as diameter is equal to the area of the arbelos. In the next proposition, it
is shown that the two circles inscribed within the two regions into which
CD divides the shoemaker’s knife are equal.

FIG. 6.7
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It is in the Book of Lemmas that we also find (as Proposition 8) the
well-known Archimedean trisection of the angle. Let ABC be the angle
to be trisected (Fig. 6.8). Then, with B as center, draw a circle of any
radius intersecting AB in P and BC in Q, with BC extended in R. Then,
draw a line STP such that S lies on COBR extended and T lies on the
circle and such that ST=BQ =BP =BT. It is then readily shown,
because triangles STB and TBP are isosceles, that angle BST is precisely
a third of angle QBP, the angle that was to have been trisected. Archi-
medes and his contemporaries were, of course, aware that this is not a
canonical trisection in the Platonic sense, for it involves what they called
a neusis—that is, an insertion of a given length, in this case ST = BQ,
between two figures, here the line QR extended, and the circle.

The Book of Lemmas has not survived in the original Greek, but
through Arabic translation that later was turned into Latin. (Hence, it is
often cited by its Latin title of Liber assumptorum.) In fact, the work as
it has come down to us cannot be genuinely Archimedean, for his name
is quoted several times within the text. Yet, even if the treatise is
nothing more than a collection of miscellaneous theorems that were
attributed by the Arabs to Archimedes, the work probably is sub-
stantially authentic. There is also doubt about the authenticity of the
“cattle-problem,” which is a challenge to mathematicians to solve a set
of indeterminate simultaneous equations in eight unknown quantities.
The problem incidentally provides a first example of what later was to
be known as a “Pell equation.”

Semiregular Solids and Trigonometry

That quite a number of Archimedean works have been lost is clear from
many references. We learn (from Pappus) that Archimedes discovered
all of the thirteen possible so-called semiregular solids, or convex
polyhedrons whose faces are regular polygons but not all of the same
type. Arabic scholars inform us that the familiar area formula for a tri-
angle in terms of its three sides, usually known as Heron’s formula—
K = \/s(s —a)(s — b)(s — c), where s is the semiperimeter—was known
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FIG. 6.9

to Archimedes several centuries before Heron lived. Arabic scholars also
attribute to Archimedes the “theorem on the broken chord”—if AB and BC
make up any broken chord in a circle (with AB # BC) and if M is the
midpoint of the arc ABC and F the foot of the perpendicular from M to the
longer chord, F will be the midpoint of the broken chord ABC (Fig. 6.9).
Al-Biruni gave several proofs of the theorem, one of which is carried out by
drawing in the dotted lines in the figure, making FC' = FC and proving
that AMBC' =~ AMBA. Hence, BC' = BA, and it therefore follows that
C'F=AB+ BF =FC. We do not know whether Archimedes saw any
trigonometric significance in the theorem, but it has been suggested that it
served for him as a formula analogous to our_sin(x —y) = sinxcos
y —cosxsiny. To show the equivalence, we let MC =2x and BM = 2y.

Then, AB = 2x — 2y. Now, the chords correspondlng to these three arcs
are, respectively, MC =2sinx, BM =2siny, and AB=2sin(x —y).

Moreover, the projections of MC and MB on BC are FC = 2 sinx cos y and
FB=2sinycosx. If, finally, we write the broken-chord theorem in the
form AB = FC — FB, and if for these three chords we substitute their tri-
gonometric equivalents, the formula for sin (x — y) results. Other trigono-
metric identities can, of course, be derived from the same broken-chord
theorem, indicating that Archimedes may have found it a useful tool in his
astronomical calculations.

The Method

Unlike the Elements of Euclid, which have survived in many Greek and
Arabic manuscripts, the treatises of Archimedes have reached us through
a slender thread. Almost all copies are from a single Greek original that
was in existence in the early sixteenth century and itself was copied from
an original of about the ninth or tenth century. The Elements of Euclid
has been familiar to mathematicians virtually without interruption since
its composition, but Archimedean treatises have had a more checkered
career. There have been times when few or even none of Archimedes’
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works were known. In the days of Eutocius, a first-rate scholar and
skillful commentator of the sixth century, only three of the many
Archimedean works were generally known—On the Equilibrium of
Planes, the incomplete Measurement of a Circle, and the admirable On
the Sphere and Cylinder. Under the circumstances, it is a wonder that such
a large proportion of what Archimedes wrote has survived to this day.
Among the amazing aspects of the provenance of Archimedean works is
the discovery within the twentieth century of one of the most important
treatises—one that Archimedes simply called The Method and that had
been lost since the early centuries of our era until its rediscovery in 1906.

The Method of Archimedes is of particular significance because it
discloses for us a facet of Archimedes’ thought that is not found else-
where. His other treatises are gems of logical precision, with little hint of
the preliminary analysis that may have led to the definitive formulations.
So thoroughly without motivation did his proofs appear to some writers
of the seventeenth century that they suspected Archimedes of having
concealed his method of approach in order that his work might be
admired more. How unwarranted such an ungenerous estimate of
the great Syracusan was became clear in 1906 with the discovery of the
manuscript containing The Method. Here Archimedes had published a
description of the preliminary “mechanical” investigations that had led
to many of his chief mathematical discoveries. He thought that his
“method” in these cases lacked rigor, because it assumed an area, for
example, to be a sum of line segments.

The Method, as we have it, contains most of the text of some fifteen
propositions sent in the form of a letter to Eratosthenes, a mathematician
and the chief of the Alexandrian Library. The author opened by saying
that it is easier to supply a proof of a theorem if we first have some
knowledge of what is involved; as an example, he cites the proofs of
Eudoxus on the cone and the pyramid, which had been facilitated by the
preliminary assertions, without proof, made by Democritus. Then,
Archimedes announced that he himself had a “mechanical” approach
that paved the way for some of his proofs. The very first theorem that he
discovered by this approach was the one on the area of a parabolic
segment; in Proposition 1 of The Method, the author describes how he
arrived at this theorem by balancing lines as one balances weights in
mechanics. He thought of the areas of the parabolic segment ABC and
the triangle AFC (where FC is tangent to the parabola at C) as the
totality of a set of lines parallel to the diameter OB of the parabola, such
as OP (Fig. 6.10) for the parabola and OM for the triangle. If one were to
place at H (where HK = KC) a line segment equal to OP, this would just
balance the line OM where it now is, K being the fulcrum. (This can be
shown through the law of the lever and the property of the parabola.)
Hence, the area of the parabola, if placed with its center of gravity at H,
will just balance the triangle, whose center of gravity is along KC and a
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third of the way from K to C. From this, one easily sees that the area of
the parabolic segment is one-third the area of triangle AFC, or four-
thirds the area of the inscribed triangle ABC.

Archimedes’ favorite theorem, the one represented on his tomb, was
also suggested to him by his mechanical method. It is described in
Proposition 2 of The Method:

Any segment of a sphere has to the cone with the same base and height
the ratio which the sum of the radius of the sphere and the height of the
complementary segment has to the height of the complementary segment.

The theorem readily follows from a beautiful balancing property that
Archimedes discovered (and that can be easily verified in terms of
modern formulas). Let AQDCP be a cross-section of a sphere with center
0 and diameter AC (Fig. 6.11) and let AUV be a plane section of a right
circular cone with axis AC and UV as diameter of the base. Let IJUV be a
right circular cylinder with axis AC and with UV = IJ as diameter and let
AH =AC. If a plane is passed through any point S on the axis AC and
perpendicular to AC, the plane will cut the cone, the sphere, and the
cylinder in circles of radii r, = SR, r, = SP, and r; = SN, respectively. If
we call the areas of these circles A, A,, and A,, then, Archimedes found, A,
and A,, when placed with their centers at H, will just balance A, where it
now is, with A as the fulcrum. Hence, if we call the volumes of the sphere,
the cone, and the cylinder V,, V,, and V,, it follows that V, + V, =1V,
and because V, = 3 V,, the sphere must be ¢ V,. Because the volume V; of the
cylinder is known (from Democritus and Eudoxus), the volume of
the sphere is also known—in modern notation, V = i7r°. By applying the
same balancing technique to the spherical segment with base diameter BD,
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to the cone with base diameter EF, and to the cylinder with base diameter
KL, the volume of the spherical segment is found in the same manner as for
the whole sphere.

The method of equilibrium of circular sections about a vertex as ful-
crum was applied by Archimedes to discover the volumes of the seg-
ments of three solids of revolution—the ellipsoid, the paraboloid, and the
hyperboloid, as well as the centers of gravity of the paraboloid (conoid),
of any hemisphere, and of a semicircle. The Method closes with the
determination of volumes of two solids that are favorites in modern
calculus books—a wedge cut from a right circular cylinder by two
planes (as in Fig. 6.12) and the volume common to two equal right
circular cylinders intersecting at right angles.

The work that contained such marvelous results of more than 2,000
years ago was recovered almost by accident in 1906. The indefatigable
Danish scholar J. L. Heiberg had read that at Constantinople, there was a
palimpsest of mathematical content. (A palimpsest is a parchment the
original writing on which has been only imperfectly washed off and
replaced with a new and different text.) Close inspection showed him
that the original manuscript had contained something by Archimedes,
and through photographs, he was able to read most of the Archimedean
text. The manuscript consisted of 185 leaves, mostly of parchment but a
few of paper, with the Archimedean text copied in a tenth-century hand.
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An attempt—fortunately, none too successful—had been made to expunge
this text in order to use the parchment for a Euchologion (a collection of
prayers and liturgies used in the Eastern Orthodox Church) written in
about the thirteenth century. The mathematical text contained On the
Sphere and Cylinder, most of the work On Spirals, part of Measurement
of the Circle and On the Equilibrium of Planes, and On Floating Bodies,
all of which have been preserved in other manuscripts; most important of
all, the palimpsest gives us the only surviving copy of The Method.

The palimpsest, lost after World War I, once again came to public
notice in the 1990s when it was put up for sale at auction. In 1999, the
anonymous purchaser deposited it at the Walters Art Gallery in Balti-
more, Maryland, and proceeded to fund intensive study of the palimpsest
by a group of specialists brought from the areas of conservation, clas-
sical and medieval studies, and imaging techniques. They have been able
to capture most of the partially destroyed Archimedean text, a task made
difficult not only by the thirteenth-century reuse of the parchment but by
an additional twentieth-century forgery that superimposed religious
images over the text. Twentieth-century technology that was used to
assist in the revelation of the original text included spectral imaging
devices from the Rochester Institute of Technology and the Johns
Hopkins University, among others, and even a synchrotron from the
Stanford Linear Accelerator Center.

In a sense, the palimpsest is symbolic of the contributions of the
Middle Ages, as well as the Modern Age of Technology. Intense pre-
occupation with religious concerns very nearly wiped out one of the
most important works of the greatest mathematician of antiquity, yet in
the end, it was medieval scholarship that inadvertently preserved this and
much besides, which might otherwise have been lost. Similarly, modern
technology, despite its potential for material destruction, has enabled us
to glimpse in detail what it is that was preserved.
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Apollonius of Perge

He who understands Archimedes and Apollonius will admire less the
achievements of the foremost men of later times.
Leibniz

Works and Tradition

During the Hellenistic period, Alexandria remained the mathematical
focus of the Western world. Apollonius was born in Perge in Pamphylia
(southern Asia Minor), but he may have been educated in Alexandria,
and he seems to have spent some time teaching there. For a while, he
was in Pergamum, where there was a library second only to that in
Alexandria. Little is known about his life, and we do not know the
precise dates of his birth and death: the years 262 to 190 BcE have been
suggested.

His most famous and influential work and only one of two that sur-
vives is the treatise on Conics. The other, the Cutting-off of a Ratio, was
known only in Arabic until 1706, when Edmund Halley published a
Latin translation. It dealt with the various cases of a general problem—
given two straight lines and a point on each, draw through a third given
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point a straight line that cuts off on the given lines segments (measured
from the fixed points on them, respectively) that are in a given ratio. This
problem is equivalent to solving a quadratic equation of the type
ax — x> = bc, that is, of applying to a line segment a rectangle equal to a
rectangle and falling short by a square.

What we know of his other, lost, works is based largely on the sum-
maries of the fourth-century commentator Pappus. Apollonius touched
on several themes that we discussed in the preceding chapter. For
example, he developed a scheme for expressing large numbers. The
numerical scheme of Apollonius was probably the one of which part is
described in the surviving last portion of Book II of the Mathematical
Collection of Pappus.

In a lost work titled Quick Delivery, Apollonius seems to have taught
speedy methods of calculation. In it, the author is said to have calculated
a closer approximation to 7 than that given by Archimedes—probably
the value we know as 3.1416. We have the titles of many lost works. In
some cases, we know what the treatise was about, for Pappus gave brief
descriptions of them. Six of the works of Apollonius were included,
together with a couple of Euclid’s more advanced treatises (now lost), in
a collection known as the “Treasury of Analysis.” Pappus described this
as a special body of doctrine for those who, after going through the usual
elements, wish to be capable of solving problems involving curves.

Lost Works

When in the seventeenth century the game of reconstructing lost geo-
metric books was at its height, the treatises of Apollonius were among
the favorites. From restorations of the one called Plane Loci, for example,
we infer that the following were two of the loci considered: (1) the locus
of points the difference of the squares of whose distances from two fixed
points is constant is a straight line perpendicular to the line joining
the points; (2) the locus of points the ratio of whose distances from two
fixed points is constant (and not equal to one) is a circle. The latter locus
is, in fact, now known as the “Circle of Apollonius,” but this is a mis-
nomer because it had been known to Aristotle, who used it to give a
mathematical justification of the semicircular form of the rainbow.

In Cutting-off of an Area, the problem is similar to that considered in
the Cutting-off of a Ratio, except that the intercepted segments are
required to contain a given rectangle, rather than being in a given ratio.
This problem leads to a quadratic of the form ax + x*> = bc, so that one
has to apply to a segment a rectangle equal to a rectangle and exceeding
by a square.

The Apollonian treatise On Determinate Section dealt with what might be
called an analytic geometry of one dimension. It considered the following
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general problem, using the typical Greek algebraic analysis in geometric
form: Given four points A, B, C, D on a straight line, determine a fifth
point P on it such that the rectangle on AP and CP is in a given ratio
to the rectangle on BP and DP. Here, too, the problem reduces easily to
the solution of a quadratic, and, as in other cases, Apollonius treated the
question exhaustively, including the limits of possibility and the number
of solutions.

The treatise on Tangencies is of a different sort from the three pre-
viously mentioned works, for, as Pappus describes it, we see the problem
familiarly known today as the “Problem of Apollonius.” Given three
things, each of which may be a point, a line, or a circle, draw a circle that
is tangent to each of the three given things (where tangency to a point is
to be understood to mean that the circle passes through the point). This
problem involves ten cases, from the two easiest (in which the three
things are three points or three lines) to the most difficult of all (to draw
a circle tangent to three circles). We do not have the solutions of
Apollonius, but they can be reconstructed on the basis of information
from Pappus. Nevertheless, scholars of the sixteenth and seventeenth
centuries generally were under the impression that Apollonius had not
solved the last case; hence, they regarded this problem as a challenge to
their abilities. Newton, in his Arithmetica universalis, was among those
who gave a solution, using straightedge and compass alone.

Apollonius’s treatise on Vergings considered the class of neusis
problems that can be solved by “plane” methods—that is, by the use
of a compass and a straightedge only. (The Archimedean trisection, of
course, is not such a problem, for in modern times it has been proved that
the general angle cannot be trisected by “plane” methods.) According to
Pappus, one of the problems dealt with in Vergings is the insertion
within a given circle of a chord of given length verging to a given point.

There were in antiquity allusions to still other works by Apollonius,
including one on Comparison of the Dodecahedron and the Icosahedron.
In this, the author gave a proof of the theorem (known perhaps to
Aristaeus) that the plane pentagonal faces of a dodecahedron are
the same distance from the center of the circumscribing sphere as are the
plane triangular faces of an icosahedron inscribed in the same sphere.
The main result in the spurious Book XIV of the Elements follows
immediately from the Apollonian proposition.

Cycles and Epicycles

Apollonius was also a celebrated astronomer. Whereas Eudoxus had used
concentric spheres to represent the motions of the planets, according to
Ptolemy, Apollonius proposed instead two alternative systems, one made
up of epicyclic motions and the other involving eccentric motions. In the
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FIG. 7.1

first scheme, a planet P was assumed to move uniformly about a small
circle (epicycle), the center C of which in turn moved uniformly along the
circumference of a larger circle (deferent) with its center at the earth E
(Fig. 7.1).

In the eccentric scheme, the planet P moves uniformly along the
circumference of a large circle, the center C' of which in turn moves
uniformly in a small circle with its center at E. If PC = C'E, the two
geometric schemes will be equivalent, as Apollonius evidently knew.
Although the theory of homocentric spheres had become, through the
work of Aristotle, the favorite astronomical scheme of those satisfied by
a gross representation of the approximate motions, the theory of cycles
and epicycles, or of eccentrics, became, through the work of Ptolemy,
the choice of mathematical astronomers who wanted refinement of detail
and predictive precision. For some 1,800 years, the two schemes—the
one of Eudoxus and the other of Apollonius—were friendly rivals vying
for the favor of scholars.

The Conics

Of the chefs d’oeuvre of Apollonius, the Conics, only half—the first
four of the original eight books—remains extant in Greek. Fortunately,
in the ninth century Thabit ibn Qurra translated the next three books into
Arabic, and this version has survived. In 1710, Halley provided a Latin
translation of the seven books, and editions in many languages have
appeared since then.

The conic sections had been known for about a century and a half when
Apollonius composed his celebrated treatise on these curves. At least
twice in the interval, general surveys had been written—by Aristacus and
by Euclid—but just as Euclid’s Elements had displaced earlier elementary
textbooks, so on the more advanced level of the conic sections the Conics
of Apollonius superseded all rivals in its field, including the Conics of
Euclid.

Before the time of Apollonius, the ellipse, the parabola, and the
hyperbola were derived as sections of three distinctly different types of
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right circular cones, according as the vertex angle was acute, right, or
obtuse. Apollonius, apparently for the first time, systematically showed
that it is not necessary to take sections perpendicular to an element of the
cone and that from a single cone one can obtain all three varieties of
conic sections simply by varying the inclination of the cutting plane.
This was an important step in linking the three types of curve. A second
important generalization was made when Apollonius demonstrated that
the cone need not be a right cone—that is, one whose axis is perpen-
dicular to the circular base—but can equally well be an oblique or
scalene circular cone. If Eutocius, in commenting on the Conics, was
well informed, we can infer that Apollonius was the first geometer to
show that the properties of the curves are not different according as they
are cut from oblique cones or from right cones. Finally, Apollonius
brought the ancient curves closer to the modern point of view by
replacing the single-napped cone (somewhat like a modern ice-cream
cone) by a double-napped cone (resembling two oppositely oriented,
indefinitely long ice-cream cones placed so that the vertices coincide and
the axes are in a straight line). Apollonius gave, in fact, the same defi-
nition of a circular cone as that used today:

If a straight line indefinite in length and passing always through a fixed
point be made to move around the circumference of a circle which is not
in the same plane with the point so as to pass successively through every
point of that circumference, the moving straight line will trace out the
surface of a double cone.

This change made the hyperbola the double-branched curve that is
familiar to us today. Geometers often referred to the “two hyperbolas,”
rather than to the “two branches” of a single hyperbola, but in either
case, the duality of the curve was recognized.

Concepts are more important in the history of mathematics than is
terminology, but there is more than ordinary significance in a change of
name for the conic sections that was due to Apollonius. For about a
century and a half, the curves had had no more distinctive appellations
than banal descriptions of the manner in which the curves had been
discovered—sections of an acute-angled cone (oxytome), sections of a
right-angled cone (orthotome), and sections of an obtuse-angled cone
(amblytome). Archimedes had continued using these names (although he
is reported to have also used the word “parabola” as a synonym for a
section of a right-angled cone). It was Apollonius (possibly following
up a suggestion of Archimedes) who introduced the names “ellipse” and
“hyperbola” in connection with these curves. The words “ellipse,”
“parabola,” and “hyperbola” were not newly coined for the occasion;
they were adapted from an earlier use, perhaps by the Pythagoreans, in
the solution of quadratic equations through the application of areas.
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“Ellipsis” (meaning a deficiency) had been used when a rectangle of a
given area was applied to a given line segment and fell short by a square
(or other specified figure), and the word ‘“hyperbola” (a throwing
beyond) had been adopted when the area exceeded the line segment. The
word “parabola” (a placing beside, or comparison) had indicated neither
excess nor deficiency. Apollonius now applied these words in a new
context as names for the conic sections. The familiar modern equation of
the parabola with vertex at the origin is y*> = Ix (where [ is the “latus
rectum,” or parameter, now often represented by 2p, or occasionally by
4p). That is, the parabola has the property that no matter what point on
the curve one chooses, the square on the ordinate is precisely equal to
the rectangle on the abscissa x and the parameter /. The equations of the
ellipse and the hyperbola, similarly referred to a vertex as origin, are
(xFa)’/a* =y*/b* =1, or y* = Ix ¥ b>x*/a* (where [ again is the latus
rectum, or parameter, 2b*/a). That is, for the ellipse y* <Ix and for the
hyperbola y* > Ix, and it is the properties of the curves that are represented
by these inequalities that prompted the names given by Apollonius more
than two millennia ago, names that are still firmly attached to them. The
commentator Eutocius was responsible for an erroneous impression, still
fairly widespread, that the words “ellipse,” “parabola,” and “hyperbola”
were adopted by Apollonius to indicate that the cutting plane fell short of
or ran along with or ran into the second nappe of the cone. This is not at all
what Apollonius reported in the Conics.

