An Episodic History of
Mathematics

Mathematical Culture through Problem Solving

by Steven G. Krantz

September 23, 2006



To Marvin J. Greenberg, an inspiring teacher.



11

Preface

Together with philosophy, mathematics is the oldest academic dis-
cipline known to mankind. Today mathematics is a huge and complex
enterprise, far beyond the ken of any one individual. Those of us who
choose to study the subject can only choose a piece of it, and in the end
must specialize rather drastically in order to make any contribution to
the evolution of ideas.

An important development of twenty-first century life is that mathe-
matical and analytical thinking have permeated all aspects of our world.
We all need to understand the spread of diseases, the likelihood that we
will contract SARS or hepatitis. We all must deal with financial matters.
Finally, we all must deal with computers and databases and the Internet.
Mathematics is an integral part of the theory and the operating systems
that make all these computer systems work. Theoretical mathematics is
used to design automobile bodies, to plan reconstructive surgery proce-
dures, and to analyze prison riots. The modern citizen who is unaware
of mathematical thought is lacking a large part of the equipment of life.

Thus it is worthwhile to have a book that will introduce the student
to some of the genesis of mathematical ideas. While we cannot get into
the nuts and bolts of Andrew Wiles’s solution of Fermat’s Last Theorem,
we can instead describe some of the stream of thought that created the
problem and led to its solution. While we cannot describe all the sophis-
ticated mathematics that goes into the theory behind black holes and
modern cosmology, we can instead indicate some of Bernhard Riemann’s
ideas about the geometry of space. While we cannot describe in spe-
cific detail the mathematical research that professors at the University
of Paris are performing today, we can instead indicate the development
of ideas that has led to that work.

Certainly the modern school teacher, who above all else serves as a
role model for his/her students, must be conversant with mathematical
thought. As a matter of course, the teacher will use mathematical ex-
amples and make mathematical allusions just as examples of reasoning.
Certainly the grade school teacher will seek a book that is broadly ac-
cessible, and that speaks to the level and interests of K-6 students. A
book with this audience in mind should serve a good purpose.
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Mathematical history is exciting and rewarding, and it is a signifi-
cant slice of the intellectual pie. A good education consists of learning
different methods of discourse, and certainly mathematics is one of the
most well-developed and important modes of discourse that we have.

The purpose of this book, then, is to acquaint the student with
mathematical language and mathematical life by means of a number of
historically important mathematical vignettes. And, as has already been
noted, the book will also serve to help the prospective school teacher to
become inured in some of the important ideas of mathematics—both
classical and modern.

The focus in this text is on doing—getting involved with the math-
ematics and solving problems. This book is unabashedly mathematical:
The history is primarily a device for feeding the reader some doses of
mathematical meat. In the course of reading this book, the neophyte
will become involved with mathematics by working on the same prob-
lems that Zeno and Pythagoras and Descartes and Fermat and Riemann
worked on. This is a book to be read with pencil and paper in hand, and
a calculator or computer close by. The student will want to experiment,
to try things, to become a part of the mathematical process.

This history is also an opportunity to have some fun. Most of the
mathematicians treated here were complex individuals who led colorful
lives. They are interesting to us as people as well as scientists. There are
wonderful stories and anecdotes to relate about Pythagoras and Galois
and Cantor and Poincaré, and we do not hesitate to indulge ourselves in
a little whimsy and gossip. This device helps to bring the subject to life,
and will retain reader interest.

It should be clearly understood that this is in no sense a thorough-
going history of mathematics, in the sense of the wonderful treatises of
Boyer/Merzbach [BOM] or Katz [KAT] or Smith [SMI]. It is instead a col-
lection of snapshots of aspects of the world of mathematics, together with
some cultural information to put the mathematics into perspective. The
reader will pick up history on the fly, while actually doing mathematics—
developing mathematical ideas, working out problems, formulating ques-
tions.

And we are not shy about the things we ask the reader to do. This
book will be accessible to students with a wide variety of backgrounds
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and interests. But it will give the student some exposure to calculus, to
number theory, to mathematical induction, cardinal numbers, cartesian
geometry, transcendental numbers, complex numbers, Riemannian ge-
ometry, and several other exciting parts of the mathematical enterprise.
Because it is our intention to introduce the student to what mathemati-
cians think and what mathematicians value, we actually prove a number
of important facts: (i) the existence of irrational numbers, (ii) the exis-
tence of transcendental numbers, (iii) Fermat’s little theorem, (iv) the
completeness of the real number system, (v) the fundamental theorem of
algebra, and (vi) Dirichlet’s theorem. The reader of this text will come
away with a hands-on feeling for what mathematics is about and what
mathematicians do.

This book is intended to be pithy and brisk. Chapters are short, and
it will be easy for the student to browse around the book and select topics
of interest to dip into. Each chapter will have an exercise set, and the
text itself will be peppered with items labeled “For You to Try”. This
device gives the student the opportunity to test his/her understanding
of a new idea at the moment of impact. It will be both rewarding and
reassuring. And it should keep interest piqued.

In fact the problems in the exercise sets are of two kinds. Many of
them are for the individual student to work out on his/her own. But
many are labeled for class discussion. They will make excellent group
projects or, as appropriate, term papers.

It is a pleasure to thank my editor, Richard Bonacci, for enlisting me
to write this book and for providing decisive advice and encouragement
along the way. Certainly the reviewers that he engaged in the writing
process provided copious and detailed advice that have turned this into
a more accurate and useful teaching tool. I am grateful to all.

The instructor teaching from this book will find grist for a num-
ber of interesting mathematical projects. Term papers, and even honors
projects, will be a natural outgrowth of this text. The book can be used
for a course in mathematical culture (for non-majors), for a course in the
history of mathematics, for a course of mathematics for teacher prepa-
ration, or for a course in problem-solving. We hope that it will help to
bridge the huge and demoralizing gap between the technical world and
the humanistic world. For certainly the most important thing that we



do in our society is to communicate. My wish is to communicate math-
ematics.

SGK
St. Louis, MO
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Chapter 1

The Ancient Greeks and the
Foundations of Mathematics

1.1 Pythagoras
1.1.1 Introduction to Pythagorean Ideas

Pythagoras (569-500 B.C.E.) was both a person and a society (i.e., the
Pythagoreans). He was also a political figure and a mystic. He was
special in his time because, among other reasons, he involved women as
equals in his activities. One critic characterized the man as “one tenth
of him genius, nine-tenths sheer fudge.” Pythagoras died, according to
legend, in the flames of his own school fired by political and religious
bigots who stirred up the masses to protest against the enlightenment
which Pythagoras sought to bring them.

As with many figures from ancient times, there is little specific that
we know about Pythagoras’s life. We know a little about his ideas and
his school, and we sketch some of these here.

The Pythagorean society was intensely mathematical in nature, but
it was also quasi-religious. Among its tenets (according to [RUS]) were:

e To abstain from beans.

Not to pick up what has fallen.

Not to touch a white cock.

Not to break bread.

Not to step over a crossbar.
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e Not to stir the fire with iron.
e Not to eat from a whole loaf.
e Not to pluck a garland.
e Not to sit on a quart measure.
e Not to eat the heart.
e Not to walk on highways.
e Not to let swallows share one’s roof.

e When the pot is taken off the fire, not to leave the mark
of it in the ashes, but to stir them together.

e Not to look in a mirror beside a light.

e When you rise from the bedclothes, roll them together
and smooth out the impress of the body.

The Pythagoreans embodied a passionate spirit that is remarkable
to our eyes:

Bless us, divine Number, thou who generatest gods
and men.

and
Number rules the universe.

The Pythagoreans are remembered for two monumental contribu-
tions to mathematics. The first of these was to establish the impor-
tance of, and the necessity for, proofs in mathematics: that mathemati-
cal statements, especially geometric statements, must be established by
way of rigorous proof. Prior to Pythagoras, the ideas of geometry were
generally rules of thumb that were derived empirically, merely from ob-
servation and (occasionally) measurement. Pythagoras also introduced
the idea that a great body of mathematics (such as geometry) could be
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a
Figure 1.1. The fraction g

derived from a small number of postulates. The second great contribu-
tion was the discovery of, and proof of, the fact that not all numbers are
commensurate. More precisely, the Greeks prior to Pythagoras believed
with a profound and deeply held passion that everything was built on
the whole numbers. Fractions arise in a concrete manner: as ratios of
the sides of triangles (and are thus commensurable—this antiquated ter-
minology has today been replaced by the word “rational”)—see Figure
1.1.

Pythagoras proved the result that we now call the Pythagorean theo-
rem. It says that the legs a, b and hypotenuse c of a right triangle (Figure
1.2) are related by the formula

a’ + b =c*. (%)

This theorem has perhaps more proofs than any other result in
mathematics—over fifty altogether. And in fact it is one of the most
ancient mathematical results. There is evidence that the Babylonians
and the Chinese knew this theorem nearly 1000 years before Pythago-
ras.

In fact one proof of the Pythagorean theorem was devised by Pres-
ident James Garfield. We now provide one of the simplest and most
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a
Figure 1.2. The Pythagorean theorem.

classical arguments. Refer to Figure 1.3.
Proof of the Pythagorean Theorem:

Observe that we have four right triangles and a square packed into a
larger square. Each triangle has legs a and b, and we take it that b > a.
Of course, on the one hand, the area of the larger square is ¢2. On the
other hand, the area of the larger square is the sum of the areas of its
component pieces.

Thus we calculate that

¢* = (area of large square)
= (area of triangle) + (area of triangle) +
(area of triangle) + (area of triangle) +

(area of small square)
S T A A b+ (b—a)’
=g-abtg-abtg-abt-a a

= 2ab + [a* — 2ab + b]
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Figure 1.3
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=a’+ 1.

That proves the Pythagorean theorem. O

For You to Try: If c¢= 10 and a = 6 then can you determine what b
must be in the Pythagorean theorem?

Other proofs of the Pythagorean theorem will be explored in the exer-
cises, as well as later on in the text.

Now Pythagoras noticed that, if a = 1 and b = 1, then ¢ = 2. He
wondered whether there was a rational number ¢ that satisfied this last
identity. His stunning conclusion was this:

Theorem: There is no rational number ¢ such
that ¢ = 2.

Proof: Suppose that the conclusion is false. Then there s a rational
number ¢ = a//[3, expressed in lowest terms (i.e. o and § have no integer
factors in common) such that ¢* = 2. This translates to

(6%

7=
or

o’ =262

We conclude that the righthand side is even, hence so is the lefthand
side. Therefore o = 2m for some integer m.
But then
(2m)* = 23°

or
2m? = 32

So we see that the lefthand side is even, so (3 is even.

But now both a and 3 are even—the two numbers have a common
factor of 2. This statement contradicts the hypothesis that o and 3 have
no common integer factors. Thus it cannot be that ¢ is a rational num-
ber. Instead, ¢ must be irrational. O
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For You to Try: Use the argument just presented to show that 7 does
not have a rational square root.

For You to Try: Use the argument just presented to show that if a
positive integer (i.e., a whole number) k has a rational square root then
it has an integer square root.

We stress yet again that the result of the last theorem was a bomb-
shell. It had a profound impact on the thinking of ancient times. For
it established irrefutably that there were new numbers besides the ra-
tionals to which everyone had been wedded. And these numbers were
inescapable: they arose in such simple contexts as the calculation of the
diagonal of a square. Because of this result of Pythagoras, the entire
Greek approach to the number concept had to be rethought.

1.1.2 Pythagorean Triples

It is natural to ask which triples of integers (a, b, ¢) satisfy a? + b* = 2.
Such a trio of numbers is called a Pythagorean triple.

The most famous and standard Pythagorean triple is (3,4,5). But
there are many others, including (5, 12, 13), (7,24, 25), (20,21, 29), and
(8,15,17). What would be a complete list of all Pythagorean triples?
Are there only finitely many of them, or is there in fact an infinite list?

It has in fact been known since the time of Euclid that there are
infinitely many Pythagorean triples, and there is a formula that generates
all of them.! We may derive it as follows. First, we may as well suppose
that a and b are relatively prime—they have no factors in common. We
call this a reduced triple. Therefore a and b are not both even, so one of
them is odd. Say that b is odd.

Now certainly (a + b)? = a? + b* + 2ab > a® + b* = ¢*. From this we
conclude that ¢ < a+b. So let us write ¢ = (a+b) — vy for some positive
integer 7. Plugging this expression into the Pythagorean formula (x)

11t may be noted, however, that the ancients did not have adequate notation to write
down formulas as such.
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yields
a>+b*=(a+b—7)?

or
a® + b = a® +b* +~* + 2ab — 2a7y — 2by.

Cancelling, we find that
v? = 2ary + 2by — 2ab. (1)

The righthand side is even (every term has a factor of 2), so we conclude
that v is even. Let us write v = 2m, for m a positive integer.
Substituting this last expression into () yields

Am? = 4am + 4bm — 2ab
or
ab = 2am + 2bm — 2m? .

The righthand side is even, so we conclude that ab is even. Since we have
already noted that b is odd, we can only conclude that a is even. Now
equation (x) tells us

=a*+b*.

Since the sum of an odd and an even is an odd, we see that ¢? is odd.
Hence c is odd.

Thus the numbers in a reduced Pythagorean triple are never all even
and never all odd. In fact two of them are odd and one is even. It is
convenient to write b = s —t and ¢ = s+t for some integers s and ¢ (one
of them even and one of them odd). Then (%) tells us that

a*+(s—t) = (s+1)?.
Multiplying things out gives
a® + (s* — 2st + 1) = (s* + 2st + 17).
Cancelling like terms and regrouping gives

a® = 4st .
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We already know that a is even, so this is no great surprise.
Since st must be a perfect square (because 4 is a perfect square and
a? is a perfect square), it is now useful to write s = u?, t = v2. Therefore

a® = 4uv?

and hence
a=2uv.

In conclusion, we have learned that a reduced Pythagorean triple
must take the form
(2uv, u* — v?, u? +v?), (1)

with u, v relatively prime (i.e., having no common factors). Conversely,
any triple of the form (2uv, u?—v?, u?>+v?) is most certainly a Pythagorean
triple. This may be verified directly:

[2uv)® + [u? — v?]? = [4u*0?] + [u* — 2uv? + Y
= u* + 2u*v? + v?
= [u® + v?]?.

Take a moment to think about what we have discovered. Every
Pythagorean triple must have the form (f). That is to say, a = 2uwv,
b = u?—v?% and ¢ = u? +v% Here u and v are any integers of our
choosing.

As examples:

o If we take u = 2 and v = 1 then we obtain a = 2-2-1 = 4,
b=22-12=3 and c = 22+1%2 = 5. Of course (4, 3,5) is
a familiar Pythagorean triple. We certainly know that
4% + 32 = 52,

o If we take u = 3 and v = 2 then we obtain a =2-3-2 =
12, b = 32 —22 =5, and ¢ = 32 + 22 = 13. Indeed
(12,5,13) is a Pythagorean triple. We may calculate
that 12% + 5% = 132,

o If we take u = 5 and v = 3 then we obtain a =2-5-3 =
30, b = 52 — 3% = 16, and ¢ = 5% + 3% = 34. You
may check that (30, 16,34) is a Pythagorean triple, for
30% + 162 = 342,
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For You to Try: Find all Pythagorean triples in which one of the
terms is 5.

For You to Try: Find all Pythagorean triples in which all three terms
are less than 30.

1.2 Euclid
1.2.1 Introduction to Euclid

Certainly one of the towering figures in the mathematics of the ancient
world was Euclid of Alexandria (325 B.C.E.-265 B.C.E.). Although Eu-
clid is not known so much (as were Archimedes and Pythagoras) for his
original and profound insights, and although there are not many theo-
rems named after Euclid, he has had an incisive effect on human thought.
After all, Euclid wrote a treatise (consisting of thirteen Books)—now
known as Fuclid’s Elements—which has been continuously in print for
over 2000 years and has been through myriads of editions. It is still stud-
ied in detail today, and continues to have a substantial influence over the
way that we think about mathematics.

Not a great deal is known about Fuclid’s life, although it is fairly
certain that he had a school in Alexandria. In fact “Euclid” was quite a
common name in his day, and various accounts of Euclid the mathemati-
cian’s life confuse him with other Euclids (one a prominent philosopher).
One appreciation of Euclid comes from Proclus, one of the last of the
ancient Greek philosophers:

Not much younger than these [pupils of Plato] is
Euclid, who put together the Elements, arrang-
ing in order many of Eudoxus’s theorems, per-
fecting many of Theaetus’s, and also bringing to
irrefutable demonstration the things which had
been only loosely proved by his predecessors. This
man lived in the time of the first Ptolemy; for
Archimedes, who followed closely upon the first
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Ptolemy makes mention of Euclid, and further
they say that Ptolemy once asked him if there
were a shortened way to study geometry than the
Elements, to which he replied that “there is no
royal road to geometry.” He is therefore younger
than Plato’s circle, but older than Eratosthenes
and Archimedes; for these were contemporaries,
as Eratosthenes somewhere says. In his aim he
was a Platonist, being in sympathy with this phi-
losophy, whence he made the end of the whole El-
ements the construction of the so-called Platonic
figures.

As often happens with scientists and artists and scholars of immense
accomplishment, there is disagreement, and some debate, over exactly
who or what Euclid actually was. The three schools of thought are these:

e Kuclid was an historical character—a single individual—
who in fact wrote the Elements and the other scholarly
works that are commonly attributed to him.

e Kuclid was the leader of a team of mathematicians work-
ing in Alexandria. They all contributed to the creation
of the complete works that we now attribute to Euclid.
They even continued to write and disseminate books
under Euclid’s name after his death.

e Kuclid was not an historical character at all. In fact
“Euclid” was a nom de plume—an allonym if you will—
adopted by a group of mathematicians working in Alexan-
dria. They took their inspiration from Euclid of Megara
(who was in fact an historical figure), a prominent philoso-
pher who lived about 100 years before Euclid the math-
ematician is thought to have lived.

Most scholars today subscribe to the first theory—that Euclid was
certainly a unique person who created the Elements. But we acknowledge
that there is evidence for the other two scenarios. Certainly Euclid had
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a vigorous school of mathematics in Alexandria, and there is little doubt
that his students participated in his projects.

It is thought that Euclid must have studied in Plato’s Academy in
Athens, for it is unlikely that there would have been another place where
he could have learned the geometry of Eudoxus and Theaetus on which
the Elements are based.

Another famous story and quotation about Euclid is this. A certain
pupil of Euclid, at his school in Alexandria, came to Euclid after learning
just the first proposition in the geometry of the Flements. He wanted
to know what he would gain by putting in all this study, doing all the
necessary work, and learning the theorems of geometry. At this, Euclid
called over his slave and said, “Give him threepence since he must needs
make gain by what he learns.”

What is important about Euclid’s Elements is the paradigm it pro-
vides for the way that mathematics should be studied and recorded. He
begins with several definitions of terminology and ideas for geometry,
and then he records five important postulates (or axioms) of geometry.
A version of these postulates is as follows:

P1 Through any pair of distinct points there passes a line.

P2 For each segment AB and each segment C'D there is a
unique point E (on the line determined by A and B)
such that B is between A and E and the segment C'D
is congruent to BE (Figure 1.4(a)).

P3 For each point C' and each point A distinct from C' there
exists a circle with center C' and radius C'A (Figure

1.4(b)).
P4 All right angles are congruent.

These are the standard four axioms which give our Eu-
clidean conception of geometry. The fifth axiom, a topic
of intense study for two thousand years, is the so-called
parallel postulate (in Playfair’s formulation):
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P5 For each line ¢ and each point P that does not lie on
¢ there is a unique line m through P such that m is
parallel to ¢ (Figure 1.4(c)).

Of course, prior to this enunciation of his celebrated five axioms,
Euclid had defined point, line, “between”, circle, and the other terms
that he uses. Although Euclid borrowed freely from mathematicians
both earlier and contemporaneous with himself, it is generally believed
that the famous “Parallel Postulate”, that is Postulate P5, is of Euclid’s
own creation.

It should be stressed that the Elements are not simply about geome-
try. In fact Books VII-IX deal with number theory. It is here that Euclid
proves his famous result that there are infinitely many primes (treated
elsewhere in this book) and also his celebrated “Euclidean algorithm” for
long division. Book X deals with irrational numbers, and books XI-XIII
treat three-dimensional geometry. In short, Euclid’s Elements are an
exhaustive treatment of virtually all the mathematics that was known
at the time. And it is presented in a strictly rigorous and axiomatic
manner that has set the tone for the way that mathematics is presented
and studied today. Euclid’s Elements is perhaps most notable for the
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clarity with which theorems are formulated and proved. The standard
of rigor that Euclid set was to be a model for the inventors of calculus
nearly 2000 years later.

Noted algebraist B. L. van der Waerden assesses the impact of Eu-
clid’s Elements in this way:

Almost from the time of its writing and lasting
almost to the present, the Flements has exerted a
continuous and major influence on human affairs.
It was the primary source of geometric reasoning,
theorems, and methods at least until the advent
of non-Euclidean geometry in the 19th century. It
is sometimes said that, next to the Bible, the FEle-
ments may be the most translated, published, and
studied of all the books produced in the Western
world.

Indeed, there have been more than 1000 editions of Euclid’s Fle-
ments. It is arguable that Fuclid was and still is the most important
and most influential mathematics teacher of all time. It may be added
that a number of other books by Euclid survive until now. These include
Data (which studies geometric properties of figures), On Divisions (which
studies the division of geometric regions into subregions having areas of
a given ratio), Optics (which is the first Greek work on perspective),
and Phaenomena (which is an elementary introduction to mathemati-
cal astronomy). Several other books of Euclid—including Surface Loci,
Porisms, Conics, Book of Fuallacies, and Elements of Music—have all
been lost.

1.2.2 The Ideas of Euclid

Now that we have set the stage for who Euclid was and what he accom-
plished, we give an indication of the kind of mathematics for which he
is remembered. We discuss the infinitude of primes and the Euclidean
algorithm elsewhere in the book (Chapter 11). Here we concentrate on
Euclidean geometry.

In fact we shall state some simple results from planar geometry and
prove them in the style of Euclid. For the student with little background
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Figure 1.5. Two Congruent Triangles

in proofs, this will open up a whole world of rigorous reasoning and
geometrical analysis. Let us stress that, in the present text, we are only
scratching the surface.

In the ensuing discussion we shall use the fundamental notion of con-
gruence. In particular, two triangles are congruent if their corresponding
sides and angles are equal in length. See Figure 1.5. There are a variety
of ways to check that two triangles are congruent:?

e If the two sets of sides may be put in one-to-one corre-
spondence so that corresponding pairs are equal, then
the two triangles are congruent. We call this device
“side-side-side” or SSS. See Figure 1.6.

e If just one side and its two adjacent angles correspond in
each of the two triangles, so that the two sides are equal
and each of the corresponding angles is equal, then the
two triangles are congruent. We call this device “angle-
side-angle” or ASA. See Figure 1.7.

e If two sides and the included angle correspond in each
of the two triangles, so that the two pairs of sides are
equal, and the included angles are equal, then the two

2In this discussion we use corresponding markings to indicate sides or angles that
are equal. Thus if two sides are each marked with a single hash mark, then they are
equal in length. If two angles are marked with double hash marks, then they are
equal in length.
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Figure 1.7

triangles are congruent. We call this device “side-angle-
side” or SAS. See Figure 1.8.