In deriving all conic sections from a single double-napped oblique cir-
cular cone and in giving them eminently appropriate names, Apollonius
made an important contribution to geometry, but he failed to go as far in
generality as he might have. He could as well have begun with an
elliptic cone—or with any quadric cone—and still have derived the
same curves. That is, any plane section of Apollonius’s “circular” cone
could have served as the generating curve or “base” in his definition,
and the designation “circular cone” is unnecessary. In fact, as Apollo-
nius himself showed (Book I, Proposition 5), every oblique circular
cone has not only an infinite number of circular sections parallel to the
base, but also another infinite set of circular sections given by what he
called subcontrary sections. Let BFC be the base of the oblique circular
cone and let ABC be a triangular section of the cone (Fig. 7.2). Let P be
any point on a circular section DPE parallel to BFC and let HPK be a
section by a plane such that triangles AHK and ABC are similar but
oppositely oriented. Apollonius then called the section HPK a sub-
contrary section and showed that it is a circle. The proof is easily
established in terms of the similarity of triangles HMD and EMK, from
which it follows that HM-MK = DM - ME = PM?, the characteristic
property of a circle. (In the language of analytic geometry, if we let
HM =x, HK = a, and PM =y, then y>=x(a  x) or x*> + y* = ax, which
is the equation of a circle.)
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FIG. 7.2

Fundamental Properties

Greek geometers divided curves into three categories. The first, known
as “plane loci,” consisted of all straight lines and circles; the second,
known as “solid loci,” was made up of all conic sections; the third
category, known as “linear loci,” lumped together all other curves. The
name applied to the second category was undoubtedly suggested by the
fact that the conics were not defined as loci in a plane that satisfy a
certain condition, as is done today; they were described stereometrically
as sections of a three-dimensional figure. Apollonius, like his pre-
decessors, derived his curves from a cone in three-dimensional space,
but he dispensed with the cone as promptly as possible. From the cone, he
derived a fundamental plane property or “symptome” for the section,
and thereafter he proceeded with a purely planimetric study based on
this property. This step, which we here illustrate for the ellipse (Book I,
Proposition 13), probably was much the same as that used by his pre-
decessors, including Menaechmus. Let ABC be a triangular section of an
oblique circular cone (Fig. 7.3), and let P be any point on a section HPK
cutting all elements of the cone. Extend HK to meet BC in G and through
P pass a horizontal plane, cutting the cone in the circle DPE and the
plane HPK in the line PM. Draw DME, a diameter of the circle per-
pendicular to PM. Then, from the similarity of triangles HDM and
HBG we have DM /HM = BG/HC, and from the similarity of triangles
MEK and KCG we have ME/MK = CG/KG. Now, from the property
of the circle we have PM?= DM - ME; hence, PM?>= (HM - BG/ HG)
(MK -CG)/KG. If PM =y, HM = x, and HK = 2a, the property in the
preceding sentence is equivalent to the equation y* = kx(2a — x), which
we recognize as the equation of an ellipse with H as vertex and HK as
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major axis. In a similar manner, Apollonius derived for the hyperbola the
equivalent of the equation y*>=kx(x+2a). These forms are easily
reconciled with the previously mentioned ‘“name” forms by taking
k=b*/a* and | =2b*/a.

Conjugate Diameters

After Apollonius had derived from a stereometric consideration of the
cone the basic relationship between what we should now call the plane
coordinates of a point on the curve—given by the three equations y* = Ix —
b*x*/a*, y* = Ix, and y* = Ix + b*x*/a—he derived further properties from
the plane equations without reference to the cone. The author of the
Conics reported that in Book I he had worked out the fundamental
properties of the curves “more fully and generally than in the writings of
other authors.” The extent to which this statement holds true is suggested
by the fact that here, in the very first book, the theory of conjugate dia-
meters of a conic is developed. That is, Apollonius showed that the
midpoints of a set of chords parallel to one diameter of an ellipse or a
hyperbola will constitute a second diameter, the two being called “con-
jugate diameters.” In fact, whereas today we invariably refer a conic to a
pair of mutually perpendicular lines as axes, Apollonius generally used
a pair of conjugate diameters as equivalents of oblique coordinate axes.
The system of conjugate diameters provided an exceptionally useful
frame of reference for a conic, for Apollonius showed that if a line is
drawn through an extremity of one diameter of an ellipse or a hyperbola
parallel to the conjugate diameter, the line “will touch the conic, and no
other straight line can fall between it and the conic”—that is, the line will
be tangent to the conic. Here we see clearly the Greek static concept of a
tangent to a curve, in contrast to the Archimedean kinematic view. In fact,
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often in the Conics we find a diameter and a tangent at its extremity used
as a coordinate frame of reference.

Among the theorems in Book I are several (Propositions 41 through
49) that are tantamount to a transformation of coordinates from a system
based on the tangent and the diameter through a point P on the conic to a
new system determined by a tangent and a diameter at a second point Q
on the same curve, together with the demonstration that a conic can be
referred to as any such system as axes. In particular, Apollonius was
familiar with the properties of the hyperbola and referred to its asymp-
totes as axes, given, for the equilateral hyperbola, by the equation
xy = c. He had no way of knowing, of course, that someday this rela-
tionship would be fundamental in the study of gases or that his study of
the ellipse would be essential to modern astronomy.

Book II continues the study of conjugate diameters and tangents. For
example, if P is any point on any hyperbola, with center C, the tangent at
P will cut the asymptotes in points L and L' (Fig. 7.4) that are equidistant
from P (Propositions 8 and 10). Moreover (Propositions 11 and 16), any
chord QQ' parallel to CP will meet the asymptotes in points K and K’
such that QK = Q'K’ and QK - QK = CP>. (These properties were verified
synthetically, but the reader can double-check their validity by the use of
modern analytic methods.) Later propositions in Book II show how to
draw tangents to a conic by making use of the theory of harmonic
division. In the case of the ellipse (Proposition 49), for example, if Q is a
point on the curve (Fig. 7.5), Apollonius dropped a perpendicular QN
from Q to the axis AA" and found the harmonic conjugate T of N with
respect to A and A’. (That is, he found the point 7 on line AA" extended
such that AT/A'T = AN/NA’; in other words, he determined the point T
that divides the segment AA’ externally in the same ratio as N divides AA’
internally.) The line through T and Q, then, will be tangent to the
ellipse. The case in which Q does not lie on the curve can be reduced to
this through familiar properties of harmonic division. (It can be proved
that there are no plane curves other than the conic sections such that
given the curve and a point, a tangent can be drawn, with straightedge

FIG. 7.4
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and compass, from the point to the curve, but this was, of course,
unknown to Apollonius.)

The Three- and Four-Line Locus

Apollonius was apparently especially proud of Book III, for in the general
preface to the Conics he wrote:

The third book contains many remarkable theorems useful for the
synthesis of solid loci and determinations of limits; the most and prettiest
of these theorems are new and, when I had discovered them, I observed
that Euclid had not worked out the synthesis of the locus with respect to
three and four lines, but only a chance portion of it and that not suc-
cessfully: for it was not possible that the synthesis could have been
completed without my additional discoveries.

The three- and four-line locus to which reference is made played an
important role in mathematics from Euclid to Newton. Given three lines
(or four lines) in a plane, find the locus of a point P that moves so that
the square of the distance from P to one of these is proportional to the
product of the distances to the other two (or, in the case of four lines,
the product of the distances to two of them is proportional to the product
of the distances to the other two), the distances being measured at given
angles with respect to the lines. Through modern analytic methods,
including the normal form of the straight line, it is easy to show that the
locus is a conic section—real or imaginary, reducible or irreducible. If,
for the three-line locus, equations of the given lines are Ax + B,y +
C,=0,Ax+B,y+C,=0, and A;x + B;y + C, =0, and if the angles at
which the distances are to be measured are 6,, 6,, and 6, then the locus of
P(x, y) is given by

(Ax+By+C)  KAx+By+C,) (Ax+By+C)

(A2 + B2) sin® 0, /A2 + B sin 6, \/A2B? sin 0,

This equation is, in general, of second degree in x and y; hence, the locus
is a conic section. Our solution does not do justice to the treatment given
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by Apollonius in Book III, in which more than fifty carefully worded
propositions, all proved by synthetic methods, lead eventually to the
required locus. Half a millennium later, Pappus suggested a general-
ization of this theorem for n lines, where n>4, and it was against this
generalized problem that Descartes in 1637 tested his analytic geometry.
Thus, few problems have played as important a role in the history of
mathematics as did the “locus to three and four lines.”

Intersecting Conics

Book IV of the Conics is described by its author as showing “in how
many ways the sections of cones meet one another,” and he is especially
proud of theorems, “none of which has been discussed by earlier wri-
ters,” concerning the number of points in which a section of a cone meets
the “opposite branches of a hyperbola.” The idea of the hyperbola as a
double-branched curve was new with Apollonius, and he thoroughly
enjoyed the discovery and the proof of theorems concerning it. It is in
connection with the theorems in this book that Apollonius makes a
statement implying that in his day, as in ours, there were narrow-minded
opponents of pure mathematics who pejoratively inquired about the
usefulness of such results. The author proudly asserted, “They are
worthy of acceptance for the sake of the demonstrations themselves, in
the same way as we accept many other things in mathematics for this and
for no other reason” (Heath 1961, p. Ixxiv).

Books V Vi

The preface to Book V, relating to maximum and minimum straight lines
drawn to a conic, again argues that “the subject is one of those which seem
worthy of study for their own sake.” Although one must admire the author
for his lofty intellectual attitude, it may be pertinently pointed out that
what in his day was beautiful theory, with no prospect of applicability to
the science or the engineering of his time, has since become fundamental
in such fields as terrestrial dynamics and celestial mechanics. Apollo-
nius’s theorems on maxima and minima are in reality theorems on tan-
gents and normals to conic sections. Without knowledge of the properties
of tangents to a parabola, an analysis of local trajectories would be
impossible, and a study of the paths of the planets is unthinkable without
reference to the tangents to an ellipse. It is clear, in other words, that it was
the pure mathematics of Apollonius that made possible, some 1,800 years
later, the Principia of Newton; the latter, in turn, gave scientists of the
1960s the hope that a round-trip visit to the moon would be possible. Even
in ancient Greece, the Apollonian theorem that every oblique cone has
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two families of circular sections was applicable to cartography in the
stereographic transformation, used by Ptolemy and possibly by Hip-
parchus, of a spherical region into a portion of a plane. It has often been
true in the development of mathematics that topics that originally could be
justified only as “worthy of study for their own sake” later became of
inestimable value to the “practical man.”

Greek mathematicians had no satisfactory definition of tangent to a
curve C at a point P, thinking of it as a line L such that no other line could
be drawn through P between C and L. Perhaps it was dissatisfaction with
this definition that led Apollonius to avoid defining a normal to a curve C
from a point Q as a line through Q that cuts the curve Cin a point P and is
perpendicular to the tangent to C at P. Instead, he made use of the fact
that the normal from Q to C is a line such that the distance from Q to C'is
a relative maximum or minimum. In Conics V.8, for example, Apollonius
proved a theorem concerning the normal to a parabola, which today is
generally part of a course in the calculus. In modern terminology, the
theorem states that the subnormal of the parabola y* = 2px for any point P
on the curve is constant and equal to p; in the language of Apollonius, this
property is expressed somewhat as follows:

If A is the vertex of a parabola y* = px, and if G is a point on the axis such
that AG > p, and, if N is a point between A and G such that NG = p, and
if NP is drawn perpendicular to the axis meeting the parabola in P
[Fig. 7.6], then PG is the minimum straight line from G to the curve and
hence is normal to the parabola at P.

The proof by Apollonius is of the typical indirect kind—it is shown that if
P’ is any other point on the parabola, P'G increases as P’ moves further from
P in either direction. A proof of the corresponding, but more involved,
theorem concerning the normal to an ellipse or a hyperbola from a point on
the axis is then given, and it is shown that if P is a point on a conic, only one
normal can be drawn through P, whether the normal be regarded as a
minimum or a maximum, and this normal is perpendicular to the tangent at
P. Note that the perpendicularity that we take as a definition is here proved as
a theorem, whereas the maximum-minimum property that we take as a

P

FIG. 7.6
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theorem serves, for Apollonius, as a definition. Later propositions in Book V
carry the topic of normals to a conic to such a point that the author gives
criteria enabling one to tell how many normals can be drawn from a given
point to a conic section. These criteria are tantamount to what we should
describe as the equations of the evolutes to the conics. For the parabola y* =

2px, Apollonius showed in essence that points whose coordinates satisfy the
cubic equation 27py* = 8(x — p)* are limiting positions of the point of
intersection of normals to the parabola at points P and P’ as P’ approaches P.
That is, points on this cubic are the centers of curvature for points on the
conic (in other words, the centers of osculating circles for the parabola). In
the case of the ellipse and the hyperbola, whose equations are, respectively,
x*/a*> £ y*/b>=1, the corresponding equations of the evolute are
(@) + (by)"* = (a® T B)".

After giving the conditions for the evolute of a conic, Apollonius showed
how to construct a normal to a conic section from a point Q. In the case of the
parabola y* = 2px, and for Q outside the parabola and not on the axis, one
drops a perpendicular QM to the axis AK, measures off MH = p, and erects
HR perpendicular to HA (Fig. 7.7). Then, through Q one draws the rectan-
gular hyperbola with asymptotes HA and HR, intersecting the parabola in a
point P. Line QP is the normal required, as one can prove by showing that
NK =HM = p. If point Q lies inside the parabola, the construction is
similar, except that P lies between Q and R. Apollonius also gave con-
structions, likewise making use of an auxiliary hyperbola, for the normal
from a point to a given ellipse or hyperbola. It should be noted that the
construction of normals to the ellipse and the hyperbola, unlike the con-
struction of tangents, requires more than a straightedge and a compass. As
the ancients described the two problems, the drawing of a tangent to a
conic is a “plane problem,” for intersecting circles and straight lines
suffice. By contrast, the drawing of a normal from an arbitrary point in
the plane to a given central conic is a “solid problem,” for it cannot be
accomplished by the use of lines and circles alone but can be done
through the use of solid loci (in our case, a hyperbola). Pappus later
severely criticized Apollonius for his construction of a normal to the
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parabola, in that he treated it as a solid problem, rather than a plane
problem. That is, the hyperbola that Apollonius used could have been
replaced by a circle. Perhaps Apollonius felt that the line-and-circle fetish
should give way, in his construction of normals, to a desire for uniformity
of approach with respect to the three types of conics.

Apollonius described the sixth book of the Conics as embracing
propositions about “segments of conics equal and unequal, similar and
dissimilar, besides some other matters left out by those who have pre-
ceded me. In particular, you will find in this book how, in a given right
cone, a section is to be cut equal to a given section.” Two conics are said
to be similar if the ordinates, when drawn to the axis at proportional
distances from the vertex, are respectively proportional to the corre-
sponding abscissas. Among the easier of the propositions in Book VI are
those demonstrating that all parabolas are similar (VI.11) and that a
parabola cannot be similar to an ellipse or a hyperbola nor an ellipse to a
hyperbola (VI.14, 15). Other propositions (V1.26, 27) prove that if any
cone is cut by two parallel planes making hyperbolic or elliptic sections,
the sections will be similar but not equal.

Book VII returns to the subject of conjugate diameters and “many new
propositions concerning diameters of sections and the figures described
upon them.” Among these are some that are found in modern textbooks,
such as the proof (VIL.12, 13, 29, 30) that

In every ellipse the sum, and in every hyperbola the difference, of the
squares on any two conjugate diameters is equal to the sum or difference
respectively of the squares on the axes.

There is also the proof of the familiar theorem that if tangents are
drawn at the extremities of a pair of conjugate axes of an ellipse or a
hyperbola, the parallelogram formed by these four tangents will be equal
to the rectangle on the axes. It has been conjectured that the lost Book
VIII of the Conics continued with similar problems, for in the preface
to Book VII the author wrote that the theorems of Book VII were used in
Book VIII to solve determinate conic problems, so that the last book “is
by way of an appendix.”

Commentary

The Conics of Apollonius is a treatise of such extraordinary breadth and
depth that we are startled to note the omission of some of the properties
that to us appear so obviously fundamental. As the curves are now
introduced in textbooks, the foci play a prominent role, yet Apollonius
had no name for these points, and he referred to them only indirectly. It
is not clear whether the author was aware of the now-familiar role of the
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directrix. He seems to have known how to determine a conic through five
points, but this topic is omitted in the Conics. It is quite possible, of
course, that some or all such tantalizing omissions resulted from the fact
that they had been treated elsewhere, in works no longer extant, by
Apollonius or other authors. So much of ancient mathematics has been
lost that an argument e silencio is precarious indeed.

Greek geometric algebra did not provide for negative magnitudes;
moreover, the coordinate system was in every case superimposed a
posteriori on a given curve in order to study its properties. Of Greek
geometry, we may say that equations are determined by curves, but not
that curves were defined by equations. Coordinates, variables, and
equations were subsidiary notions derived from a specific geometric
situation, and one gathers that in the Greek view, it was not sufficient to
define curves abstractly as loci satisfying given conditions on two
coordinates. To guarantee that a locus was really a curve, the ancients
felt it incumbent on them to exhibit it stereometrically as a section of a
solid or to describe a kinematic mode of construction.

The Greek definition and study of curves lacked the flexibility and extent
of the modern treatment. Although the Greeks were esthetically one of the
most gifted peoples of all times, the only curves that they explored in
the heavens and on the earth were combinations of circles and straight
lines. That Apollonius, the greatest geometer of antiquity, failed to develop
analytic geometry, was probably the result of a poverty of curves, rather
than of thought. Moreover, the early modern inventors of analytic geo-
metry had all of Renaissance algebra at their disposal, whereas Apollonius
necessarily worked with the more rigorous but far more awkward tool of
geometric algebra.
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Crosscurrents

Bees ... by virtue of a certain geometrical forethought. ..know that the
hexagon is greater than the square and the triangle and will hold more
honey for the same expenditure of material.

Pappus of Alexandria

ChangingTrends

Today, we use the conventional phrase “Greek mathematics” as if it
indicates a homogeneous and well-defined body of doctrine. Such a view
can be very misleading, however, for it implies that the sophisticated
geometry of the Archimedean-Apollonian type was the only sort that the
Hellenes knew. We must remember that mathematics in the Greek world
spanned a time interval from at least 600 BCE to at least 600 c and that it
traveled from Ionia to the toe of Italy, to Athens, to Alexandria, and to
other parts of the civilized world. The paucity of surviving works,
especially on the lower level, tends to obscure the fact that our know-
ledge about the Greek world is far from complete.

The death of Archimedes by the hand of a Roman soldier may have
been inadvertent, but it was truly portentous. Both Perge and Syracuse
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would flourish under Roman control, but during its long history, ancient
Rome contributed little to science or philosophy and less to mathe-
matics. Whether during the Republic or in the days of the Empire,
Romans were little attracted to speculative or logical investigation. The
practical arts of medicine and agriculture were cultivated with some
eagerness, and descriptive geography met with favor. Impressive engi-
neering projects and architectural monuments were related to the sim-
pler aspects of science, but Roman builders were satisfied with
elementary rule-of-thumb procedures that called for little in the way
of understanding of the great corpus of theoretical Greek thought. The
extent of Roman acquaintance with science may be judged from
the De architectura of Vitruvius, written during the middle part of the
Augustine Age and dedicated to the emperor. At one point, the author
describes what to him appeared to be the three greatest mathematical
discoveries: the incommensurability of the side and the diagonal of a
cube; the right triangle with sides 3, 4, and 5; and Archimedes’ calcu-
lation on the composition of the king’s crown. It is sometimes claimed
that impressive works of engineering, such as the Egyptian pyramids and
the Roman aqueducts, imply a high level of mathematical achievement,
but historical evidence does not bear this out.

The two major institutions associated with mathematics in ancient
Greece, the Academy in Athens and the Library in Alexandria, were
subject to several changes in direction before their eventual demise. The
Academy no longer maintained the strong support of mathematical stu-
dies that Plato had made mandatory; by the time of Proclus, a renewed
interest in mathematics can be attributed to its role as safe haven for
Neoplatonists. The Museum and Library at Alexandria no longer benefited
from the support they had been given by the first two Ptolemies, and even
Cleopatra, the last ruling Ptolemy, who is said to have enjoyed the
Museum gatherings, probably could not have persuaded either Antony or
Caesar to fund its scholarly pursuits.

Eratosthenes

When Archimedes sent his Method to Eratosthenes in Alexandria, he
chose as recipient a man who represented the many diverse areas of
study at the Alexandrian library. Eratosthenes (ca. 275 194 BcE) was a
native of Cyrene who had spent much of his early life in Athens. He had
achieved prominence in many fields—poetry, astronomy, history,
mathematics, athletics—when, in middle life, he was called by Ptolemy
III to Alexandria to tutor his son and to serve as head of the library there.

Today, Eratosthenes is best remembered for his measurement of the
earth—not the first or last such estimate made in antiquity, but by all
odds the most successful. Eratosthenes observed that at noon on the day
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of the summer solstice, the sun shone directly down a deep well at
Syene. At the same time in Alexandria, taken to be on the same meridian
and 5,000 stades north of Syene, the sun was found to cast a shadow
indicating that the sun’s angular distance from the zenith was one-fiftieth
of a circle. From the equality of the corresponding angles S’AZ and S”OZ
in Fig. 8.1, it is clear that the circumference of the earth must be fifty
times the distance between Syene and Alexandria. This results in a peri-
meter of 250,000 stades. How accurate this measurement was has been a
subject of debate among scholars, partly because there are differing
accounts concerning the length of a stadium. There is consensus, however,
that the result of the measurement was a remarkable achievement.

A contributor to many fields of learning, Eratosthenes is well known
in mathematics for the “sieve of Eratosthenes,” a systematic procedure
for isolating the prime numbers. With all of the natural numbers arr-
anged in order, one simply strikes out every second number following
the number 2, every third number (in the original sequence) following the
number 3, every fifth number following the number 5, and continues in
this manner to strike out every nth number following the number n. The
remaining numbers, from 2 on, will, of course, be primes. Eratosthenes
also wrote works on means and on loci, but these have been lost. Even his
treatise On the Measurement of the Earth is no longer extant, although
some details from it have been preserved by others, including Heron and
Ptolemy of Alexandria.

Angles and Chords
Like Eratosthenes, in his work on mathematical geography, a number of

astronomers of the Alexandrian Age handled problems that pointed to a
need for systematic relationships between angles and chords. Theorems
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on the lengths of chords are essentially applications of the modern law
of sines.

Aristarchus

Among Eratosthenes’ predecessors was Aristarchus of Samos (ca.
310 ca. 230 BCE), who, according to Archimedes and Plutarch, proposed
a heliocentric system; but whatever he may have written on this scheme
has been lost. Instead, we have an Aristarchan treatise, perhaps com-
posed earlier (ca. 260 BCE), On the Sizes and Distances of the Sun and
Moon, which assumes a geocentric universe. In this work, Aristarchus
made the observation that when the moon is just half-full, the angle
between the lines of sight to the sun and the moon is less than a right
angle by one-thirtieth of a quadrant. (The systematic introduction of the
360° circle came a little later.) In trigonometric language of today, this
would mean that the ratio of the distance of the moon to that of the sun
(the ratio ME to SE in Fig. 8.2) is sin 3°. Trigonometric tables not having
been developed yet, Aristarchus fell back on a well-known geometric
theorem of the time that now would be expressed in the inequalities
sina/sin3< a< f<tana/tan 3, where 0°< < a<<90°. From
these, he derived the conclusion that 2 < sin 3°<1s; hence, he asserted
that the sun is more than 18, but less than 20, times as far from the earth
as is the moon. This is far from the modern value—somewhat less than
400—Dbut it is better than the values 9 and 12 that Archimedes ascribed,
respectively, to Eudoxus and to Phidias (Archimedes’ father). Moreover,
the method used by Aristarchus was unimpeachable, the result being
vitiated only by the error of observation in measuring the angle MES as
87° (when in actuality it should have been about 89° 50").

Having determined the relative distances of the sun and the moon,
Aristarchus also knew that the sizes of the sun and the moon were in
the same ratio. This follows from the fact that the sun and the moon have
very nearly the same apparent size—that is, they subtend about the
same angle at the eye of an observer on the earth. In the treatise in
question, this angle is given as 2°, but Archimedes attributed to Aris-
tarchus the much better value of §*. From this ratio, Aristarchus was able

87°

FIG. 8.2



146 Crosscurrents

FIG. 8.3

to find an approximation for the sizes of the sun and the moon, as
compared with the size of the earth. From lunar eclipse observations,
he concluded that the breadth of the shadow cast by the earth at the
distance of the moon was twice the width of the moon. Then, if R,, R.,
and R, are the radii of the sun, the earth, and the moon, respectively, and
if D, and D,, are the distances of the sun and the moon from the earth,
then, from the similarity of triangles BCD and ABE (Fig. 8.3), one has the
proportion (R, — 2R,)/ (R, — R,) = D,,/ D,. If in this equation one replaces
D, and R, with the approximate values 19D,, and 19R,, one obtains the
equation (R, —2R,)/(19R, — R,) =15 or R, = #R,. Here the actual com-
putations of Aristarchus have been considerably simplified. His reasoning
was in reality much more carefully carried out and led to the conclusion
that

., 60 19 R, 43

108<R< d <2<
3 R 19 MM 3SR T6
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Hipparchus of Nicaea

For some two and a half centuries, from Hippocrates to Eratosthenes,
Greek mathematicians had studied relationships between lines and circles
and had applied these in a variety of astronomical problems, but no sys-
tematic trigonometry had resulted. Then, presumably during the second
half of the second century, the first trigonometric table apparently was
compiled by the astronomer Hipparchus of Nicaea (ca. 180 ca. 125 BCE).
Aristarchus had known that in a given circle, the ratio of arc to chord
decreased as the angle decreases from 180° to 0°, tending toward a limit of 1.
Yet it appears that not until Hipparchus undertook the task had anyone
tabulated corresponding values of arc and chord for a whole series of
angles. It has, however, been suggested that Apollonius may have
anticipated Hipparchus in this respect, and that the contribution of
the latter to trigonometry was simply the calculation of a better set
of chords than had been drawn up by his predecessors. Hipparchus evi-
dently drew up his tables for use in his astronomy. He was a transitional
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figure between Babylonian astronomy and the work of Ptolemy. The
chief contributions attributed to Hipparchus in astronomy were his
organization of the empirical data derived from the Babylonians, the
drawing up of a star catalogue, improvement in important astronomical
constants (such as the length of the month and the year, the size of the
moon, and the angle of obliquity of the ecliptic), and, finally, the dis-
covery of the precession of the equinoxes.

It is not known just when the systematic use of the 360° circle came
into mathematics, but it seems to be due largely to Hipparchus in con-
nection with his table of chords. It is possible that he took over from
Hypsicles, who earlier had divided the order into 360 parts, a subdivision
that may have been suggested by Babylonian astronomy. Just how
Hipparchus made up his table is not known, for his works are not extant
(except for a commentary on a popular astronomical poem by Aratus). It
is likely that his methods were similar to those of Ptolemy, to be
described further on, for Theon of Alexandria, commenting on Ptol-
emy’s table of chords in the fourth century, reported that Hipparchus had
earlier written a treatise in twelve books on chords in a circle.

Menelaus of Alexandria

Theon also mentions another treatise, in six books, by Menelaus
of Alexandria (ca. 100 cg) dealing with Chords in a Circle. Other math-
ematical and astronomical works by Menelaus are mentioned by later
Greek and Arabic commentators, including an Elements of Geometry, but
the only one that has survived—and only through the Arabic translation—
is his Sphaerica. In Book I of this treatise, Menelaus established a basis for
spherical triangles analogous to that of Euclid I for plane triangles.
Included is a theorem without Euclidean analogue—that two spherical
triangles are congruent if corresponding angles are equal (Menelaus did
not distinguish between congruent and symmetric spherical triangles), and
the theorem A + B + C > 180° is established. The second book of the
Sphaerica describes the application of spherical geometry to astronomical
phenomena and is of little mathematical interest. Book III, the last, contains
the well-known “theorem of Menelaus” as part of what is essentially
spherical trigonometry in the typical Greek form—a geometry or trigono-
metry of chords in a circle. In the circle in Fig. 8.4, we should write that chord
AB is twice the sine of half of the central angle AOB (multiplied by the radius
of the circle). Menelaus and his Greek successors instead referred to AB
simply as the chord corresponding to the arc AB. If BOB' is a diameter of the
circle, then chord AB’ is twice the cosine of half the angle AOB (multiplied
by the radius of the circle). Hence, the theorems of Thales and Pythagoras,
which lead to the equation AB?> + AB> — 4r°, are equivalent to the modern
trigonometric identity sin® €6 + cos?# = 1. Menelaus, as Hipparchus probably
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also before him, was familiar with other identities, two of which he used
as lemmas in proving his theorem on transversals. The first of these lemmas
may be stated in modern terminology as follows. If a chord AB in a circle with
center O (Fig. 8.5) is cut in point C by a radius OD, then AC/CB =
sinAD /sin DB. The second lemma is similar: If the chord AB extended is cut
in point C' by a radius OD’ extended, then AC'/BC’ = sinAD’ /sin BD'.
These lemmas were assumed by Menelaus without proof, presumably
because they could be found in earlier works, possibly in Hipparchus’s twelve
books on chords. (The reader can easily prove the lemmas by drawing AO
and BO, dropping perpendiculars from A and B to OD, and using similar
triangles.)

It is probable that the “theorem of Menelaus” for the case of plane
triangles had been known to Euclid, perhaps having appeared in the lost
Porisms. The theorem in the plane states that if the sides AB, BC, CA of a
triangle are cut by a transversal in points D, E, F, respectively (Fig. 8.6),

FIG. 8.5
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FIG. 8.6

then AD - BE- CF = BD - CE - AF. In other words, any line cuts the sides
of a triangle so that the product of three nonadjacent segments equals the
product of the other three, as can readily be proved by elementary
geometry or through the application of simple trigonometric relation-
ships. The theorem was assumed by Menelaus to be well known to his
contemporaries, but he went on to extend it to spherical triangles in a
form equivalent to sin AD sin BE sin CF = sin BD sin CE sin AF'. If sensed
segments are used, rather than absolute magnitudes, the two products are
equal in magnitude but differ in sign.

Ptolemy’s Almagest

By far the most influential and significant trigonometric work of all
antiquity was the Mathematical Syntaxis, a work in thirteen books
composed by Ptolemy of Alexandria about half a century after Mene-
laus. This celebrated Mathematical Synthesis was distinguished from
another group of astronomical treatises by other authors (including
Aristarchus) by referring to that of Ptolemy as the “greater” collection
and to that of Aristarchus et al. as the “lesser” collection.

From the frequent reference to the former as megiste, there arose later
in Arabia the custom of calling Ptolemy’s book Almagest (“the great-
est”), and it is by this name that the work has since been known.

Of the life of its author, we are as little informed as we are of that of
the author of the Elements. We know that Ptolemy made observations in
Alexandria from 127 to 151 cE, and we therefore assume that he was
born at the end of the first century. Suidas, a writer who lived in the tenth
century, reported that Ptolemy was still alive under Marcus Aurelius (the
emperor from 161 to 180 cE).

Ptolemy’s Almagest is presumed to be heavily indebted for its methods
to the Chords in a Circle of Hipparchus. Ptolemy made use of the
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catalogue of star positions bequeathed by Hipparchus, but whether
Ptolemy’s trigonometric tables were derived in large part from his dis-
tinguished predecessor cannot be determined. Fortunately, Ptolemy’s
Almagest has survived the ravages of time; hence, we have not only his
trigonometric tables but also an account of the methods used in their
construction. Central to the calculation of Ptolemy’s chords was a
geometric proposition still known as “Ptolemy’s theorem™: If ABCD
is a (convex) quadrilateral inscribed in a circle (Fig. 8.7), then
AB-CD + BC-DA = AC - BD; that is, the sum of the products of the
opposite sides of a cyclic quadrilateral is equal to the product of
the diagonals. The proof of this is easily carried through by drawing BE
so that angle ABE is equal to angle DBC and noting the similarity of the
triangles ABE and BCD.

Another, and more useful, special case of the general theorem of
Ptolemy is that in which one side—say, AD—is a diameter of the circle
(Fig. 8.8). Then, if AD = 2r, we have 2r- BC + AB-CD =AC - BD. If we
let arc BD =2« and arc CD =20, then BC =2r sin(a — 3), AB=2r
sin(90° — ), BD =2rsina, CD =2rsin 3, and AC = 2rsin(90° — ().
Ptolemy’s theorem therefore leads to the result sin (o — ) =sinacos 3 —
cos asin . Similar reasoning leads to the formula sin(a + ) =sin«
cos B + cos asin 8 and to the analogous pair cos (o = 3) = cosacos3 +
sin o sin 3. These four sum-and-difference formulas consequently are often
known today as Ptolemy’s formulas.

It was the formula for sine of the difference—or, more accurately, chord
of the difference—that Ptolemy found especially useful in building up
his tables. Another formula that served him effectively was the equivalent
of our half-angle formula. Given the chord of an arc in a circle, Ptolemy
found the chord of half of the arc as follows: let D be the midpoint of arc
BC in a circle with diameter AC = 2r (Fig. 8.9), let AB=AE, and let
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DF bisect EC (perpendicularly). Then, it is not difficult to show
that FC =3(2r — AB). But from elementary geometry, it is known that
DC?=AC - FC, from which it follows that DC? = r 2r — AB). If we let arc
BC =2a, then DC =2r sina/2 and AB = 2r cos «; hence, we have the
familiar modern formula sin a/2 = /(1 — cos @) /2. In other words, if
the chord of any arc is known, the chord of half of the arc is also
known. Now Ptolemy was equipped to build up a table of chords as
accurate as might be desired, for he had the equivalent of our funda-
mental formulas.

The 360-Degree Circle

It should be recalled that from the days of Hipparchus until modern
times, there were no such things as trigonometric ratios. The Greeks—
and, after them, the Hindus and the Arabs—used trigonometric lines.
These at first took the form, as we have seen, of chords in a circle, and it
became incumbent on Ptolemy to associate numerical values (or
approximations) with the chords. To do this, two conventions were

E F,

FIG. 8.9
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needed: (1) some scheme for subdividing the circumference of a circle
and (2) some rule for subdividing the diameter. The division of a cir-
cumference into 360 degrees seems to have been in use in Greece since
the days of Hipparchus, although it is not known just how the convention
arose. It is not unlikely that the 360-degree measure was carried over
from astronomy, where the zodiac had been divided into twelve “signs”
or 36 “decans.” A cycle of the seasons of roughly 360 days could readily
be made to correspond to the system of zodiacal signs and decans by
subdividing each sign into thirty parts and each decan into ten parts. Our
common system of angle measure may stem from this correspondence.
Moreover, because the Babylonian positional system for fractions was so
obviously superior to the Egyptian unit fractions and the Greek common
fractions, it was natural for Ptolemy to subdivide his degrees into sixty
panes minutae primae, each of these latter into sixty partes minutae
secundae, and so on. It is from the Latin phrases that translators used in
this connection that our words “minute” and “second” were derived.

Our trigonometric identities are easily converted into the language of
Ptolemaic chords through the simple relationships

i — chord 2x d _ chord(180° — 2x)
x oo~ And cosx 20 :

The formulas cos(x £y)=cosxcosy =+ sinxsiny become (chord is
abbreviated to cd)

cd2xcd2yFcd2xcd2y
120 ’

cd2x+2y=

where a line over an arc (angle) indicates the supplementary arc. Note
that not only angles and arcs but also their chords were expressed sex-
agesimally. In fact, whenever scholars in antiquity wished an accurate
system of approximation, they turned to the sixty-scale for the fractional
portion; this led to the phrases “astronomers’ fractions” and “physicists’
fractions” to distinguish sexagesimal from common fractions.

Construction of Tables

Having decided on his system of measurement, Ptolemy was ready to
compute the chords of angles within the system. For example, because
the radius of the circle of reference contained sixty parts, the chord of an
arc of 60 degrees also contained sixty linear parts. The chord of 120° will
be 60+/3 or approximately 103 parts and 55 minutes and 33 seconds or,
in Ptolemy’s Ionic or alphabetic notation, p~fve' \y". Ptolemy could
now have used his half-angle formula to find the chord of 30°, then the
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chord of 15°, and so on, for still smaller angles. Yet, he preferred to
delay the application of this formula and computed instead the chords of
36° and 72°. He used a theorem from Elements XI11.9, which shows that
a side of a regular pentagon, a side of a regular hexagon, and a side of a
regular decagon, all being inscribed within the same circle, constitute the
sides of a right triangle. Incidentally, this theorem from Euclid provides
the justification for Ptolemy’s elegant construction of a regular pentagon
inscribed in a circle. Let O be the center of a circle and AB a diameter
(Fig. 8.10). Then, if C is the midpoint of OB and OD is perpendicular to
AB, and if CE is taken equal to CD, the sides of the right triangle EDO
are the sides of the regular inscribed pentagon, hexagon, and decagon.
Then, if the radius OB contains 60 parts, from the properties of the
pentagon and the golden section, it follows that OE, the chord of 36°,
is 30(v/5 — 1) or about 37.083 or 377 4’ 5" or X(*ve". By the Pythagorean
theorem, the chord of 72° is 30 \/ 10 — 2+/5, or approximately 70.536 or
707 32" 3" or 0?A\G'Y".

Knowing the chord of an arc of s degrees in a circle, one can easily
find the chord of the arc 180° —s from the theorems of Thales and
Pythagoras, for cd’s + cd’s = 120°. Hence, Ptolemy knew the chords of
the supplements of 36° and 72°. Moreover, from the chords of 72° and
60°, he found chord 12° by means of his formula for the chord of the
difference of two arcs. Then, by successive applications of his half-angle
formula, he derived the chords of arcs of 6°, 3%, 13", and ¥, the last two
being 17 34’ 15" and 0” 47" 8", respectively. Through a linear inter-
polation between these values, Ptolemy arrived at 17 2" 50” as the chord
of 1°. By using the half-angle formula—or, because the angle is very
small, simply dividing by 2—he found the value of 0» 31" 25" for the
chord of 30'. This is equivalent to saying that sin 15’ is 0.00873, which is
correct to almost half a dozen decimal places.

Ptolemy’s value of the chord of 1" is, of course, the length of a side of a
polygon of 720 sides inscribed in a circle of radius 60 units. Whereas
Archimedes’ polygon of 96 sides had led to ¥ as an approximation to the
value of m, Ptolemy’s is equivalent to 6(07 31’ 25”) or 3;8,30. This
approximation to 7, used by Ptolemy in the Almagest, is the same as 1%,

FIG. 8.10
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which leads to a decimal equivalent of about 3.1416, a value that may
have been given earlier by Apollonius.

Ptolemaic Astronomy

Armed with formulas for the chords of sums and differences and chords of
half an arc and having a good value of chord v, Ptolemy went on to build
up his table correct to the nearest second, of chords of arcs from S ° to 180°
for every 1°. This is Vmually the same as a table of sines from 4" to 90°,

proceeding by steps of i . The table formed an integral part of Book I
of the Almagest and remamed an indispensable tool of astronomers for
more than a thousand years. The remaining twelve books of this celebrated
treatise contain, among other things, the beautifully developed theory of
cycles and epicycles for the planets known as the Ptolemaic system. Like
Archimedes, Hipparchus, and most other great thinkers of antiquity,
Ptolemy postulated an essentially geocentric universe, for a moving earth
appeared to be faced with difficulties—such as lack of apparent stellar
parallax and seeming inconsistency with the phenomena of terrestrial
dynamics. In comparison with these problems, the implausibility of an
immense speed required for the daily rotation of the sphere of the “fixed”
stars seemed to shrink into insignificance.

Plato had set for Eudoxus the astronomical problems of “saving the
phenomena”—that is, producing a mathematical device, such as a
combination of uniform circular motions, which should serve as a model
for the apparent motions of the planets. The Eudoxian system
of homocentric spheres had been largely abandoned by mathematicians
in favor of the system of cycles and epicycles of Apollonius and
Hipparchus. Ptolemy, in turn, made an essential modification in the latter
scheme. In the first place, he displaced the earth somewhat from the
center of the deferent circle, so that he had eccentric orbits. Such
changes had been made before him, but Ptolemy introduced a novelty so
drastic in scientific implication that later Nicholas Copernicus could not
accept it, effective though the device, known as the equant, was in
reproducing the planetary motions. Try as he would, Ptolemy had not
been able to arrange a system of cycles, epicycles, and eccentrics in
close agreement with the observed motions of the planets. His solution
was to abandon the Greek insistence on uniformity of circular motions
and to introduce instead a geometric point, the equant E collinear with
the earth G and the center C of the deferent circle, such that the apparent
angular motion of the center Q of the epicycle in which a planet P
revolves is uniform as seen from E (Fig. 8.11). In this way, Ptolemy
achieved accurate representations of planetary motions, but, of course,
the device was only kinematic and made no effort to answer the ques-
tions in dynamics raised by nonuniform circular movements.
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FIG. 8.11

Other Works by Ptolemy

Ptolemy’s fame today is largely associated with a single book, the
Almagest, but there are other Ptolemaic works as well. Among the more
important was a Geography, in eight books, which was as much a
bible to geographers of his day as the Almagest was to astronomers. The
Geography of Ptolemy introduced the system of latitudes and longitudes
as used today, described methods of cartographic projection, and cata-
logued some 8,000 cities, rivers, and other important features of the
earth. Unfortunately, there was at the time no satisfactory means of
determining longitudes, hence substantial errors were inevitable. Even
more significant was the fact that Ptolemy seems to have made a poor
choice when it came to estimating the size of the earth. Instead of
accepting the figure 252,000 stadia, given by Eratosthenes, he preferred
the value 180,000 stadia that was proposed by Posidonius, a Stoic teach-
er of Pompey and Cicero. Hence, Ptolemy thought that the known
Eurasian world was a larger fraction of the circumference than it really
is—more than 180° in longitude, instead of the actual figure of about
130°. This large error suggested to later navigators, including Columbus,
that a voyage westward from Europe to India would not be nearly so far
as it turned out to be. Had Columbus known how badly Ptolemy had
underestimated the size of the earth, he might never have set sail.
Ptolemy’s geographical methods were better in theory than in practice,
for in separate monographs, which have survived only through Latin
translations from the Arabic, Ptolemy described two types of map pro-
jection. Orthographic projection is explained in the Analemma, the
earliest account we have of this method, although it may have been used
by Hipparchus. In this transformation from a sphere to a plane, points on
the spherical surface are projected orthogonally on three mutually per-
pendicular planes. In the Planisphaerium, Ptolemy described the ste-
reographic projection in which points on the sphere are projected by
lines from a pole onto a plane—in Ptolemy’s case, from the South Pole
to the plane of the equator. He knew that under such a transformation, a
circle not through the pole of projection went into a circle in the plane,
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and that a circle through the pole was projected into a straight line. Ptolemy
was also aware of the important fact that such a transformation is con-
formal, that is, angles are preserved. Ptolemy’s importance for geography
can be gauged from the fact that the earliest maps in the Middle Ages
that have come down to us in manuscripts, none before the thirteenth
century, had as prototypes the maps made by Ptolemy more than a thou-
sand years earlier.

Optics and Astrology

Ptolemy also wrote an Optics that has survived, imperfectly, through a
Latin version of an Arabic translation. This deals with the physics and
the psychology of vision, with the geometry of mirrors, and with an early
attempt at a law of refraction.

No account of Ptolemy’s work would be complete without mention of
his Tetrabiblos (or Quadripartitum), for it shows us a side of ancient
scholarship that we are prone to overlook. The Almagest is indeed a
model of good mathematics and accurate observational data put to work
in building a sober scientific astronomy, but the Tetrabiblos (or work
in four books) addresses a kind of sidereal religion to which much of
the ancient world had succumbed. Ptolemy in the Tetrabiblos argued
that one should not, because of the possibility of error, discourage the
astrologer any more than the physician.

The Tetrabiblos differs from the Almagest not only as astrology differs
from astronomy; the two works also make use of different types of
mathematics. The latter makes good use of synthetic Greek geometry; the
former suggests that the populace in general was more concerned with
arithmetical computation than with rational thought. At least from the
days of Alexander the Great to the close of the classical world, there was
undoubtedly much intercommunication between Greece and Mesopota-
mia, and it seems clear that the Babylonian arithmetic and algebraic
geometry continued to exert considerable influence in the Hellenistic
world. Greek deductive geometry, on the other hand, seems not to have
been welcomed in Mesopotamia until after the Arabic conquest.

Heron of Alexandria

Heron of Alexandria is best known in the history of mathematics for the
formula, bearing his name, for the area of a triangle:

K=/s(s—a)(s—b)(s —c)

where a, b, and c are the sides and s is half of the sum of these sides, that
is, the semiperimeter. The Arabs tell us that “Heron’s formula” was
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known earlier to Archimedes, who undoubtedly had a proof of it, but the
demonstration of it in Heron’s Metrica is the earliest that we have.
Although now the formula is usually derived trigonometrically, Heron’s
proof is conventionally geometric. The Metrica, like the Method of
Archimedes, was long lost, until rediscovered at Constantinople in 1896 in
a manuscript dating from about 1100. The word “geometry” originally
meant “earth measure,” but classical geometry, such as that found in
Euclid’s Elements and Apollonius’s Conics, was far removed from mun-
dane surveying. Heron’s work, on the other hand, shows us that not all
mathematics in Greece was of the “classical” type. There evidently were
two levels in the study of configurations—comparable to the distinction
made in numerical context between arithmetic (or theory of numbers) and
logistic (or techniques of computation)—one of which, eminently rational,
might be known as geometry and the other, largely practical, might better
be described as geodesy. The Babylonians lacked the former but were
strong in the latter, and it was essentially the Babylonian type of mathe-
matics that is found in Heron. It is true that in the Metrica an occasional
demonstration is included, but the body of the work is concerned with
numerical examples in mensuration of lengths, areas, and volumes. There
are strong resemblances between his results and those found in ancient
Mesopotamian problem texts. For example, Heron gave a tabulation of the
areas A,, of regular polygons of n sides in terms of the square of one side s,
beginning with A; =35+, and continuing to A, = %s,. As was the case in
pre-Hellenic mathematics, Heron also made no distinction between results
that are exact and those that are only approximations.