We shall take these three paradigms for congruence as intuitively obvious.
You may find it useful to discuss them in class.

Theorem 1.1
Let ANABC be an isosceles triangle with equal sides AB and AC. See
Figure 1.9. Then the angles /B and /C" are equal.

Proof: Draw the median from the vertex A to the opposite side BC
(here the definition of the median is that it bisects the opposite side).
See Figure 1.10. Thus we have created two subtriangles AABD and
NACD. Notice that these two smaller triangles have all corresponding
sides equal (Figure 1.11): side AB in the first triangle equals side AC
in the second triangle; side AD in the first triangle equals side AD in
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Figure 1.8

Figure 1.9
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Figure 1.10

the second triangle; and side BD in the first triangle equals side C'D in
the second triangle (because the median bisects side BC). As a result
(by SSS), the two subtriangles are congruent. All the corresponding ar-
tifacts of the two triangles are the same. We may conclude, therefore,
that /B = /C. O

Corollary 1.1

Let AABC be an isosceles triangle as in the preceding theorem (Figure
1.9). Then the median from A to the opposite side BC' is also perpen-
dicular to BC.

Proof: We have already observed that the triangles AABD and ANADC
are congruent. In particular, the angles /ZADB and /ADC' are equal.
But those two angles also must sum up to 180° or 7 radians. The only
possible conclusion is that each angle is 90° or a right angle. O

A basic fact, which is equivalent to the Parallel Postulate P35, is as
follows.
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Figure 1.12

Theorem 1.2

Let ¢ and m be parallel lines, as in Figure 1.12. Let p be a transverse
line which intersects both ¢ and m. Then the alternating angles v and
B (as shown in the figure) are equal.

The proof is intricate, and would take us far afield. We shall omit it. An
immediate consequence of Theorem 1.2 is this simple corollary:

Corollary 1.2
Let lines ¢ and m be parallel lines as in the theorem, and let p be a
transversal. Then the alternating angles o' and 3’ are equal. Also o
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Figure 1.13

and (" are equal.
Proof: Notice that
a+a =180° =B+ 4.

Since o = 3, we may conclude that o/ = '.
The proof that o = " follows similar lines, and we leave it for you
to discuss in class. O

Now we turn to some consequences of this seminal idea.

Theorem 1.3
Let ANABC' be any triangle. Then the sum of the three angles in this
triangle is equal to a halfline (i.e. to 180°).

Proof: Examine Figure 1.13. Observe that /3 = /3 and /v = /7.
It follows that

sum of angles in triangle = a + 3 +v=a+ 3 +7 = a line = 180° .

That is what was to be proved. O

A companion result to the last theorem is this:
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Figure 1.14

Corollary 1.3
Let AABC be any triangle and let 7 be an exterior angle (see Figure
1.14). Then ~ equals the sum of the other two interior angles o and (3.

We have defined the necessary terminology in context. The exterior an-
gle 7 is determined by the two sides AC and BC of the triangle—but is
outside the triangle. This exterior angle is adjacent to an interior angle
v, as the figure shows. The assertion is that 7 is equal to the sum of the
other two angles o and f3.

Proof: According to Figure 1.15, the angle 7 is certainly equal to a+ 3'.
Also = (' and v = +'. Thus

180° =~"+a+p =+ +71.
It follows that
T=180° -+ =180° —vy=a + 3.
That is the desired result. O

1.3 Archimedes
1.3.1 The Genius of Archimedes

Archimedes (287 B.C.E.-212 B.C.E.) was born in Syracuse, Sicily. His
father was Phidias, the astronomer. Archimedes developed into one of
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Figure 1.15

the most gifted, powerful, and creative mathematicians who ever lived.

One of Archimedes’s achievements was to develop methods for cal-
culating areas and volumes of various geometric figures. We shall imi-
tate one of Archimedes’s techniques—the method of exhaustion that he
learned from Eudoxus (408 B.C.E-355 B.C.E.)—to approximate the area
inside a circle to any desired degree of accuracy. This gives us a method
for in turn approximating the value of 7. It can be said that Archimedes
turned the method of exhaustion to a fine art, and that some of his cal-
culations were tantamount to the foundations of integral calculus (which
was actually not fully developed until nearly 2000 years later).

Archimedes grew up in privileged circumstances. He was closely
associated with, and perhaps even related to, Hieron King of Syracuse;
he was also friends with Gelon, son of Hieron. He studied in Alexandria
and developed there a relationship with Conon of Samos; Conon was
someone whom Archimedes admired as a mathematician and cherished
as a friend.

When Archimedes returned from his studies to his native city he
devoted himself to pure mathematical research. During his lifetime, he
was regularly called upon to develop instruments of war in the service
of his country. And he was no doubt better known to the populace at
large, and also appreciated more by the powers that be, for that work
than for his pure mathematics. Among his other creations, Archimedes is
said to have created (using his understanding of leverage) a device that
would lift enemy ships out of the water and overturn them. Another
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of his creations was a burning mirror that would set enemy ships afire.
Archimedes himself set no value on these contrivances, and declined even
to leave any written record of them.

Perhaps the most famous story about Archimedes concerns a crown
that was specially made for his friend King Hieron. It was alleged to be
manufactured of pure gold, yet Hieron suspected that it was actually part
silver. Archimedes puzzled over the proper method to determine whether
this was true (without modifying or destroying the crown!). Then, one
day, as Archimedes was stepping into his bath, he observed the water
running over and had an inspiration. He determined that the excess of
bulk that would be created by the introduction of alloy into the crown
could be measured by putting the crown and equal weights of gold and
silver separately into a vessel of water—and then noting the difference
of overflow. If the crown were pure gold then it would create the same
amount of overflow as the equal weight of gold. If not, then there was
alloy present.

Archimedes is said to have been so overjoyed with his new insight
that he sprang from his bath-—stark naked—and ran home down the
middle of the street shouting “FEureka! Fureka!”, which means “I have
found it! I have found it!” To this day, in memory of Archimedes, people
cry Eureka to celebrate a satisfying discovery.

Another oft-told story of Archimedes concerns his having said to
Hieron, “Give me a place to stand and I will move the earth.” What
Archimedes meant by this bold assertion is illustrated in Figure 1.16.
Archimedes was one of the first to study and appreciate the power of
levers. He realized that a man of modest strength could move a very great
weight if he was assisted by the leverage afforded by a very long arm.
Not fully understanding this principle, Hieron demanded of Archimedes
that he give an illustration of his ideas. And thus Archimedes made
his dramatic claim. As a practical illustration of the idea, Archimedes
arranged a lever system so that Hieron himself could move a large and
fully laden ship.

One of Archimedes’s inventions that lives on today is a water screw
that he devised in Egypt for the purpose of irrigating crops. The same
mechanism is used now in electric water pumps as well as hand-powered
pumps in third world countries.
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Figure 1.16

Archimedes died during the capture of Syracuse by the troops of
Marcellus in 212 B.C.E. Even though Marcellus gave explicit instructions
that neither Archimedes nor his house were to be harmed, a soldier
became enraged when Archimedes would not divert his attention from
his mathematics and obey an order. Archimedes is reported to have said
sternly to the soldier, “Do not disturb my circles!” Thus Archimedes fell
to the sword. Later in this book we tell the story of how Sophie German
became enthralled by this story of Archimedes’s demise, and was thus
inspired to become one of the greatest female mathematicians who ever
lived.

Next we turn our attention to Archimedes’s study of the area of the
circle.

1.3.2 Archimedes’s Calculation of the Area of a Circle

Begin by considering a regular hexagon with side length 1 (Figure 1.17).
We divide the hexagon into triangles (Figure 1.18). Notice that each of
the central angles of each of the triangles must have measure 360°/6 =
60°. Since the sum of the angles in a triangle is 180°, and since each of
these triangles certainly has two equal sides and hence two equal angles,
we may now conclude that all the angles in each triangle have measure
60°. See Figure 1.19.

But now we may use the Pythagorean theorem to analyze one of the
triangles. We divide the triangle in two—Figure 1.20. Thus the triangle
is the union of two right triangles. We know that the hypotenuse of one
of these right triangles—which is the same as a diagonal of the original
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Figure 1.19
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Figure 1.20
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hexagon—is 1 and the base is 1/2. Thus the Pythagorean theorem tells

us that the height of the right triangle is /12 — (1/2)2 = v/3/2. We may
conclude then that the area of this right triangle, as shown in Figures
1.19 and 1.20, is
1 1 1 3 3
A(T):§-(base)-(height):i-g-gz\/?_.

Therefore the area of the full equilateral triangle, with all sides equal to
1, is twice this or \/§/4

Now of course the full regular hexagon is made up of six of these
equilateral triangles, so the area inside the hexagon is

V3 3V3
AH)=6-— = —.
(H) 1 5

We think of the area inside the regular hexagon as being a crude
approximation to the area inside the circle: Figure 1.21. Thus the area
inside the circle is very roughly the area inside the hexagon. Of course
we know from other considerations that the area inside this circle is
712 =7 -12 = 7. Thus, putting our ideas together, we find that

3V3
7w = (area inside unit circle) &~ (area inside regular hexagon) = & 2.508. ..

It is known that the true value of 7 is 3.14159265.... So our ap-
proximation is quite crude. The way to improve the approximation is to
increase the number of sides in the approximating polygon. In fact what
we shall do is double the number of sides to 12. Figure 1.22 shows how
we turn one side into two sides; doing this six times creates a regular
12-sided polygon.

Notice that we create the regular 12-sided polygon (a dodecagon)
by adding small triangles to each of the edges of the hexagon. Our job
now is to calculate the area of the twelve-sided polygon. Thus we need
to calculate the lengths of the edges. Examine a blown-up picture of
the triangle that we have added (Figure 1.23). We use the Pythagorean
theorem to calculate the length = of a side of the new dodecagon. It is

xz\l(%>2+<1—£>2=\/i+(1—\/§+2>z\/m.

2
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Figure 1.23

Now let us focus attention on the dodecagon, divided into twelve
isosceles triangles (Figure 1.24). We have just calculated that each side

of the dodecahedron has length /2 — V3. If we can calculate the area
of each of the congruent subtriangles, then we can obtain the area of the
entire dodecahedron (by multiplying by 12). Examine Figure 1.25. This
is one of the 12 triangles that makes up the dodecahedron. It has base

\/2 — /3. Each of the two sides has length 1. Thus we may use the
Pythagorean theorem to determine that the height of the triangle is

hJP_ (25\/5)2\/1_2_4\/5\/22\/3‘

We conclude that the area of the triangle is

- (base) - (height) = = - /2 — 3 44_ S _ i .

Hence the area of the dodecagon is

AT) =

AD)=12--=3.
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Figure 1.24

Figure 1.25
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Figure 1.26

Figure 1.27

Examining Figure 1.26, and thinking of the area inside the dodecahedron
as an approximation to the area inside the unit circle, we find that

7w = (area inside unit circle) & (area inside regular dodecahedron) = 3.

This is obviously a better approximation to 7 than our first attempt. At
least we now got the “3” right! Now let us do one more calculation in
an attempt to improve the estimate. After that we will seek to find a
pattern in these calculations.

Now we consider a regular 24-sided polygon (an icositetragon). As
before, we construct this new polygon by erecting a small triangle over
each side of the dodecagon. See Figure 1.27. We examine a blowup
(Figure 1.28) of one of these triangles, just as we did above for the do-
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decagon. We first solve the right triangle with base /2 — v/3/2 and
hypotenuse 1—using the Pythagorean theorem, of course—to find that

it has height /2 + \/§/2 Then we see that the smaller right trian-

gle has base 1 — /24 +/3/2 and height /2 —+/3/2. Thus, again by

the Pythagorean theorem, the hypotenuse of the small right triangle is

V2 -2+ V3.

But the upshot is that the icositetragon is made up of isosceles trian-

gles, as in Figure 1.29, having base /2 — 1/2 + v/3 and side length 1. We

may divide the triangle into two right triangles, as indicated in the figure.
And then solve one of the right triangles using the Pythagorean theorem.

The solution is that the height of this right triangle is /2 4 /2 4+ v/3/2.
Altogether, then, the area of the triangle which is one twenty-fourth of
the polygon is

AT) = %-(base) (height) = \/ /2 2 V3 /2
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Figure 1.29

We conclude that the area of the 24-sided regular polygon is

A(P):24-2%\/§:6\/2—\/§.

Examining Figure 1.30, and thinking of the area inside the dodecahedron
as an approximation to the area inside the unit circle, we find that

7w = (area inside unit circle) &~ (area inside regular 24-gon) ~ 3.1058.

We see that, finally, we have an approximation to 7 that is accurate to
one decimal place.

Of course the next step is to pass to a polygon of 48 sides. We shall
not repeat all the steps of the calculation but just note the high points.
First, we construct the regular 48-gon by placing small triangles along
each of the edges of the dodecagon. See Figure 1.31. Now, once again, we
must (blowing up the triangle construction) examine a figure like 1.32.
The usual calculation shows that the side of the small added triangle has

length \/2 —1/2+ /24 V3. Thus we end up examining a new isosceles

triangle, which is 1/48th of the 48-sided polygon. See Figure 1.33.
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The usual calculations, just as we did for the polygons having 6 or

12 or 24 sides, show that this new triangle has base \/2 —/24+ 24+ V3

and height \/2 +1/2 +1/2 + V/3/2. Thus the area is

A(T) =

- (base) - (height)

N A
\/2+\/2+\/2+\/§/2= /2 '42+\/§.

The polygon comprises 48 such triangles, so the total area of the polygon
is

N | —

A(P) =48 - o ”2+\/§=12\/2—\/2+\/§.

4
Thinking of the area inside the 48-sided regular polygon as an approxi-
mation to the area inside the unit circle, we find that

7w = (area inside unit circle) &~ (area inside 48-sided regular polygon) ~ 3.1326.

This is obviously a better approximation to 7 than our last three at-
tempts. It is accurate to one decimal place, and the second decimal
place is close to being right.

And now it is clear what the pattern is. The next step is to examine
a regular polygon with 96 sides. The usual calculations will show that
this polygon breaks up naturally into 96 isosceles triangles, and each of
these triangles has area

AT \/2 —\/2+V2+V3
_ y ,

Thus the area of the polygon is

A(P):96-\/2_ '22 2+\/§=24-\/2—\/2+\/2+\/§.
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Figure 1.33

We then see that
7w = (area inside unit circle) &~ (area inside 96-sided regular polygon) ~ 3.13935.

This is certainly an improved approximation to the true value of 7, which
is 3.14159265. . ..

The next regular polygon in our study has 192 sides. It breaks up
naturally into 192 isosceles triangles, each of which has area

\/2—\/2+\/2+\/m

4

A(T) =

Thus the area of the regular 192-gon is

\/2—\/2+4\/2+\/m48.\/2_\/2+

We then see that

V2+Vv2+3.

A(P) =192

7w = (area inside unit circle) &~ (area inside 192-sided regular polygon) ~ 3.14103.
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This new approximation of 7 is accurate to nearly three decimal places.
Archimedes himself considered regular polygons with nearly 500 sides.

His method did not yield an approximation as accurate as ours. But,

historically, it was one of the first estimations of the size of 7.

Exercises
1. Verify that the number /17 is irrational.

2. The number a = v/9 is that unique positive real number
that satisfies o® = 9. Verify that this « is irrational.

3. Let m be any positive whole number (i.e., a natural
number). Show that y/m is either a positive whole num-
ber or is irrational. Discuss this problem in class.

4. Let m be any positive whole number (i.e., a natural
number). Show that ¢/m is either a positive whole num-
ber or is irrational. Discuss this problem in class.

5. Develop a new verification of the Pythagorean theorem
using the diagram in Figure 1.34. Observe that the
figure contains four right triangles and a square, but
the configuration is different from that in Figure 1.3.
Now we have a large square in a tilted position inside
the main square. Using the labels provided in the figure,
observe that the area of each right triangle is ab/2. And
the area of the inside square is ¢?. Finally, the area
of the large, outside square is (a + b)?. Put all this
information together to derive Pythagoras’s formula.

6. Explain the reasoning represented in Figure 1.35 to dis-
cover yet another proof of the Pythagorean theorem.

7. Find all Pythagorean triples in which one of the three
numbers is 7. Explain your answer.

8. Find all Pythagorean triples in which each of the three
numbers is less than 35. Explain your answer.
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9.

10.

11.

12.

13.

The famous Waring problem (formulated in 1770) was
to show that every positive integer can be written as
the sum of at most four perfect squares. David Hilbert
was the mathematician who finally solved this problem
in 1909. So, for example,

11=324+12+1%2+12

and
87 =224+324+524+7°

and
31 =52 +22+12+12%.

Find the Waring/Hilbert decomposition of 101. Find
the Waring/Hilbert decomposition of 1001. Write a
computer program that will perform this job for you.
Discuss this problem in class.

This is a good problem for class discussion. Refer to the
Waring problem in Exercise 9. Formulate a version of
the Waring problem for cubes instead of squares. How
many cubes will it take to compose any positive inte-
ger? Write a computer program to test your hypothesis.
Find a decomposition of 101 into cubes. Find a decom-
position of 1001 into cubes.

We can locate any point in the plane with an ordered
pair of real numbers. See Figure 1.36. Discuss this idea
in class. Now use your understanding of the Pythagorean
theorem to derive a formula for the distance in the plane
between the points (0,0) and (a,b).

Refer to Exercise 11. Use the idea there to find a for-
mula for the distance between two planar points (x,y)
and (2/,9').

Refer to Exercise 12. If we can locate any point in
the plane with an ordered pair of real numbers, then
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A
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v

Figure 1.36

we can locate any point in 3-dimensional space with
an ordered triple of numbers—see Figure 1.37. Dis-
cuss this idea in class. Now use your understanding
of the Pythagorean theorem to derive a formula for
the distance in 3-dimensional space between two points
(x,y,2) and (2',y, 2).



1.3  Archimedes 41

v

Figure 1.37



42

Chapter 1:

The Ancient Greeks



Chapter 2

Zeno’s Paradox and the Concept
of Limit

2.1 The Context of the Paradox?

Ancient Greek mathematics—f{rom about 500 B.C.E. to 100 C.E.—enjoyed
many successes. The sieve of Eratosthenes, the discovery of infinitely
many prime numbers, and the Pythagorean theorem are cornerstones
of mathematics that live on today. We shall discuss all of these in the
present book. But the mathematics of the Greeks was marked by one
huge gap. They simply could not understand the concept of “limit”. The
popular formulations of the limit question were dubbed “Zeno’s para-
dox” (named after the mathematician and Eleatic philosopher Zeno, 495
B.C.E.-435 B.C.E.), and these questions were hotly debated in the Greek
schools and forums.

In fact Euclid’s Elements (see [EUC]) contains over 40 different for-
mulations of Zeno’s paradox. For this is what mathematicians do: When
they cannot solve a problem, they re-state it and turn it around and try
to find other ways to look at it. This is nothing to be ashamed of. As the
great classic work on problem-solving—Podlya’s How to Solve It [POL]—
will tell you, one of the mathematician’s most powerful tools is to restate
a problem. We shall encounter this technique repeatedly in the present

book.

But, unfortunately, this method of re-statement did not help the
Greeks. Like all people in all civilizations, they had an interlocking
system of beliefs to which their reasoning was wedded. And their sci-
entific beliefs were intertwined with their religious beliefs. For example,

43
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Pythagoras was not simply a person. “Pythagoras” (or “the Pythagore-
ans”) was the name for a society of people who developed the ideas to
which we now attach his name. And that society was both a religious
organization and a scientific laboratory.

One of the overriding Greek philosophical concerns was whether ev-
erything in the universe was “one”, or whether the universe contained
independent entities. The discussions of these matters were vigorous and
subtle. Certainly Zeno’s paradoxes, which live on to today, were an out-
growth of the question of “oneness”. We shall consider this matter in
further detail in the considerations that follow. Suffice it to say for the
moment that the issue of oneness had a powerful effect on the Greeks’
ability to think about mathematical questions.

To put the matter bluntly, and religious beliefs aside, the Greeks
were uncomfortable with division, they had rather limited mathematical
notation, and they had a poor understanding of limits. It must be said
that the Greeks made great strides with the tools that they had available,
and it is arguable that Archimedes at least had a good intuitive grasp
of the limit concept. Our knowledge has advanced a bit since that time.
Today we have more experience and a broader perspective. Mathematics
is now more advanced, and more carefully thought out. After we state
Zeno’s paradox, we shall be able to analyze it quickly and easily.

2.2 The Life of Zeno of Elea

Little is known of the life of Zeno of Elea (490 B.C.E.-425 B.C.E.).
Our main source of information concerning this influential thinker is
Plato’s dialogue Parmenides. Although Plato gives a positive account of
Zeno’s teachings, he does not necessarily believe all the paradoxes that
we usually attribute to Zeno.

The philosopher Diogenes Laertius also wrote of Zeno’s life, but his
reports are today deemed to be unreliable.

Zeno was certainly a philosopher, and was the son of Teleutagoras.
He was a pupil and friend of the more senior philosopher Parmenides,
and studied with him in Elea in southern Italy at the school which Par-
menides had founded. This was one of the leading pre-Socratic schools
of Greek philosophy, and was quite influential.
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Parmenides’s philosophy of “monism” claimed that the great diver-
sity of objects and things that exist are merely a single external reality.
This reality he called “Being”. Parmenides asserted that “all is one”
and that change or “non-Being” are impossible. Zeno’s thinking was
strongly influenced by his teacher Parmenides. Zeno and Parmenides
visited Athens together around the year 450 B.C.E. It is believed that
Socrates met with the two men at that time. Zeno had already written a
book before his trip to Athens, and this one book is really Zeno’s claim
to fame. In fact, as far as we know, Socrates was 20 years old, Zeno
40 years old, and Parmenides 65 years old at the time of the meeting.
Zeno was something of the celebrity of the group—Ilargely because of his
book. Proclus describes the book in loving detail. It contains Zeno’s 40
paradoxes concerning the continuum.

Of particular interest is the fact that Zeno argued for the One by
endeavoring to contradict the existence of the Many. By this means
Zeno is credited with developing a method of indirect argument whose
purpose is not victory but rather the discovery of truth. We now call
this type of reasoning a dialectic.

As indicated, Zeno endeavored to answer objections to Parmenides’s
theory of the existence of the One by showing that the hypothesis of the
existence of the Many, both in time and in space, would lead to more
serious inconsistencies.