The gap that separated classical geometry from Heronian mensuration
is clearly illustrated by certain problems set and solved by Heron in
another of his works, the Geometrica. One problem calls for the dia-
meter, the perimeter, and the area of a circle, given the sum of these
three magnitudes. The axiom of Eudoxus would rule out such a problem
from theoretical consideration, for the three magnitudes are of unlike
dimensions, but from an uncritical numerical point of view, the problem
makes sense. Moreover, Heron did not solve the problem in general
terms but, taking a cue again from pre-Hellenic methods, chose the
specific case in which the sum is 212; his solution is like the ancient
recipes in which only steps, without reasons, are given. The diameter 14
is easily found by taking the Archimedean value for 7 and using the
Babylonian method of completing the square to solve a quadratic
equation. Heron simply gives the laconic instructions “Multiply 212 by
154, add 841, take the square root and subtract 29, and divide by 11.”
This is scarcely the way to teach mathematics, but Heron’s books were
intended as manuals for the practitioner.

Heron paid as little attention to the uniqueness of his answer as he did to
the dimensionality of his magnitudes. In one problem, he called for
the sides of a right triangle if the sum of the area and the perimeter is 280.
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This is, of course, an indeterminate problem, but Heron gave only one
solution, making use of the Archimedean formula for the area of a triangle.
In modern notation, if s is the semiperimeter of the triangle and r the radius
of the inscribed circle, then rs + 2s = s(r + 2) = 280. Following his own
cookbook rule, “Always look for the factors,” he chose r+ 2 =8 and
s = 35.Then, the area rsis 210. But the triangle is aright triangle, hence the
hypotenuse c is equal to s — r or 35 — 6, or 29; the sum of the two sides a
and b is equal to s + r, or 41. The values of @ and b are then easily found to
be 20 and 21. Heron says nothing about other factorizations of 280, which,
of course, would lead to other answers.

Principle of Least Distance

Heron was interested in mensuration in all its forms—in optics and
mechanics, as well as in geodesy. The law of reflection for light had been
known to Euclid and Aristotle (probably also to Plato), but it was Heron
who showed by a simple geometric argument, in a work on Catoptrics (or
reflection), that the equality of the angles of incidence and reflection is a
consequence of the Aristotelian principle that nature does nothing the hard
way. That is, if light is to travel from a source S to a mirror MM’ and then
to the eye E of an observer (Fig. 8.12), the shortest possible path SPE is
that in which the angles SPM and EPM’ are equal. That no other path SP'E
can be as short as SPE is apparent on drawing SQS’ perpendicular to MM’,
with SO = 0§’ and comparing the path SPE with the path SP'E. Because
paths SPE and SP'E are equal in length to paths S'PE and S'P'E, respec-
tively, and inasmuch as S'PE is a straight line (because angle M'PE is equal
to angle MPS), it follows that S'PE is the shortest path.

Heron is remembered in the history of science and technology as the
inventor of a primitive type of steam engine, described in his Pneumatics;
of a forerunner of the thermometer; and of various toys and mechanical
contrivances based on the properties of fluids and on the laws of the

FIG. 8.12
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simple machines. He suggested in the Mechanics a law (clever but
incorrect) of the simple machine whose principle had eluded even
Archimedes—the inclined plane. His name is also attached to “Heron’s
algorithm” for finding square roots, but this method of iteration was in
reality due to the Babylonians of 2,000 years before his day. Although
Heron evidently learned much of Mesopotamian mathematics, he seems
not to have appreciated the importance of the positional principle for
fractions. Sexagesimal fractions had become the standard tool of scholars
in astronomy and physics, but it is likely that they remained unfamiliar to
the common man. Common fractions were used to some extent by the
Greeks, at first with the numerator placed below the denominator and later
with the positions reversed (and without the bar separating the two), but
Heron, writing for the practical man, seems to have preferred unit frac-
tions. In dividing 25 by 13, he wrote the answer as 1 +3 +3 + 1 + % The
old Egyptian addiction to unit fractions continued in Europe for at least a
thousand years after the time of Heron.

The Decline of Greek Mathematics

The period from Hipparchus to Ptolemy, covering three centuries, was
one in which applied mathematics was in the ascendant. It is sometimes
held that mathematics develops most effectively when in close touch
with the world’s work, but the period we have been considering would
argue for the opposite thesis. From Hipparchus to Ptolemy, there were
advances in astronomy and geography, optics and mechanics, but no
significant developments in mathematics outside of trigonometry. Some
attribute the decline to the inadequacies and difficulties in Greek geo-
metric algebra, others to the cold breath of Rome. In any event, the
period during which trigonometry and mensuration came to the fore was
characterized by a lack of progress, yet it was precisely these aspects of
Greek mathematics that most attracted the Hindu and Arabic scholars
who served as a bridge to the modern world. Before we turn to these
peoples, however, we must look at the Indian summer of Greek
mathematics, sometimes known as the “Silver Age.”

The period that we consider next, from Ptolemy to Proclus, covers almost
four centuries (from the second to the sixth), but our account is based in
large part on only two chief treatises, mere portions of which are now
extant, as well as on a number of works of lesser significance.

Nicomachus of Gerasa

It should be recalled that in ancient Greece, the word “arithmetic” meant
the theory of numbers, rather than computation. Often Greek arithmetic
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had more in common with philosophy than with what we think of as
mathematics; hence, the subject had played a large role in Neoplatonism
during the Later Alexandrian Age. This had been particularly true of the
Introductio arithmeticae of Nicomachus of Gerasa, a Neopythagorean who
lived not far from Jerusalem about the year 100 ce. The author is some-
times held to be of Syrian background, but Greek philosophical tendencies
certainly predominate in his work. The Introductio of Nicomachus, as we
have it, contains only two books, and it is possible that this is only an
abridged version of what was originally a more extensive treatise. At all
events, the possible loss in this case is far less to be regretted than the loss
of seven books of the Arithmetica of Diophantus. Nicomachus had, so far
as we can see, little mathematical competence and was concerned only
with the most elementary properties of numbers. The level of the work may
be judged from the fact that the author found it expedient to include a
multiplication table up to ¢ times ¢ (that is, 10 times 10).

The Introductio of Nicomachus opens with the anticipated Pythagor-
ean classification of numbers into even and odd, then into evenly even
(powers of two) and evenly odd (2" - p, where p is odd and p > 1 and
n> 1) and oddly even (2 - p, where p is odd and p > 1). Prime, com-
posite, and perfect numbers are defined, and a description of the sieve of
Eratosthenes is included, as well as a list of the first four perfect numbers
(6 and 28 and 496 and 8,128). The work also includes a classification of
ratios and combinations of ratios (ratios of integers are essential in the
Pythagorean theory of musical intervals), an extensive treatment of figu-
rate numbers (which had loomed so large in Pythagorean arithmetic) in
both two and three dimensions, and a comprehensive account of the
various means (again a favorite topic in Pythagorean philosophy). As did
some other writers, Nicomachus regarded the number 3 as the first number
in the strict sense of the word, for 1 and 2 were really only the generators
of the number system. For Nicomachus, numbers were endowed with such
qualities as better or worse, younger or older, and they could transmit
characters, as parents to their progeny. Despite such arithmetical anthro-
pomorphism as a background, the Introductio contains a moderately
sophisticated theorem. Nicomachus noticed that if the odd integers are
grouped in the pattern 1; 3+5; 7+9+11; 13+15+17+19;...,
the successive sums are the cubes of the integers. This observation,
coupled with the early Pythagorean recognition that the sum of the first n
odd numbers is 72, leads to the conclusion that the sum of the first n perfect
cubes is equal to the square of the sum of the first n integers.

Diophantus of Alexandria

We have seen that Greek mathematics was not uniformly on a high level,
for the glorious period of the third century BcE had been followed by a
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decline, perhaps to some extent arrested in the days of Ptolemy, but not
effectively reversed until the century of the “Silver Age,” about 250 ck to
350. At the beginning of this period, also known as the Later Alexandrian
Age, we find the leading Greek algebraist Diophantus of Alexandria,
and toward its close there appeared the last significant Greek geometer,
Pappus of Alexandria. No other city has been the center of mathe-
matical activity for so long a period as was Alexandria from the days of
Euclid (ca. 300 BcEg) to the time of Hypatia (415 cE).

Uncertainty about the life of Diophantus is so great that we do not
definitely know in which century he lived. Generally, he is assumed
to have flourished about 250 ce. According to a tradition that is reported
in a collection of problems known as the Greek Anthology (described
further on):

God granted him to be a boy for the sixth part of his life, and adding a
twelfth part to this, He clothed his cheeks with down; He lit him the light
of wedlock after a seventh part, and five years after his marriage He
granted him a son. Alas! late-born wretched child; after attaining the
measure of half his father’s life, chill Fate took him. After consoling his
grief by this science of numbers for four years he ended his life (Cohen
and Drabkin 1958; p. 27).

If this conundrum is historically accurate, Diophantus lived to be
eighty-four years old.

Diophantus is often called the father of algebra, but we shall see that
such a designation is not to be taken literally. His work is not at all the
type of material that forms the basis of modern elementary algebra, nor
is it yet similar to the geometric algebra found in Euclid. The chief
Diophantine work known to us is the Arithmetica, a treatise originally in
thirteen books, only the first six of which have survived.

The Arithmetica of Diophantus

The Arithmetica of Diophantus was a treatise characterized by a high
degree of mathematical skill and ingenuity. In this respect, the book can be
compared with the great classics of the earlier Alexandrian Age, yet it has
practically nothing in common with these or, in fact, with any traditional
Greek mathematics. It essentially represents a new branch and makes use
of a different approach. Being divorced from geometric methods, it
resembles Babylonian algebra to a large extent. But whereas Babylonian
mathematicians had been concerned primarily with the approximate
solution of determinate equations as far as the third degree, the Arithmetica
of Diophantus (such as we have it) is almost entirely devoted to the exact
solution of equations, both determinate and indeterminate. Because of the
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emphasis given in the Arithmetica to the solution of indeterminate pro-
blems, the subject dealing with this topic, sometimes known as inde-
terminate analysis, has since become known as Diophantine analysis.

Algebra now is based almost exclusively on symbolic forms of
statement, rather than on the customary written language of ordinary
communication in which earlier Greek mathematics, as well as Greek
literature, had been expressed. It has been said that three stages in the
historical development of algebra can be recognized: (1) the rhetorical or
early stage, in which everything is written out fully in words; (2) a
syncopated or intermediate stage, in which some abbreviations are
adopted; and (3) a symbolic or final stage. Such an arbitrary division of
the development of algebra into three stages is, of course, a facile
oversimplification, but it can serve effectively as a first approximation to
what has happened, and within such a framework the Arithmetica of
Diophantus is to be placed in the second category.

Throughout the six surviving books of the Arithmetica, there is a sys-
tematic use of abbreviations for powers of numbers and for relationships
and operations. An unknown number is represented by a symbol that
resembles the Greek letter s (perhaps for the last letter of arithmos); the
square of this appears as A”; the cube as K”; the fourth power, called
square-square, as A”A; the fifth power, or square-cube, as AK”; and the
sixth power, or cube-cube, as K’K. Diophantus was familiar with the rules
of combination equivalent to our laws of exponents. The chief difference
between the Diophantine syncopation and the modern algebraic notation is
in the lack of special symbols for operations and relations, as well as of the
exponential notation.

Diophantine Problems

If we think primarily of matters of notation, Diophantus has a good claim
to be known as the father of algebra, but in terms of motivation and
concepts, the claim is less appropriate. The Arithmetica is not a sys-
tematic exposition of the algebraic operations or of algebraic functions or
of the solution of algebraic equations. It is instead a collection of 150
problems, all worked out in terms of specific numerical examples, although
perhaps generality of method was intended. There is no postulational
development, nor is an effort made to find all possible solutions. No clear-
cut distinction is made between determinate and indeterminate problems,
and even for the latter, for which the number of solutions generally is
unlimited, only a single answer is given. Diophantus solved problems
involving several unknown numbers by skillfully expressing all unknown
quantities, where possible, in terms of only one of them.

Diophantus used much the same approach in indeterminate analysis. In
one problem, it is required to find two numbers such that either when
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added to the square of the other will yield a perfect square. This is a
typical instance of Diophantine analysis, in which only rational numbers
are acceptable as answers. In solving the problem, Diophantus did not
call the numbers x and y, but rather x and 2x + 1. Here the second, when
added to the square of the first, will yield a perfect square no matter what
value one chooses for x. Now, it is also required that (2x + 1)* + x must
be a perfect square. Here Diophantus does not point out the infinity of
possible answers. He is satisfied to choose a particular case of a perfect
square, in this instance the number (2x — 2)% such that when equated to
(2x + 1)*> + x, an equation that is linear in x results. Here the result is
x =1, so that the other number, 2x + 1, is 5. One could, of course,
have used (2x — 3)? or (2x — 4)* or expressions of similar form, instead of
(2x — 2)?, to arrive at other pairs of numbers having the desired property.
Here we see an approach that comes close to a “method” in Diophantus’s
work: When two conditions are to be satisfied by two numbers, the two
numbers are so chosen that one of the two conditions is satisfied, and
then one turns to the problem of satisfying the second condition. That is,
instead of handling simultaneous equations on two unknowns, Dio-
phantus operates with successive conditions, so that only a single
unknown number appears in the work.

The Place of Diophantus in Algebra

Among the indeterminate problems in the Arithmetica are some invol-
ving equations such as x>*=1+30y*> and x*=1 + 26y* which are
instances of the so-called Pell equation, x> =1 + py?; again, a single
answer is thought to suffice. In a sense, it is not fair to criticize Dio-
phantus for being satisfied with a single answer, for he was solving
problems, not equations. The Arithmetica is not an algebra textbook, but
a problem collection in the application of algebra. In this respect, Dio-
phantus is like the Babylonian algebraists, but his numbers are entirely
abstract and do not refer to measures of grain or dimensions of fields or
monetary units, as was the case in Egyptian and Mesopotamian algebra.
Moreover, he is interested only in exact rational solutions, whereas the
Babylonians were computationally inclined and were willing to accept
approximations to irrational solutions of equations.

We do not know how many of the problems in the Arithmetica were
original or whether Diophantus had borrowed from other similar collec-
tions. Possibly, some of the problems or methods are traceable back to
Babylonian sources, for puzzles and exercises have a way of reappearing
generation after generation. To us today, the Arithmetica of Diophantus
looks strikingly original, but possibly this impression results from the loss
of rival problem collections. Indications that Diophantus may have been
less isolated a figure than has been supposed are found in a collection of
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problems from about the early second century of our era (hence, pre-
sumably antedating the Arithmetica), in which some Diophantine symbols
appear. Nevertheless, Diophantus has had a greater influence on modern
number theory than any other nongeometric Greek mathematician has. In
particular, Pierre de Fermat was led to his celebrated “great” or “last”
theorem when he sought to generalize a problem that he had read in the
Arithmetica of Diophantus (I1.8): to divide a given square into two squares.

Pappus of Alexandria

The Arithmetica of Diophantus is a brilliant work worthy of the period of
revival in which it was written, but it is, in motivation and content, far
removed from the beautifully logical treatises of the great geometric
triumvirate of the earlier Alexandrian Age. Algebra seemed to be more
appropriate for problem solving than for deductive exposition, and the
great work of Diophantus remained outside the mainstream of Greek
mathematics. A minor work on polygonal numbers by Diophantus comes
closer to the earlier Greek interests, but even this cannot be regarded as
approaching the Greek logical ideal. Classical geometry had found no
ardent supporter, with the possible exception of Menelaus, since the
death of Apollonius some four hundred and more years earlier. But
during the reign of Diocletian (284 305 cE), there lived again in
Alexandria a scholar who was moved by the spirit that had possessed
Euclid, Archimedes, and Apollonius.

The Collection

In about 320 cg, Pappus of Alexandria composed a work with the title
Collection (Synagoge), which is important for several reasons. In the first
place, it provides a most valuable historical record of parts of Greek
mathematics that otherwise would be unknown to us. For instance, it is
in Book V of the Collection that we learn of Archimedes’ discovery of
the thirteen semiregular polyhedra or “Archimedean solids.” Then,
too, the Collection includes alternative proofs and supplementary lem-
mas for propositions in Euclid, Archimedes, Apollonius, and Ptolemy.
Finally, the treatise includes new discoveries and generalizations not
found in any earlier work. The Collection, Pappus’s most important
treatise, contained eight books, but the first book and the first part of the
second book are now lost.

Book III of the Collection shows that Pappus thoroughly shared the
classical Greek appreciation of the niceties of logical precision in geo-
metry. Here he distinguishes sharply among “plane,” “solid,” and “lin-
ear” problems—the first being constructible with only circles
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and straight lines, the second being solvable through the use of conic
sections, and the last requiring curves other than lines, circles, and
conics. Then, Pappus describes some solutions of the three famous
problems of antiquity, the duplication and the trisection being problems
in the second or solid category and the squaring of the circle being a
linear problem. Here Pappus virtually asserts the fact that the classical
problems are impossible to solve under the Platonic conditions, for they
do not belong among the plane problems; but rigorous proofs were not
given until the nineteenth century.

In Book IV, Pappus is again insistent that one should give for a pro-
blem a construction appropriate to it. That is, one should not use linear
loci in the solution of a solid problem or solid or linear loci in the
solution of a plane problem. Asserting that the trisection of an angle is a
solid problem, he therefore suggests methods that make use of conic
sections, whereas Archimedes in one case had used a neusis, or sliding-
ruler type of construction, and in another the spiral, which is a linear
locus. One of the Pappus trisections is as follows. Let the given
angle AOB be placed in a circle with center O (Fig. 8.13) and let OC
be the angle bisector. Draw the hyperbola having A as one focus, OC as
the corresponding directrix, and with an eccentricity equal to 2. Then,
one branch of this hyperbola will cut the circumference of the circle in a
point 7 such that /£ AOT is one-third / AOB.

A second trisection construction proposed by Pappus makes use of an
equilateral hyperbola as follows. Let the side OB of the given angle AOB
be a diagonal of a rectangle ABCO, and through A draw the equilateral
hyperbola having BC and OC (extended) as asymptotes (Fig. 8.14). With
A as center and with radius twice OB, draw a circle intersecting the
hyperbola in P, and from P drop the perpendicular PT to the line CB
extended. Then, it is readily proved, from the properties of the hyper-
bola, that the straight line through O and T is parallel to AP and that
/L AOT is one-third / AOB. Pappus gives no source for his trisections,
and we cannot help but wonder whether this trisection was known to
Archimedes. If we draw the semicircle passing through B, having QT as

FIG. 8.13
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FIG. 8.14

diameter and M as center, we have essentially the Archimedean neusis
construction, for OB = QM = MT = MB.

In Book III, Pappus also describes the theory of means and gives
an attractive construction that includes the arithmetic, the geometric, and
the harmonic means within a single semicircle. Pappus shows that if
in the semicircle ADC with center O (Fig. 8.15) one has DB | AC and
BF 1 OD, then DO is the arithmetic mean, DB the geometric mean,
and DF the harmonic mean of the magnitudes AB and BC. Here Pappus
claims for himself only the proof, attributing the diagram to an unnamed

geometer.

Theorems of Pappus

The Collection of Pappus is replete with bits of interesting information
and significant new results. In many cases, the novelties take the form of
generalizations of earlier theorems, and a couple of these instances
appear in Book IV. Here we find an elementary generalization of the
Pythagorean theorem. If ABC is any triangle (Fig. 8.16) and if ABDE and

FIG. 8.15
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FIG. 8.16

CBGF are any parallelograms constructed on two of the sides, then
Pappus constructs on side AC a third parallelogram ACKL equal to the
sum of the other two. This is easily accomplished by extending sides FG
and ED to meet in H, then drawing HB and extending it to meet side
AC in J, and finally drawing AL and CK parallel to HBJ. It is not known
whether this generalization, usually bearing the name of Pappus, was
original with Pappus, and it has been suggested that possibly it was
known earlier to Heron. Another instance of generalization in Book IV,
also bearing Pappus’s name, extends theorems of Archimedes on the
shoemaker’s knife. It asserts that if circles C,, C,, C;, Cy, ..., C,, ... are
inscribed successively as in Fig. 8.17, all being tangent to the semicircles
on AB and on AC, and successively to one another, the perpendicular
distance from the center of the nth circle to the base line ABC is n times
the diameter of the nth circle.

The Pappus Problem

Book V of the Collection was a favorite with later commentators, for it
raised a question about the sagacity of bees. Inasmuch as Pappus showed
that of two regular polygons having equal perimeters, the one with the
greater number of sides has the greater area, he concluded that bees
demonstrated some degree of mathematical understanding in constructing

FIG. 8.17
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their cells as hexagonal, rather than square or triangular, prisms. The
book goes into other problems of isoperimetry, including a demon-
stration that the circle has a greater area, for a given perimeter, than
does any regular polygon. Here Pappus seems to have been closely
following On Isometric Figures, written almost half a millennium
earlier by Zenodorus (ca. 180 BcE), some fragments of which were
preserved by later commentators. Among the propositions in Zeno-
dorus’s treatise was one asserting that of all solid figures the surfaces of
which are equal, the sphere has the greatest volume, but only an incomplete
justification was given.

Books VI and VIII of the Collection are chiefly on applications of
mathematics to astronomy, optics, and mechanics (including an unsuc-
cessful attempt at finding the law of the inclined plane). Of far more
significance in the history of mathematics is Book VII, in which, through
his penchant for generalization, Pappus came close to the fundamental
principle of analytic geometry. The only means recognized by the
ancients for defining plane curves were (1) kinematic definitions in
which a point moves the subject to two superimposed motions, and (2)
the section by a plane of a geometric surface, such as a cone or a sphere
or a cylinder. Among the latter curves were certain quartics known as
spiric sections, described by Perseus (ca. 150 BcE), obtained by cutting
the anchor ring or torus by a plane. Occasionally, a twisted curve
caught the attention of the Greeks, including the cylindrical helix and an
analogue of the Archimedean spiral described on a spherical surface,
both of which were known to Pappus, but Greek geometry was primarily
restricted to the study of plane curves, in fact, to a very limited number
of plane curves. It is significant to note, therefore, that in Book VII of the
Collection, Pappus proposed a generalized problem that implied infi-
nitely many new types of curves. This problem, even in its simplest
form, is usually known as the “Pappus problem,” but the original
statement, involving three or four lines, seems to go back to the days of
Euclid. As first considered, the problem is referred to as “the locus to
three or four lines,” described previously in connection with the work of
Apollonius. Euclid evidently had identified the locus only for certain
special cases, but it appears that Apollonius, in a work now lost, had
given a complete solution. Pappus nevertheless gave the impression that
geometers had failed in attempts at a general solution and implied that it
was he who had first shown the locus in all cases to be a conic section.

More important, Pappus then went on to consider the analogous pro-
blem for more than four lines. For six lines in a plane, he recognized that
a curve is determined by the condition that the product of the distances
from three of the lines shall be in a fixed ratio to the product of the
distances to the other three lines. In this case, a curve is defined by
the fact that a solid is in a fixed ratio to another solid. Pappus hesitated to
go on to cases involving more than six lines, inasmuch as “there is not
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anything contained by more than three dimensions.” But, he continued,
“men a little before our time have allowed themselves to interpret such
things, signifying nothing at all comprehensible, speaking of the
product of the content of such and such lines by the square of this or
the content of those. These things might however be stated and shown
generally by means of compounded proportions.” The unnamed pre-
decessors evidently were prepared to take a highly important step in
the direction of an analytic geometry that should include curves of a
degree higher than three, just as Diophantus had used the expressions
square-square and cube-cube for higher powers of numbers. Had Pappus
pursued the suggestion further, he might have anticipated Descartes in a
general classification and theory of curves far beyond the classical dis-
tinction between plane, solid, and linear loci. His recognition that, no
matter what the number of lines in the Pappus problem, a specific curve
is determined is the most general observation on loci in all of ancient
geometry, and the algebraic syncopations that Diophantus had developed
would have been adequate to have disclosed some of the properties of
the curves. But Pappus was at heart only a geometer, as Diophantus had
been only an algebraist; hence, Pappus merely remarked with surprise
that no one had made a synthesis of this problem for any case
beyond that of four lines. Pappus himself made no deeper study of
these loci, “of which one has no further knowledge and which are simply
called curves.” What was needed for the next step in this connection was
the appearance of a mathematician equally concerned about algebra and
geometrys; it is significant to note that when such a figure appeared in the
person of Descartes, it was this very problem of Pappus’s that served as
the point of departure in the invention of analytic geometry.

The Treasury of Analysis

There are other important topics in Book VII of the Collection, apart
from the Pappus problem. For one thing, there is a full description of
what was called the method of analysis and of a collection of works
known as the Treasury of Analysis. Pappus describes analysis as “a
method of taking that which is sought as though it were admitted and
passing from it through its consequences in order to something which is
admitted as a result of synthesis.” That is, he recognized analysis as a
“reverse solution,” the steps of which must be retraced in opposite order
to constitute a valid demonstration. If analysis leads to something
admitted to be impossible, the problem will also be impossible, for a
false conclusion implies a false premise. Pappus explains that the
method of analysis and synthesis is used by the authors whose works
constitute the Treasury of Analysis: “This is a body of doctrine furnished
for the use of those who, after going through the usual elements, wish to
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obtain power to solve problems set to them involving curves,” and
Pappus lists among the works in the Treasury of Analysis the treatises on
conics by Aristaeus, Euclid, and Apollonius. It is from Pappus’s des-
cription that we learn that Apollonius’s Conics contained 487 theorems.
Because the seven books now extant comprise 382 propositions, we can
conclude that the lost eighth book had 105 propositions. About half of the
works listed by Pappus in the Treasury of Analysis are now lost, including
Apollonius’s Cutting-off of a Ratio, Eratosthenes’ On Means, and
Euclid’s Porisms.

The Pappus-Guldin Theorems

Book VII of the Collection contains the first statement on record of the
focus-directrix property of the three conic sections. It appears that
Apollonius knew of the focal properties for central conics, but it is
possible that the focus-directrix property for the parabola was not known
before Pappus. Another theorem in Book VII that appears for the first
time is one usually named for Paul Guldin, a seventeenth-century
mathematician: If a closed plane curve is revolved about a line not
passing through the curve, the volume of the solid generated is found by
taking the product of the area bounded by the curve and the distance
traversed during the revolution by the center of gravity of the area.
Pappus was rightfully proud of this very general theorem, for it included
“a large number of theorems of all sorts about curves, surfaces, and
solids, all of which are proved simultaneously by one demonstration.”
There is a possibility that the “Guldin theorem” represents an inter-
polation in the manuscript of the Collection. In any case, the theorem is a
striking advance by someone during or following the long period of
decline. Pappus also gave the analogous theorem that the surface area
generated by the revolution of a curve about a line not cutting the curve
is equal to the product of the length of the curve and the distance tra-
versed by the centroid of the curve during the revolution.

The End of Alexandrian Dominance

The Collection of Pappus is the last truly significant ancient mathematical
treatise, for the attempt of the author to revive geometry was not suc-
cessful. Mathematical works continued to be written in Greek for about
another thousand years, continuing an influence that had begun almost a
millennium earlier, but authors following Pappus never again rose to his
level. Their works are almost exclusively in the form of commentary on
earlier treatises. Pappus himself is in part responsible for the ubiquitous
commentaries that ensued, for he had composed commentaries on the
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Elements of Euclid and on the Almagest of Ptolemy, among others, only
fragments of which survive. Later commentaries, such as those of Theon
of Alexandria (fl. 365 cg), are more useful for historical information than
for mathematical results. Theon was responsible for an important edition
of the Elements that has survived; he is also remembered as the father of
Hypatia, who wrote commentaries on Diophantus and Apollonius and also
revised part of her father’s commentary on Ptolemy. An ardent and
influential teacher of pagan Neoplatonism, Hypatia incurred the enmity of
a fanatical Christian mob at whose hands she suffered a cruel death in
415 ck. The dramatic impact of her death in Alexandria has caused that
year to be taken by some to mark the end of ancient mathematics; more
specifically, it marks the end of Alexandria as the major mathematical
center it had been.

Proclus of Alexandria

Alexandria produced in Proclus (410 485 cE) a young scholar who went
to Athens, where he became one of the last heads of the Academy and a
leader of the Neoplatonic school. Proclus was more a philosopher than a
mathematician, but his remarks are often essential for the history of early
Greek geometry. Of great significance is his Commentary on Book I of the
Elements of Euclid, for, while writing this, Proclus undoubtedly had at
hand a copy of the History of Geometry by Eudemus, now lost, as well as
Pappus’s Commentary on the Elements, largely lost. For our information
on the history of geometry before Euclid, we are heavily indebted to
Proclus, who included in his Commentary a summary or a substantial
extract from Eudemus’s History. This passage, which has come to be
known as the Eudemian Summary, may be taken as Proclus’s chief con-
tribution to mathematics, although to him is ascribed the theorem that if a
line segment of fixed length moves with its end points on two intersecting
lines, a point on the segment will describe a portion of an ellipse.

Boethius

During the years when Proclus was writing in Athens, the Roman
Empire in the West was gradually collapsing. The end of the empire is
usually placed at 476 cE, for in this year the incumbent Roman emperor
was displaced by Odoacer, a Goth. Some of the old Roman senatorial
pride remained, but the senatorial party had lost political control. In
this situation, Boethius (ca. 480 524 cE), one of the foremost mathe-
maticians produced by ancient Rome, found his position difficult, for
he came of an old distinguished patrician family. He was not only a
philosopher and a mathematician but also a statesman, and he probably
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viewed with distaste the rising Ostrogothic power. He was the author of
textbooks for each of the four mathematical branches in the liberal arts,
but these were jejune and exceedingly elementary abbreviations of
earlier classics—an Arithmetic that was only an abridgement of the
Introductio of Nicomachus; a Geometry based on Euclid and including
only statements, without proof, of some of the simpler portions of the
first four books of the Elements; an Astronomy derived from Ptolemy’s
Almagest; and a Music that is indebted to the earlier works of Euclid,
Nicomachus, and Ptolemy. In some cases, these primers, used exten-
sively in medieval monastic schools, may have suffered later inter-
polations; hence, it is difficult to determine precisely what is genuinely
due to Boethius himself. It is nevertheless clear that the author was
primarily concerned with two aspects of mathematics: its relationship to
philosophy and its applicability to simple problems of mensuration.

Boethius seems to have been a statesman of high purpose and unques-
tioned integrity. He and his sons in turn served as consuls, and Boethius
was among the chief advisers of Theodoric, but for some reason, whether
political or religious, the philosopher incurred the displeasure of the
emperor. It has been suggested that Boethius was a Christian (as perhaps
Pappus was also) and that he espoused Trinitarian views that alienated the
Arian emperor. It is also possible that Boethius was too closely associated
with political elements that looked to the Eastern Empire for help in
restoring the old Roman order in the West. In any case, Boethius was
executed in 524 or 525 cE, following a long imprisonment. (Theodoric,
incidentally, died only about a year later, in 526 ct.) While in prison, he
wrote his most celebrated work, De consolatione philosophiae. This essay,
written in prose and verse while he faced death, discusses moral respon-
sibility in the light of Aristotelian and Platonic philosophy.

Athenian Fragments

The death of Boethius may be taken to mark the end of ancient
mathematics in the Western Roman Empire, as the death of Hypatia had
marked the close of Alexandria as a mathematical center, but work
continued for a few years longer in Athens. There one found no great
original mathematician, but the Peripatetic commentator Simplicius
(fl. 520 cEe) was sufficiently concerned about Greek geometry to have
preserved for us what may be the oldest fragment extant. Aristotle in the
Physica had referred to the quadrature of the circle or of a segment, and
Simplicius took this opportunity to quote “word for word” what Eude-
mus had written on the subject of the quadrature of lunes by Hippocrates.
The account, several pages long, gives full details on the quadratures of
lunes, quoted by Simplicius from Eudemus, who in turn is presumed to
have given at least part of the proofs in Hippocrates’ own words,
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especially where certain archaic forms of expression are used. This
source is the closest we can come to direct contact with Greek mathe-
matics before the days of Plato.

Simplicius was primarily a philosopher, but in his day there circulated
a work usually described as the Greek Anthology, the mathematical
portions of which remind us strongly of the problems in the Ahmes
Papyrus of more than two millennia earlier. The Anthology contained
some six thousand epigrams; of these, more than forty are mathematical
problems, presumably collected by Metrodorus, a grammarian of per-
haps the fifth or sixth century. Most of them, including the epigram in
this chapter on the age of Diophantus, lead to simple linear equations.
For example, one is asked to find how many apples are in a collection if
they are to be distributed among six people so that the first person
receives one-third of the apples, the second receives one-fourth, the third
person receives one-fifth, the fourth person receives one-eighth, the
fifth person receives ten apples, and there is one apple left for the last
person. Another problem is typical of elementary algebra texts of our
day: If one pipe can fill a cistern in one day, a second in two days, a third
in three days, and a fourth in four days, how long will it take all four
running together to fill it? The problems presumably were not original
with Metrodorus but were collected from various sources. Some prob-
ably go back before the days of Plato, reminding us that not all Greek
mathematics was of the type that we think of as classical.

Byzantine Mathematicians

There were contemporaries of Simplicius and Metrodorus who had
training that was adequate for an understanding of the works of Archi-
medes and Apollonius. Among these was Eutocius (born ca. 480 cE),
who commented on several Archimedean treatises and on the Apollonian
Conics. We owe to Eutocius the Archimedean solution of a cubic
through intersecting conics, referred to in The Sphere and Cylinder but
not otherwise extant except through the commentary of Eutocius. The
commentary by Eutocius on the Conics of Apollonius was dedicated to
Anthemius of Tralles (fl. ca. 534 cg), an able mathematician and
architect of St. Sophia of Constantinople, who described the string
construction of the ellipse and wrote a work, On Burning-Mirrors, in
which the focal properties of the parabola are described. His colleague
and successor in the building of St. Sophia, Isidore of Miletus (fl. 520
CE), was also a mathematician of some ability. It was Isidore who made
known the commentaries of Eutocius and spurred a revival of interest in
the works of Archimedes and Apollonius. To him perhaps we owe the
familiar T-square and string construction of the parabola—and possibly
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also the apocryphal Book XV of Euclid’s Elements. It may be in large
measure due to the activities of the Constantinople group—Eutocius,
Isidore, and Anthemius—that Greek versions of Archimedean works and
of the first four books of Apollonius’s Conics have survived to this day.

When in 527 cE Justinian became emperor in the East, he evidently felt
that the pagan learning of the philosophical schools in Athens was a threat
to orthodox Christianity; hence, in 529 ck the philosophical schools were
closed and the scholars dispersed. About this time, Simplicius and some of
the other philosophers looked to the East for a haven, which they found in
Persia, where under Sassanid rule they established what has been called
the “Athenian Academy in Exile.” The date 529 ck is therefore often taken
to mark the close of European mathematical development in antiquity.
Henceforth, the seeds of Greek science were to develop in Near and Far
Eastern countries until, some 600 years later, the Latin world was in a
more receptive mood. The date 529 cE has another significance that may
be taken as symptomatic of a change in values—in this year, the venerable
monastery of Monte Cassino was established.

Greek mathematics did not, of course, entirely disappear from Europe
in 529 cE, for commentaries continued to be written in Greek in the
Byzantine Empire, where Greek manuscripts were preserved and copied.
During the days of Proclus, the Academy at Athens had become a center
of Neoplatonic learning. Neoplatonic thought exerted a strong influence
in the Eastern Empire, which accounts for commentaries on Nico-
machus’s Introduction to Arithmetic by John Philoponus in the sixth
century and by Michael Constantine Psellus in the eleventh. Psellus
also wrote a Greek summary of the mathematical quadrivium, as did
Georgios Pachymeres (1242 1316) two centuries later. Both Pachy-
meres and his contemporary Maximos Planudes wrote commentaries on
the Arithmetic of Diophantus. These examples show that a thin thread of
the old Greek tradition continued in the Eastern Empire to the very end
of the medieval period. The spirit of mathematics languished, however,
where men argued less about the value of geometry and more about the
way to salvation. For the next steps in mathematical development, we
must therefore turn our backs on Europe and look toward the East.
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Ancient and Medieval
China

No one has the good method.... In this world there are no naturally
correct ways, and among methods, no solely good techniques.
Ji Kang

The Oldest Known Texts

Civilizations along the Yangtze and Yellow rivers are comparable in age
with those along the Nile or between the Tigris and Euphrates, but
chronological accounts in the mathematical history of China are less
dependable than those for Egypt and Babylonia. As in the case of other
ancient civilizations, there are vestiges of early mathematical activities in
the form of counting, measuring, and weighing of objects. Awareness of
the Pythagorean theorem appears to predate the earliest known mathe-
matical texts. The dating of mathematical documents from China is far
from easy, however. None of the original versions of the early classics are
known to have survived. A set of texts on bamboo strips discovered in
the early 1980s sheds light on the age of some related classics because
they were found in sealed tombs dating from the second century BCE.
Estimates concerning the Zhoubi Suanjing (Chou Pei Suan Ching),
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generally considered to be the oldest of the mathematical classics, have
differed by almost a thousand years. Some considered the Zhoubi to be a
good record of Chinese mathematics of about 1200 BcE, but others placed
the work in the first century before our era. It may, in fact, represent the
work of different periods. A date after 300 BCE would appear reasonable,
thus placing it near or in the period of the Han dynasty (202 BCE). “Zhoubi”
seems to refer to the use of the gnomon in studying the circular paths of the
heavens, and the book of this title is concerned with astronomical calcu-
lations, although it includes an introduction on the properties of the right
triangle, the Pythagorean theorem, and some work on the use of fractions.
The work is cast in the form of a dialogue between a prince and his minister
concerning the calendar; the minister tells his ruler that the art of numbers is
derived from the circle and the square, the square pertaining to the earth and
the circle belonging to the heavens.

The Nine Chapters

Almost as old as the Zhoubi and perhaps the most influential of all Chinese
mathematical books was the Jiuzhang suanshu (Chui-chang suan-shu), or
Nine Chapters on the Mathematical Art. This book includes 246 problems
on surveying, agriculture, partnerships, engineering, taxation, calculation,
the solution of equations, and the properties of right triangles. Whereas the
Greeks of this period were composing logically ordered and system-
atically expository treatises, the Chinese, like the Babylonians and the
Egyptians, had the custom of compiling sets of specific problems.

In this and other Chinese works, one is struck by the juxtaposition of
exact results and approximations. Correct rules are used for the areas
of triangles, rectangles, and trapezoids. The area of the circle was found
by taking three-fourths of the square on the diameter or one-twelfth of
the square of the circumference—a correct result if the value 3 is
adopted for m—but for the area of a segment of a circle, the Nine
Chapters uses the approximate results s(s + ¢)/2, where s is the sagitta
(that is, the radius minus the apothem) and ¢ the chord or base of the
segment. There are problems that are solved by the rule of three; in
others, square and cube roots are found. Chapter 8 of the Nine Chapters
is significant for its solution of problems in simultaneous linear equa-
tions, using both positive and negative numbers. The last problem in the
chapter involves four equations in five unknowns, and the topic of
indeterminate equations was to remain a favorite among mathematicians
of the Orient. The ninth and last chapter includes problems on right-
angled triangles, some of which later reappeared in India and Europe.
One of these asks for the depth of a pond 10 feet square if a reed growing
in the center and extending 1 foot above the water just reaches the
surface if drawn to the edge of the pond. Another of these well-known
problems is that of the “broken bamboo”: There is a bamboo 10 feet
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high, the upper end of which being broken reaches the ground 3 feet
from the stem. Find the height of the break.

The Chinese were especially fond of patterns; hence, it is not sur-
prising that the first record (of ancient but unknown origin) of a magic
square appeared there. The square
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was supposedly brought to man by a turtle from the River Luo in the
days of the legendary Emperor Yii, who was reputed to be a hydraulic
engineer. The concern for such patterns led the author of the Nine
Chapters to solve the system of simultaneous linear equations

3x+2y+z=39
2x+3y+z=34
x+2y+32=26

by performing column operations on the matrix

1 2 3 0O 0 3
2 3 2 . 0O 5 2
3 ] ) to reduce it to 36 1 ]
26 34 39 99 24 39

The second form represented the equations 36z =99, 5y + z =24, and
3x + 2y + z= 39, from which the values of z, y, and x are successively
found with ease.

Rod Numerals

Had Chinese mathematics enjoyed uninterrupted continuity of tradition,
some of the striking anticipations of modern methods might have sig-
nificantly modified the development of mathematics. But Chinese cul-
ture was seriously hampered by abrupt breaks. In 213 BcE, for example,
the Chinese emperor ordered the burning of books, an internationally
popular activity at times of political stress. Some works obviously must
have survived, either through the existence of copies or through oral
transmission, and learning did indeed persist, with mathematical emphasis
on problems of commerce and the calendar.

There seems to have been contact between India and China, as well as
between China and the West, but scholars differ on the extent and
direction of borrowing. The temptation to see Babylonian or Greek
influence in China, for example, is faced with the problem that the Chinese
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did not make use of sexagesimal fractions. Chinese numeration remained
essentially decimal, with notations rather strikingly different from those
in other lands. In China, from early times, two schemes of notation were
in use. In one, the multiplicative principle predominated; in the other,
a form of positional notation was used. In the first of these, there
were distinct ciphers for the digits from 1 to 10 and additional ciphers
for the powers of 10, and in the written forms, the digits in odd positions
(from left to right or from bottom to top) were multiplied by their
successor. Thus, the number 678 would be written as a 6, followed by
the symbol for 100, then a 7, followed by the symbol for 10, and finally
the symbol for 8.

In the system of “rod numerals,” the digits from 1 to 9 appeared

as| I b W W T M T W, and the first nine multiples of 10 as

=== = L 4i L <L By the use of these eighteen symbols
alternately in positions from right to left, numbers as large as desired
could be represented. The number 56,789, for instance, would appear as
i LT =LTT. As in Babylonia, a symbol for an empty position appeared
only relatively late. In a work of 1247, the number 1,405,536 is written
with a round zero symbol as | = 0 Z \ll="T. (Occasionally, as in the
fourteenth-century form of the arithmetic triangle, the vertical and
horizontal rods or strokes were interchanged.)

The precise age of the original rod numerals cannot be determined, but
they were certainly in use several hundred years before our era that is,
long before the positional notation had been adopted in India. The use of
a centesimal, rather than a decimal, positional system in China was
convenient for adaptation to computations with the counting board.
Distinctive notations for neighboring powers often enabled the Chinese
to use, without confusion, a counting board with unmarked vertical
columns. Before the eighth century, the place in which a zero was
required was simply left blank. Although in texts older than 300 cE, the
numbers and multiplication tables were written out in words, calcula-
tions actually were made with rod numerals on a counting board.

The Abacus and Decimal Fractions

The rod numerals of about 300 BCE were not merely a notation for the
written result of a computation. Actual bamboo, ivory, or iron rods were
carried about in a bag by administrators and used as a calculating device.
Counting rods were manipulated with such dexterity that an eleventh-
century writer described them as “flying so quickly that the eye could not
follow their movement.” Cancellations probably were more rapidly
carried out with rods on a counting board than in written calculations. So
effective, in fact, was the use of the rods on a counting board that the
abacus or rigid counting frame with movable markers on wires was not
used so early as has been generally supposed. The first clear descriptions
of the modern forms, known in China as the suan phan and in Japan as
the soroban, are of the sixteenth century, but anticipations would appear
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to have been in use perhaps a thousand years earlier. The word “abacus”
is probably derived from the Semitic word “abq,” or “dust,” indicating
that in other lands, as well as in China, the device grew out of a dust or
sand tray used as a counting board. It is possible, but by no means
certain, that the use of the counting board in China antedates the Eur-
opean, but clear-cut and reliable dates are not available. We have noted
that in the National Museum in Athens, there is a marble slab, dating
probably from the fourth century BcE, that appears to be a counting
board. And when a century earlier Herodotus wrote, “The Egyptians
move their hand from right to left in calculation, while the Greeks move
it from left to right,” he was probably referring to the use of some sort
of counting board. Just when such devices gave way to the abacus
proper is difficult to determine, nor can we tell whether the appearances
of the abacus in China, Arabia, and Europe were independent inventions.
The Arabic abacus had ten balls on each wire and no center bar, whereas
the Chinese had five lower and two upper counters on each wire, separated
by a bar. Each of the upper counters on a wire of the Chinese abacus is
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An early printed picture of an abacus, from the Suan Fa Tongzong,
1592 (Reproduced from J. Needham 1959, Vol. 3, p. 76.)
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equivalent to five on the lower wire; a number is registered by sliding the
appropriate counters against the separating bar.