What we today commonly call “Zeno’s paradoxes” grew out of his
wrestling with the “One vs. Many” dialectic. Thus Zeno’s standard list
of paradoxes certainly includes the tortoise and the hare and the man
walking towards the wall, as described below. But it also includes more
philosophical musings as we now relate:

(1) If the Existent is Many, it must be at once infinitely
small and infinitely great—infinitely small, because its
parts must be indivisible and therefore without mag-
nitude; infinitely great, because, that any part having
magnitude may be separate from any other part, the in-
tervention of a third part having magnitude is necessary;,
and that this third part may be separate from the other
two the intervention of other parts having magnitude is
necessary, and so on ad infinitum.
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(2) In like manner the Many must be numerically both fi-
nite and infinite—numerically finite, because there are
as many things as there are, neither more nor less; nu-
merically infinite, because, that any two things may be
separate, the intervention of a third thing is necessary,
and so on ad infinitum.

(3) If all that is is in space, space itself must be in space,
and so on ad infinitum.

(4) If a bushel of corn turned out upon the floor make a
noise, each grain and each part of each grain must make
a noise likewise; but, in fact, it is not so.

In fact even greater influence was had on the ancient Greeks by
Zeno’s paradox of predication. According to Plato, this conundrum ran
as follows:

If existences are many, they must be both like and
unlike (unlike, inasmuch as they are not one and
the same, and like, inasmuch as they agree in not
being one and the same). But this is impossible;
for unlike things cannot be like, nor like things
unlike. Therefore existences are not many.

In the second decade of the fourth century, the Greeks resumed the
pursuit of truth in earnest. It was felt that Zeno’s paradox of predication
must be dealt with before there could be any discussion of the problem
of knowledge and the problem of being could be resumed. Plato thus
directs his serious students to the study of this question, and offers his
own theory of the immanent! idea as a solution of the paradox.

Zeno took his teacher Parmenides’s dictum “The Ent is, the Non-ent
is not” and interpreted it anew.? To Zeno, this was a declaration of the
Non-ent’s absolute nullity. Thus Zeno developed the theory of the One
as opposed to the theory of the Many. As a result of his efforts, the
Eleaticism of Parmenides was forever ceased.

I Concerning the relationship of the world to the mind.
2Here “Ent” is an enunciation of the concept of oneness.
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After meeting with Socrates in Athens, Zeno returned to the Ital-
ian town of Elea. Diogenes Laertius reports that Zeno died in a heroic
attempt to remove a tyrant from the city. In fact Diogenes reports in
great detail of the heroic deeds and the torture of Zeno at the hands of
the tyrant. Diogenes also gives some material about Zeno’s theory of
cosmology.

Now let us look at the provenance of the paradoxes. They were well
known in Plato’s day, as they bore on Parmenides’s rather prominent
monistic theory of “Being”. In other words, these paradoxes were offered
as proof that everything was one, and could not be divided. Of them,
Plato wrote

...a youthful effort, and it was stolen by someone,
so that the author had no opportunity of consid-
ering whether to publish it or not. Its object was
to defend the system of Parmenides by attacking
the common conceptions of things.

In fact Plato claimed that Zeno’s book was circulated without his knowl-
edge. Proclus goes on to say

... Zeno elaborated forty different paradoxes fol-
lowing from the assumption of plurality and mo-
tion, all of them apparently based on the difficul-
ties deriving from an analysis of the continuum.

The gist of Zeno’s arguments, and we shall examine them in con-
siderable detail below, is that if anything can be divided then it can be
divided infinitely often. This leads to a variety of contradictions, espe-
cially because Zeno also believed that a thing which has no magnitude
cannot exist.

In fact Simplicius was the last head of Plato’s academy, in the early
sixth century. He explained Zeno’s argument against the existence of
any item of zero magnitude as follows:

For if it is added to something else, it will not
make it bigger, and if it is subtracted, it will not
make it smaller. But if it does not make a thing
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bigger when added to it nor smaller when sub-
tracted from it, then it appears obvious that what
was added or subtracted was nothing.

It is a measure of how seriously Zeno’s ideas were taken at the time
that Aristotle, in his work Physics, gives four of Zeno’s arguments: the
Dichotomy, the Achilles, the Arrow, and the Stadium. For the Di-
chotomy, Aristotle describes Zeno’s argument as follows:

There is no motion because that which is moved
must arrive at the middle of its course before it
arrives at the end.

In greater detail: In order the traverse a line segment it is necessary to
reach its midpoint. To do this one must reach the 1/4 point, to do this
one must reach the 1/8 point and so on ad infinitum. Hence motion
can never begin. The argument here is not answered by the well known
infinite sum

Loy

21T T
On the one hand Zeno can argue that the sum 1/2 +1/4 +1/8 + ...
never actually reaches 1, but more perplexing to the human mind is the
attempts to sum 1/2 4+ 1/4 + 1/8 + ... backwards. Before traversing a
unit distance we must get to the middle, but before getting to the middle
we must get 1/4 of the way, but before we get 1/4 of the way we must
reach 1/8 of the way etc. See Figure 2.1. This argument makes us realize
that we can never get started since we are trying to build up this infinite
sum from the "wrong” end. Indeed this is a clever argument which still
puzzles the human mind today. We shall spend considerable time in the
present text analyzing this particular argument of Zeno.

The Arrow paradox is discussed by Aristotle as follows:

If, says Zeno, everything is either at rest or moving
when it occupies a space equal to itself, while the
object moved is in the instant, the moving arrow
is unmoved.

The argument rests on the fact that if in an indivisible instant of time
the arrow moved, then indeed this instant of time would be divisible (for
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Figure 2.1

example in a smaller ‘instant’ of time the arrow would have moved half
the distance). Aristotle argues against the paradox by claiming:

... for time is not composed of indivisible ‘nows’,
no more than is any other magnitude.

It is easy to see, from what we have said, that Zeno’s paradoxes have
been important in the development of the notion of infinitesimals. In
fact some modern writers believe that Zeno aimed his paradoxes against
those who were introducing infinitesimals. Anaxagoras and the followers
of Pythagoras—both of whom had a theory of incommensurables—are
also thought by some to be the targets of Zeno’s arguments.

The most famous of Zeno’s paradoxes, and the one most frequently
quoted and described, is undoubtedly Achilles and the hare (to be dis-
cussed in detail shortly). Aristotle, in his Physics, says:

...the slower when running will never be over-
taken by the quicker; for that which is pursuing
must first reach the point from which that which is
fleeing started, so that the slower must necessarily
always be some distance ahead.

Plato and Aristotle both did not fully appreciate the significance
of Zeno’s arguments. In fact Aristotle called them “fallacies”, without
being able to refute them.

The celebrated twentieth-century philosopher Bertrand Russell paid
due homage to Zeno when he wrote:
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In this capricious world nothing is more capri-
cious than posthumous fame. One of the most
notable victims of posterity’s lack of judgment is
the Eleatic Zeno. Having invented four arguments
all immeasurably subtle and profound, the gross-
ness of subsequent philosophers pronounced him
to be a mere ingenious juggler, and his arguments
to be one and all sophisms. After two thousand
years of continual refutation, these sophisms were
reinstated, and made the foundation of a mathe-
matical renaissance . ...

There is no question that Zeno’s ideas, and his cogent arguments,
remained vital and influential even into modern times. Isaac Newton
wrestled with the ideas when he was inventing his calculus (see [GLE]).
It was not until A. Cauchy in the nineteenth century that a cogent man-
ner was devised for dealing with many of the issues that Zeno raised. It
is well known that man wrestled with the idea of infinity for many hun-
dreds of years; many nineteenth century mathematicians forbade any
discussion or mention of the concept of infinity (see [KAP2]). And in-
finity is the obverse idea to infinitesimals. The histories of the two ideas
are intimately bound up (see also [KAP1]).

As to Zeno’s cosmology, it is by no means disjoint from his monistic
ideas. Diogenes Laertius asserts that Zeno proposed a universe consisting
of several worlds, composed of “warm” and “cold”, “dry” and “wet”
but no void or empty space. It is not immediately clear that these
contentions are consistent with the spirit of Zeno’s paradoxes, but there
is evidence that this type of belief was prevalent in the fifth century
B.C.E., particularly associated with medical theory, and it may have
been Zeno’s version of a belief held by the Eleatic School.

Now let us turn our attention to the mathematical aspects of Zeno’s
ideas. We begin our studies by stating some versions of Zeno’s paradox.
Then we will analyze them, and compare them with our modern notion
of limit that was developed by Cauchy and others in the nineteenth
century. In the end, we will solve this 2000-year-old problem that so
mightily baffled the Greeks.
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Figure 2.3

2.3 Consideration of the Paradoxes

We consider several distinct formulations of the paradoxes. There is a
common theme running through all of them.

Zeno’s Paradox, First Formulation: A tortoise and a hare are in a
race. See Figure 2.2. Now everyone knows that a hare can run faster
than a tortoise (for specificity, let us say that the hare runs ten times
as fast as the tortoise), so it is decided to give the tortoise a head start.
Thus the tortoise is allowed to advance 10 feet before the hare begins—
Figure 2.3. Hence the race starts with the tortoise at point A and the
hare at point B.
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A A
Tortoise O

Hare Q

Figure 2.4

Now first the hare must advance to the point A. But while he is
doing that, the tortoise will have moved ahead a bit and he will be at
a new point A" (Figure 2.4). Now the hare, in order to catch up, must
move to point A’. Of course, while the hare is doing that, the tortoise
will have moved ahead to some new point A”. Now the hare must catch
up to point A”.

You can see the problem. Every time the hare endeavors to catch
up with the tortoise, the tortoise will move ahead. The hare can never
catch up. Thus the tortoise will win the race. O

For You to Try: Apply the analysis just given to two children who are
each packing sand into a bucket. One child is twice as fast as the other:
she packs two cups of sand per minute while the slower boy packs only
one cup of sand per minute. But the slower child is allowed to begin with
3 cups of sand already in his bucket. Discuss how the bucket-packing
will progress.

Zeno’s Paradox, Second Formulation: A woman is walking towards
a wall—Figure 2.5. But first she must walk halfway to the wall (Figure
2.6). And then she must walk half the remaining distance to the wall.
See Figure 2.7. And so forth. In short, she will never actually reach the
wall—because at each increment she has half the remaining distance to
go. Figure 2.8 illustrates the incremental positions of the woman. O
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Zeno’s Paradox, Third Formulation: Motion is impossible. For if
an object moves in a straight line from 0 to A, then it first much reach
%A. See Figure 2.9. But before it can reach %A it must reach iA. Ad

infinitum. Thus the motion can never begin.
What is Really Going On?

Let us examine the first version of the paradox to see what is really
going on. For specificity, let us suppose that the tortoise moves at the
rate of 1 foot per second, and the hare moves at the rate of 10 feet per
second. It takes the hare 1 second to catch up to the tortoise’s head-start
position at A. During that 1 second, the tortoise has of course advanced
1 foot. It takes the hare 0.1 seconds to advance that additional foot.
During that 0.1 seconds, the tortoise has advanced 0.1 of a foot. It takes
the hare 0.01 seconds to catch up that much space. During that time,
the tortoise advances another 0.01 feet. And so forth.

To summarize, if we add up all the units of distance that the tortoise
will travel during this analysis, we obtain

Dr=104+1+01+0.014---.
A similar calculation shows that the hare travels
Dg=10+14+014+001+---.

Now we see that our decimal notation comes to the rescue (and the
Greeks definitely did not have decimal notation). The sum Dy = Dy
equals 11.111... feet. To see this just sum up the terms:

104+1=11

10+1+01=111

10+140.140.01 =11.11
and so forth.

Now take out your pencil and paper and divide 9 into 1 (or do it on
your calculator if you must). You will obtain the answer 0.111....> Thus

3In the next section we shall discuss infinite repeating decimal representations for
rational numbers.
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Figure 2.5

Figure 2.6

Figure 2.7
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we see that the total distance that the tortoise (or hare) travels during
our analysis is D = 11% feet. What does this number mean?

The point of the number D is that this is the place where the hare
and the tortoise meet—they are in the same position. After that, the
hare will pull ahead and win the race.

But we can say more. The total length of time that it takes the
tortoise (or the hare) to get to position D is

1
T=14+01+0014+---=1.1111... = 1§ seconds.

Our conclusion is that, after 1% seconds, the tortoise and the hare will
have reached the same point. In the ensuing time, the hare will still be
traveling ten times as fast as the tortoise, so of course it will pull ahead
and win the race.

For You to Try: Refer back to the preceding For You to Try unit.
Assume that each child has a very large bucket. Do an analysis like the
one that we did for the tortoise and the hare to determine when the

faster girl will equal the slower boy in sandpacking (and thereafter pass
him).

2.4 Decimal Notation and Limits

In our analysis of Zeno’s paradox, we came across an interesting idea:
that of repeating decimal expansions. The specific one that came up in
the last section was .11111.... We were conveniently able to observe
that this is just 1/9. But what does (for instance) the decimal expansion
0.57123123123123. .. represent (if anything)? Let us do a little analysis.

Let = 0.57123123123123.... Now consider the number 1000z =
571.23123123123123.... We subtract these two numbers in the tradi-
tional way:*

10002 = 571.23123123123123 . ..

4The choice of 10002 rather than 100z or 10000z is motivated by the fact that it
results in useful cancellations, as we shall see.
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xr = 0.57123123123123. ..

999z = 570.66

Notice how all the 123s cancel out! It is convenient to write the resulting
equation as

57066
999y = ———.
YT 00
Then we find that
57066 9511

¥ 799900 ~ 16650 °

We see that, with a bit of algebraic manipulation, we were able to ex-
press a repeating decimal as a rational fraction.

For You to Try: Express the number
x =43.75417171717 . ..

as a rational fraction.

Rest assured that the ancient Greeks certainly considered the ques-
tions we are discussing here. But they were not equipped to come up
with the answers that you have seen here. They did not have the nota-
tion nor the concept of decimal number. But they certainly set in place
the beginnings of the more complete understanding that we have today.

2.5 Infinite Sums and Limits

The ideas we have considered so far actually beg a much more general
question. When we studied Zeno’s paradox, in the rendition with the
tortoise and the hare, we considered the sum

10+14+01+0.014---.
This might more conveniently be written as

100 +10°+107' +1072 +---
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or perhaps as

1 0 1 1 1 2
10 — = — ce
* (10) * (10) * (10) *
Observe that, after the first term, this is a sum of all the non-negative
powers of a fixed number, namely 1/10. But that is an interesting notion,
is it not? How can we sum all the powers of a fixed number? Let us pose

the question a bit more abstractly.
Let the fixed number be ¢ > 0. Consider the sum

S=1+o0+0c2 4>+,

We call this a geometric series in powers of o. Our goal is to actually
sum this series—to find an explicit formula for the infinite sum on the
right.

In order to understand S, let us multiply both sides by o. So

oc-S=0c+d*+o°+--- .
Adding 1 to both sides yields
l+o-S=14+0+0*+0>+---.

But now we recognize the righthand side as S. So we can rewrite the
last equation as

l1+0-5=5
or
1=5-(1-o0).
Finally, we conclude that
1
S = .
l1—-0

Put in other words, what we have learned is that

1
1—0

4040 +o*+--- =

Example 2.1
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Calculate the sum

1o +(1)2+(1)3+
10 10 10
SOLUTION  We recognize this as the series that we encountered in our study of

Zeno’s paradox. But now we have a simple and direct way to analyze it. We see that

this is a geometric series with 0 = 1/10. Thus the sum is

1 10
5_1—1/10_5'

Example 2.2
Calculate the sum

2 2\2 2\
T=24(Z2 d
(G ()

SOLUTION This is not precisely in our standard form for a geometric series.

But we may write

2 2 /2\? 2
T=2.|14+2 Z L =Z.9
3 l+3+<3>+ ] 3 7

where S is a standard geometric series in powers of 2/3. Thus S = 1/[1—2/3] = 3

and hence

T==2.3=2.
3

For You to Try: Find the sum of the series

4.5 4-25 4-125
+ +

4
+6 36+216
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2.6 Finite Geometric Series

Thus far we have been examining the question of summing an infinite
geometric series of the form

l+o+o*+0°+---

It seems reasonable to consider also the sums of finite geometric series
such as
14343 4---+3"2.

The idea is best understood by way of an example.

Example 2.3
Find the sum of the series

() )G ()

SOLUTION It would be quite tedious to actually add up this series—even with
the aid of a calculator. Let us instead use some mathematical reasoning to tame the
problem.

Our idea is to express this sum in terms of infinite geometric series. Namely, we

@ e (B O (0]
L@ O™

RN

» )" e G0

@D+ @)+

In conclusion,

HORORGE OSSO S INON
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|

The method used in this last example is a cute trick, but not entirely
satisfactory. For suppose we endeavored to sum

14343243+ 43
by the same method. It would fail, just because
14343 +3+--- (%)

cannot be added. In other words, the sum (*) increases without bound.’
So it cannot be manipulated arithmetically as we did in the last example.

Let us now develop a somewhat different technique. We will imitate
the methodology of the last section. Let

S=l+o+o*+o*+.- +o.
Multiplying both sides by o, we find that
oc-S=c+o’+o+ot 4+ + ok

=|l+o+0°+d’+o'+ - +0" |+ (" —1)
=S+ (cF T —1).
Rearranging, we see that
S-(c—1)=c"" -1

or
O.K—l—l -1

S=———. *

p— (*)
Now let us do an example to illustrate the utility of this new formula.
Example 2.4

Calculate the sum

S=1+3+32+3+...4310,

5 A mathematician might say that the limit is +oo.
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SOLUTION  We apply formula (%) with 0 = 3 and K = 100. Thus

3011 1
S = :—-@NL—Q.
3—-1 2

For You to Try: Use your calculator to calculate the last sum, and
compare your result with the answer that we obtained through mathe-
matical reasoning.

Example 2.5
Calculate the sum

(@ O ()
SOLUTION We write
ot () e () () )]
B/ -1 3/ -1
(3/4)—1  (3/4) —1

[T

For You to Try: Calculate the sum
-5 12 -5 13 -5 14 -5 45
w=(—- e —_- e (Z22)
&) <(F) &)+ (5)

For You to Try: Calculate the sum

() () e ()
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Can you discern a pattern in your answers? Is it possible to look at
a sum of the form ’ '
of +altt 4o of

for 0 < j < k and just write down the answer?

2.7 Some Useful Notation

This is a good opportunity to learn some useful and fun mathematical
notation. The symbols

N
Z aj
j=1
is a shorthand for the sum
ap+ax+a+3+---+an.

The symbol Y is the Greek letter sigma (the cognate of “S” in our
alphabet), and stands for sum. The lower limit j = 1 tells where the
sum, or series, begins. The upper limit “N” (or “j = N”) tells where
the sum (or series stops).

Example 2.6
Write out the sum

8
> it+.
j=1
Solution: According to our rule, this is
(P+1)+(2°4+2)+ (32 +3) + (4*+4) + (5* +5)
+(6°+6) + (7> +7) + (8 +8)

=246+ 12+ 20+ 30 442 + 56 + 72
= 240.
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Example 2.7
Write out the sum ‘
J
=2
Solution: Notice that we are stretching our new notation by begin-
ning the sum at an index other than 1. It equals

5+6+7+8+9+10
5+1 6+1 741 841 9+1 1041

5 6 7 8 9 10

s 7TsTo T
~ 5.2634.

O

We can also use the summation notation to denote an infinite series.
For example,

S ORORCRORMO RS
) )

And we know, from our earlier studies, that in fact this sum equals 2.

2.8 Concluding Remarks

Geometric series arose very naturally for us in our consideration of Zeno’s
paradox. In fact the Greeks were well aware of geometric series. They oc-
cur, in essence, in Euclid IX-35 [EUC], and also in Archimedes’s quadra-
ture of the parabola. Today, geometric series arise frequently in engineer-
ing analysis, in the study of the way that plants grow, and in many other
applications of the mathematical sciences. They are a primary example
of the mathematical modeling of nature. They also have considerable
intrinsic interest—they are simply fascinating mathematical objects to
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study.

FExercises

1. Use geometric series to analyze the second version of
Zeno’s paradox.

2. Formulate a version of Zeno’s paradox that involves di-
vision by 3 instead of division by 2. Discuss this ques-
tion in class.

3. Calculate the sum
4\° 4\ 6 4N\
(5) *‘(5) *‘(5) *
4. Calculate the sum

2 3 2 6 2 9 2 81
(?) *‘(?) *‘(?) *“"*‘(?) |
5. Calculate the sum
>(5) -1+ () + (5) +
= 13 13 13
6. Calculate the sum
- () () (-
—\17) \17 17 17
‘7_
7. Calculate the sum

()" ()
21 21 21

()
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10.

11.

12.
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. A certain radioactive material has the property that half

the substance present decays every three hours. If there
are 10 grams present at 10:00am on Monday, then how
much material will remain at 10:00am on Thursday of
that same week? [Hint: You cannot solve this problem
just using techniques of arithmetic. You must use the
lessons of this chapter.|

. A population of bacteria reproduces constantly. As a re-

sult, the total number of bacteria doubles every 6 hours.
If there are 10,000 bacteria present at 9:00am on Tues-
day, then how many bacteria will be present at 9:00am
on Saturday of that same week? [Hint: You cannot
solve this problem just using techniques of arithmetic.
You must use the lessons of this chapter.]

It begins snowing some time before noon. At noon, a
snow plow begins to clear the street. It clears two blocks
in the first hour and one block in the second hour. When
did it start snowing? [Hint: You will not be able to ac-
tually write down an equation or formula and solve this
problem. But you can use the ideas from this chapter to
set up an analysis of the problem. Use your computer or
calculator to do some numerical approximations for the
situation described. In other words, think of this as a
problem of mathematical modeling. Use the calculating
machinery to emulate the snow fall and come up with
an approximate answer. Discuss this problem in class.]

A sponge absorbs water at a steady rate. As a result,
the volume of the sponge increases by a factor of one
tenth each hour. If the sponge begins at noon having
volume 0.8 cubic feet, then what will be the volume of
the sponge at the same time on the next day?

You deposit $1000 in the bank on January 2, 2006. The
bank pays 5% interest, compounded daily (this means
that 1/365 of the interest is paid each day, and the
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interest is added to the principal). How much money
will be in your account on January 2, 20077 [Hint: Bear
in mind that, when interest is calculated on the second
day, there will be interest paid on the interest from the
first day. And so forth. Thus the amount of increase
in money is greater with each passing day. Discuss this
problem in class.]
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Chapter 3

The Mystical Mathematics of
Hypatia

3.1 Introduction to Hypatia

One of the great minds of the ancient world was Hypatia of Alexandria
(370 C.E.-430 C.E.). Daughter of the astronomer and mathematician
Theon, and wife of the philosopher Isidorus, she flourished during the
reign of the Emperor Arcadius.

Historians believe that Theon endeavored to raise the “perfect human
being” in his daughter Hypatia. He nearly succeeded, in that Hypatia
had surpassing physical beauty and a dazzling intellect. She had a re-
markable physical grace and was an accomplished athlete. She was a
dedicated scholar and had a towering intellect.