No description of Chinese numeration would be complete without
reference to the use of fractions. The Chinese were familiar with operations
on common fractions, in connection with which they found lowest com-
mon denominators. As in other contexts, they saw analogies with the
differences in the sexes, referring to the numerator as the “son” and to the
denominator as the “mother.” Emphasis on yin and yang (opposites,
especially in sex) made it easier to follow the rules for the manipulation of
fractions. More important than these, however, was the tendency in China
toward decimalization of fractions. As in Mesopotamia, a sexagesimal
metrology led to sexagesimal numeration, so also in China adherence to
the decimal idea in weights and measures resulted in a decimal habit in
the treatment of fractions that, it is said, can be traced back as far as the
fourteenth century BCE. Decimal devices in computation were sometimes
adopted to lighten manipulations of fractions. In a first-century commentary
on the Nine Chapters, for example, we find the use of the now-familiar
rules for square and cube roots, equivalent to \/a =+/100a/10 and
v/a = +/1000a/10, which facilitate the decimalization of root extractions.
The idea of negative numbers seems not to have occasioned much diffi-
culty for the Chinese because they were accustomed to calculating with
two sets of rods—a red set for positive coefficients or numbers and a
black set for negatives. Nevertheless, they did not accept the notion that
a negative number might be a solution of an equation.

Values of Pi

The earliest Chinese mathematics is so different from that of comparable
periods in other parts of the world that the assumption of independent
development would appear to be justified. At all events, it seems safe to
say that if there was some intercommunication before 400 cg, then
more mathematics came out of China than went in. For later periods, the
question becomes more difficult. The use of the value 3 for 7 in early
Chinese mathematics is scarcely an argument for dependence on
Mesopotamia, especially since the search for more accurate values, from
the first centuries of the Christian era, was more persistent in China than
elsewhere. Values such as 3.1547, /10, 92/29, and 142/45 are found,
and in the third century Liu Hui, an important commentator on the
Nine Chapters, derived the figure 3.14 by use of a regular polygon of
96 sides and the approximation 3.14159 by considering a polygon
of 3,072 sides. In Liu Hui’s reworking of the Nine Chapters, there are
many problems in mensuration, including the correct determination
of the volume of a frustum of a square pyramid. For a frustum of a
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circular cone, a similar formula was applied, but with a value of 3 for 7.
Unusual is the rule that the volume of a tetrahedron with two opposite
edges perpendicular to each other is one-sixth the product of these two
edges and their common perpendicular. The method of false position is
used in solving linear equations, but there are also more sophisticated
results, such as the solution, through a matrix pattern, of a Diophantine
problem involving four equations in five unknown quantities. The
approximate solution of equations of higher degree seems to have been
carried out by a device similar to what we know as “Horner’s method.”
Liu Hui also included, in his work on the Nine Chapters, numerous
problems involving inaccessible towers and trees on hillsides.

The Chinese fascination with the value of w reached its high point in
the work of Zu Chongzhi (Tsu Ch’ung-chih) (430 501). One of his
values was the familiar Archimedean 22/7, described by Zu Chongzhi as
“inexact”; his “accurate” value was 355/113. If one persists in seeking
possible Western influence, one can explain away this remarkably good
approximation, not equaled anywhere until the fifteenth century, by
subtracting the numerator and the denominator, respectively, of the
Archimedean value from the numerator and the denominator of the
Ptolemaic value 377/120. Yet, Zu Chongzhi went even further in his
calculations, for he gave 3.1415927 as an “excess” value and 3.1415926
as a “deficit value.” The calculations by which he arrived at these
bounds, apparently aided by his son Zu Chengzhi, were probably con-
tained in one of his books, since lost. In any case, his results were
remarkable for that age, and it is fitting that today a landmark on the
moon bears his name.

The work of Liu Hui and Zu Chongzhi represents a greater interest in
theory and proofs than known examples of earlier mathematical activity
in China; the example of the computation of 7 may obscure this fact
because accuracy in the value of 7 is more a matter of computational
stamina than of theoretical insight. The Pythagorean theorem alone
suffices to give as accurate an approximation as may be desired. Starting
with the known perimeter of a regular polygon of n sides inscribed in a
circle, the perimeter of the inscribed regular polygon of 27 sides can be
calculated by two applications of the Pythagorean theorem. Let C be a
circle with center O and radius r (Fig. 9.1), and let PQ = s be a side of
a regular inscribed polygon of n sides having a known perimeter. Then,
the apothem OM = u is given by u = \/r> — (s/2)’; hence, the sagitta
MR =v =r —uis known. Then, the side RQ = w of the inscribed regular
polygon of 2n sides is found from w=./v*>+ (s/2)’; hence, the
perimeter of this polygon is known. The calculation, as Liu Hui saw, can
be shortened by noting that w? = 2rv. An iteration of the procedure will
result in an ever closer approximation to the perimeter of the circle, in
terms of which 7 is defined.
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From the sixth to the tenth century, a group of a dozen “classics,” cov-
ering topics in arithmetic and number theory, served as a foundation for
mathematics taught in the “School for the Sons of the State.” These works
included the early Zhoubi and Nine Chapters, as well as later, largely
derivative, textbooks such as works by Liu Hui and others. The group of a
dozen books covered topics in arithmetic and the theory of numbers, right
triangles, the computation of irregular areas and volumes, and more.

Between the tenth and the thirteenth centuries, we know of no new
Chinese mathematical breakthroughs, although some major technologi-
cal innovations such as paper and the mariner’s compass appeared at this
time. Generally, we may note that Chinese mathematical problems often
appear to be more picturesque than practical, yet Chinese civilization
was responsible for a substantial number of other technological inno-
vations. The use of printing and gunpowder (eighth century) was earlier
in China than elsewhere and earlier also than the high-water mark in
Chinese mathematics that occurred in the thirteenth century, during the
latter part of the Sung period.

Thirteenth-Century Mathematics

The later Sung period may be regarded as a high plateau of medieval
mathematics in China. During this period, which coincides with the time
of Mongol expansion and increased interaction with Islam, numerous
mathematicians combined traditional teachings of arithmetic and mea-
surement with new approaches to the solution of equations of higher
degree, both determinate and indeterminate.

At that time, there were mathematicians working in various parts of
China, but relations between them seem to have been remote, and, as in
the case of Greek mathematics, we evidently have relatively few of the
treatises that once were available.

One of the mathematicians of the period was Li Zhi (1192 1279),
a mathematician of Peking who spent a long and interesting life as
an occasional administrator, hermit, scholar, and academician. He was
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offered a post as a royal annalist by Kublai Khan in 1260 but politely
found an excuse to decline it. His Ceyuan Haijing (Ts’e-yuan hai-ching)
(Sea-Mirror of the Circle Measurements) includes 170 problems dealing
with circles inscribed within, or circumscribed without, a right triangle
and with determining the relationships between the sides and the radii, and
some of the problems lead to equations of the fourth degree. Although
he did not describe his method of solving equations, including some of the
sixth degree, it appears that it was not very different from that used by Zhu
Shijie (Chu Shih-chieh) (fl. 1280 1303) and Horner. Others who used the
Horner method were Qin Jiushao (Ch’in Chiu-shao) (ca. 1202 ca. 1261)
and Yang Hui (fl. ca. 1261 1275). The former was an unprincipled
governor and minister who acquired immense wealth within a hundred
days of assuming office. His Shushu jiuzhang (Mathematical Treatise in
Nine Sections) marks the high point in Chinese indeterminate analysis,
with the invention of routines for solving simultaneous congruences. In
this work, he also found the square root of 71,824 by steps paralleling
those in the Horner method. With 200 as the first approximation to a
root of x> — 71,824 = 0, he diminished the roots of this by 200 to obtain
y* + 400y — 31,824 = 0. For the latter equation, he found 60 as an ap-
proximation and diminished the roots by 60, arriving at a third equation,
22+ 520z — 4,224 = 0, of which 8 is a root. Hence, the value of x is 268.
In a similar way, he solved cubic and quartic equations.

The same “Horner” device was used by Yang Hui, about whose life
almost nothing is known. He was a prolific arithmetician; among his
contributions that are extant are the earliest Chinese magic squares of
order greater than three, including two each of orders four through eight
and one each of orders nine and ten.

Yang Hui’s works also included results in the summation of series and
the so-called Pascal triangle, things that were published and better
known through the Precious Mirror (Jade Mirror of the Four Origins) of
Zhu Shijie, with which the Golden Age of Chinese mathematics closed.

Zhu Shijie was the last and greatest of the Sung mathematicians, yet we
know little about him—mnot even when he was born or when he died. He
was a resident of Yanshan, near modern Peking, but he seems to have
spent some twenty years as a wandering scholar who earned his living
by teaching mathematics, even though he had the opportunity to write
two treatises. The first of these, written in 1299, was the Suanxue
qgimeng (Suan-hsueh ch’i-meng) (Introduction to Mathematical Studies), a
relatively elementary work that strongly influenced Korea and Japan,
although in China it was lost until it reappeared in the nineteenth century.
Of greater historical and mathematical interest is the Siyuan yujian
(Ssu-yuan yu-chien) (Jade Mirror of the Four Origins) of 1303. In the
eighteenth century, this, too, disappeared in China, only to be rediscovered
in the next century. The four origins, called heaven, earth, man, and matter,
are the representations of four unknown quantities in the same equation.
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The book marks the peak in the development of Chinese algebra, for it
deals with simultaneous equations and with equations of degrees as high as
fourteen. In it, the author describes a transformation method that he calls
fan fa, the elements of which seem to have arisen much earlier than this in
China, but which generally bears the name of Horner, who lived half a
millennium later. In solving the equation x>+ 252x —5,292=0, for
example, Zhu Shijie first obtained x = 19 as an approximation (a root lies
between x =19 and x =20) and then used the fan fa, in this case the
transformation y=x — 19, to obtain the equation y>+ 290y —143 =0
(with a root between y=0 and y=1). He then gave the root of the
latter as (approximately) y = 143/(1 + 290); hence, the corresponding
value of x is 195i. For the equation x* —574 =0, he used y=x—8 to
obtain y*+ 24y*+ 192y — 62 =0, and he gave the root as x =8 + 62/
(1 + 24 + 192) or x = 8. In some cases, he found decimal approximations.

A few of the many summations of series found in the Jade Mirror are
the following:

(2n+1)
3!

(n+2)
3!

(4n+1)

51

No proofs are given, however, nor does the topic seem to have been
continued again in China until about the nineteenth century. Zhu Shijie
handled his summations through the method of finite differences,
some elements of which seem to date in China from the seventh century,
but shortly after his work, the method disappeared for many centuries.

The Jade Mirror opens with a diagram of the arithmetic triangle,
inappropriately known in the West as “Pascal’s triangle.” (See the fol-
lowing illustration.) In Zhu’s arrangement, we have the coefficients of
binomial expansions through the eighth power, clearly given in rod
numerals and a round zero symbol. Zhu disclaims credit for the triangle,
referring to it as a “diagram of the old method for finding eighth and lower
powers.” A similar arrangement of coefficients through the sixth power
had appeared in the work of Yang Hui, but without the round zero symbol.
There are references in Chinese works of about 1100 to tabulation systems
for binomial coefficients, and it is likely that the arithmetic triangle ori-
ginated in China by about that date. It is interesting to note that the
Chinese discovery of the binomial theorem for integral powers was
associated in its origin with root extractions, rather than with powers. The
equivalent of the theorem apparently was known to Omar Khayyam at
about the time that it was being used in China, but the earliest extant

P+22+3+--+n=nn+1)

1+8+30+80+ - +n*(n+1)

=nn+1)(n+2)(n+3)X
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The “Pascal” triangle, as depicted in 1303 at the front of Zhu
Shijie’s Jade Mirror. It is titled “The Old Method Chart of the
Seven Multiplying Squares” and tabulates the binomial coeffi
cients up to the eighth power. (Reproduced from J. Needham
1959, Vol. 3, p. 135.)

Arabic work containing it is by al-Kashi in the fifteenth century. By that
time, Chinese mathematics had declined. Emphasis was placed once again
on the tradition of the Nine Chapters and the requirements of commercial
arithmetic. The impressive theoretical achievements, cloaked in symbolic
language that lent them an aura of mystery, would be revived only after
the more intense interaction with Western European scholarship of the
sixteenth and seventeenth centuries.



10

Ancient and Medieval
India

A mixture of pearl shells and sour dates. .. or of costly
crystal and common pebbles.
Al Biruni’s India

Early Mathematics in India

Archaeological excavations at Mohenjo Daro and Harappa give evidence
of an old and highly cultured civilization in the Indus Valley during the
era of the Egyptian pyramid builders (ca. 2650 BcE), but we have no
Indian mathematical documents from that age. There is evidence of
structured systems of weights and measures, and samples of decimal-
based numeration have been found. During this period and succeeding
centuries, however, major movements and conquests of people occurred
on the Indian subcontinent. Many of the languages and the dialects that
evolved as a result have not been deciphered. It is therefore difficult at
this stage to plot a time-space chart of mathematical activities for this
vast area. The linguistic challenges are compounded by the fact that the
earliest known Indian language samples were part of an oral tradition,
rather than a written one. Nevertheless, Vedic Sanskrit, the language in

186
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question, presents us with the earliest concrete information about ancient
Indian mathematical concepts.

The Vedas, groups of ancient, essentially religious texts, include refer-
ences to large numbers and decimal systems. Especially interesting are
dimensions, shapes, and proportions given for bricks used in the con-
struction of ritual fire altars. India, like Egypt, had its “rope-stretchers,” and
the sparse geometric lore acquired in connection with the laying out of
temples and the measurement and construction of altars took the form of a
body of knowledge known as the Sulbasutras, or “rules of the cord.” Sulba
(or sulva) refers to cords used for measurements, and sufra means a book of
rules or aphorisms relating to a ritual or a science. The stretching of ropes is
strikingly reminiscent of the origin of Egyptian geometry, and its association
with temple functions reminds one of the possible ritual origin of mathe-
matics. Yet, the difficulty of dating the rules is also matched by doubt
concerning the influence the Egyptians had on later Hindu mathematicians.
Even more so than in the case of China, there is a striking lack of continuity
of tradition in the mathematics of India.

The Sulbasutras

There are a number of Sulbasutras; the major extant ones, all in verse,
are associated with the names of Baudhayama, Manava, Katyayana,
and the best-known, Apastamba. They may date from the first half of
the first millennium BcE, although earlier and later dates have been
suggested as well. We find rules for the construction of right angles by
means of triples of cords the lengths of which form “Pythagorean”
triads, such as 3, 4, and 5; or 5, 12, and 13; or 8, 15, and 17; or 12, 35,
and 37. Although Mesopotamian influence in the Sulbasutras is not
unlikely, we know of no conclusive evidence for or against this.
Apastamba knew that the square on the diagonal of a rectangle is equal
to the sum of the squares on the two adjacent sides. Less easily explained
is another rule given by Apastamba—one that strongly resembles some
of the geometric algebra in Book II of Euclid’s Elements. To construct a
square equal in area to the rectangle ABCD (Fig. 10.1), lay off the
shorter sides on the longer, so that AF = AB = BE = CD, and draw HG
bisecting segments CE and DF; extend EF to K, GH to L, and AB to M
so that FK = HL = FH = AM, and draw LKM. Now construct a rectangle
with a diagonal equal to LG and with a shorter side HFE. Then, the
longer side of this rectangle is the side of the square desired.

There are also rules for transforming rectilinear into curvilinear shapes
and vice versa. So conjectural are the origin and the period of the Sul-
basutras that we cannot tell whether the rules are related to early
Egyptian surveying or to the later Greek problem of altar doubling.
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The Siddhantas

There are references to arithmetic and geometric series in Vedic litera-
ture that purport to go back to 2000 BCE, but no contemporary documents
from India are available to confirm this. It has also been claimed that the
first recognition of incommensurables is to be found in India during the
Sulbasutra period, but such claims are not well substantiated. The period
of the Sulbasutras was followed by the age of the Siddhantas, or systems
(of astronomy). Five different versions of the Siddhantas are known by
the names: Paulisha Siddhanta, Surya Siddhanta, Vasisishta Siddhanta,
Paitamaha Siddhanta, and Romanka Siddhanta. Of these, the Surya
Siddhanta (System of the Sun), written about 400 cE, is the only one that
seems to be completely extant. According to the text, written in epic
stanzas, it is the work of Surya, the Sun God. The main astronomical
doctrines are evidently Greek, but with the retention of considerable old
Hindu folklore. The Paulisha Siddhanta, which dates from about 380 cE,
was summarized by the Hindu mathematician Varahamihira (fl. 505 cE),
who also listed the other four Siddhantas. It was referred to frequently by
the Arabic scholar al-Biruni, who suggested a Greek origin or influence.
Later writers report that the Siddhantas were in substantial agreement on
substance, only the phraseology varied; hence, we can assume that the
others, such as the Surya Siddhanta, were compendia of astronomy
comprising cryptic rules in Sanskrit verse, with little explanation and
without proof.

It is generally agreed that the Siddhantas stem from the late fourth or
the early fifth century, but there is sharp disagreement about the origin
of the knowledge that they contain. Indian scholars insist on the ori-
ginality and independence of the authors, whereas Western writers are
inclined to see definite signs of Greek influence. It is not unlikely, for
example, that the Paulisha Siddhanta was derived in considerable
measure from the work of the astrologer Paul, who lived in Alexandria
shortly before the presumed date of composition of the Siddhantas.
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(Al-Biruni, in fact, explicitly attributes this Siddhanta to Paul of Alex-
andria.) This would account in a simple manner for the obvious simi-
larities between portions of the Siddhantas and the trigonometry and the
astronomy of Ptolemy. The Paulisha Siddhanta, for example, uses
the value 3 177/1250 for m, which is in essential agreement with the
Ptolemaic sexagesimal value 3;8,30.

Even if Indian authors did acquire their knowledge of trigonometry
from the cosmopolitan Hellenism at Alexandria, the material in their
hands took on a significantly new form. Whereas the trigonometry of
Ptolemy had been based on the functional relationship between the
chords of a circle and the central angles they subtend, the writers of
the Siddhantas converted this to a study of the correspondence between
half of a chord of a circle and half of the angle subtended at the center
by the whole chord. Thus was born, apparently in India, the predecessor
of the modern trigonometric function known as the sine of an angle,
and the introduction of the sine function represents the chief contribution
of the Siddhantas to the history of mathematics. It was through the
Indians, and not the Greeks, that our use of the half chord has been
derived, and our word “sine,” through misadventure in translation (see
further on), has descended from the Sanskrit name jiva.

Aryabhata

During the sixth century, shortly after the composition of the Siddhantas,
there lived two Indian mathematicians who are known to have written
books on the same type of material. The older and more important of the
two was Aryabhata, whose best-known work, written around 499 ce
and titled Aryabhatiya, is a slim volume, written in verse, covering
astronomy and mathematics. The names of several Hindu mathemati-
cians before this time are known, but nothing of their work has been
preserved beyond a few fragments. In this respect, then, the position
of the Aryabhatiya of Aryabhata in India is somewhat akin to that of
the Elements of Euclid in Greece some eight centuries earlier. Both are
summaries of earlier developments, compiled by a single author.
There are, however, more striking differences than similarities between
the two works. The Elements is a well-ordered synthesis of pure
mathematics with a high degree of abstraction, a clear logical structure,
and an obvious pedagogical inclination; the Aryabhatiya is a brief
descriptive work, in 123 metrical stanzas, intended to supplement rules
of calculation used in astronomy and mensurational mathematics, with
no appearance of deductive methodology. About a third of the work is on
ganitapada, or mathematics. This section opens with the names of the
powers of 10 up to the tenth place and then proceeds to give instructions
for square and cube roots of integers. Rules of mensuration follow, about
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half of which are erroneous. The area of a triangle is correctly given
as half the product of the base and altitude, but the volume of a pyramid
is also taken to be half of the product of the base and the altitude. The
area of a circle is found correctly as the product of the circumference and
half of the diameter, but the volume of a sphere is incorrectly stated to be
the product of the area of a great circle and the square root of this area.
Again, in the calculation of areas of quadrilaterals, correct and incorrect
rules appear side by side. The area of a trapezoid is expressed as half of
the sum of the parallel sides multiplied by the perpendicular between
them, but then follows the incomprehensible assertion that the area of
any plane figure is found by determining two sides and multiplying
them. One statement in the Aryabhatiya to which Indian scholars have
pointed with pride is as follows:

Add 4 to 100, multiply by 8, and add 62,000. The result is approximately
the circumference of a circle of which the diameter is 20,000. (Clark
1930, p. 28)

Here we see the equivalent of 3.1416 for 7, but it should be recalled
that this is essentially the value Ptolemy had used. The likelihood that
Aryabhata here was influenced by Greek predecessors is strengthened by
his adoption of the myriad, 10,000, as the number of units in the radius.

A typical portion of the Aryabhatiya is that involving arithmetic
progressions, which contains arbitrary rules for finding the sum of the
terms in a progression and for determining the number of terms in a
progression when given the first term, the common difference, and the
sum of the terms. The first rule had long been known by earlier writers.
The second is a curiously complicated bit of exposition:

Multiply the sum of the progression by eight times the common differ-
ence, add the square of the difference between twice the first term, and the
common difference, take the square root of this, subtract twice the first
term, divide by the common difference, add one, divide by two. The result
will be the number of terms.

Here, as elsewhere in the Aryabhatiya, no motivation or justification is
given for the rule. It was probably arrived at through a solution of
a quadratic equation, knowledge of which might have come from
Mesopotamia or Greece. Following some complicated problems on com-
pound interest (that is, geometric progressions), the author turns, in flowery
language, to the very elementary problem of finding the fourth term in a
simple proportion:

In the rule of three multiply the fruit by the desire and divide by the
measure. The result will be the fruit of the desire.
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This, of course, is the familiar rule that if a/b = c/x, then x = bc/a,
where a is the “measure,” b the “fruit,” ¢ the “desire,” and x the “fruit of
the desire.” The work of Aryabhata is indeed a potpourri of the simple
and the complex, the correct and the incorrect. The Arabic scholar al-
Biruni, half a millennium later, characterized Indian mathematics as a
mixture of common pebbles and costly crystals, a description quite
appropriate to Aryabhatiya.

Numerals

The second half of the Aryabhatiya is on the reckoning of time and on
spherical trigonometry; here we note an element that would leave a
permanent impression on the mathematics of later generations—the
decimal place-value numeration. It is not known just how Aryabhata
carried out his calculations, but his phrase “from place to place each is
ten times the preceding” is an indication that the application of the
principle of position was in his mind. “Local value” had been an
essential part of Babylonian numeration, and perhaps the Hindus were
becoming aware of its applicability to the decimal notation for integers
in use in India. The development of numerical notations in India seems
to have followed about the same pattern found in Greece. Inscriptions
from the earliest period at Mohenjo Daro show at first simple vertical
strokes, arranged into groups, but by the time of Asoka (third century
BCE) a system resembling the Herodianic was in use. In the newer
scheme the repetitive principle was continued, but new symbols of
higher order were adopted for 4, 10, 20, and 100. This so-called Karosthi
script then gradually gave way to another notation, known as the Brahmi
characters, which resembled the alphabetic cipherization in the Greek
Ionian system; one wonders whether it was only a coincidence that the
change in India took place shortly after the period when in Greece the
Herodianic numerals were displaced by the Ionian.