Hypatia soon outstripped her father and her teachers and became
the leading intellectual light of Alexandria. She was a powerful teacher,
and communicated strong edicts to her pupils. Among these were:

All formal dogmatic religions are fallacious and
must never be accepted by self-respecting persons
as final.

Reserve your right to think, for even to think
wrongly is better than not to think at all.

Neo-Platonism is a progressive philosophy, and
does not expect to state final conditions to men
whose minds are finite. Life is an unfoldment, and

69
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the further we travel the more truth we can com-
prehend. To understand the things that are at
our door is the best preparation for understand-
ing those that lie beyond.

Fables should be taught as fables, myths as myths,
and miracles as poetic fantasies. To teach super-
stitions as truths is a most terrible thing. The
child mind accepts and believes them, and only
through great pain and perhaps tragedy can he
be in after years relieved of them. In fact men
will fight for a superstition quite as quickly as for
a living truth—often more so, since a superstition
is so intangible you cannot get at it to refute it,
but truth is a point of view, and so is changeable.

The writings of Hypatia have all been lost to time. What we know of
her thoughts comes from citations and quotations in the work of others.

Hypatia was a pagan thinker at the time when Rome was converted
to Christianity. Thus, in spite of her many virtues, she made enemies.
Chief among these was Cyril, the Bishop of Alexandria. According to
legend, he enflamed a mob of Christians against her. They set upon
her as she was leaving her Thursday lecture, and she was dragged to
a church where it was planned that she would be forced to recant her
beliefs. But the mob grew out of control. Her clothes were rent from her
body, she was beaten mercilessly, and then she was dismembered. The
skin was flayed from her body with oyster shells. Her remains were then
burned. The book [DZI] considers a variety of accounts of Hypatia and
her demise. It is difficult to tell which are apocryphal.

Hypatia is remembered today for her work on Appolonius’s theory
of conics, and for her commentary on Diophantus. All of these theories
survive to the present time, and are still studied intently. She also did
work, alongside her father, on editing Euclid’s Elements. The surviving
presentation of Euclid’s classic work bears Hypatia’s mark.

Certainly Hypatia was one of the great thinkers of all time, and it
is appropriate for us to pay her due homage. But we have no detailed
knowledge of her work—certainly no firsthand knowledge. So what we
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Figure 3.1

can do is to study conic sections with Hypatia in mind, knowing that she
certainly left her mark on this subject. We will give some of the classical
ideas, as Hypatia herself would have conceived them, and also some of
the modern ideas—based on the analytic geometry of René Descartes
(see Chapter 8).

It was Appolonius, Hypatia’s inspiration, who first realized that all
of the conic sections can be realized as slices of a fixed cone. He also
gave the names to the conic sections that we use today. Examine Figure
3.1. It shows a cone with two nappes (branches). We slice this cone
with a plane. Depending on the way that the plane intersects the cone,
the result will give different types of curves. Figure 3.2 shows a circle.
Figure 3.3 shows an ellipse. Figure 3.4 exhibits a parabola. And Figure
3.5 gives us a hyperbola. Figure 3.6 shows each of these curves on a
planar set of axes.

Of course it is intuitively clear how one can examine the intersection
of the plane and the cone in Figures 3.2-3.5 to see where the circle, el-
lipse, parabola, and hyperbola in Figure 3.6 come from. But it would be
advantageous, and certainly aesthetically pleasing, to have a synthetic
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Figure 3.2

Figure 3.3
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Figure 3.4

;

Figure 3.5
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circle ellipse
hyperbola
parabola

Figure 3.6
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Figure 3.7

definition of each of these figures that makes sense in the context of the
plane. This we shall now discuss.

The Circle: A circle with center P and radius r is just the set of all
points in the plane that have distance r from the point P. Examine
Figure 3.7. It clearly exhibits this geometric definition. And you can
see that we have made this definition without any reference to the cone.
The cone is of course interesting for historical reasons: it is the genesis
of these figures, and suggests that they are related. But each can be
studied intrinsically, and for its own merits.

The Ellipse: Fix two points F; and F5 in the plane. Fix a positive num-
ber a such that 2a is greater than the distance from F} to Fy. Consider
the locus of points P in the plane with the property that the distance of
P to F plus the distance of P to F is equal to 2a. This locus is called
an ellipse. Refer to Figure 3.8.

The two points F}, F; are called the foci of the ellipse and the mid-
point of the segment F} [} is called the center of the ellipse. The chord
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Figure 3.8

of the ellipse passing through the two foci is called the major axis of
the ellipse. The perpendicular chord, passing through the center of the
ellipse, is called the minor axis of the ellipse. See Figure 3.9.

For You to Try: What happens to the ellipse as the two foci tend
towards each other? As they coalesce into a single point? Does another
conic section result?

The Parabola: Fix a point P in the plane and a line ¢ that does not
pass through P. The set of points that are equidistant from P and ¢
is a parabola. See Figure 3.10. The point that is on the perpendicular
segment from P to ¢ and halfway between the two is called the vertex of
the parabola. The point P is called the focus, and the line ¢ is called the
directrix.

For You to Try: Let P = (2,0) and let ¢ be the line {(x,y) : = —2}.
Sketch the resulting parabola. Where will the vertex lie?

The Hyperbola: Fix two distinct points Fp, F5 in the plane. Fix a
positive number a that is less than half the distance of I to F5;. Consider
the locus of points P with the property that the difference of the distances
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Figure 3.10
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Figure 3.11

|P — Fi| and |P — Fy| equals 2a. This is a hyperbola. The points Fy, Fy
are called foci of the hyperbola. The midpoint of the two foci is called
the center of the hyperbola. The line through the two foci intersects the
hyperbola in two points called the vertices of the hyperbola. All of these
attributes are exhibited in Figure 3.11.

For You to Try: Let F; = (—2,0) and F5 = (2,0). Let a = 1. Discuss
the resulting hyperbola. Does it open up-down or left-right? Can you
sketch the graph?

3.2 What is a Conic Section?

Now we shall attempt to unify the preceding discussion. What do the
circle, the ellipse, the parabola, and the hyperbola have in common?
What are their common features?

One of the beauties of Descartes’s conception of geometry is that it
allows us to think of conic sections in terms of equations.

As an example, consider the parabola. Let us suppose that the di-
rectrix is the line y = a > 0 and the focus is the origin O = (0,0). The
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parabola defined by these two pieces of data is the set of points which are
equidistant from the focus and the directrix. Let (x,y) be such a point.
Then the distance of (z,y) to O is v/z2 + y2. The distance of (z,y) to
the directrix is |y — a|—see Figure 3.12. So the equation is then

Vet +y?=|y—al.

Squaring both sides gives
2+ = % — 2ay + d

or
1 5, a
Y= —%ZE + 5

See Figure 3.13.

A characteristic of the equation of a parabola is that one variable
(in this case x) is squared and the other (in this case y) is not. Because
of the positioning of the directrix and focus, a parabola such as we have
been discussing must open either up or down. See Figure 3.13.

If instead we were to set up the geometry so that the directrix is

x = a > 0 and the focus is the origin, then the equation would be

Again, we see that one variable (in this case y) is squared and the other
(in this case x) is not. Because of the positioning of the directrix and
focus, a parabola such as we have been discussing must open either left
or right. See Figure 3.14.
More generally, the equation of an up-down opening parabola will
have the form
y—b=c(r—a)’.

Such a parabola will have vertex at the point (a,b) and will open up if
¢ > 0 and down if ¢ < 0. See Figure 3.15. The equation of a left-right
opening parabola will have the form

r—a=c(y—b)?.
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Figure 3.15



82 Chapter 3: The Mystical Mathematics of Hypatia

c<( ¢>0

Figure 3.16

Such a parabola will have vertex at the point (a,b) and will open to the
right if ¢ > 0 and to the left if ¢ < 0. See Figure 3.16.

For You to Try: Discuss the parabola y? —4x —2y = 10. Does it open
up-down or left-right? How can you tell? Can you sketch the graph?

An analysis similar to the one just given for the parabola, but a bit
more complicated, yields that the equation of an ellipse will have the
form

x —cp)? —c)?

( . . W . )
The center of this ellipse is the point (cy,¢z). If we put in y = ¢ and
solve for x we find that * = ¢; £ a. Thus the left and right extreme
points of the ellipse are (¢; — a,c2) and (¢ + a,cy). If instead we put
x = ¢ and solve for y then we find that y = ¢, = b. Thus the upper and
lower extreme points of the ellipse are (¢1,c2 — b) and (c1, c2 + b). Refer
to Figure 3.17 for a picture of this ellipse.

=1.

For You to Try: Discuss the ellipse 422 +8y?+ 162+ 32y = 16. Which
direction is the major axis (the long direction) of the ellipse? Which di-
rection is the minor axis (the short direction) of the ellipse? Can you
sketch it?
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(Cl ,Cz‘l'b)

Figure 3.17

Yet another analysis of the same type—and we shall omit the details—
shows that the equation of a hyperbola has the form

(f—Cl)z (?/—02)2 _
" — 72 =+1. (k)

If the righthand side of () is +1 then the hyperbola opens left-right.
In fact take y = c¢9; you can then solve for x and find that x = ¢; & a.
So the vertices of the hyperbola are at (¢; — a, ) and (¢ + a,cg). See
Figure 3.18.

If instead the righthand side of (%) is —1 then the hyperbola opens
up-down. In fact take x = ¢q; you can then solve for y and find that
y = cg £ b. So the vertices of the hyperbola are at (c¢1,co — b) and
(c1,c2 +b). See Figure 3.19.

For You to Try: Discuss the hyperbola 42% — 8y? + 8z — 16y = 12.
Does it open up-down or left-right? Can you sketch the graph?
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Figure 3.18

(c,,c,+b)

T

T

TR T T R N
VV\V\\'

(cy.c,-b)

T 1 T 11

Figure 3.19
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Figure 3.20

FExercises

1. Let P,Q, R be three points in the plane which do not
all lie on the same line. Then there is a unique circle
that passes through all three of them. See Figure 3.20.
There are several ways to confirm this assertion.

(a) A general circle has equation
2 2 _
+ar+y +by=c.

Thus there are three undetermined parameters. And
the three pieces of information provided by the fact that
the circle must pass through P = (p1,p2), @ = (q1, ¢2),
R = (r1,7r2) (and therefore these three points must sat-
isfy the equation) will determine those parameters. Use
this idea to find the unique circle that passes through
(1,2), (2,3), and (4,9).

(b) There is a well-defined perpendicular bisector to the
segment PQ. This line represents the set of all points
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Q

Figure 3.21

that are equidistant from P and @). There is also a well-
defined perpendicular bisector to the segment Q) R. This
line represents the set of all points that are equidistant
from ) and R. The intersection of these two lines—
which will be a single point C'—will be the unique point
that is equidistant from all three of P,Q, R. That must
be the center of the circle. See Figure 3.21. The distance
of C to P will be the radius. Use this idea to find the
unique circle that passes through (1,0), (0,1), (1,1).

. Consider the parabola y = 2%. Any ray entering the

parabola from above and traveling straight down (see
Figure 3.22) will bounce off the parabola and pass through
the focus point (0,1/4) (the directrix is the line y =
—1/4, as you can readily verify). Discuss this assertion
in class. How would you determine the bounce of the
ray? Think about the tangent line to the parabola at
the point of impact. What does the tangent line have
to do with the question?

3. Let ¢ > 0. Fix the two points F; = (—¢,0) and Fy =
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Figure 3.22

(c,0) in the plane. Imagine a string of length 2a > 2¢
that has one end pinned down at the point F; and the
other end pinned down at the point F,. Now stretch the
string taught with a pencil and move the pencil around
in a loop. See Figure 3.23. The resulting curve will
be an ellipse. You should try this yourself with two
thumbtacks, a piece of string, and a real pencil.

Discuss this situation in class. Explain why the result
is an ellipse. What is the length of the major axis of
the ellipse? What is the length of the minor axis of the
ellipse?

4. Let {p1,p2,ps3, ...} be an infinite collection of points in
the plane. Suppose that the distance between any two of
these points is an integer (different integers for different
pairs of points in general). Then argue that the points
must all lie on the same line. Discuss this problem in
class. [Hint: The solution has something to do with a
hyperbolal]

5. Two points in the plane do not uniquely determine a
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Figure 3.23

parabola. Give an example to explain why this is so.
But three non-collinear points do uniquely determine a
parabola. Explain why this is so. [Hint: Refer to the
discussion in Exercise 1(a) for a clue.]

. The transformation

V2 V2
—_— x4+ —
Y 9 9 )
describes a rotation of the plane through an angle of
/4 radians (in the counterclockwise direction). Ex-
plain why this is so. Discuss the problem with your

class. More generally, the transformation
x +— [cosf|x — [sinfly

y — [sin O]z + [cos O]y

describes a rotation of the plane through an angle of ¢
radians (in the counterclockwise direction). Verify this
assertion also.
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If a quadratic equation describing a conic section—as
discussed in this chapter—is subjected to one of these
two changes of variable, then an equation of the form

Ax? + Bry+ Cy* + D+ Ey+ F =0 (%)

results. Perform the calculation and see this for your-
self.

Now, if you are given an equation of the form (%), how
can you tell whether it is the equation of an ellipse, a
parabola, or a hyperbola? The tests that we learned in
this chapter do not apply. For example,

2?4+ 2ry+ 1y +1=0

describes a parabola. So how can one tell which equa-
tion corresponds to which type of curve? Try some ex-
periments and see whether you can formulate a conjec-
ture. Make this a project for class work.

7. Refer to Exercise 6. We need a test for telling which
equations of the form (%) describe which types of curves.
Define the discriminant of the equation (x) to be

D = B? — 4AC'.

It turns out that if D = 0 then the equation describes
a parabola. If D < 0 then the equation describes an
ellipse. and if D > 0 then the equation describes a
hyperbola.

Test these assertions out on some familiar equations of
conic sections that you know. Now rotate one of these
equations, as in Exercise 6, and try the test again. You
should get the same answer (because the essential na-
ture of a conic section does not change when it is ro-
tated).
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Refer to Exercises 6 and 7. Now examine the equation
P rry+yi+r+y+1=0.
Determine what sort of conic section it represents. Now

graph the curve.

How does the curve change if +zy is changed to —xy?
Graph the new curve that has equation with this changed
term.

. Consider the line ¢ given by

ar +by+c=0

in the plane. Let P = (p1, p2) be a point that does not
lie on that line. Show that the distance of P to the line
¢ is given by

_apy + bpz + |

Discuss this question with your class. How does one
determine the distance of a point to a line? What geo-
metric construction is relevant?

d

Consider the parabola y = 22 and the circle 22 + ¢y? =
r?. Is there a choice of r > 0 so that, at the points
of intersection of the parabola and the circle, the two
curves are perpendicular? [Hint: You can answer this
question without calculating. Discuss the issue with

your class.|

Answer Exercise 10 with the parabola y = 22 replaced
by the hyperbola 2% — y? = 1.

Discuss the concept of tangent line to the curve y = 22
at the point (1,1). What properties should it have?
How could you determine this line? Discuss the issue
with your class. We will consider this matter in further
detail in Chapter 4.
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Sketch the graph of the conic section
2? — 22 — 3y* + 6y = 10.
Which type of conic section is this? How can you tell?
Sketch the graph of the conic section
4 dr —y=15.
Which type of conic section is this? How can you tell?
Sketch the graph of the conic section
4a* — 8x + 8y* + 32y = 64.

Which type of conic section is this? How can you tell?
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Chapter 4

The Arabs and the Development
of Algebra

4.1 Introductory Remarks

In the early seventh century C.E., the Muslims formed a small and per-
secuted sect. But by the end of that century, under the inspiration of
Mohammed’s leadership, they had conquered lands from India to Spain—
including parts of North Africa and southern Italy. It is believed that,
when Arab conquerors settled in new towns, they would contract dis-
eases which had been unknown to them in desert life. In those days the
study of medicine was confined mainly to Greeks and Jews. Encouraged
by the caliphs (the local Arab leaders), these doctors settled in Baghdad,
Damascus, and other cities. Thus we see that a purely social situation
led to the contact between two different cultures which ultimately led to
the transmission of mathematical knowledge.

Around the year 800, the caliph Haroun Al Raschid ordered many
of the works of Hippocrates, Aristotle, and Galen to be translated into
Arabic. Much later, in the twelfth century, these Arab translations were
further translated into Latin so as to make them accessible to the Eu-
ropeans. Today we credit the Arabs with preserving the grand Greek
tradition in mathematics and science. Without their efforts, much of
this classical work would have been lost.

93
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4.2 The Development of Algebra
4.2.1 Al-Khowarizmi and the Basics of Algebra

There is general agreement that the rudiments of algebra found their
genesis with the Hindus. Particularly Arya-Bhata in the fifth century
and Brahmagupta in the sixth and seventh centuries played a major role
in the development of these ideas. Notable among the developments due
to these men is the summation of the first NV positive integers, and also
the sum of their squares and their cubes (see our discussion of these
matters in Chapter 9).

But the Arab expansion two hundred years later caused the transfer
of these ideas to the Arab empire, and a number of new talents exerted
considerable influence on the development of these concepts. Perhaps
the most illustrious and most famous of the ancient Arab mathemati-
cians was Abu Ja’far Muhammad ibn Musa Al-Khwarizmi (780 C.E.-850
C.E.). In 830 C.E. this scholar wrote an algebra text that became the
definitive work in the subject. Called Kitab fi al-jabr wa’l-mugabala, it
introduced the now commonly used term “algebra” (from “al-jabr”). The
word “jabr” referred to the balance maintained in an equation when the
same quantity is added to both sides (curiously, the phrase “al-jabr” also
came to mean “bonesetter”); the word “mugabala” refers to cancelling
like amounts from both sides of an equation.

Al-Khwarizmi’s book Art of Hindu Reckoning introduced the nota-
tional system that we now call Arabic numerals: 1, 2, 3, 4, .... Al-
Khowarizmi also introduced the concept, and the word, that has now
come to be known as “algorithm”.

It is worth noting, and we have made this point elsewhere in the
present text, that good mathematical notation can make the difference
between an idea that is clear and one that is obscure. The Arabs, like
those who came before them, were hindered by lack of notation. When
they performed their algebraic operations and solved their problems, they
referred to everything with words. The modern scholars of this period
are fond of saying that the Arabic notation was “rhetorical”, with no
symbolism of any kind. Moreover, the Arabs would typically exhibit
their solutions to algebraic problems using geometric figures. There were
particular difficulties when the solution involved a root (like v/2, which
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can arise easily in solving a quadratic equation). They did not have an
efficient method for simply writing the solution as we would today.

4.2.2 The Life of Al-Khwarizmi

Abu Ja’far Muhammad ibn Musa Al-Khwarizmi (780 C.E.-850 C.E.)
was likely born in Baghdad, now part of Iraq. The little that we know
about his life is based in part on surmise, and interpretation of evidence.

The “Al-Khwarizmi” in his name suggests that he came from Khwarizm,
south of the Aral Sea in central Asia. But we also have this from an his-
torian (Toomer [GIL]) of the period:

But the historian al-Tabari gives him the addi-
tional epithet “al-Qutrubbulli”; indicating that he
came from Qutrubbull, a district between the Tigris
and Euphrates not far from Baghdad, so perhaps
his ancestors, rather than he himself, came from
Khwarizm ... Another epithet given to him by al-
Tabari, “al-Majusi”, would seem to indicate that
he was an adherent of the old Zoroastrian religion.
... the pious preface to Al-Khwarizmi’s “Algebra”
shows that he was an orthodox Muslim, so Al-
Tabari’s epithet could mean no more than that
his forebears, and perhaps he in his youth, had
been Zoroastrians.

We begin our tale of Al-Khwarizmi’s life by describing the context in
which he developed. Harun al-Rashid became the fifth Caliph of the Ab-
basid dynasty on 14 September 786, at the time that Al-Khwarizmi was
born. Harun ruled in Baghdad over the Islam empire—which stretched
from the Mediterranean to India. He brought culture to his court and
tried to establish the intellectual disciplines which at that time were not
flourishing in the Arabic world. He had two sons, al-Amin the eldest and
al-Mamun the youngest. Harun died in 809 and thus engendered a war
between the two sons.

Al-Mamun won the armed struggle and al-Amin was defeated and
killed in 813. Thus al-Mamun became Caliph and ruled the empire. He
continued the patronage of learning started by his father and founded
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an academy called the House of Wisdom where Greek philosophical and
scientific works were translated. He also built up a library of manuscripts,
the first major library to be set up since that at Alexandria.! His mission
was to collect important works from Byzantium. In addition to the House
of Wisdom, al-Mamun set up observatories in which Muslim astronomers
could build on the knowledge acquired in the past.

Al-Khwarizmi and his colleagues called the Banu Musa were scholars
at the House of Wisdom in Baghdad. Their tasks there involved the
translation of Greek scientific manuscripts; they also studied, and wrote
on, algebra, geometry, and astronomy. Certainly Al-Khwarizmi worked
with the patronage of Al-Mamun; he dedicated two of his texts to the
Caliph. These were his treatise on algebra and his treatise on astronomy.
The algebra treatise Hisab al-jabr w’al-muqabala was the most famous
and significant of all of Al-Khwarizmi’s works. The title of this text is
the provenance of the word “algebra”. It is, in an important historical
sense, the very first—and historically one of the most important—book
on algebra.

Al-Khwarizmi tells us that the significance of his book is:

...what is easiest and most useful in arithmetic,
such as men constantly require in cases of inheri-
tance, legacies, partition, lawsuits, and trade, and
in all their dealings with one another, or where the
measuring of lands, the digging of canals, geomet-
rical computations, and other objects of various
sorts and kinds are concerned.

It should be remembered that it was typical of early mathematics
tracts that they concentrated on, and found their motivation in, practi-
cal problems. Al-Khwarizmi’s work was no exception. His motivations
and his interests may have been abstract, but his presentation was very
practical.

Early in the book Al-Khwarizmi describes the natural numbers in
terms that are somewhat ponderous to us today. But it is easy to see

1This was the great library of the ancient world. It was unfortunately—at least as
far as we know—destroyed by invading hordes.
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that he is thereby laying the foundations of base-ten arithmetic. We
must acknowledge the new abstraction and profundity of what he was
doing:

When 1 consider what people generally want in
calculating, I found that it always is a number. I
also observed that every number is composed of
units, and that any number may be divided into
units. Moreover, I found that every number which
may be expressed from one to ten, surpasses the
preceding by one unit: afterwards the ten is dou-
bled or tripled just as before the units were: thus
arise twenty, thirty, etc. until a hundred: then the
hundred is doubled and tripled in the same man-
ner as the units and the tens, up to a thousand,
...so forth to the utmost limit of numeration.

We should bear in mind that, for many centuries, the motivation for
the study of algebra was the solution of equations. In Al-Khwarizmi’s day
these were linear and quadratic equations. His equations were composed
of units, roots and squares. For example, to Al-Khwarizmi a unit was a
number, a root was z, and a square was x2 (at least this was what he
seemed to be thinking). However, it is both astonishing and significant to
bear in mind that Al-Khwarizmi did his algebra with no symbols—only
words.

Al-Khwarizmi first reduces an equation (linear or quadratic) to one
of six standard forms:?

1. Squares equal to roots.
2. Squares equal to numbers.
3. Roots equal to numbers.

4. Squares and roots equal to numbers; e.g. 2+ 10x = 39.

2For clarity, we continue to indulge in the conceit here of using semi-modern
notation—notation that Al-Khwarizmi would never have used.
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5. Squares and numbers equal to roots; e.g. x2421 = 10x.
6. Roots and numbers equal to squares; e.g. 3x 4+ 4 = 2.

The reduction is carried out using the two operations of “al-jabr” and
“al-muqabala”. Here “al-jabr” means “completion” and is the process
of removing negative terms from an equation. For example, using one
of Al-Khwarizmi’s own examples, “al-jabr” transforms x2 = 40x — 422
into 52 = 40x. The term “al-mugabala” means “balancing” and is
the process of reducing positive terms of the same power when they
occur on both sides of an equation. For example, two applications of
“al-muqgabala” reduces 50 + 3z 4+ 22 = 29 4+ 10x to 21 + 2 = 7z (one
application to deal with the numbers and a second to deal with the
roots).

Al-Khwarizmi then shows how to solve the six types of equations
adumbrated above. He uses both algebraic methods of solution and
geometric methods. We shall treat his algebraic methodology in detail
below.

Al-Khwarizmi continues his study of algebra in Hisab al-jabr w’al-
mugabala by considering how the laws of arithmetic extrapolate to an
algebraic context. For example, he shows how to multiply out expressions
such as

(a+ bx)(c+dx).

Again we stress that Al-Khwarizmi uses only words to describe his ex-
pressions; no symbols are used.

There seems to be little doubt, from our modern perspective, that
Al-Khwarizmi was one of the greatest mathematicians of all time. His
algebra was original, incisive, and profound. It truly change the way that
we think about mathematics.

The next part of Al-Khwarizmi’s Algebra consists of applications and
worked examples. He then goes on to look at rules for finding the area
of figures such as the circle and also finding the volume of solids such as
the sphere, cone, and pyramid. This section on mensuration certainly
has more in common with Hindu and Hebrew texts than it does with
any Greek work. The final part of the book deals with the complicated
Islamic rules for inheritance but requires little from the earlier algebra
beyond solving linear equations. Again, in all these aspects of the book,
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we see the over-arching need to justify the mathematics with practical
considerations.

Al-Khwarizmi also wrote a treatise on Hindu-Arabic numerals. The
Arabic text is lost but a Latin translation, Algoritmi de numero Indo-
rum (rendered in English, the title is Al-Khwarizmi on the Hindu Art of
Reckoning) gave rise to the word “algorithm”, deriving from his name in
the title. The work describes the Hindu place-value system of numerals
based on 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. The first use of zero as a place
holder in positional base notation was probably due to Al-Khwarizmi in
this work. Methods for arithmetical calculation are given, and a method
to find square roots is known to have been in the Arabic original although
it is missing from the Latin version.

Another important work by Al-Khwarizmi was his work Sindhind zij
on astronomy. The work is based in Indian astronomical works:

...as opposed to most later Islamic astronomi-
cal handbooks, which utilised the Greek planetary
models laid out in Ptolemy’s Almagest.

The Indian text on which Al-Khwarizmi based his treatise was one
which had been given to the court in Baghdad around 770 as a gift from
an Indian political mission. There are two versions of Al-Khwarizmi’s
work which he wrote in Arabic but both are lost. In the tenth cen-
tury al-Majriti made a critical revision of the shorter version and this
was translated into Latin by Adelard of Bath. The main topics covered
by Al-Khwarizmi in the Sindhind zij are calendars; calculating true posi-
tions of the sun, moon and planets, tables of sines and tangents; spherical
astronomy; astrological tables; parallax and eclipse calculations; and vis-
ibility of the moon. A related manuscript, attributed to Al-Khwarizmi,
concerns spherical trigonometry.

Although his astronomical work is based on that of the Indians, and
most of the values from which he constructed his tables came from Hindu
astronomers, Al-Khwarizmi must have been influenced by Ptolemy’s
work too.

Al-Khwarizmi wrote a major work on geography which give lati-
tudes and longitudes for 2402 localities as a basis for a world map. The
book, which is based on Ptolemy’s Geography, lists—with latitudes and
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longitudes—cities, mountains, seas, islands, geographical regions, and
rivers. The manuscript does include maps which on the whole are more
accurate than those of Ptolemy. In particular it is clear that where more
local knowledge was available to Al-Khwarizmi such as the regions of Is-
lam, Africa and the Far East then his work is considerably more accurate
than that of Ptolemy, but for Europe Al-Khwarizmi seems to have used
Ptolemy’s data.

A number of minor works were written by Al-Khwarizmi on topics
such as the astrolabe, on which he wrote two works, on the sundial,
and on the Jewish calendar. He also wrote a political history containing
horoscopes of prominent persons.

We have already discussed the varying views of the importance of
Al-Khwarizmi’s algebra which was his most important contribution to
mathematics. Al-Khwarizmi is perhaps best remembered by Mohammad
Kahn:

In the foremost rank of mathematicians of all time
stands Al-Khwarizmi. He composed the oldest
works on arithmetic and algebra. They were the
principal source of mathematical knowledge for
centuries to come in the East and the West. The
work on arithmetic first introduced the Hindu num-
bers to Europe, as the very name algorithm sig-
nifies; and the work on algebra ... gave the name
to this important branch of mathematics in the
European world ...

4.2.3 The Ideas of Al-Khwarizmi

The ideas discussed thus far in the present chapter are perhaps best
illustrated by some examples.

Example 4.1
Solve this problem of Al-Khwarizmi:

A square and ten roots equal thirty-nine dirhems.

SOLUTION It requires some effort to determine what is being asked. First, a
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dirhem is a unit of money in medieval Arabic times. In modern English (we shall
introduce some mathematical notation later), what Al-Khwarizmi is telling us is
that a certain number squared plus ten times that number (by “root” he means the
number that was squared—what we would call the unknown) equals 39. If we call

this unknown number Z, then what is being said is that
2® + 10z = 39

or

22 +102 —39=0.

Of course the quadratic formula quickly tells us that

—104 /102 —4-(=39) - 1 104256 —10+ 16
xr = —_= —_= .
2 2 2
This gives us the two roots 3 and —13.
Now the Arabs could not deal with negative numbers, and in any event Al-
Khwarizmi was thinking of his unknown as the side of a square. So we take the

solution

—10 + 16
o3
2

Thus, from our modern perspective, this is a straightforward problem. We in-

troduce a variable, write down the correct equation, and solve it using a standard
formula.

Matters were different for the Arabs. They did not have notation, and certainly
did not yet know the quadratic formula. Their method was to deal with these matters
geometrically. Consider Figure 4.1. This shows the “square” mentioned in the original
problem, with unknown side length that we now call x. In Figure 4.2, we attach to
each side of the square a rectangle of length & and width 2.5. The reasoning here is
that Al-Khwarizmi tells us to add 10 times the square’s side length. We divide 10
into four pieces and thus add four times “2.5 times the side length”. The quantity
“2.5 times the side length” is represented by an appropriate rectangle in Figure 4.2.

Now we know, according to the statement of the problem, that the sum of the
areas of the square in the middle and the four rectangles around the sides is 39. We
handle this situation by filling in four squares in the corners—see Figure 4.3. Now the
resulting large square plainly has area equal to 39+ 2.5% 4+2.52 4+2.52 4+2.5? = 64.
Since the large square has area 64, it must have side length 8. But we know that
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X

Figure 4.1

2.5
2.5

2.5 X

2.5

Figure 4.2. Sum of shaded areas is 10 x x.
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2.5 X 2.5

2.5

2.5

Figure 4.3. Area of large, inclusive square is 64.

each of the squares in the four corners has side length 2.5. It must follow then that
r =8 —2.5—2.5=3. And that is the correct answer. |

For You to Try: Use the method of Al-Khwarizmi to find the positive
root of the quadratic equation

22+ 5x=15.

In fact the method of this last example can be used to solve any
quadratic equation with positive, real roots. We explore this contention
in the exercises.

Now we examine another algebra problem of Al-Khwarizmi. This is
in the format of a familiar sort of word problem. It has interesting social
as well as mathematical content. We shall present the solution both in
modern garb and in the argot of Al-Khwarizmi’s time.

Example 4.2
Solve this problem of Al-Khwarizmi:
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A man dies leaving two sons behind him, and be-
queathing one-fifth of his property and one dirhem
to a friend. He leaves ten dirhems in property and
one of the sons owes him ten dirhems. How much
does each legatee receive?

SOLUTION  We already know that a dirhem is a unit of currency. It is curious
that, in Al-Khwarizmi’s time, there was no concept of “estate”. A legacy could only
be left to a person or people, not to an abstraction like an “estate”.

However we understand what an estate is, and it helps us to solve the problem
in modern language. Our solution goes as follows. The dead man’s estate consists
of 20 dirhems: the 10 dirhems that he has in hand and the 10 dirhems owed to him
by his son. The friend receives 1/5 of that estate plus one dirhem. Thus the friend
receives 4 + 1 = 5 dirhems. That leaves the estate with 5 dirhems in hand (the one
son owing another 10 dirhems to the estate) and 10 dirhems owed to it, for a total of
15 dirhems. Thus each son is owed 7.5 dirhems. That means that the son who owes
10 dirhems should pay the estate 2.5 dirhems. Now the estate has 7.5 dirhems cash
in hand. And that amount is paid to the other son.

Since Al-Khwarizmi did not have the abstraction of “estate” to aid his reasoning,

he solved the problem with the following chain of logic:

Call the amount taken out of the debt thing. Add this to
the property. The sum is 10 dirhems plus thing. Subtract
1/5 of this, since he has bequeathed 1/5 of his property to
the friend. The remainder is 8 dirhems plus 4/5 of thing.
Then subtract the 1 dirhem extra that is bequeathed to the
friend. There remain 7 dirhems and 4/5 of thing. Divide
this between the two sons. The portion of each of them is
three and one half dirhems plus 2/5 of thing. Then you
have 3/5 of thing equal to three and one half dirhems.
Form a complete thing by adding to this quantity 2/3 of
itself. Now 2/3 of three and one half dirhems is two and
one third dirhems. Conclude that thing is five and five
sixths dirhems.
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In one of the exercises we shall ask you to reconcile Al-Khwarizmi’s
solution of the problem with our own solution that we presented at first.

For You to Try: Solve Al-Khwarizmi’s preceding problem if there
are three sons instead of two (and the friend still receives the indicated
share).

4.2.4 Omar Khayyam and the Resolution of the Cubic

Omar Khayyam (1050-1123) is famed, and still well-remembered, for his
beautiful poem The Rubaiyat. The words “A loaf of bread, a jug of wine,
and thou beside me in the wilderness” ring down through the ages. It is
perhaps less well known that Khayyam was an accomplished astronomer
and mathematician. He is remembered particularly for his geometric
method of solving the cubic equation (we will also discuss the cubic
equation, from a somewhat more modern point of view, in Section 6.6).
Here we give an example to illustrate the technique of Omar Khayyam.

Example 4.3
Consider the cubic equation
>+ Bx =C,
where B, (' are positive constants. Find all positive, real solu-

tions.

SOLUTION The first step is to choose positive numbers b, ¢ so that b =B
and b?c = C'. We know we can do this because every positive number has a square
root, and every linear equation has a solution.
Thus the equation becomes
3+ br = bc.

Now we construct a parabola whose latus rectumis b.® It is intuitively clear that the

3The latus rectum of an upward-opening parabola is the horizontal line segment that
begins and ends on the parabolic curve and passes through the focus—see Figure 4.4.
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Figure 4.4. The latus rectum.

length of the latus rectum uniquely determines the shape of the parabola. Notice that
the point ) in Figure 4.5 figure is the vertex of the parabola (we may take () to be
the origin if we wish). The segment ()R which is shown has length ¢. Now consider
the semicircle with diameter Q—R The point P is defined to be the intersection of
the parabola and the semicircle. The segment PS is erected to be perpendicular to
the segment (JR. Then the length o = ().S is a root of the cubic equation.

Let us explain why this last statement is true. Because the latus rectum has
length b, we know that the focus of the parabola is at the point (0, b / 4). Moreover
the directrix is the line y = —b / 4. We can be sure (from our synthetic definition of
parabola in Section 3.2) that the parabola has equation y = x? / b. Thus, in Figure
4.5,

PS =a?/b. (%)
This relation may be rewritten as
b a
Z = *
a PS ()

A basic property of semicircles tells us that the triangle AQPR is a right
triangle (with right angle at P). Since PS is an altitude of this triangle, we can be
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>
P
c-a
Q @ 8§ R
C
Figure 4.5
sure that
o PS
— = . (k)
PS c—-«a
Equations (*) and (**) together tell us that
b PS
— = . (k)
« C—
But (*) tells us that
0[2
PS=—.
b
Substituting this value for P.S into (>l<>l<>l<) now tells us that
b a?/b
a c—a

Simplifying this last identity yields that
o’ + bra = bc.

Thus the positive number «v solves the cubic. |
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We reiterate that the Arabs only understood positive, real roots of
polynomial equations. Gauss’s Fundamental Theorem of Algebra (Sec-
tion 6.7) was centuries off. Negative numbers and certainly complex
numbers were still a mystery.

4.3 The Geometry of the Arabs
4.3.1 The Generalized Pythagorean Theorem

Arab geometry took many forms. We have already seen that they used
geometry to analyze the roots of polynomial equations. The Arabs took a
great interest in the parallel postulate and the existence of non-Euclidean
geometries (a topic that we shall discuss later in the book), although
their efforts were not very successful. We will begin our analysis of Arab
geometry by considering a remarkable generalization of the Pythagorean
theorem.

At this time you may wish to review our discussion of Pythagoras’s
theorem in Chapter 2. That result was formulated specifically for, and in
fact only holds true for, right triangles. The generalization of the result
that is due to Thabit ibn-Qurra in fact applies to all triangles.

Before we begin we must review the concept of similarity of triangles.
Consider the two triangles AABC and AA'B’C" in Figure 4.6. They
appear to have the same shape. This means that the corresponding
angles are equal:

e the angle at A equals the angle at A,
e the angle at B equals the angle at B’,
e the angle at C' equals the angle at C’.

It also means that the corresponding ratios of sides are equal. For ex-
ample,

AB A'B
o — — ———
BC BC”
AB A'B

AC  AC
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C
A B A
BI
Figure 4.6

We may formulate these corresponding ratios in a slightly different
fashion as follows:

AB AC
MU Ueh
BC AC
® B'C’ = A/C/‘

What is of particular interest is finding conditions that are sufficient
to guarantee that two given triangles are similar. Such a condition will
(unlike the concept of congruence) not involve equality of side lengths—
after all, one triangle is larger than the other. In fact the most useful
condition of this nature is the following:

Consider the triangles AABC and AA'B'C’ in
Figure 4.7. If either

e The angle at A equals the angle at A’ and
the angle at B equals the angle at B’

or
e The angle at A equals the angle at A’ and
the angle at C' equals the angle at C’
or

e The angle at B equals the angle at B’ and
the angle at C' equals the angle at C’
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B B
N
C A
B’ <
B
AQ Q
C A
B’ «
B
AQ ’
C A
C’
Figure 4.7

then AABC is similar to NA'B'C".

Thus, in order to test two triangles for similarity, we need only estab-
lish that two of the corresponding pairs of angles are equal. [Of course
we know that the sum of the three angles in a triangle is 180°. Hence if
two pairs of the angles are equal then the third pair is equal also.| Since
we know that the sum of the angles in a triangle is 180°, it must then
follow that the third pair of angles are equal. So the triangles are the
same shape and hence similar.

Now we may state the generalized Pythagorean theorem that was
discovered by the Arabs.

Theorem: Let AABC be a planar triangle, with
BC its longest side. Refer to Figure 4.8. Choose
the point B’ on the segment BC so that the angle
/B'AB (in dashes) is equal to angle £C (i.e., the
angle at the vertex C' in the triangle). Choose
the point C” on the segment BC so that the angle
LC"AC (in dots) is equal to angle /B (the angle
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.
.
. .
. .
. .
. .

S \
i R \ -
C’ B’

Figure 4.8

B

at vertex B in the triangle). Then

AB’ +AC* =BC - (BB +CC).

For the verification of this theorem, study Figure 4.8. Choose the
points B" and C’ as in the statement of the theorem. We see that angle
/AB'B (marked with a single slash) equals angle ZCAB and the angle
LAC'C (marked with a double slash) equals angle /BAC.

It results—since /ZAB'B = /CAB and /ABB’ = /C BA—that trian-
gle AB’BA is similar to the original triangle AABC'. Also, by analogous
reasoning, AC’'AC' is similar to the original triangle AABC. Thus we
have the identical ratios

AB  BC
BB AB’
Likewise we see that -
AC  BC
cC’ - ACT

From the first of these equations we derive (clearing denominators) that

AB° = BC-BH .
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10 10

12
Figure 4.9

From the second we derive that

AC? = BC.-CC.

Adding these together yields that

AB° +AC° =BC-BB' +BC-CC'=BC - (BB +CC").

This is the desired result.

In Exercise 7 you will be asked to show that, for a right triangle, this
new theorem of Thabit ibn Qurra reduces to the classical Pythagorean
theorem.

4.3.2 Inscribing a Square in an Isosceles Triangle

In fact our friend Al-Khwarizmi examined a problem based on the isosce-
les triangle shown in Figure 4.9. Figure 4.10 shows the inscribed square
that we seek. Al-Khwarizmi would have used the name “thing” to refer
to the side-length of the square. Now we shall emulate the analysis that
he might have done more than 1000 years ago.

The area of the square is of course (thing) x (thing). Notice that,
in the figures, we denote the side of the square by “x”. But we call
it “thing”. Figure 4.11 shows how we might analyze the areas of the
triangles.
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10 N 10
X

12

Figure 4.10
8-x
! )

X |

x/2 | xX/2 /
6

6 -x/2

Figure 4.11
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The small right triangle on the left has base 6 — x/2 and height x.
Similarly for the small right triangle on the right. Thus the total area of
the two triangles is (6 — x/2).

We may solve for the altitude of the large isosceles triangle using the
Pythagorean theorem. It equals v/10%2 — 62 = 8. Thus the small isosceles
triangle at the top of the figure has base x and height 8 —z. We conclude
that that triangle has area [z/2] - (8 — ).

In summary, then, the total area of the large isosceles triangle may
be written in two ways. On the one hand, the triangle has base 12 and
height 8. So its area is % -12-8 = 48. On the other hand the area is the
sum of the areas of the square and the three little triangles. So we have

482:62%—:5-(6—%)%—%-(8—:17).

This simplifies to
48 = 10z

hence z = 4.8. That is the solution to Al-Khwarizmi’s problem.

4.4 A Little Arab Number Theory

The Arabs were fascinated by a technique that has come down through
the ages as “Casting Out Nines”. The basic rule for casting out nines
for a positive integer N is to add its digits together. Thus

4873 - 4+8+T7+3=22—-24+2=4.

We began here with the positive integer 4873. We added together its
digits: 4 + 8 4+ 7 + 3 = 22. Then we again added together the digits of
22—2 4+ 2 = 4—+to obtain 4. Part of the rule of casting out nines is that
if we ever encounter a 9 then we set it equal to 0. Thus if we cast out
nines on the number 621 we obtain 6 +2+1 — 9 — 0.

The remarkable thing about casting out nines is that the process
respects addition and multiplication. If we let “c.o.n.” stand for casting
out nines, then we have

c.on.[k +m| = c.on.(k) + c.on.(m)
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and
c.on.[k-m] = c.on.(k)-comn.(m).

Thus casting out nines can be used to check arithmetic problems.
We illustrate the idea with some examples.

Example 4.4
Using casting out nines to check whether

693 x 42 = 29206 .

SOLUTION  Casting out nines on the left gives
64+94+3=18—-9—=0

and

4+2=6.

Therefore

693 x42 —-0x6=0.

Casting out nines on the right gives 24+9+2+0+6 =19 — 10 — 1.

Thus the result of casting out nines gives 0 X 6 = 0 on the left and 1 on the
right. These do not match. Thus the multiplication is incorrect. In fact checking
with a calculator gives that 693 X 42 = 29106. |

Casting out nines does not provide a failsafe method for checking
arithmetic problems. For example, casting out nines on 6 x 8 gives 14
and then 5. Casting out nines on 23 also gives 5. Yet it certainly is not
the case that 6 x 8 = 23. What is true is this: If casting out nines does
not work then the original arithmetic problem is incorrect. If casting out
nines does work then it is likely that the original arithmetic problem was
correct. But it is not guaranteed.

Example 4.5
Check whether the addition

385 + 2971 + 1146 = 4502 (%)

1s correct.
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SOLUTION  Casting out nines on the left gives
3+8+5=106—-7
and
2494+7+1=19—-10—1

and

1+14+4+6=12— 3.

Casting out nines on the right yields
44+54+0+2=11— 2.
Altogether then, applying casting out nines to the equation (*) gives the result
T+14322,

where we use the notation = to indicate equivalence under casting out nines. Casting
out nines on the left yields 11 = 2 or 2 = 2.
Thus the casting out nines checks out. This does 10t guarantee that our original

addition was correct. But it provides strong evidence that it is. |

What is interesting for us is why the method of casting out nines
works. And the answer, in our modern language, is simplicity itself:

Casting out nines is nothing other than arithmetic
modulo 9. And arithmetic modulo 9 respects ad-
dition and multiplication.

Modular arithmetic will be discussed in greater detail later in the text
(Section 18.3). Suffice it to say for now that we do arithmetic modulo 9
by subtracting from any number all the multiples of 9 that we possibly
can. Thus

17 mod 9 =8,
94 mod9 =14,
87 mod9 =6,

and
—5mod9=4.
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We can perform addition and multiplication modulo 9. For instance,
[23 4 35| mod 9 = 58 mod 9 = 4 mod 9.
This may also be performed by first reducing the summands modulo 9:
23 mod 9+ 35 mod9 =5 mod9 + 8 mod9 =13 mod 9 =4 mod9.
Matters are similar with multiplication:

[12 mod 9] - [15 mod 9] = [3 mod 9] - [6 mod 9] = 18 mod 9 = 0 mod 9.

To understand now why casting out nines works, first note that

1mod9 =1,

10 mod9 =1,
100 mod9 =1,
1000 mod 9 =1,

and so forth. Now let us look at a specific example.
Consider the number 5784. Then

5784 mod 9 = [5000 + 700 + 80 + 4] mod 9

=5+ [1000 mod 9] + 7 - [100 mod 9] + 8 - [10 mod 9] + 4 - [1 mod 9]

=(5-14+7-14+8-14+4-1) mod9

=0b5+7+8+4) mod9.
In other words, we see rather directly that casting out nines on the
number 5794 consists of just adding the digits together. If the result is
greater than 9, we just add the digits together again. If the digit 9 occurs
then we replace it by 0 (which is consistent with arithmetic modulo 9).