From the Brahmi ciphered numerals to our present-day notation for
integers, two short steps are needed. The first is a recognition that
through the use of the positional principle, the ciphers for the first nine
units can also serve as the ciphers for the corresponding multiples of 10
or equally well as ciphers for the corresponding multiples of any power
of 10. This recognition would make superfluous all of the Brahmi
ciphers beyond the first nine. It is not known when the reduction to nine
ciphers occurred, and it is likely that the transition to the more eco-
nomical notation was made only gradually. It appears from extant evi-
dence that the change took place in India, but the source of the
inspiration for the change is uncertain. Possibly, the so-called Hindu
numerals were the result of internal development alone; perhaps they
developed first along the western interface between India and Persia,
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where remembrance of the Babylonian positional notation may have led
to modification of the Brahmi system. It is possible that the newer
system arose along the eastern interface with China, where the pseu-
dopositional rod numerals may have suggested the reduction to nine
ciphers. There is also a theory that this reduction may first have been
made at Alexandria within the Greek alphabetic system and that sub-
sequently the idea spread to India. During the later Alexandrian period,
the earlier Greek habit of writing common fractions with the numerator
beneath the denominator was reversed, and it is this form that was
adopted by the Hindus, without the bar between the two. Unfortunately,
the Hindus did not apply the new numeration for integers to the realm of
decimal fractions; hence, the chief potential advantage of the change
from Ionian notation was lost.

The earliest specific reference to the Hindu numerals is found in 662
in the writings of Severus Sebokt, a Syrian bishop. After Justinian closed
the Athenian philosophical schools, some of the scholars moved to Syria,
where they established centers of Greek learning. Sebokt evidently felt
piqued by the disdain for non-Greek learning expressed by some
associates; hence, he found it expedient to remind those who spoke
Greek that “there are also others who know something.” To illustrate his
point, he called attention to the Hindus and their “subtle discoveries in
astronomy,” especially “their valuable methods of calculation, and their
computing that surpasses description. I wish only to say that this com-
putation is done by means of nine signs” (Smith 1958, Vol. I, p. 167).
That the numerals had been in use for some time is indicated by the
fact that they occur on an Indian plate of the year 595 cg, where the date
346 is written in decimal place value notation.

The Symbol for Zero

It should be remarked that the reference to nine symbols, rather than ten,
implies that the Hindus evidently had not yet taken the second step in the
transition to the modern system of numeration—the introduction of a
notation for a missing position—that is, a zero symbol. The history of
mathematics holds many anomalies, and not the least of these is the fact
that “the earliest undoubted occurrence of a zero in India is in an
inscription of 876 (Smith 1958, Vol. II, p. 69)—that is, more than two
centuries after the first reference to the other nine numerals. It is not even
established that the number zero (as distinct from a symbol for an empty
position) arose in conjunction with the other nine Hindu numerals. It is
quite possible that zero originated in the Greek world, perhaps at
Alexandria, and that it was transmitted to India after the decimal posi-
tional system had been established there.
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The history of the zero placeholder in positional notation is further
complicated by the fact that the concept appeared independently, well
before the days of Columbus, in the western as well as the eastern
hemisphere.

With the introduction, in the Hindu notation, of the tenth numeral, a
round goose egg for zero, the modern system of numeration for integers
was completed. Although the medieval Hindu forms of the ten numerals
differ considerably from those in use today, the principles of the system
were established. The new numeration, which we generally call the
Hindu system, is merely a new combination of three basic principles, all
of ancient origin: (1) a decimal base; (2) a positional notation; and (3) a
ciphered form for each of the ten numerals. Not one of these three was
originally devised by the Hindus, but it presumably is due to them that
the three were first linked to form the modern system of numeration.

It may be well to say a word about the form of the Hindu symbol for
zero—which is also ours. It was once assumed that the round form
originally stemmed from the Greek letter omicron, the initial letter in the
word “ouden,” or “empty,” but recent investigations seem to belie such
an origin. Although the symbol for an empty position in some of the
extant versions of Ptolemy’s tables of chords does seem to resemble
an omicron, the early zero symbols in Greek sexagesimal fractions
are round forms variously embellished and differing markedly from
a simple goose egg. Moreover, when in the fifteenth century in the
Byzantine Empire a decimal positional system was fashioned out of
the old alphabetic numerals by dropping the last eighteen letters and
adding a zero symbol to the first nine letters, the zero sign took forms
quite unlike an omicron. Sometimes it resembled an inverted form of our
small letter A; other times, it appeared as a dot.

Trigonometry

The development of our system of notation for integers was one of the
two most influential contributions of India to the history of mathematics.
The other was the introduction of an equivalent of the sine function in
trigonometry to replace the Greek tables of chords. The earliest tables
of the sine relationship that have survived are those in the Siddhantas
and the Aryabhatiya. Here the sines of angles up to 90° are given for
twenty-four equal intervals of 33" each. In order to express arc length
and sine length in terms of the same unit, the radius was taken as
3,438 and the circumference as 360 - 60 = 21,600. This implies a value
of 7 agreeing to four significant figures with that of Ptolemy. In another
connection, Aryabhata used the value /10 for 7, which appeared so
frequently in India that it is sometimes known as the Hindu value.
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For the sine of 33", the Siddhantas and the Aryabhatiya took the number
of units in the arc—that is, 60 X 33 or 225. In modern language, the sine of
a small angle is very nearly equal to the radian measure of the angle (which
is virtually what the Hindus were using). For further items in the sine table,
the Hindus used a recursion formula that may be expressed as follows.
If the nth sine in the sequence from n = 1 to n = 24 is designated as s,, and
if the sum of the first n sines is S, then s,,., = s, + s, — S,/s,. From this
rule, one easily deduces that sin 78 = 449, sin 11y = 671, sin 15° = 890,
and so on, up to sin90° = 3,438—the values listed in the table in the
Siddhantas and the Aryabhatiya. Moreover, the table also includes values
for what we call the versed sine of the angle (that is, 1 — cos 6 in modern
trigonometry or 3,438 [1 — cos 6] in Hindu trigonometry) from vers 33 =7
to vers 90° = 3,438. If we divide the items in the table by 3,438, the results
are found to be in close agreement with the corresponding values in
modern trigonometric tables (Smith 1958, Vol. II).

Multiplication

Trigonometry was evidently a useful and accurate tool in astronomy.
How the Indians arrived at results such as the recursion formula is
uncertain, but it has been suggested that an intuitive approach to differ-
ence equations and interpolation may have prompted such rules. Indian
mathematics is frequently described as “intuitive,” in contrast to the stern
rationalism of Greek geometry. Although in Indian trigonometry there is
evidence of Greek influence, the Indians seem to have had no occasion to
borrow Greek geometry, concerned as they were with simple mensura-
tional rules. Of the classical geometric problems or the study of curves
other than the circle, there is little evidence in India, and even the conic
sections seem to have been overlooked by the Indians, as by the Chinese.
Hindu mathematicians were instead fascinated by work with numbers,
whether it involved the ordinary arithmetic operations or the solution of
determinate or indeterminate equations. Addition and multiplication were
carried out in India much as they are by us today, except that the Indians
seem at first to have preferred to write numbers with the smaller units on
the left, hence to work from left to right, using small blackboards with
white removable paint or a board covered with sand or flour. Among the
devices used for multiplication was one that is known under various
names: lattice multiplication, gelosia multiplication, or cell or grating or
quadrilateral multiplication. The scheme behind this is readily recognized
in two examples. In the first example (Fig. 10.2), the number 456 is
multiplied by 34. The multiplicand has been written above the lattice and
the multiplier appears to the left, with the partial products occupying the
square cells. Digits in the diagonal rows are added, and the product 15,504
is read off at the bottom and the right. To indicate that other arrangements
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are possible, a second example is given in Fig. 10.3, in which the multi-
plicand 537 is placed at the top, the multiplier 24 is on the right, and the
product 12,888 appears to the left and along the bottom. Still other mod-
ifications are easily devised. In fundamental principle, gelosia multi-
plication is, of course, the same as our own, the cell arrangement being
merely a convenient device for relieving the mental concentration called
for in “carrying over” from place to place the 10s arising in the partial
products. The only “carrying” required in lattice multiplication is in the
final additions along the diagonals.

Long Division

It is not known when or where gelosia multiplication arose, but India
seems to be the most likely source. It was used there at least by the
twelfth century, and from India, it seems to have been carried to China
and Arabia. From the Arabs, it passed over to Italy in the fourteenth and
fifteenth centuries, where the name gelosia was attached to it because of
the resemblance to gratings placed on windows in Venice and elsewhere.
(The current word “jalousie” seems to stem from the Italian gelosia and
is used for Venetian blinds in France, Germany, Holland, and Russia.)
The Arabs (and, through them, the later Europeans) appear to have
adopted most of their arithmetic devices from the Hindus, so it is likely
that the pattern of long division known as the “scratch method” or the
“galley method” (from its resemblance to a boat) also came from India.
(See the following illustration.) To illustrate the method, let it be
required to divide 44,977 by 382. In Fig. 10.4 we give the modern
method, in Fig. 10.5 the galley method. The latter closely parallels the
former, except that the dividend appears in the middle, for subtractions
are performed by canceling digits and placing differences above, rather
than below, the minuends. Hence, the remainder, 283, appears above and
to the right, rather than below.

The process in Fig. 10.5 is easy to follow if we note that the digits in a
given subtrahend, such as 2,674, or in a given difference, such as 2,957,
are not necessarily all in the same row and that subtrahends are written
below the middle and differences above the middle. Position in a column
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is significant, but not position in a row. The determination of roots of
numbers probably followed a somewhat similar “galley” pattern, cou-
pled in the later years with the binomial theorem in “Pascal triangle”
form, but Indian writers did not provide explanations for their calcula-
tions or proofs for their statements. It is possible that Babylonian and

galef peR FIGUAC > T PCA 8 ~.|

Galley division, sixteenth century. From an unpublished manuscript of a
Venetian monk. The title of the work is “Opus Arithmetica D. Honorati
veneti monachj coenobij S. Lauretig.” From Mr. Plimpton’s library.
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Chinese influences played a role in the problem of evolution or root
extraction. It is often said that the “proof by nines,” or the “casting out of
nines,” is a Hindu invention, but it appears that the Greeks knew earlier
of this property, without using it extensively, and that the method came
into common use only with the Arabs of the eleventh century.

Brahmagupta

The last few paragraphs may leave the unwarranted impression that there
was a uniformity in Hindu mathematics, for we have frequently localized
developments as merely “of Indian origin,” without specifying the per-
iod. The trouble is that there is a high degree of uncertainty in Hindu
chronology. Material in the important Bakshali manuscript, containing
an anonymous arithmetic, is supposed by some to date from the third or
fourth century, by others from the sixth century, and by others from the
eighth or ninth century or later, and there is a suggestion that it may not
even be of Hindu origin. We have placed the work of Aryabhata around
the year 500 cg, but there were two mathematicians named Aryabhata,
and we cannot with certainty ascribe results to our Aryabhata, the elder.
Hindu mathematics presents more historical problems than does Greek
mathematics, for Indian authors referred to predecessors infrequently,
and they exhibited surprising independence in mathematical approach.
Thus, it is that Brahmagupta (fl. 628 cg), who lived in Central India
somewhat more than a century after Aryabhata, has little in common
with his predecessor, who had lived in eastern India. Brahmagupta
mentions two values of m—the “practical value” 3 and the “neat value”
v/10—but not the more accurate value of Aryabhata; in the trigonometry
of his best-known work, the Brahmasphuta Siddhanta, he adopted a
radius of 3,270, instead of Aryabhata’s 3,438. In one respect, he does
resemble his predecessor—in the juxtaposition of good and bad results.
He found the “gross” area of an isosceles triangle by multiplying half of
the base by one of the equal sides; for the scalene triangle with base
fourteen and sides thirteen and fifteen, he found the “gross area” by
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multiplying half of the base by the arithmetic mean of the other sides. In
finding the “exact” area, he used the Archimedean-Heronian formula.
For the radius of the circle circumscribed about a triangle, he gave the
equivalent of the correct trigonometric result 2R =a/sin A =b/sin B =
c/sin C, but this, of course, is only a reformulation of a result known to
Ptolemy in the language of chords. Perhaps the most beautiful result
in Brahmagupta’s work is the generalization of “Heron’s” formula in
finding the area of a quadrilateral. This formula,

K=\/(s=a)(s=b)(s —c)(s —d)

where a, b, c, d are the sides and s is the semiperimeter, still bears his
name, but the glory of his achievement is dimmed by failure to remark
that the formula is correct only in the case of a cyclic quadrilateral. The
correct formula for an arbitrary quadrilateral is

K=+/(s—a)(s—b)(s—c)(s — d) — abcd cos* «

where « is half of the sum of two opposite angles. As a rule for the
“gross” area of a quadrilateral, Brahmagupta gave the pre-Hellenic
formula, the product of the arithmetic means of the opposite sides. For
the quadrilateral with sides a =25, b =25, ¢ =25, d = 39, for example,
he found a *“gross” area of 800.

Brahmagupta’s Formula

Brahmagupta’s contributions to algebra are of a higher order than are his
rules of mensuration, for here we find general solutions of quadratic
equations, including two roots even in cases in which one of them is
negative.

The systematized arithmetic of negative numbers and zero is, in fact,
first found in his work. The equivalents of rules on negative magnitudes
were known through the Greek geometric theorems on subtraction, such
as (a — b)(c —d) =ac + bd — ad — be, but the Indians converted these
into numerical rules on positive and negative numbers. Moreover,
although the Greeks had a concept of nothingness, they never interpreted
this as a number, as did the Indians. Yet here again Brahmagupta spoiled
matters somewhat by asserting that 0 ~ 0 =0, and on the touchy matter
of a + 0, for a # 0, he did not commit himself:

Positive divided by positive, or negative by negative, is affirmative. Cipher
divided by cipher is naught. Positive divided by negative is negative.
Negative divided by affirmative is negative. Positive or negative divided
by cipher is a fraction with that for denominator. (Colebrook 1817, Vol. I)
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It should also be mentioned that the Hindus, unlike the Greeks,
regarded irrational roots of numbers as numbers. This was of enormous
help in algebra, and Indian mathematicians have been much praised for
taking this step. We have seen the lack of nice distinction on the part of
Hindu mathematicians between exact and inexact results, and it was only
natural that they should not have taken seriously the difference between
commensurable and incommensurable magnitudes. For them, there was
no impediment to the acceptance of irrational numbers, and later gen-
erations uncritically followed their lead until in the nineteenth-century
mathematicians established the real number system on a sound basis.

Indian mathematics was, as we have said, a mixture of good and bad.
But some of the good was superlatively good, and here Brahmagupta
deserves high praise. Hindu algebra is especially noteworthy in its
development of indeterminate analysis, to which Brahmagupta made
several contributions. For one thing, in his work we find a rule for the
formation of Pythagorean triads expressed in the form m, ¥(m*/n — n),
3(m*/n + n), but this is only a modified form of the old Babylonian rule,
with which he may have become familiar. Brahmagupta’s area formula
for a quadrilateral, mentioned previously, was used by him in conjunc-
tion with the formulas

V/(ab+cd)(ac+bd)/(ad +bc) and +/(ac+ bd)(ad + bc)/(ab + cd)

for the diagonals to find quadrilaterals whose sides, diagonals, and areas
are all rational. Among them was the quadrilateral with sides a =52,
b=125, c=39, d=60, and diagonals 63 and 56. Brahmagupta gave the
“gross” area as 1,933i, despite the fact that his formula provides the
exact area, 1,764 in this case.

Indeterminate Equations

Like many of his countrymen, Brahmagupta evidently loved mathematics
for its own sake, for no practical-minded engineer would raise questions
such as those Brahmagupta asked about quadrilaterals. One admires his
mathematical attitude even more when one finds that he was apparently the
first one to give a general solution of the linear Diophantine equation
ax + by = c, where a, b, and ¢ are integers. For this equation to have
integral solutions, the greatest common divisor of a and b must divide c,
and Brahmagupta knew that if a and b are relatively prime, all solutions of
the equation are given by x = p + mb, y = ¢ — ma, where m is an arbitrary
integer. He also suggested the Diophantine quadratic equation x> = 1 + py?,
which was mistakenly named for John Pell (1611 1685) but first appeared
in the Archimedean cattle problem. The Pell equation was solved for some
cases by Brahmagupta’s countryman Bhaskara (1114 ca. 1185). It is
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greatly to the credit of Brahmagupta that he gave all integral solutions of the
linear Diophantine equation, whereas Diophantus himself had been satisfied
to give one particular solution of an indeterminate equation. Inasmuch as
Brahmagupta used some of the same examples as Diophantus, we see again
the likelihood of Greek influence in India—or the possibility that they both
made use of acommon source, possibly from Babylonia. It is also interesting
to note that the algebra of Brahmagupta, like that of Diophantus, was syn-
copated. Addition was indicated by juxtaposition, subtraction by placing a
dot over the subtrahend, and division by placing the divisor below the
dividend, as in our fractional notation but without the bar. The operations of
multiplication and evolution (the taking of roots), as well as unknown
quantities, were represented by abbreviations of appropriate words.

Bhaskara

India produced a number of later medieval mathematicians, but we shall
describe the work of only one of these—Bhaskara, the leading mathe-
matician of the twelfth century. It was he who filled some of the gaps in
Brahmagupta’s work, as by giving a general solution of the Pell equation
and by considering the problem of division by zero. Aristotle had once
remarked that there is no ratio by which a number such as 4 exceeds the
number zero, but the arithmetic of zero had not been part of Greek
mathematics, and Brahmagupta had been noncommittal on the division
of a number other than zero by the number zero. It is therefore in
Bhaskara’s Vija-Ganita that we find the first statement that such a
quotient is infinite.

Statement: Dividend 3. Divisor 0. Quotient the fraction 3/0. This fraction
of which the denominator is cipher, is termed an infinite quantity. In this
quantity consisting of that which has cipher for a divisor, there is no
alteration, though many be inserted or extracted; as no change takes place
in the infinite and immutable God.

This statement sounds promising, but a lack of clear understanding of
the situation is suggested by Bhaskara’s further assertion that a/0 - 0 = a.

Bhaskara was one of the last significant medieval mathematicians from
India, and his work represents the culmination of earlier Hindu con-
tributions. In his best-known treatise, the Lilavati, he compiled problems
from Brahmagupta and others, adding new observations of his own. The
very title of this book may be taken to indicate the uneven quality of
Indian thought, for the name in the title is that of Bhaskara’s daughter,
who, according to legend, lost the opportunity to marry because of her
father’s confidence in his astrological predictions. Bhaskara had calcu-
lated that his daughter might propitiously marry only at one particular
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hour on a given day. On what was to have been her wedding day,
the eager girl was bending over the water clock, as the hour for the
marriage approached, when a pearl from her headdress fell, quite unno-
ticed, and stopped the outflow of water. Before the mishap was noted,
the propitious hour had passed. To console the unhappy girl, the father
gave her name to the book we are describing.

The Lilavati

The Lilavati, like the Vija-Ganita, contains numerous problems dealing
with favorite Hindu topics: linear and quadratic equations, both deter-
minate and indeterminate; simple mensuration; arithmetic and geometric
progressions; surds; Pythagorean triads; and others. The “broken bam-
boo” problem, popular in China (and also included by Brahmagupta),
appears in the following form: if a bamboo 32 cubits high is broken by
the wind so that the tip meets the ground 16 cubits from the base, at what
height above the ground was it broken? Also making use of the Pytha-
gorean theorem is the following problem: A peacock is perched atop a
pillar at the base of which is a snake’s hole. Seeing the snake at a dis-
tance from the pillar, which is three times the height of the pillar, the
peacock pounces on the snake in a straight line before it can reach its
hole. If the peacock and the snake have gone equal distances, how many
cubits from the hole do they meet?

These two problems well illustrate the heterogeneous nature of the
Lilavati, for despite their apparent similarity and the fact that only a
single answer is required, one of the problems is determinate and
the other is indeterminate. In the treating of the circle and the sphere, the
Lilavati also fails to distinguish between exact and approximate state-
ments. The area of the circle is correctly given as one-quarter the cir-
cumference multiplied by the diameter and the volume of the sphere as
one-sixth the product of the surface area and the diameter, but for the
ratio of circumference to diameter in a circle, Bhaskara suggests either
3,927 to 1,250 or the “gross” value 22 /7. The former is equivalent to the
ratio mentioned, but not used, by Aryabhata. There is no hint in Bhas-
kara or other Hindu writers that they were aware that all ratios that had
been proposed were only approximations. Yet, Bhaskara severely con-
demns his predecessors for using the formulas of Brahmagupta for the
area and the diagonals of a general quadrilateral, because he saw that a
quadrilateral is not uniquely determined by its sides. Evidently, he did
not realize that the formulas are indeed exact for all cyclic quadrilaterals.

Many of Bhaskara’s problems in the Lilavati and the Vija-Ganita were
evidently derived from earlier Hindu sources; hence, it is no surprise
to note that the author is at his best in dealing with indeterminate analysis.
In connection with the Pell equation, x> =1+ py?, proposed earlier by
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Brahmagupta, Bhaskara gave particular solutions for the five cases p =8,
11, 32, 61, and 67. For x* =1 + 61y, for example, he gave the solution
x=1,776,319,049 and y =22,615,390. This is an impressive feat in cal-
culation, and its verification alone will tax the efforts of the reader.
Bhaskara’s books are replete with other instances of Diophantine problems.

Madhava and the Keralese School

Beginning in the late fourteenth century, a group of mathematicians
emerged along the southwestern coast of India and came to be known as
members of the “Keralese School,” named after their geographic loca-
tion of Kerala. The group appears to have started under the leadership of
Madhava, who is best known for his expansion of the power series for
sines and cosines that is usually named after Newton and the series
for 7 /4 credited to Leibniz. Among his other contributions are a com-
putation of 7 that is accurate to eleven decimal places, computation of
the circumference of a circle using polygons, and expansion of the
arctangent series usually attributed to James Gregory, as well as various
other series expansions and astronomical applications.

Few of Madhava’s original verses have been documented; most of
his work has come down to us through descriptions and references by his
students and other later members of the Keralese school.