Of course the Arabs did not have modular arithmetic at their dis-

posal. Their reasoning was more indirect. But they nonetheless gave us
a useful and fascinating arithmetical tool.



118 Chapter 4: The Arabs and the Development of Algebra

FExercises

1.

Use the method of Example 4.1 to solve the quadratic
equation
2 4+r—-2=0.

Can you find both roots, or just the positive root?

. What goes wrong if we endeavor to use the method of

Example 4.1 to solve the quadratic equation
P +r+4=07

(Note that this quadratic equation has complex roots.)
Discuss in class.

. What goes wrong if we endeavor to use the method of

Example 4.1 to solve the quadratic equation
2 +3r4+2=07

Discuss in class.

. Explain why the modern solution and Al-Khwarizmi’s

solution of Example 4.2 are consistent.

. Solve the following algebra problem of Al-Khwarizmi:

A man marries while in his final illness and
pays a marriage settlement of his entire prop-
erty in the amount of 100 dirhems, 10 dirhems
of which was his wife’s dowry. His plans are
upset, however, as his wife dies first, leaving
one-third of her property to a third party, af-
ter which the husband dies. There are then
three sets of claimants to the 100 dirhems:
(1) the third party, (2) the wife’s direct heirs
(her family), and (3) the husband’s direct
heirs (his children or parents). How is the
estate to be divided up?
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10.

Certainly discuss this question in class.

. The Arab mathematician Nasir-Eddin proved that if

you roll a circle of radius r around the inside edge of
a circle of radius 2r, and if the smaller circle has a dot
on the edge, then the dot will trace out a diameter of
the larger circle. Draw a picture to illustrate this result.
Now try to verify it. Discuss this problem in class.

Suppose that AABC'is a right triangle with right angle
at A. Apply Thabit ibn-Qurra’s generalization of the
Pythagorean theorem and show that, in this case, his
result reduces to the standard Pythagorean theorem.

. This problem comes from Al-Khwarizmi’s Algebra. You

should solve it. A woman dies and leaves her daugh-
ter, her mother, and her husband. She bequeaths to
some person as much as the share of her mother and to
another person as much as one-ninth of her entire cap-
ital. Find the share of each person. [Note: It is known,
from Arab legal principles of the time, that the mother’s
share would be 2/13 and the husband’s share 3/13.]

. Abu Kamil (850 C.E.-930 C.E.) wrote a commentary on

Al-Khwarizmi’s Algebra. In it, he contributed a number
of ingenious algebra problems. Solve the following one:
The number 50 is divided by a certain other number. If
the divisor is increased by 3, then the quotient decreases
by 33/4. What is the divisor?

The method of “Casting out Elevens” is mathematically
equivalent to doing arithmetic modulo 11 (just as we
learned in the text for casting out nines). Casting out
elevens is performed on a positive integer by (i) adding
up the digits in the odd positions, (ii) adding up the
digits in the even positions, and (iii) subtracting the
second sum from the first. Explain why this method
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11.

12.

13.

works. Use the method of casting out elevens to check
the examples in the text.

The Arabs were interested in the question of finding the
center of a sphere if you are given finitely many points
on that sphere. Recall that, for a circle in the plane,
three distinct points on the circle uniquely determine
its center. How many points are needed to determine
the center of a sphere?

A pair of positive integers is amicable if each is equal
to the sum of the proper divisors of the other. For
example, the numbers 220 and 284 are amicable. For
notice that the proper divisors (sometimes called the
aliquot divisors) of 220 are 1,2,4,5,10, 11,20, 22, 44,
55, 110 and these sum to 284; also the proper divisors
of 284 are 1,2,4,71,142 and these sum to 220. Thabit
ibn Qurra found the following formula for generating
pairs of amicable numbers. If n is a positive integer
then set

h=3-2"—-1 t=3-2"1 -1 s=9.22»"1_ 1.

If h,t, s are all prime numbers then 2" - h -t and 2" - s
are amicable. Verify that, for n = 2, Thabit ibn Qurra’s
formula gives the pair of amicable numbers that we just
discussed. Also check that, for n = 4, this formula gives
a new pair of amicable numbers. Discuss your results in
class. Today about 6,262,871 pairs of amicable num-
bers have been identified. Nobody knows whether this
formula will generate infinitely many pairs of amicable
numbers. Explain what this last statement means in
the context of what went before.

Heron’s formula for finding the area of a triangle was
known both to the Hindus and the Arabs. It says this.
Let a,b,c be the side lengths of a given triangle. Let
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s = (a+0b+c)/2 be the semi-perimeter. Then the area
A of the triangle is given by

A= \/s(s—a)(s—b)(s—c).

Verify Heron’s formula for some triangles that you know.
Discuss in class why Heron’s formula might be true.
[Hint: Think about the symmetric roles of a, b, c.]

14. Refer to Exercise 13. Why does Heron’s formula imply
the Pythagorean theorem?
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Chapter 5

Cardano, Abel, Galois, and the
Solving of Equations

5.1 Introduction

Ever since the eighth century among Arab scholars, algebra has exerted

a profound influence on modern mathematics. One of the prevailing

themes has been the solving of equations—especially polynomial equa-

tions. Early on, mathematicians realized that some equations, such as
204+ 3 =9,

can be solved by elementary manipulation. One writes

2043 —3=9—23,

then
hence

More interesting are the higher-order equations. An equation like
2’ —5x+6=0

can be factored as
(x—=2)(x—=3)=0

123
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and a complete solution (namely x = 2,z = 3) obtained. Other equa-
tions, such as

?4+1=0,

do not admit real solutions. This was certainly one of the motivations for
the invention of the complex number system. In the present chapter we
shall concentrate our attention on real solutions of polynomials. Later
on we shall consider the complex number system.

A mathematical program of long standing was to determine which
polynomial equations are solvable. Particularly, which ones are solv-
able by a procedure of finitely many operations of arithmetic and taking
roots? And which are not? For those which are solvable, what is an
algorithm or methodology for finding the solution(s)? Can one write an
explicit formula for the solution(s)? Work on these problems absorbed
many centuries.

5.2 The Story of Cardano

We begin our saga with an account of the life of Girolamo Cardano (1501
C.E.-1576 C.E.). His actual name was Hieronymus Cardano. But he is
sometimes known by the English version of his name: Jerome Cardan.

He was the illegitimate child of Fazio Cardano and Chiara Micheria.
His father was a lawyer in the Italian city of Milan. But his father knew
quite a lot of mathematics; he was actually consulted by Leonardo da
Vinci on questions of geometry. In addition to practicing law, Fazio
Cardano lectured on geometry at the University of Pavia and the Piatti
foundation in Milan.

Girolamo Cardano’s mother was struck by the plague when she was
pregnant for him. She repaired to Pavia for safety, and stayed with
wealthy friends of Fazio. Her other children died of the plague, but
Girolamo survived.

After Girolamo Cardano grew up, he became his father’s assistant.
But his health was very poor, and he required assistance from two
nephews in order to perform some of the more arduous tasks.

Over his father’s objections, Girolamo Cardano ended up entering
the University of Pavia and studying medicine (his father wanted him to
study law, of course). War broke out and interrupted Cardano’s studies.
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He was forced to transfer to the University of Padua. Cardano was
always outspoken and politically oriented. He campaigned to become
rector of the university, and he succeeded.

Being a fiery and irrepressible personality, Cardano squandered the
small bequest that his father left when he died around this time. He
ended up supporting himself by gambling—at cards, dice, and chess. Be-
ing a mathematician by nature, he understood probability theory rather
well. So he was better equipped to gamble than most, and he won more
than he lost. He managed to support himself with gambling, and his
addiction to the pastime persisted for years.

Cardano did succeed in earning his medical degree in 1525 C.E..
He applied to join the College of Physicians in Milan. But his difficult
personality turned out to be a problem for the admissions committee.
When they learned that he was a bastard child, they found grounds to
decline his application.

Cardano then went to the small village of Sacco near Padua. There
he was able to set up a medical practice. Cardano subsequently married,
but his modest practice did not give him the resources to support a
family. He moved to Gallarate, near Milan. He was again turned down
by the College of Physicians, and he found himself unable to practice
medicine. He reverted again to gambling, and he also hocked many
family valuables. Things went from bad to worse, and the Cardanos
ended up in the poorhouse.

Cardano was finally able to assume his father’s position as lecturer
at the Piatti Foundation in Milan. This allowed him some free time, and
he was able to treat some patients. He had such success as a practicing
physician that he was able to build a coterie of backers. Cardano con-
tinued to be resentful that he could not gain admission to the College
of Physicians. In 1536 he then published a book attacking the College’s
medical abilities and also it’s character. A passage from the book gives
a sense of its quality:

The things which give most reputation to a physi-
cian nowadays are his manners, servants, carriage,
clothes, smartness and caginess, all displayed in a
sort of artificial and insipid way ...
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This broadside aggravated the College of Physicians even further, and
they continued to rebuff Cardano’s applications. However, in 1539, Car-
dano’s admirers convinced the college to modify the clause excluding
illegitimate children. Cardano was finally admitted. In that same year,
Cardano’s first two mathematical books were published. Cardano sub-
sequently published numerous other books on mathematics; he wrote on
topics as diverse as medicine, philosophy, astronomy, and philosophy.
In 1539 Cardano approached Tartaglia, who had achieved fame in
winning a contest on solving cubics; he endeavored to convince Tar-
gaglia to divulge his methods. It should be understood that it was not
common for scientists in those days to publish their results or their meth-
ods. Much was kept secret. He finally convinced Tartaglia to share his
ideas, on the condition that Cardano would not publish the ideas until
he (Tartaglia) himself had published them. In fact Cardano’s oath was

I swear to you, by God’s holy Gospels, and as
a true man of honour, not only never to publish
your discoveries, if you teach me them, but I also
promise you, and I pledge my faith as a true Chris-
tian, to note them down in code, so that after my
death no one will be able to understand them.

Cardano spent the next six years in intense study of the solution of cubic
and quartic equations.

One of Cardano’s difficulties with this study was that he often was
forced to confront roots of negative numbers. Complex numbers were
not an established tool for mathematicians of the age. FEven though
the ultimate solution of the problem at hand was usually a genuine real
number, the complex numbers came up as tools along the way. Cardano
wrote to Tartaglia on August 4, 1529:

I have sent to enquire after the solution to various
problems for which you have given me no answer,
one of which concerns the cube equal to an un-
known plus a number. I have certainly grasped
this rule, but when the cube of one-third of the
coefficient of the unknown is greater in value than
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the square of one-half of the number, then, it ap-
pears, I cannot make it fit into the equation.

Ultimately Cardano exhibited the means for dealing with this diffi-
culty, and as a result Tartaglia was jealous. He regretted revealing his
methods to Cardano. He endeavored to confuse Cardano with his reply
to the letter. But a feud raged between the two mathematicians.

In 1540 Cardano resigned his post at the Piatti Foundation. The
vacancy was filled by Cardano’s assistant Ferrari, who had brilliantly
solved quartic equations by radicals. From 1540 to 1542 Cardano spent
his time gambling and playing chess all day. From 1543 to 1552 Cardano
lectured on medicine at the Universities of Milan and Pavia.

In 1543 Cardano realized that Tartaglia had not been the first to
solve cubics by radicals. He therefore felt justified in publishing what
he knew on the subject. Thus in 1545 he published his masterpiece Ars
Magna. This book contains, among other important facts, the very first
calculations with complex numbers.

Although Cardano’s wife died in 1546, he was not much taken aback
by this loss. He had achieved considerable fame with his writings, and
had finally been elected rector of the College of Physicians. He was, by
some measures, the most famous physician in the world. He received
offers from heads of state all over Europe to tend to their medical needs.

In 1552 Cardano was asked by the Archbishop of St. Andrews to
treat his asthma. Although Cardano had routinely declined invitations of
this sort, he found time to accept this one. He undertook the considerable
journey, and was able to treat and to cure the Archbishop’s illness. He
was paid over 2000 gold crowns as an honorarium, and his considerable
reputation was even more enhanced. On his return to Italy, Cardano
was appointed Professor of Medicine at the University of Pavia.

Unfortunately, it was at this point in time that Cardano’s life was
struck by his profoundest tragedy. It affected him deeply, and led to his
decline and to his death.

Cardano’s eldest son Giambatista had studied medicine and quali-
fied as a physician in 1557. But, meanwhile, he had married a woman of
whom Girolamo disapproved. In fact he characterized her as “a worth-
less, shameless woman.” The elder Cardano supported his son finan-
cially and the young couple kept house with her parents. But the young
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woman’s parents seemed to be scheming to extort money from Giambat-
ista and his wealthy father. And she mocked her new husband for not
being the father of her three children.

Giambatista took the situation badly, and ended up poisoning his
wife. The young man confessed the crime and was ultimately brought
to trial. The judge demanded, as part of the settlement, that Gerolamo
Cardano make peace with his son’s wife’s parents. They demanded a
payment which was far beyond Cardano’s means. So Giambatista was
kept in prison and tortured. His left hand was cut off. On April 13,
1560, Giambatista Cardano was executed.

The elder Cardano never recovered from these circumstances. He
tormented himself for failing to rescue his son. Since he was now the fa-
ther of a convicted murderer, he became a hated man. He had to move,
and obtained a Professorship of Medicine at the University of Bologna
(the oldest university in the Western world). But his time in Bologna
was plagued by controversy. His arrogant manner and questionable rep-
utation combined to alienate him from his colleagues. At one point they
conspired to have him dismissed from his post.

Cardano had additional problems with his children. His remaining
son Aldo was a compulsive gambler who spent his time with low life.
Cardano wrote in his autobiography of the four greatest disappointments
in his life:

The first was my marriage; the second, the bitter
death of my son; the third, imprisonment ; the
fourth, the base character of my youngest son.

In fact, in 1569, young Aldo gambled away all of his clothes and
possessions as well as a notable portion of his father’s assets. He even
broke into his father’s house and stole jewelry, cash, and valuables. Car-
dano was forced to report Aldo to the authorities, and the miscreant was
banished from Bologna.

In 1570 Girolamo Cardano himself was jailed for heresy. He had
cast a horoscope of Jesus Christ and written a book in praise of Nero
(tormentor of the Christian martyrs). Evidently this was an attempt to
pump up his notoriety and perpetuate his name. But this made him
obvious fodder for the Spanish Inquisition, and he suffered accordingly.
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Fortunately for Cardano, he was given lenient treatment (in part
because public opinion had come full circle and there was actually con-
siderable sympathy for Cardano in those days). He only served a short
time in prison. But he was banned from the university and forbidden
from publishing his work.

At this point in his life Cardano moved to Rome. There he received a
surprisingly warm reception. He was granted membership in the College
of Physicians. The Pope gave Cardano a pardon, and granted him a
pension. It was at this time that Cardano wrote his autobiography and
published it in Paris and Amsterdam.

One of the legends of Girolamo Cardano is that he predicted the
exact date of his own death. But he achieved this feat by committing
suicide.

In addition to Cardano’s significant contributions to algebra he also
made important contributions to probability, hydrodynamics, mechanics
and geology. He wrote a number of important and influential books, and
he was the first ever to write on the subject of probability and its appli-
cations to gambling. He even wrote two encyclopedias of natural science,
which were comprehensive compendia of all the scientific knowledge of
the day.

Girolamo Cardano was a multi-talented individual who made pro-
found contributions to the development of mathematics. His chaotic
personal life certainly cut into, and in the end cut short, his scientific
activities and contributions. But he will long be remembered for his
significant ideas.

5.3 First-Order Equations

Girolamo Cardano is best remembered for the solution of algebraic (es-
pecially polynomial) equations. Thus we will concentrate here on topics
of that nature.

Of course solving a linear equation, one of the form

ar+b=c,
is trivial. One engages in simple manipulations, such as

ar=c—b
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1 1
a-az—a-(c—b)

Tr=
a

to find the complete solution. And this method works on all linear (or
first-order) polynomial equations.

For You to Try: Solve the equation

3r —9=15.

5.4 Rudiments of Second-Order Equations

Second order, or quadratic, equations are slightly more subtle. A quadratic
equations has the form

ax’+br+c=0.

Here a, b, c are real constants which can be positive, negative, or zero.
In the special case that b = 0, we have

az®+c=0
or
ar? = —c
Division by a yields
==

a
hence
T = j:\/j .
a
In summary, the quadratic equation

ar’ +c¢=0
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has the two solutions z = y/—c/a and = = +y/—c/a. This is all correct
provided that —c/a > 0, so that the square root operation is valid.

For You to Try: Solve the quadratic equation
822 —4=0.

You should find two solutions.

The philosophy for solving a general quadratic equation is a time-
honored one in mathematics: to reduce the general case to the special
case that we have already understood. We do this by the method of
completing the square. Let us first acquaint ourselves with that technique
before we proceed.

5.5 Completing the Square

Consider the square expression
A= (z+a).

Formulas like this are common in elementary algebra. We frequently
want to multiply it out so that we can manipulate it more effectively. In
fact we may write

A=(z4+a)(z+a)=z-(z4+a)+a-(z4+a)=z-z+x-at+a-v+a-a.
Combining terms finally gives
A= (r+a)(z+a)=2>+2ar +a*. (%)

Now it is also worthwhile to be able to look at a quadratic expression
and recognize when it is a square. In examining (%), we observe that it
has a special feature:

A=224+2ur+a%. (%)

The number whose square gives the constant term (namely, «) is just
half of the coefficient of the z-term. Let us examine this feature in the
context of a specific example.
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Example 5.1

Consider the expression
A=2*+8z+16.

Observe that half the coefficient of z is 4; and 4% = 16—which is
the constant term. This matches equation (x) exactly. So A must
be a perfect square. In fact it must be that a = 4 hence

A=2*+82+16 = (v +4)*.

Example 5.2

Examine the polynomial
C=2"—6x+9.

Notice that half the coefficient of x is —3; and (—3)% = 9—which
is the constant term. According to our analysis of equation (%),
we know then that C'is a perfect square. In fact a = —3 hence

C=2>—6r+9=(x—3)°.

Example 5.3

Let us determine whether
D = z? — 20z + 140

is a perfect square. We see that half the coefficient of x is —10
and (—10)% = 100 # 140. So the square of half the coefficient of
x is not the constant term. Thus D is not a perfect square. Put
in other words: the coefficient of the x-term forces a = —10; but
the square of this o does not match the constant term.

Even in this circumstance, we may rewrite D in terms of a

square. Using the fact that (—10)% = 100, we rewrite D as
D = [z* — 20z + 100] + 40.

According to our calculations, the expression in brackets is in fact
a perfect square. So we finally may write

D = (z — 10)? 4 40.
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5.6 The Solution of a Quadratic Equation

Let us now use the philosophy of completing the square, combined with
the methodology for solving ax? + ¢ = 0, to solve an arbitrary quadratic
equation. It is natural to build on the ideas in Section 5.4, 5.5 in order
to treat the general case.

Now our general quadratic equation is

ax’+br+c=0.

We may assume that a # 0, otherwise the equation has no quadratic
term and it is in fact linear. Let us then divide out by a:

1
a[aatz%—bx%—c] =0.

This reduces to
Write this as

We know from the last example that the expression in brackets may
be turned into a perfect square by the following device: We divide the
coefficient of x by two and square it, then add the result on as our
constant term. Thus we need

1 b\*  p

2 a)  4a®’
This is what we must add to the expression in brackets. But if we add a
number to one side of the equation then of course we must add it to the

other side (this is the Arab philosophy of keeping the equation balanced
or al-jabr, that we encountered in Chapter 4). The result is

a 4a? a 4a?
or
2a 4a2 «a
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It is convenient to put the righthand side over a common denominator
so that we have

b12  b®—4ac
[:E + 2a] 4a%

The equation we have now is quite analogous to the sort of quadratic
equation that we solved in Section 5.4: something squared equals a con-
stant. The natural thing to do now is take the square root of both sides.
We must remember, of course, that a positive real number has both a
positive square root and a negative square root. The result is

b b? — dac
I T it
v 2a 4a?
or
b V0% — dac
T4 — =k
2a 2a
Now a little algebraic manipulation allows us to rewrite our result as
b Vb*—4dac
r=——
2a 2a
or

—b+Vb% — 4dac
e ()

Of course this is the familiar quadratic formula that we all learn in
high school algebra. There is evidence that the Egyptians dealt with
quadratic equations (in the so-called Berlin Papyrus). The Babylonian
tablet Plimpton 322 contains many fascinating calculations along these
lines. There are even more definite indications that the ancient Greeks
and Hindus knew the quadratic formula (around 500 B.C.E.). It was
almost certainly then passed on to the Arabs.

Example 5.4

Find all the roots of the quadratic equation

22 4+3:x—-10=0.
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SOLUTION  This equation is in the standard form of a quadratic equation, with
a=1,b=3, and ¢ = —10. According to the quadratic formula (),

—34 /32— 4.1 (-10)
21
—34++49

2
—-3£7

2

1

Find all the roots of the quadratic equation

xr=

Example 5.5

22 4+3x—-7=0.

SOLUTION Of course this equation fits our paradigm for a quadratic equation
with a = 1, b = 3, ¢ = —7. According to the quadratic formula (),

—3d /3241 (-7)
2.1

-3 £ v9+ 28

2
—3++/37
2

—3+37
2

—3-4/37
—

xTr=
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Example 5.6

Find all the roots of the quadratic equation
5r2 —8r +2=0.

SOLUTION  This equation certainly fits our paradigm for a quadratic equations
with a = 5, b = —8, ¢ = 2. The solution is therefore

—(—8) £ /(82 —4:5-2
e 2.5

_8+464—-40
N 10
_8+V24
10

8+ v24
10

8 — /24
10

5.7 The Cubic Equation

It is Geronimo Cardano (1501-1576) who deserves the credit for finally
taming the cubic equation. Cardano also solved the quartic, or fourth-
degree; equation. Both solutions appeared in Cardano’s important trea-
tise Ars magna. It should be noted that Cardano’s work was in some
ways anticipated by work of Scipione del Ferro (1465-1526) and Niccolo
Tartaglia (1500-1557) and Lodovico Ferrari (1522-1565). We shall only
treat the cubic equation in this text. The analysis of the quartic equation
is similar, but much more complicated. In fact one solves the quartic by
reducing it to a cubic. Well, big surprise. We shall in fact solve the cubic
by reducing it to a quadratic. This is how mathematics works.
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5.7.1 A Particular Equation

Let us begin by examining a particular cubic equation—one that Car-
dano wrote about in Ars magna in 1545. Of course Cardano did not
have our modern notation, and we are rendering his ideas in contempo-
rary language. That is the equation

2%+ 67 = 20. (%)

This may seem rather special, but in fact it is quite typical. And the
general case may be reduced to it.

Cardano’s idea is to introduce two new variables u and v. In fact we
let u® — 03 =20 and wv = 2.! As a result, we may rewrite the equation
(%) as

2%+ (Buv)r = u® — v, (%)
Now be forewarned that Cardano’s solution method is a bag of tricks.
His idea now is to observe—just by educated guessing—that * = u — v
solves this new equation (#x). Let us verify this claim:

(u — v)* + (3uv) (u — v) QD up — o3

[u? — 3u*v + 3uv® — v*] + (3u’v — 3uv?) Q3 3
u — 0P =u® —0?,
Thus we may write x = v — v. It is our job, then, to determine u and v.
But we know that

8
3 _ 3 _

because uv = 2 so (uv)® = 8 hence v3 = 8/u®. Now it is convenient to
let a = u3. Then equation (x) becomes

8
o =20+ —
a

IRemember that we saw a trick like this when we studied Pythagorean triples in
Chapter 1.
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or (multiplying through by «)
o® =20 + 8;
we may rearrange this to read
o® =200 —8=0. (1)

Of course equation (1) is a quadratic equation, and we may solve it.
We find that

204 /(—202—4-1-(=8)

8}
2.1
20 4 /400 + 32
N 2
— 10 + /1083
10 + /108
| 10— V108

So u = o = 10 &= v/108.
Now we must unwind our construction. Since u® —v3 = 20, we know
that v3 = u® — 20 = —10 4 v/108. Now we have two cases:

The Case u3 = 10 4+ +/108. In this situation,
v3 = —10 4+ v/108. Taking roots, we find that

u = 1/104 /108 and v = /—10 + v/108. In con-
clusion, z = u—v = {/10 + v/I08— /10 + +/108.

The Case u3 = 10 — +/108. In this situation,
v3 = —10 — v/108. Taking roots, we find that u =

/10 — /108 and v = {/—10 — /108. In conclu-
sion, 7 = u—v = /10 — VIS — {/—10 — /108 =
10 + V108 — {/—10 + /108,

For the last equality, distribute the minus signs.
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We see that we have discovered the same root of our polynomial
equation twice. We invite the reader to actually plug this value for x
into the expression 22 + 62 and confirm that the result is 20.

There is one remaining thing to consider. We expect that a cubic
equation will factor as three linear factors. So we expect there to be
three roots. But we have only found one root. Where are the other two
hiding?

It turns out that the other two roots of 23 + 6z = 20 are complex.
We are not going to get into the complex numbers at this time (but see
Section 8.1), so we shall content ourselves (just as Cardano did) with
just one root for the polynomial equation.

5.7.2 The General Case

At the beginning of this section, we made the bold assertion that any
cubic equation can be reduced to the one that we have just studied. Let
us now see why that is so. Consider a cubic equation

24 ar®+br+c=0.

We make the change of variable z =t — a/3. The result is
a\? a\? a
t— = t— = - =
( 3) +a( 3) +b(t 3)“ !

2 3 2

a a a a a a
t3— . 2-— . - —_  — — 2—2-—- _— (——) = .
( 3ot 243t 5 33>+a<t : t+32>+b t—3)te=0

or

Now we regroup the lefthand side in powers of ¢t. The result is

a a’  2a? a® a®  ab
3 (—3-— >t2 3.5 2 ) (-2 2 Y
+ 3+a + 9 3 + + 27+9 3

a? 2a®  ab
+< 3+b>t+<27 3> 0

Observe that what we have accomplished is that our polynomial now has
no square term.
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If we assume for the moment that b — a?/3 > 0 then? we may make

the change of variable ¢t = /(b — a?/3)/6 u. The result is

[mu]ng (—%2+b> [mu] n (%f_%) — 0

Doing the algebra, and simplifying, we find that our polynomial has

become
2a° /27 — ab/3

O a2/3)/6p2 ~

This is Cardano’s polynomial equation, with —20 replaced by a some-
what different constant. But Cardano’s technique still applies, and the
solution may be found. Then one can resubstitute ¢ for u, and then re-
substitute z for ¢, and find the root of the original polynomial equation.

u® 4 6u +

For You to Try: Use Cardano’s method to find a root of the polyno-
mial equation
2® 4+ 92% + 33z +35 = 0.

For You to Try: Use Cardano’s method to find a root of the polyno-
mial equation
2 — 62° + 187 — 24 = 0.

5.8 Fourth Degree Equations and Beyond

Cardano’s method can be extended to fourth degree equations. That
situation is fairly complicated, and we shall not discuss it here. It
was an open problem for a long time—nearly 240 years—to determine

2Things are a bit more complicated if b — a?/3 < 0 and we shall not discuss that
situation here. The situation b — a2/3 = 0 is trivial since then the equation reduces
to t3 4 ([2a%/27] — [ab/3]) = 0 or t = ([ab/3 — [2a3/27])'/3.
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whether there was a formula, or a technique, for solving fifth degree (or
higher) equations. Both Niels Henrik Abel (1802-1829) and Evariste
Galois (1812-1832) thought that they found a means, but then discov-
ered their own error. It was Abel himself, at the age of twenty-two,
who finally proved the impossibility of solving a quintic equation with a
formula involving only arithmetic operations and roots. There is an ad-
vanced theorem, called the Implicit Function Theorem (see the reference
[KRP]), that allows one to solve a quintic equation using transcendental
functions (like sine and cosine and logarithm, for example). But Abel
showed that there was no elementary formula.

5.8.1 'The Brief and Tragic Lives of Abel and Galois

Niels Henrik Abel (1802-1829) lived an all-too-brief life that was domi-
nated by poverty and deprivation. At the time, the Norwegian economy
was suffering a blockade by the British, and there were also political dif-
ficulties with Denmark and Sweden. The entire country of Norway was
in a bad way, and poverty was widespread.

Both Abel’s father and grandfather were men of the cloth. His father
was also involved in politics and in fact held office in the national legisla-
tive body, the Storting. Niels Henrik was the second of seven children.
In those hard times, the young man’s parents had difficulty putting food
on the table. In addition, it is suspected that Niels Henrik’s father was
a drunk and his mother a woman of lax morals.

In 1815 the young genius was sent to the Cathedral School in Chris-
tiana. Once a distinguished academy, this institution had lost all its good
teachers to the staffing of the university. So education was in a bad state
when the young man arrived. He was uninspired by the instruction, but
exhibited some talent for mathematics and physics. It was Niels Henrik
Abel’s good fortune that a new instructor, Bernt Holmboe, arrived at
the Cathedral School in 1817. He immediately recognized Abel’s talent
and encouraged him to study university-level mathematics. The young
student bloomed under this attention, and he advanced rapidly. Tragedy
struck, however, when Abel’s father died in 1820.

Abel’s father had ended his political career in disgrace because he
had made false charges against his fellow members of the Storting. His
excessive drinking led to his dismissal from the Storting, and it followed
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that the family was in the direst straits when the old man died. Niels
Henrik feared that he would have to quit school in order to support his
family.

But his teacher Holmboe arranged a scholarship so that Abel could
attend the University of Christiania. He also raised money from his col-
leagues to help support the young scholar. Abel did manage to graduate
from the University in 1822.

During his final year in school, Abel worked on the solution of the
quintic equation. In 1821 he believed that he had found the solution,
and he submitted a paper to the Danish mathematician Ferdinand Degen
for publication by the Royal Society of Copenhagen. Degen questioned
Abel closely about his work, and led him to find an error. Degen also
encouraged Abel to develop an interest in elliptic integrals.

Abel was also fortunate at this time to have found a new men-
tor, Christopher Hansteen, at the University of Christiania. In fact
Hansteen’s wife took Abel under her wing, and treated the young fel-
low as her own son. Abel was able to publish papers in a new scientific
journal that had been started by Hansteen. In particular, he produced
the first known solution of an integral equation.

At this time Abel won a small grant that enabled him to visit Degen
in Copenhagen. In Copenhagen he met Christine Kemp, who became his
fiancee. Abel had ambitions to visit the leading mathematical scholars
in France and Germany in order to be able to discuss and develop his
work. But he did not have the funds and did not speak the languages, so
he instead obtained more modest funds to stay in Christiania and study.
In 1824 he succeeded in proving the impossibility of solving the quintic
equation by radicals. He published the work in French, as a pamphlet, at
his own expense. This decision was motivated by a desire to get into print
quickly so that he would have an impressive piece of work to bring with
him when he engaged in his planned travels. In order to save printing
costs, he reduced his proof to fit on half a folio sheet (six pages).

Abel sent his pamphlet to a number of distinguished mathematicians
of the day, including Carl Friedrich Gauss. He intended to visit Gottingen
when he engaged in his travels. In 1825 he obtained a scholarship from
the Norwegian government that finally made his planned European so-
journ possible. Reaching Copenhagen, Abel was disappointed to learn



5.8 Fourth Degree Equations and Beyond 143

that Degen had died. He decided not to go to Paris but instead to stay
with his traveling companions and proceed to Berlin.

Abel had obtained a letter of introduction to Crelle. He then met
Crelle in Berlin, and the two men became fast friends. At the time, Crelle
was developing a new journal (Die Journal fir die Reine und Andge-
wandte Mathematik) which was to become a very distinguished showcase
for mathematical research. Today it is the oldest extant mathematics
journal. Crelle encouraged Abel to develop a more detailed version of
his ideas about the unsolvability of quintic equations, and to publish it
in his new journal. That Abel did, and his paper appears in the very
first volume of the journal. In fact a total of seven of his papers appear
in that volume.

Abel began to dedicate himself to the development of the rigorous
foundations of mathematical analysis and to publish papers in Crelle’s
journal. He was disappointed to learn that the only open professorship
at the only university in Norway had been given to Holmboe. Abel had
had plans to go with Crelle to Paris and to visit Gauss in Gottingen
along the way. But Gauss, who was notorious for being unsupportive
of bright, young mathematicians, had evinced displeasure with Abel’s
pamphlet on the non-solvability of the quintic. This may at first seem
rather odd, as Abel’s pamphlet was later found still in the envelope and
unopened among Gauss’s papers. But it is believed that Gauss attached
no significance to the explicit solution of particular equations. Recall that
Gauss was the one who proved the Fundamental Theorem of Algebra,
which says that any polynomial has a complex root. That is an abstract,
non-constructive result—the sort of theorem that Gauss favored. In any
event, Gauss’s lack of support deeply affected Abel.

When Abel finally got to Paris he was upset to find that the lead-
ing French mathematicians had little interest in his work. Cauchy, in
particular, had no time for him. He wrote to Holmboe that

The French are much more reserved with strangers
than the Germans. It is extremely difficult to gain
their intimacy, and I do not dare to urge my pre-
tensions as far as that; finally every beginner had
a great deal of difficulty getting noticed here. I
have just finished an extensive treatise on a cer-
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tain class of transcendental functions to present it
to the Institute which will be done next Monday.
I showed it to Mr. Cauchy but he scarcely deigned
to glance at it.

Abel had important new results on elliptic integrals—some of which far
surpassed earlier work of Euler—but he could find no interest for them.
He was running out of money, could only afford one meager meal per
day, and was becoming emaciated, despondent, and tired.

But Abel doggedly continued his work on elliptic integrals. He ulti-
mately left Paris and returned to Berlin. There he borrowed some money
so that he could continue his work on elliptic functions. But his health
was in a poor state. Crelle continued to be Abel’s staunch supporter.
He endeavored to land a professorship for the young scholar, and also
offered him the editorship of his journal. But Abel determined to return
to his homeland. Abel finally reached Christiania in 1827 and obtained a
very small grant from the university. He tutored schoolchildren to make
ends meet, and his fiance was employed as a governess.

At this time Hansteen received a major grant to investigate the
Earth’s magnetic field in Siberia. Thus Abel was hired to replace him
as a Professor at the University. This improved Abel’s circumstances
slightly.

In 1828 Abel became aware of work of Jacobi on transformations of
elliptic integrals. These ideas were a revelation to Abel, and he realized
that they fit into the context of what he had been studying. He quickly
wrote several papers which transformed the subject, and which finally
gained the attention of Adrien-Marie Legendre (1752 C.E.-1833 C.E.)
among others.

While his health deteriorated, Abel continued to produce first-class
work on elliptic functions. He spent the summer of 1828 with his fiance
in Froland. He had submitted his masterpiece on elliptic function theory
to the Paris Academy, but they had somehow lost the manuscript. This
was long before the days of photocopying, so Abel had to produce the
manuscript from scratch again.

Abel traveled by sled to visit his fiance in Froland for Christmas of
1828. On that trip he became seriously ill. Crelle, ever his friend and
mentor, redoubled his efforts to obtain better circumstances for Abel.
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He finally succeeded in obtaining a professorial appointment for Abel in
Berlin. He wrote to Abel on April 8, 1829 to tell of the great news. But
it was too late; Abel had already died.

After Abel’s untimely death, Cauchy (after much searching) found
his Paris manuscript. It was printed in 1841 but again somehow van-
ished. It did not surface again until 1952!—some 122 years after Abel’s
death. It was in fact found in Florence, Italy. Another manuscript found
after Abel’s death—he continued working to the very end, even on his
deathbed—gave important results about the solution of polynomial equa-
tions. These anticipated seminal results that would later be proved by
Galois.

Evariste Galois (1811-1832) also lived a painfully brief life. His
demise was not brought on by abject poverty, but rather by personal
chaos and, in the end, death by a gunshot wound.

Galois’s family consisted of intelligent and well-educated people. His
mother was his only teacher until the age of 12, and she taught him
classical languages and religion. There is no evidence of mathematical
talent in the family before Evariste Galois himself.

Galois lived in times of great political turmoil in France. The storm-
ing of the Bastille took place 1789, and set the tone of unrest and foment
in which the young Galois grew up. His school itself—the Lycée of Louis-
le-Grand—was marked by rebellion among the students.

The year 1827 was turning point for Galois, because he had his first
mathematics class from M. Vernier. He quickly became absorbed by the
subject and excelled dramatically. His director of studies wrote of him

It is the passion for mathematics which dominates
him, I think it would be best for him if his par-
ents would allow him to study nothing but this,
he is wasting his time here and does nothing but
torment his teachers and overwhelm himself with
punishments.

Young Galois’s school reports described him repeatedly as “singular,
bizarre, original, and closed.” Since Galois is today remembered as one
of the most original mathematicians who ever lived, it is remarkable that
his originality was at first taken to be a liability.
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In 1828 Galois applied to the Ecole Polytechnique, the most distin-
guished technical school in France (analogous to M.I.T. in the United
States today). His interests in the school were of course academic, but
he was also interested in the powerful political movements that existed
among the students. He failed the entrance exam, and was not admitted.

Galois disappointedly returned to Louis-le-Grand, where he took
mathematics from Louis Richard. But the young man concentrated more
on his own interests (Adrien-Marie Legendre and J. L. Lagrange) and
less on his classwork. In 1829 he published his first research paper. Two
more papers quickly followed. Unfortunately, Galois’s father committed
suicide later that year, and of course young Galois took this event very
badly. His second application to the Ecole Polytechnique, as a result,
failed. Galois instead entered the Ecole Normale, which was an annex
to the Louis-le-Grand school.

Galois always had trouble formulating and expressing his mathe-
matical ideas, and this may have contributed to his failure to pass the
entrance exam to the Ecole Polytechnique. In order to enter the Ecole
Normale, he had to pass Baccalaureate examinations. His examiner in
mathematics reported

This pupil is sometimes obscure in expressing his
ideas, but he is intelligent and shows a remarkable
spirit of research.

As a counterpoint, his examiner in literature said

This is the only student who has answered me
poorly, he knows absolutely nothing. I was told
that this student has an extraordinary capacity
for mathematics. This astonishes me greatly, for,
after his examination, I believed him to have but
little intelligence.

Galois sent some of his work to Cauchy at this time, and was in-
formed that it overlapped with work of Abel. He subsequently read
Abel’s papers, and this changed the course of his research. He began
to study elliptic functions and abelian integrals. Galois had submitted
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his work to Fourier, the secretary of the French Academy, for considera-
tion for their Grand Prize in Mathematics. The prize was subsequently
awarded to Abel and Jacobi, certainly disappointing Galois. They seem
to have lost his submission.

France experienced considerable political unrest in 1830, and Galois
became involved. This certainly distracted from his mathematics. He
only published two more papers in 1831, and these were to be his last.
Sophie Germain (discussed elsewhere in this book) noted in a letter that
Galois was suffering because his mentor Fourier had died. Galois was
without money, dispirited, and distracted by radical politics. He was
expelled from the Ecole Normale.

In 1831 Galois was arrested for making public threats against the
King, Louis-Phillipe. Testimony revealed that there was confusion about
what Galois had actually said, and no reliable witness could be brought
against him. He was acquitted.

Not long after, Galois was found carrying loaded weapons on Bastille
day, and he was arrested again. While in prison, he got word of the
rejection of his latest mathematical memoir. He attempted suicide while
incarcerated, but the other prisoners wrested the dagger from him.

During a cholera epidemic in March, 1832 the prisoners, including
Galois,were transferred to the pension Sieur Faultrier. There he seems to
have fallen in love with Stephanie-Felice du Motel, daughter of the resi-
dent physician. After his release in April, he pursued a correspondence
with Stephanie, but she distanced herself from the relationship.

Galois fought a duel with Perscheux d’Herbinville on May 30, 1832.
Although the specific reasons for the duel have been lost to history, it
seems clear that the issue was related to Stephanie. According to legend,
Galois knew that he had no skills related to dueling, and was convinced
that he would die in this confrontation. So he spent the night before
writing out all that he knew about group theory. In any event, he was
wounded in the duel and was abandoned by d’Herbinville and his own
second. Later a peasant found him and arranged for him to be taken to
Cochin hospital. When Galois was taken to the hospital with his fatal
wounds, his brother waited there weeping at his bedside. Galois said,
“Don’t cry. I need all my courage to die at twenty.” Galois died on May
31, 1832



148 Chapter 5: The Solving of Equations

Galois’s brother and his friend Chevalier copied out Galois’s mathe-
matical papers and sent them to Gauss. There is no record that Gauss
ever studied them, but the papers found their way to Liouville. Liouville
did study them, and subsequently announced to the French Academy
that Galois had found a complete solution of the problem of when a poly-
nomial may be solved by radicals. These papers contain the foundations
of what is now known as Galois theory—one of the central cornerstones
of modern number theory.

5.9 The Work of Abel and Galois in Context

As you can see from their dates, both Galois and Abel led tragically
short lives. Abel was a relatively happy person, but was burdened with
the support of his six-member family and ultimately was defeated by his
poverty. He died of consumption at the age of 26. Galois turned out to
be his own worst enemy. He was tormented by his ill fortune and the lack
of recognition that his work had received. He turned to radical politics
amid social upheaval in order to expiate his frustrations. He ended up
involved in a self-destructive duel that he knew he would lose. He spent
the night before the duel recording, as best he could, his many brilliant
ideas. Then he went out the next morning and died from a bullet shot.
He was only twenty.

One of the astonishing theorems of mathematics, that was proved
by Carl Friedrich Gauss (1777-1855) in his thesis, is the fundamental
theorem of algebra. This theorem asserts that every non-constant poly-
nomial has a (complex) root. It does not give a formula or a method for
finding that root. But it does assert that one exists. However, there is a
catch. Consider the polynomial

p(r) =2 +1.

There is no real value for x which makes this polynomial equal to 0. Why
not? Well, for any real z, 22 > 0 so 22 + 1 > 1. Thus the polynomial
cannot take the value 0. And that is all there is to it.

So how can Gauss’s fundamental theorem be true? The answer is
that it is true in a larger number system—the complex numbers. We
shall consider the complex numbers in the next chapter.
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FExercises

1. Find all solutions of the equation 3x — 7 =4 = 0. Ex-
plain why you have found all the roots. Discuss this
problem in class.

2. Find all solutions of the quadratic equations 2> +x—4 =
0. Explain why you have found all the roots. Discuss
this problem in class.

3. Apply the quadratic formula to the equation x? 4 + 4.
What difficulty do you encounter? Does this equation
have any real roots? Draw the graph of p(z) = z?+z+4
and discuss in class why there are no real roots.

4. If a polynomial is to have real roots then its graph must
cross the z-axis. Discuss in class why this is true. Then
discuss why a cubic equation will always have at least
one real root while a quadratic equation may not.

5. Discuss in class whether a quartic (i.e., a fourth-degree)
equation will always have a real root. Look at some
examples. What about p(z) = z* + 1?7 What about
xt — 222 + 17

6. Use Cardano’s method to find a root of the polynomial
3 —x—6.

7. Use Cardano’s method to find a root of the polynomial
323 — 1022 + 9.

8. Can you write down a polynomial whose roots are —1, 3,57

9. Can you give an example of a polynomial of degree 2
that has no real roots? How about degree 47

10. Explain why a polynomial of odd degree at least 1 will
always have at least one real root.
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Chapter 6

René Descartes and the Idea of
Coordinates

6.0 Introductory Remarks

The idea of coordinates is an old one. Apollo’'nius of Per’ga (about 200
B.C.E.) set up a special coordinate system on the cone in order to study
conic sections (Figure 6.1). Hipparchus (about 150 B.C.E.) and Marinus
of Tyre (about 150 C.E.) used a version of latitude and longitude for
purposes of navigation and astronomy. The idea of locating the real
numbers on a number line is also an old one.

But it was René Descartes who conceived the idea of unifying algebra
and geometry with a rectangular coordinate system on the plane.! In
particular, it was Descartes who created the idea of graphing a function.
John Stuart Mill said that this was “the greatest single step ever made
in the exact sciences.” Certainly the idea of rectangular coordinates
has had a profound influence on all of modern science, engineering, and
mathematics.

Today, in analytical thinking, we use many types of coordinate sys-
tems. For some types of problems, the traditional cartesian coordinates
are well-suited. For others, a coordinate system with some circular sym-
metry (such as polar coordinates or cylindrical coordinates or spherical
coordinates?) are more appropriate. For certain problems in cosmology

Mn fact legend has it that Descartes was lying on his back in bed, staring at the
shadow that a window screen cast on the ceiling, when the idea for his coordinates
struck him.

2The Schwarzchild model for general relativity is calculated in spherical coordinates.
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A

Figure 6.1. Coordinates of Apollo’nius.

and higher-dimensional geometry, more abstract curvilinear coordinate
systems are what best suits the task at hand.

In the present chapter we shall learn about coordinate systems, and
about the synthesis between geometry and algebra that Descartes created
with his profound idea.

6.1 The Life of René Descartes

René Descartes was born on March 31, 1596 in La Haye, Touraine,
France. In fact the town is now names “Descartes” in his honor. He
died on February 11, 1650. Descartes was educated at the Jesuit College
of La Fleche in Anjou. In fact he was only eight years of age when he
entered the college, just a few months after it opened its doors. Young
René studied there from 1604 until 1612. He concentrated on classics,
logic, and traditional Artistotelian philosophy. In addition he learned
mathematics from the books of Cavius. His health was poor in those
days, and he obtained special permission to remain abed each day until
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11:00am. He maintained that habit for his entire adult life, and usually
spent the morning hours in bed thinking.

School impressed on Descartes how little he knew. Of all his areas
of study, he found mathematics to be the most satisfying, as it gave him
some sense of closure. His mathematical studies became the basis for
all his future investigations—in mathematics, in philosophy, and in the
natural sciences.