The Keralese school, with its astonishing achievements in series
expansions and geometric, arithmetic, and trigonometric procedures, as
well as astronomical observations, has inspired considerable speculation
concerning transmission and influence. Until now, there is inadequate
documentation to support any of the related major conjectures. There is,
however, a great deal to be learned from recent translations of these and
prior texts. (We have given only a few examples of results usually
associated with the seventeenth-century giants of western Europe. For
samples of translations providing a closer appreciation of the nature
of the mathematical issues found in the ancient and medieval Sanskrit
texts, the reader is referred to Plofker 2009.)
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The Islamic Hegemony

Ah, but my Computations, People say, Have squared the Year to
human Compass, eh? If so, by striking from the Calendar
Unborn To-morrow, and dead Yesterday.

Omar Khayyam (Rubaiyat in the FitzGerald version)

Arabic Conquests

One of the most transformative developments affecting mathematics in
the Middle Ages was the remarkable spread of Islam. Within one century
from 622 cE, the year of the prophet Mohammed’s Hegira, Islam had
expanded from Arabia to Persia, to North Africa, and to Spain.

At the time that Brahmagupta was writing, the Sabean Empire of
Arabia Felix had fallen, and the peninsula was in a severe crisis. It was
inhabited largely by desert nomads, known as Bedouins, who could nei-
ther read nor write. Among them was the prophet Mohammed, born in
Mecca in about 570. During his journeys, Mohammed came in contact
with Jews and Christians, and the amalgam of religious feelings that were
raised in his mind led to the belief that he was the apostle of God sent to
lead his people. For some ten years, he preached at Mecca but in 622,
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faced by a plot on his life, he accepted an invitation to Medina. This
“flight,” known as the Hegira, marked the beginning of the Mohammedan
era—one that was to exert a strong influence on the development of
mathematics. Mohammed now became a military, as well as a religious,
leader. Ten years later, he had established a Mohammedan state, with its
center at Mecca, within which Jews and Christians, being also mono-
theistic, were afforded protection and freedom of worship. In 632, while
planning to move against the Byzantine Empire, Mohammed died in
Medina. His sudden death in no way impeded the expansion of the Islamic
state, for his followers overran neighboring territories with astonishing
rapidity. Within a few years, Damascus and Jerusalem and much of
the Mesopotamian Valley fell to the conquerors; by 641, Alexandria,
which for many years had been the mathematical center of the world,
was captured. As happens so often in these conquests, the books in the
library were burned. The extent of the damage done at that time is unclear;
it has been assumed that following depredations by earlier military and
religious fanatics and long ages of sheer neglect, there may have been
relatively few books left to fuel the flames in the library that had once been
the greatest in the world.

For more than a century, the Arab conquerors fought among them-
selves and with their enemies, until by about 750 the warlike spirit
subsided. By this time, a schism had arisen between the western Arabs in
Morocco and the eastern Arabs, who, under the caliph al-Mansur, had
established a new capital at Baghdad, a city that was shortly to become
the new center for mathematics. Yet the caliph at Baghdad could not
even command the allegiance of all Moslems in the eastern half of his
empire, although his name appeared on coins of the realm and was
included in the prayers of his “subjects.” The unity of the Arab world, in
other words, was more economic and religious than it was political.
Arabic was not necessarily the common language, although it was a kind
of lingua franca for intellectuals. Hence, it may be more appropriate to
speak of the culture as Islamic, rather than Arabic, although we shall use
the terms more or less interchangeably.

During the first century of the Arabic conquests, there had been
political and intellectual confusion, and possibly this accounts for the
difficulty in localizing the origin of the modern system of numeration.
The Arabs were at first without known intellectual interest, and
they had little culture, beyond a language, to impose on the peoples they
conquered. In this respect, we see a repetition of the situation when
Rome conquered Greece, of which it was said that in a cultural sense,
captive Greece took captive the captor Rome. By about 750 cg, the
Arabs were ready to have history repeat itself, for the conquerors
became eager to absorb the learning of the civilizations they had
overrun. We learn that by the 770s, an astronomical-mathematical
work known to the Arabs as the Sindhind was brought to Baghdad
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from India. A few years later, perhaps about 775, this Siddhanta was
translated into Arabic, and it was not long afterward (ca. 780) that
Ptolemy’s astrological Tetrabiblos was translated into Arabic from the
Greek. Alchemy and astrology were among the first studies to appeal
to the dawning intellectual interests of the conquerors. The “Arabic
miracle” lies not so much in the rapidity with which the political
empire rose, as in the alacrity with which, their tastes once aroused,
the Arabs absorbed the learning of their neighbors.

The House of Wisdom

The first century of the Muslim Empire had been devoid of scientific
achievement. This period (from about 650 to 750) had been, in fact,
perhaps the nadir in the development of mathematics, for the Arabs
had not yet achieved intellectual drive, and concern for learning in
other parts of the world had pretty much faded. Had it not been for
the sudden cultural awakening in Islam during the second half of the
eighth century, considerably more of ancient science and mathematics
would have been lost. To Baghdad at that time were called scholars
from Syria, Iran, and Mesopotamia, including Jews and Nestorian
Christians; under three great Abbasid patrons of learning—al-Mansur,
Haroun al-Raschid, and al-Mamun—the city became a new Alexandria.
During the reign of the second of these caliphs, familiar to us today
through the Arabian Nights, part of Euclid was translated. It was
during the caliphate of al-Mamun (809 833), however, that the Arabs
fully indulged their passion for translation. The caliph is said to have
had a dream in which Aristotle appeared, and as a consequence al-
Mamun determined to have Arabic versions made of all of the Greek
works he could lay his hands on, including Ptolemy’s Almagest and a
complete version of Euclid’s Elements. From the Byzantine Empire,
with which the Arabs maintained an uneasy peace, Greek manuscripts
were obtained through treaties.

Al-Mamun established in Baghdad a “House of Wisdom” (Bait al-hikma)
comparable to the ancient Museum in Alexandria. Major emphasis from
its beginning was placed on translations, initially from Persian to Arabic,
later from Sanskrit and Greek. Gradually, the House of Wisdom included a
collection of ancient manuscripts, obtained largely from Byzantine sour-
ces. Finally, an observatory was added to the institutional holdings.
Among the mathematicians and astronomers there, we note Mohammed
ibn Musa al-Khwarizmi, whose name, like that of Euclid, was later to
become a household word in Western Europe. Others active in the ninth
century of translation were the brothers Banu Musa, al Kindi, and Thabit
ibn Qurra. By the thirteenth century, during the Mongol invasion of
Baghdad, the library of the House of Wisdom was destroyed; this time, we
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are told, books were not burned but thrown into the river, which was
equally effective because water quickly washed out the ink.

Al-Khwarizmi

Muhammad ibn Musa al-Khwarizmi (ca. 780 ca. 850) wrote more than
half a dozen astronomical and mathematical works, of which the earliest
were probably based on the Sindhind. Besides astronomical tables and
treatises on the astrolabe and the sundial, al-Khwarizmi wrote two books
on arithmetic and algebra that played very important roles in the history
of mathematics. One of these survives only in a unique copy of a Latin
translation with the title De numero indorum, the original Arabic version
having since been lost. In this work, based presumably on an Arabic
translation of Brahmagupta, al-Khwarizmi gave so full an account of the
Hindu numerals that he is probably responsible for the widespread but
false impression that our system of numeration is Arabic in origin.
Al-Khwarizmi made no claim to originality in connection with the
system, the Hindu source of which he assumed as a matter of course, but
when Latin translations of his work subsequently appeared in Europe,
cursory readers began to attribute not only the book but also the
numeration to the author. The new notation came to be known as that of
al-Khwarizmi or, more carelessly, algorismi; ultimately, the scheme of
numeration that made use of the Hindu numerals came to be called
simply “algorism” or “algorithm,” a word that, originally derived from
the name al-Khwarizmi, now means, more generally, any peculiar rule of
procedure or operation—such as the Euclidean method for finding the
greatest common divisor.

Al-Jabr

Through his arithmetic, al-Khwarizmi’s name has become a common
English word; through the title of his most important book, Hisob al-jabr
wa’l mugabalah, he has supplied us with an even more popular house-
hold term. From this title has come the word “algebra,” for it is from this
book that Europe later learned the branch of mathematics bearing this
name. Neither al-Khwarizmi nor other Arabic scholars made use of
syncopation or of negative numbers. Nevertheless, the Al-jabr comes
closer to the elementary algebra of today than do the works of either
Diophantus or Brahmagupta, for the book is not concerned with difficult
problems in indeterminate analysis but with a straightforward and ele-
mentary exposition of the solution of equations, especially of the second
degree. The Arabs in general loved a good clear argument from premise
to conclusion, as well as systematic organization—respects in which
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neither Diophantus nor the Hindus excelled. The Hindus were strong in
association and analogy, in intuition and an aesthetic and imaginative
flair, whereas the Arabs were more practical-minded and down-to-earth
in their approach to mathematics.

The Al-jabr has come down to us in two versions, Latin and Arabic,
but in the Latin translation, Liber algebrae et al mucabala, a con-
siderable portion of the Arabic draft is missing. The Latin, for example,
has no preface, perhaps because the author’s preface in Arabic gave
fulsome praise to Mohammed, the prophet, and to al-Mamun, “the
Commander of the Faithful.” Al-Khwarizmi wrote that the latter had
encouraged him to

compose a short work on Calculating by (the rules of) Completion and
Reduction, confining it to what is easiest and most useful in arithmetic,
such as men constantly require in cases of inheritance, legacies, partitions,
lawsuits, and trade, and in all their dealings with one another, or where
the measuring of lands, the digging of canals, geometrical computation,
and other objects of various sorts and kinds are concerned (Karpinski
1915, p. 96).

It is not certain just what the terms al-jabr and mugabalah mean, but
the usual interpretation is similar to that implied in the previous trans-
lation. The word “al-jabr” presumably meant something like “restora-
tion” or ‘“completion” and seems to refer to the transposition of
subtracted terms to the other side of an equation; the word “mugabalah”
is said to refer to “reduction” or “balancing”—that is, the cancellation of
like terms on opposite sides of the equation. Arabic influence in Spain
long after the time of al-Khwarizmi is found in Don Quixote, where the
word “algebrista” is used for a bone-setter, that is, a “restorer.”

Quadratic Equations

The Latin translation of al-Khwarizmi’s Algebra opens with a brief
introductory statement of the positional principle for numbers and then
proceeds to the solution, in six short chapters, of the six types of equa-
tions made up of the three kinds of quantities: roots, squares, and num-
bers (i.e., x, X2, and numbers). Chapter I, in three short paragraphs, covers
the case of squares equal to roots, expressed in modern notation as
x*=5x, x*/3 = 4x, and 5x* = 10x, giving the answers x =5, x = 12, and
x =2, respectively. (The root x =0 was not recognized.) Chapter II
covers the case of squares equal to numbers, and Chapter III solves the
case of roots equal to numbers, again with three illustrations per
chapter to cover the cases in which the coefficient of the variable term
is equal to, more than, or less than 1. Chapters IV, V, and VI are more
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interesting, for they cover in turn the three classical cases of three-term
quadratic equations: (1) squares and roots equal to numbers, (2) squares
and numbers equal to roots, and (3) roots and numbers equal to squares.
The solutions are “cookbook” rules for “completing the square”
applied to specific instances. Chapter IV, for example, includes the
three illustrations x>+ 10x = 39, 2x*> + 10x = 48, and 1x* + 5x =28. In
each case, only the positive answer is given. In Chapter V, only a single
example, x>+ 21 = 10x, is used, but both roots, 3 and 7, are given,
corresponding to the rule x =5 ¥ v/25 — 21. Al-Khwarizmi here calls
attention to the fact that what we designate as the discriminant must be
positive:

You ought to understand also that when you take the half of the roots in
this form of equation and then multiply the half by itself; if that which
proceeds or results from the multiplication is less than the units above-
mentioned as accompanying the square, you have an equation.

In Chapter VI, the author again uses only a single example,
3x + 4 =x?, for whenever the coefficient of x> is not unity, the author
reminds us to divide first by this coefficient (as in Chapter IV). Once
more, the steps in completing the square are meticulously indicated,
without justification, the procedure being equivalent to the solution
x =13 ++/(13)° + 4. Again, only one root is given, for the other is
negative.

The six cases of equations given previously exhaust all possibilities for
linear and quadratic equations having a positive root. The arbitrariness of
the rules and the strictly numerical form of the six chapters remind us
of ancient Babylonian and medieval Indian mathematics. The exclusion of
indeterminate analysis, a favorite Hindu topic, and the avoidance of any
syncopation, such as is found in Brahmagupta, might suggest Mesopota-
mia as more likely a source than India. As we read beyond the sixth
chapter, however, an entirely new light is thrown on the question.
Al-Khwarizmi continues:

We have said enough so far as numbers are concerned, about the six types of
equations. Now, however, it is necessary that we should demonstrate geo-
metrically the truth of the same problems which we have explained in numbers.

The ring in this passage is obviously Greek, rather than Babylonian or
Indian. There are thus three main schools of thought on the origin of
Arabic algebra: one emphasizes Hindu influences; another stresses the
Mesopotamian, or Syriac-Persian, tradition; and the third points to Greek
inspiration. The truth is probably approached if we combine the three
theories. The philosophers of Islam admired Aristotle to the point of



Al Khwarizmi 209

aping him, but eclectic Mohammedan mathematicians seem to have
chosen appropriate elements from various sources.

Geometric Foundation

The Algebra of al-Khwarizmi betrays unmistakable Hellenic elements, but
the first geometric demonstrations have little in common with classical
Greek mathematics. For the equation x> + 10x = 39, al-Khwarizmi drew a
square, ab, to represent x>, and on the four sides of this square he placed
rectangles c, d, e, and f, each 23 units wide. To complete the larger square,
one must add the four small corner squares (dotted in Fig. 11.1), each of
which has an area of 63 units. Hence, to “complete the square” we add 4
times 63 units, or 25 units, thus obtaining a square of total area 39 +

25 = 64 units (as is clear from the right-hand side of the given equation).
The side of the large square must therefore be 8 units, from which we
subtract 2 times 23, or 5, units to find that x = 3, thus proving that the answer
found in Chapter IV is correct.

The geometric proofs for Chapters V and VI are somewhat more
involved. For the equation x*> + 21 = 10x, the author draws the square ab
to represent x* and the rectangle bg to represent 21 units. Then the large
rectangle, comprising the square and the rectangle bg, must have an area
equal to 10x, so that the side ag or hd must be 10 units. If, then, one
bisects hd at e, draws et perpendicular to hd, extends fe to ¢ so that
tc = tg, and completes the squares tclg and cmne (Fig. 11.2), the area b
is equal to the area md. But the square ¢/ is 25, and the gnomon tenmlg is
21 (because the gnomon is equal to the rectangle bg). Hence, the square
nc is 4, and its side ec is 2. Inasmuch as ec = be, and because he = 5, we
see that x =hb =35 —2 or 3, which proves that the arithmetic solution
given in Chapter V is correct. A modified diagram is given for the root
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x=5+2=7, and an analogous type of figure is used to justify geo-
metrically the result found algebraically in Chapter VI.

Algebraic Problems

A comparison of Fig. 11.2, taken from al-Khwarizmi’s Algebra, with
diagrams found in the Elements of Euclid in connection with Greek
geometric algebra leads to the inevitable conclusion that Arabic algebra
had much in common with Greek geometry; however, the first, or
arithmetic, part of al-Khwarizmi’s Algebra is obviously alien to Greek
thought. What apparently happened in Baghdad was just what one would
expect in a cosmopolitan intellectual center. Arabic scholars had great
admiration for Greek astronomy, mathematics, medicine, and philoso-
phy—subjects that they mastered as best they could. Yet, they could
scarcely help but notice the same thing that the Nestorian bishop Sebokt
had observed when in 662 he first called attention to the nine marvelous
digits of the Hindus: “There are also others who know something.” It is
probable that al-Khwarizmi typified the Arabic eclecticism that will so
frequently be observed in other cases. His system of numeration most
likely came from India, his systematic algebraic solution of equations
may have been a development from Mesopotamia, and the logical
geometric framework for his solutions was palpably derived from
Greece.

The Algebra of al-Khwarizmi contains more than the solution of
equations, material that occupies about the first half. There are, for
example, rules for operations on binomial expressions, including products
such as (10+2)(10—1) and (10 + x)(10 —x). Although the Arabs
rejected negative roots and absolute negative magnitudes, they were
familiar with the rules governing what are now known as signed numbers.
There are also alternative geometric proofs of some of the author’s six
cases of equations. Finally, the Algebra includes a wide variety of prob-
lems illustrating the six chapters or cases. As an illustration of the fifth
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chapter, for example, al-Khwarizmi asks for the division of 10 into two
parts in such a way that “the sum of the products obtained by multiplying
each part by itself is equal to fifty eight.” The extant Arabic version, unlike
the Latin, also includes an extended discussion of inheritance problems,
such as the following:

A man dies, leaving two sons behind him, and bequeathing one-third of
his capital to a stranger. He leaves ten dirthems of property and a claim of
ten dirhems upon one of the sons.

The answer is not what one would expect, for the stranger gets only
5 dirhems. According to Arabic law, a son who owes to the estate of his
father an amount greater than the son’s portion of the estate retains the
whole sum that he owes, one part being regarded as his share of
the estate and the remainder as a gift from his father. To some extent, it
seems to have been the complicated nature of laws governing inheritance
that encouraged the study of algebra in Arabia.

A Problem from Heron

A few of al-Khwarizmi’s problems give rather clear evidence of
Arabic dependence on the Babylonian-Heronian stream of mathe-
matics. One of them presumably was taken directly from Heron, for
the figure and the dimensions are the same. Within an isosceles tri-
angle having sides of 10 yards and a base of 12 yards (Fig. 11.3), a
square is to be inscribed, and the side of this square is called for. The
author of the Algebra first finds through the Pythagorean theorem that
the altitude of the triangle is 8 yards, so that the area of the triangle is
48 square yards. Calling the side of the square the “thing,” he notes
that the square of the “thing” will be found by taking from the area of
the large triangle the areas of the three small triangles lying outside the
square but inside the large triangle. The sum of the areas of the two
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lower small triangles he knows to be the product of the “thing” by 6 less
half of the “thing,” and the area of the upper small triangle is the product
of 8 less the “thing” by half of the “thing.” Hence, he is led to the obvious
conclusion that the “thing” is 4% yards—the side of the square. The chief
difference between the form of this problem in Heron and that of al-
Khwarizmi is that Heron had expressed the answer in terms of unit
fractions as 413 7. The similarities are so much more pronounced than
the differences that we may take this case as confirmation of the general
axiom that continuity in the history of mathematics is the rule, rather
than the exception. Where a discontinuity seems to arise, we should first
consider the possibility that the apparent saltus may be explained by the
loss of intervening documents.

‘Abd Al-Hamid ibn-Turk

The Algebra of al-Khwarizmi is usually regarded as the first work
on the subject, but a publication in Turkey raises some question about
this. A manuscript of a work by ‘Abd-al-Hamid ibn-Turk, titled
“Logical Necessities in Mixed Equations,” was part of a book on
Al-jabr wa’l mugabalah, which was evidently very much the same as
that by al-Khwarizmi and was published at about the same time—
possibly even earlier. The surviving chapters on “Logical Necessities”
give precisely the same type of geometric demonstration as al-
Khwarizmi’s Algebra and in one case the same illustrative example,
x>+ 21 =10x. In one respect, ‘Abd al-Hamid’s exposition is more
thorough than that of al-Khwarizmi for he gives geometric figures to
prove that if the discriminant is negative, a quadratic equation has no
solution. Similarities in the work of the two men and the systematic
organization found in them seem to indicate that algebra in their day
was not so recent a development as has usually been assumed. When
textbooks with a conventional and well-ordered exposition appear
simultaneously, a subject is likely to be considerably beyond the for-
mative stage. Successors of al-Khwarizmi were able to say, once a pro-
blem had been reduced to the form of an equation, “Operate according
to the rules of algebra and almucabala.” In any case, the survival of
al-Khwarizmi’s Algebra can be taken to indicate that it was one of the
better textbooks typical of Arabic algebra of the time. It was to algebra
what Euclid’s Elements was to geometry—the best elementary exposition
available until modern times—but al-Khwarizmi’s work had a serious
deficiency that had to be removed before it could effectively serve its
purpose in the modern world: a symbolic notation had to be developed to
replace the rhetorical form. This step the Arabs never took, except for the
replacement of number words by number signs.
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Thabit ibn-Qurra

The ninth century was a glorious one in mathematical transmission and
discovery. It produced not only al-Khwarizmi in the first half of the
century, but also Thabit ibn-Qurra (826 901) in the second half. Thabit,
a Sabean, was born in Harran, the ancient Mesopotamian city that is
located in present-day southeastern Turkey and once lay along one of the
notable trade routes of the region. Thabit, trilingual since his youth, came
to the attention of one of the Musa brothers, who encouraged him to come
to Baghdad to study with his brothers in the House of Wisdom. Thabit
became proficient in medicine, as well as in mathematics and astronomy,
and, when appointed court astronomer by the caliph of Baghdad, estab-
lished a tradition of translations, especially from Greek and Syriac. To him
we owe an immense debt for translations into Arabic of works by Euclid,
Archimedes, Apollonius, Ptolemy, and Eutocius. Had it not been for
Thabit’s efforts, the number of Greek mathematical works extant today
would be smaller. For example, we should have only the first four, rather
than the first seven, books of Apollonius’s Conics.

Moreover, Thabit had so thoroughly mastered the content of the
classics he translated that he suggested modifications and general-
izations. To him is due a remarkable formula for amicable numbers: if
P, ¢, and r are prime numbers, and if they are of the foom p=3-2"—1,
q=3-2""'"—1, and r=9-2'—1, then 2"pg and 2"r are amicable
numbers, for each is equal to the sum of the proper divisors of the
other. Like Pappus, Thabit also gave a generalization of the Pytha-
gorean theorem that is applicable to all triangles, whether right or
scalene. If from vertex A of any triangle ABC one draws lines inter-
secting BC in points B" and C’ such that angles AB'B and AC'C are each
equal to angle A (Fig. 11.4), then AB' +AC’ = BC(BB' + CC’). Thabit
gave no proof of the theorem, but this is easily supplied through
theorems on similar triangles. In fact, the theorem provides a beautiful
generalization of the pinwheel diagram used by Euclid in the proof of
the Pythagorean theorem. If, for example, angle A is obtuse, then the
square on side AB is equal to the rectangle BB’ B” B'”, and the square on
AC is equal to the rectangle CC” C' C"”, here BB" = CC"=BC=B"(".
That is, the sum of the squares on AB and AC is the square 