After the Jesuit College, Descartes spent some time in Paris—primarily
keeping his own counsel. Then he studied at the University of Poitiers,
where he received a law degree in 1616. After that he enlisted in the
military school at Breda. After two years he began studying mathemat-
ics in earnest under the direction of the Dutch scientist [saac Beeckman.
Descartes’s goal was to find a unified science of nature.

In 1619 Descartes joined the Bavarian Army. From 1620 to 1629
Descartes traveled throughout Europe. He spent time in Bohemia, Hun-
gary, Germany, Holland, and France. In 1623 Descartes found himself
in Paris, where he was able to spend time with Mersenne. The latter
proved to be an important liaison who kept Descartes abreast of scientific
developments for many years.

By 1628 Descartes was tired of traveling and determined to settle
down. He chose Holland for his residence. This turned out to be a good
choice for Descartes, and he immediately began work on his physics
treatise entitled Le Monde, ou Traité de la Lumiére. This ambitious
work was near completion when Descartes received word of Galileo’s
house arrest (for his scientific ideas about the planets). Descartes decided
on the basis of this news not to risk publication, and in fact his book
on physics was published, and only in part, after his death. Descartes
decided then to concentrate his efforts on more abstract issues (which
were less likely to upset the powers that be). He used these words to
express his thoughts:

...in order to express my judgment more freely,
without being called upon to assent to, or to refute
the opinions of the learned, I resolved to leave all
this world to them and to speak solely of what
would happen in a new world, if God were now to
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create ...and allow her to act in accordance with
the laws He had established.

Descartes maintained a number of scientific contacts while in Hol-
land, and was actually quite cordial with many of them. Among these
were Mersenne (in Paris), Mydorge, Hortensius, Huygens, and Frans van
Schooten (the elder). These allies encouraged Descartes to publish his
ideas. He was firm in not wishing to publish Le Monde, but he instead
published a tract on science with the title Discourse de la méthode pour
bien conduire sa raison et chercher la vérité dans les sciences. This book
had three important Appendices entitled La Dioptrique, Les Météores,
and La Géométrie. Descartes’s book was published in Leiden in 1637.

The first of the Appendices is a work on optics, and the second a
work on meteorology. Although Descartes’s scientific method was flawed,
and he made a number of incorrect assertions, he nonetheless laid the
foundations for future work in these fields.

Certainly the third Appendix, on geometry, is the most important.
In this tract Descartes lays the foundations for the theory of geometric
invariants, and particularly for the connections between algebra and pla-
nar geometry. Although Descartes’s thoughts are inspired by Oresme,
there is much here that is original.

Descartes’s first major philosophical work, entitled Meditations on
First Philosophy, was published in 1641. The book consisted of six “med-
itations”:

e Of the Things that we may doubt;

Of the Nature of the Human Mind;

Of God: that He exists;

Of Truth and Error;

Of the Essence of Material Things;

Of the Existence of Material Things and of the Real
Distinction between the Mind and the Body of Man.
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Unfortunately many prominent scientists, including Arnauld, Hobbes,
and Gassendi, were opposed to the ideas expressed in this book.

René Descartes most comprehensive work was Principia Philosophiae,
published in Amsterdam in 1644. The book has four parts:

e The Principles of Human Knowledge;
e The Principles of Material Things;

e Of the Visible World;

e The Earth.

Following the philosophical principles that Descartes put in place when
he was a student, Descartes endeavors in this work to put the entire
universe on a mathematical foundation, reducing the study to one of
mechanics. Descartes’s study had some strange features. He did not
believe in action at a distance. Therefore he could not account for gravity.
Descartes believed instead that the universe is filled with matter which,
due to some initial motion, has settled down into a system of vortices
which carry the sun, the stars, the planets, and the comets in their paths.
Descartes’s theories held sway for more than one hundred years, even
after Isaac Newton showed that the theory was impossible and replaced
it with his universal law of gravitation.

In the year 1644, the date of the publication of Descartes’s Medi-
tations, René Descartes visited France. He returned again to France in
1647, when he established contact with Blaise Pascal. In fact he endeav-
ored to convince Pascal that a vacuum could not exist (again bearing
out his idea that no force can act at a distance). He returned once more
to France in 1648.

Descartes was a solitary figure with many eccentricities. René Descartes
was a short (5’0" dripping wet), irascible Frenchman who was also one of
our greatest philosophers and mathematicians. He thought very highly
of himself and his abilities, and he had little patience along with a blaz-
ing temper. He enjoyed staying in bed naked each day until 11:00am.
He would think about philosophical and mathematical issues during his
sojourns abed. In fact he conceived his ideas about coordinates in the
plane during one of his bed sessions.
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Figure 6.2. Beginnings of the real number line.

Descartes gave up mathematics when he was still a young man be-
cause, he said, he’d gone as far in mathematics as a human being could
go. He read many romance novels and novels of chivalry; Descartes had
an active fantasy life. He had a particular fetish for cross—eyed women.

Among his more unusual beliefs was the contention that animals
were “senseless machines”. Even so, Descartes had a pet dog named
“Monsieur Grat” or “Mr. Scratch” of which he was very fond.

Descartes used to play cards and gamble with his friend Blaise Pascal
(1623 C.E.-1662 C.E.). It is said that Descartes made a lot of money
thereby.

Descartes’s ideas were widely read and highly influential. In 1649,
Queen Christina of Sweden persuaded him to travel to Stockholm to
tutor her. One of the Queen’s eccentricities was that she wanted to draw
tangents at 5:00am. Descartes reluctantly broke his lifetime habit of
sleeping late. Unfortunately the new routine of walking to the palace so
early every morning, in the dark and cold, led to Descartes contracting
pneumonia. He died as a result.

6.2 The Real Number Line

Now we shall study some of the mathematical ideas of René Descartes.
We begin by laying out the integers in a linear pattern on a fixed straight
line (Figure 6.2). Notice that numbers to the left of 0 are negative, and
the further left we go the more negative the numbers become. Likewise,
numbers to the right of 0 are positive, and the further right we go the
more positive the numbers become.

Now it makes sense to interpolate rational numbers in between the
integers. Of course a fraction, such as 2/3, is easy to locate because it is
just two thirds of the way from 0 to 1. We exhibit a couple of rational
numbers in Figure 6.3.

For practical purposes, in everyday life, the rational numbers will
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Figure 6.4. Location of some irrational numbers.

suffice. When we speak of quantities to the butcher or the baker or the
doctor, we use rational numbers—sometimes as decimals and sometimes
as fractions. We ask for 2.5 pounds of beef, or 10 gallons of gas, or a pint
of blood. Numbers like v/2 or 7 never come up in ordinary conversation.
Why are they needed at all?

We learned in Chapter 2 that there are very concrete numbers, that
come up in ordinary measurement, that are not rational. For example,
the diagonal of a square of side 1 has length v/2. The circumference of a
circle of diameter 1 is w. These strange, irrational numbers, really exist
and they really apply to quite tangible, rather tactile, quantities.

We can picture irrational numbers on the number line by using their
decimal approximations. Your pocket calculator will tell you that v/2 ~
1.414 and 7 = 3.14159. A few irrational numbers are depicted on the
number line in Figure 6.4.

The real number line is a useful mnemonic for picturing the rela-
tive locations of real numbers. It is particularly helpful when we try to
understand sets of real numbers. For example, the set

S={reR:-3<x<2}
is shown in Figure 6.5. The slightly more subtle set

T={reR:|zx—1] <2}
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Figure 6.6. Graph of an interval.

is shown in Figure 6.6. Observe that we use a solid dot to indicate that
an endpoint is included in the set; a hollow dot denotes that the endpoint
is excluded.

It is important now to understand Descartes’s contribution in the
context of the history of mathematics. The great driving force in the
subject, since the time of the ancient Greeks, had been geometry in the
plane. That is, people had been studying the geometry of triangles and
circles and other planar figures for a long, long time. Euclid’s axiom-
atization of geometry, which is the blueprint for the way that we do
mathematics today, was an effort to put this geometry on a rigorous
footing. Cartesian coordinates injected an entirely new set of tools into
this great tradition. It provided a unification of algebra (the other great
theoretical flow in the mathematical tradition) and geometry. And it
provided a technique for graphing and picturing functions. In the next
section we begin to explore this new circle of ideas.

6.3 The Cartesian Plane

Consider the layout of two perpendicular coordinate lines as shown in
Figure 6.7.

We locate a point in the plane by specifying its position in the left-to-
right direction and then its position in the up-and-down direction. Put in
other words, we write down an ordered pair of numbers consisting of the
displacement from the vertical axis followed by the displacement from

the horizontal axis. See Figure 6.8. The exhibited point has coordinates
(3,4).
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Figure 6.7. The basis for cartesian coordinates.
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Figure 6.8. Cartesian coordinates of a point.
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Figure 6.9. Several points plotted in the cartesian plane.

The first coordinate of a point is called the x-coordinate (or abscissa).
The second coordinate is called the y-coordinate (or ordinate). The point
in Figure 6.8 has z-coordinate 3 and y-coordinate 4. Figure 6.9 exhibits
several points on a cartesian coordinate plane. Notice that the points
with negative z-coordinate lie to the left of the y-axis. The points with
negative y-coordinate lie below the x-axis.

We conclude this section by plotting a simple locus. Consider the
equation

y=3r+1.

It is useful to form a chart of values:
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X |ly=3x+1
-3 -8
-2 -5
-1 -2
0 1
1 4
2 7
3 10

Chart of Values for y = 3x + 1.

We plot each of these points on the same set of axes and connect
them in a plausible manner. The result is the line exhibited in Figure
6.10.

Example 6.1

One of Descartes’s great insights was that his new coordinate
system could be used to envision the graph of a function. As a

simple example, plot the graph of f(z) = .

SOLUTION  We begin with a table of values for the function:

x| f(z) = 2?
-3 9
-2 4
1 1
0 0
1 1
2 4
3 9

Chart of values for f(x) = 2.

Plotting these values on a set of axes, we obtain Figure 6.11.

Connecting these points in a plausible manner gives the familiar graph of a
parabola—Figure 6.12. |
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Figure 6.10. The plot of a line.
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Figure 6.11

Figure 6.12
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Figure 6.13

6.4 The Use of Cartesian Coordinates to Study Fuclidean
Geometry

One of the big innovations that René Descartes introduced was the idea
of studying questions of classical Euclidean geometry using his new co-
ordinate system. We illustrate this idea with a few examples.

Example 6.2

Consider the triangle shown in Figure 6.13. The horizontal seg-
ment [ halfway up the figure connects the midpoints of the two
sides AB and AC. We claim that the length of I is half the length
of BC.

In fact it is not difficult to prove this assertion synthetically,
by classical methods of Euclidean geometry. But our purpose here
is to see how to use cartesian coordinates to achieve the result.
Glance at Figure 6.14, where we have placed the triangle on a set
of coordinate axes and labeled the coordinates of A, B, and C
respectively. Notice that A = (0,a), B = (b,0), and C' = (c,0).
Then the endpoints of I are (b/2,a/2) and (¢/2,a/2). It follows
that the length of I is ¢/2 — b/2 = [c — b]/2. But this is just half
the length of BC', which is ¢—b. That is the result that we wished
to establish.
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A
Al (0,3)
(b2, a/2) (c/2, a2)
(b0) (c,0)
B c
Figure 6.14

Example 6.3

Let AABC be an isosceles triangle as in Figure 6.15. So AB =
AC'. Let AD be the median passing between the two equal sides.

Then AD is perpendicular to the base BC. Prove this using
cartesian coordinates.

SOLUTION  We configure the triangle on a pair of axes as in Figure 6.16. Co-
ordinates are assigned to each of the relevant points. Notice that the point ) is at
the origin.

Now the line determined by points B and C' has slope 0. And the line determined
by A and D has slope 00. Thus the two lines are perpendicular, as was to be proved.

Example 6.4

It is a classical result of Euclidean geometry that the three me-
dians of a triangle (here a median is the segment connecting a
vertex to the midpoint of the opposite side) intersect at a single
point. Use cartesian coordinates to give a proof of this fact.



6.4 Cartesian Coordinates and Euclidean Geometry — 167

A

Figure 6.15
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A

A=(0,)

¥ =(b12,a2) B =(ci2,a2)

v

B=(00) o =(bfc)20 C=(c0)

Figure 6.17

SOLUTION Examine the triangle in Figure 6.17 that is exhibited on a set of
coordinate axes. The vertices are A = (0,a), B = (b,0), and C' = (¢,0). Now
the medians are &« = (b/2 4 ¢/2,0), 5 = (¢/2,a/2), and v = (b/2,a/2).

The line through v and A has slope
B a—0  —2a
S 0—(b/2+¢/2) b+c

The corresponding median then has equation

—2a

ma

—a= “(z—0).

Y b+c ( )

The line through 3 and B has slope
_a/2-0 a

mo

c¢/2—b c—2b°
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The corresponding median then has equation

a
c—2b

y—0= (z—0).

The line through 7 and C' has slope

~0—-a/2  a
s = c—b/2 b—2c

The corresponding median then has equation

_a
bh—2¢

y—0 (z—2c).

Now, by elementary algebra, the first two lines intersect at the point

I_ZH—C a
~ T3 Y73

The second two lines also intersect at this point.

We conclude that the unique point of intersection of the three medians is

p:<ﬁ,z>,
3 3

For You to Try: Use cartesian coordinates to demonstrate that a
rhombus (a quadrilateral with sides of equal length) has diagonals that
are perpendicular.

For You to Try: Use cartesian coordinates to demonstrate that an
isosceles triangle has two medians of equal length.

6.5 Coordinates in Three-Dimensional Space

To locate a point in the 2-dimensional plane requires two coordinates.
By analogy, to locate a point in the 3-dimensional plane requires three
coordinates. Figure 6.18 indicates how this is done. There are three
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Z
A

_____________

Figure 6.18

axes: the z-axis, the y-axis, and the z-axis. The indicated point has
coordinates (x,y,z). The first coordinate indicates displacement along
the direction of the x-axis. The second coordinate indicates displacement
along the direction of the y-axis. And the third coordinate indicates
displacement along the direction of the z-axis.

Example 6.5

Sketch the point (3, 1,2) on a 3-dimensional set of axes.

SOLUTION Examine Figure 6.19. You will see that we have drawn a box to
show how the point is situated in space. The box aids in our perspective of the

geometry. The side lengths of the box indicate the magnitude of each coordinate,



6.5 Coordinates in Three-Dimensional Space 171

Z

Figure 6.19

and the orientation of the box shows the sign of each coordinate. |

Example 6.6

Sketch the point (=2, —4,3) on a 3-dimensional set of axes.

SOLUTION Examine Figure 6.20. You will see that we have drawn a box to
show how the point is situated in space. The side lengths of the box indicate the

magnitude of each coordinate, and the orientation of the box shows the sign of each

coordinate. |
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Figure 6.20

You know that, when we graph the locus of points in the 2-dimensional
plane that satisfies a given equation, then the result is usually a curve
in the plane. This makes good intuitive sense, since the imposition of
a condition given by one equation removes 1 degree of freedom, hence
removes 1 dimension. Since we begin with 2 dimensions, the result is a
1-dimensional object—or a curve.

Likewise, if we impose an equation on 3-dimensional space, then we
remove 1 degree of freedom. Hence there should be a loss of 1 dimension,
and the result should be a 2-dimensional surface.

Example 6.7

Sketch the surface in 3-dimensional space that is defined by the
equation

P4yt =1, ()

SOLUTION Examine Figure 6.21. It shows that the distance of the point
(x,y, 2) to the origin is /22 + y? + 2z2. Write X = (z,y,2) and 0 = (0,0, 0).
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_____________

Figure 6.21

Then we set
d(X,0) =/a? +y%+ 22,

The equation (*) may then be written schematically as
[d(X,0)]* =1,

or

d(X,0)=1.

Thus we see that our equation describes the set of all points X in space that

have distance 1 from the origin. This is a sphere. The surface is shown in Figure
6.22. 1
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v

Figure 6.22

Example 6.8

Sketch the surface in 3-dimensional space that is defined by the
equation

r+y+z=4. (%)

SOLUTION  Recall that, in the plane, an equation of the form
ar +by =c

gives rise to a line. It is plausible, therefore, that the equation (*) will describe a
“linear” object. In fact observe that if (:l?, Y,z ) is a point that satisfies (*) then also
the point (x—2t, y—+t, z+t) for any t will satisfy (%). Likewise, (x+t, y—2t, z+t)
will satisfy (x) for any t. And (x + ¢,y + ¢, z — 2t) will satisfy (x) for any .

We see, therefore, that three lines pointing in three different directions all lie in
the surface defined by (*) We conclude that (*) describes a plane. Notice that the
points (4, 0,0) and (0,4, 0) and (0, 0,4) all satisfy the equation and hence all must

lie on the plane. The resulting picture is shown in Figure 6.23. |
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Figure 6.23

FExercises

1. On a single set of axes, sketch the points in the plane
that satisfy
|| + |yl =1.

2. On a single set of axes, sketch the points in the plane
that satisfy
[z +y|l=1.

3. On a single set of axes, sketch the points in the plane
that satisfy
|| = [yl =1.

4. Sketch the points in 3-dimensional space that satisfy

(=1 4+ (y =272+ (2 -3 =4.
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5. Sketch the points in 3-dimensional space that satisfy

T — 2y + 5z =10.

6. Use cartesian coordinates to verify that if AABC' is an
isosceles triangle with equals sides AB and AC' then
the median from the vertex A to the side BC will be
perpendicular to the segment BC.

7. Use cartesian coordinates to verify that three non-collinear
points will uniquely determine a circle.

8. On a single set of axes, sketch those points in the plane
that satisfy

i =y,
9. Sketch the points in 3-dimensional space that satisfy
2 =2+t
10. Find the equation of the line in the plane that passes
through the points (1,2) and (—3,1).

11. Find the equation of the plane in 3-dimensional space
that passes through the points (1,0,0), (0,1,0) and
(0,0,2).

12. Describe in words the set of points in 3-dimensional
space given by

{(z,y,2) : 2| <1, ]yl < 1,]2| < 1}.



Chapter 7

Pierre de Fermat and the
Invention of Differential Calculus

7.1 The Life of Fermat

Pierre de Fermat (1601 C.E.-1665 C.E.) was one of the most remarkable
mathematicians who ever lived. He spent his entire adult life as a magis-
trate or judge in the city of Toulouse, France. His career was marked by
prudence, honesty, and scrupulous fairness. He led a quiet and produc-
tive life. His special passion was for mathematics. Fermat was perhaps
the most talented amateur mathematician in history.

Fermat is remembered today by a large statue that is in the basement
of the Hotel de Ville in Toulouse. The statue depicts Fermat, dressed
in formal attire, and seated. There is a sign, etched in stone and part
of the statue, that says, “Pierre de Fermat, the father of differential
calculus.” Seated in Fermat’s lap is a scantily clad muse showing her
ample appreciation for Fermat’s powers.

Pierre Fermat had a brother and two sisters and was almost certainly
brought up in the town (Beaumont-de-Lomagne) of his birth. Although
there is little evidence concerning his school education it must have been
at the local Franciscan monastery.

He attended the University of Toulouse before moving to Bordeaux
in the second half of the 1620s. In Bordeaux he began his first serious
mathematical researches and in 1629 he gave a copy of his restoration
of Apollonius’s Plane loci to one of the mathematicians there. Certainly
in Bordeaux he was in contact with Beaugrand and during this time
he produced important work on maxima and minima which he gave

177
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to Etienne d’Espagnet who clearly shared mathematical interests with
Fermat.

From Bordeaux, Fermat went to Orléans where he studied law at the
University. He received a degree in civil law and he purchased the offices
of councillor at the parliament in Toulouse. So by 1631 Fermat was a
lawyer and government official in Toulouse and because of the office he
now held he became entitled to change his name from Pierre Fermat to
Pierre de Fermat.

For the remainder of his life he lived in Toulouse but, as well as
working there, he also worked in his home town of Beaumont-de-Lomagne
and a nearby town of Castres. The plague struck the region in the early
1650s, meaning that many of the older men died. Fermat himself was
struck down by the plague and in 1653 his death was wrongly reported,
then corrected:

I informed you earlier of the death of Fermat. He
is alive, and we no longer fear for his health, even
though we had counted him among the dead a
short time ago.

The period from 1643 to 1654 was one when Fermat was out of touch
with his scientific colleagues in Paris. There are a number of reasons for
this. First, pressure of work kept him from devoting so much time to
mathematics. Secondly the Fronde, a civil war in France, took place and
from 1648 Toulouse was greatly affected. Finally there was the plague of
1651 which must have had great consequences both on life in Toulouse
and of course its near fatal consequences on Fermat himself. However it
was during this time that Fermat worked on the theory of numbers.

Fermat is best remembered for this work in number theory, in partic-
ular for Fermat’s Last Theorem. This theorem states that the equation

has no non-zero integer solutions z, y and z when the integer exponent
n > 2. Fermat wrote, in the margin of Bachet’s translation of Diophan-
tus’s Arithmetica

I have discovered a truly remarkable proof which
this margin is too small to contain.



7.1 The Life of Fermat 179

These marginal notes only became known after Fermat’s death, when his
son Samuel published an edition of Bachet’s translation of Diophantus’s
Arithmetica with his father’s notes in 1670.

It is now believed that Fermat’s “proof” was wrong although it is
impossible to be completely certain. The truth of Fermat’s assertion
was proved in June, 1993 by the British mathematician Andrew Wiles,
but Wiles withdrew the claim when problems emerged later in 1993. In
November, 1994 Wiles again claimed to have a correct proof which has
now been accepted. Unsuccessful attempts to prove the theorem over a
300 year period led to the discovery of commutative ring theory and a
wealth of other mathematical developments. Wiles himself has said in a
public lecture that he thinks that Fermat probably made a mistake in
claiming that he could prove the “last theorem”. He allows, however,
that Fermat made few mistakes.

Fermat’s correspondence with the Paris mathematicians restarted
in 1654 when Blaise Pascal, Etienne Pascal’s son, wrote to him to ask
for confirmation about his ideas on probability. Blaise Pascal knew of
Fermat through his father, who had died three years before, and was
well aware of Fermat’s outstanding mathematical abilities. Their short
correspondence set up the theory of probability and from this they are
now regarded as joint founders of the subject.

It was Fermat’s habit to solve problems and then pose them to the
community of mathematicians. Some of these were quite deep and diffi-
cult, and people found them aggravating. One problem that he posed was
that the sum of two cubes cannot be a cube (a special case of Fermat’s
Last Theorem which may indicate that by this time Fermat realized that
his proof of the general result was incorrect), that there are exactly two
integer solutions of 22 + 4 = y3, and that the equation 22 + 2 = y3 has
only one integer solution. He posed problems directly to the English.
Everyone failed to see that Fermat had been hoping his specific prob-
lems would lead them to discover, as he had done, deeper theoretical
results.

Fermat has been described by some historical scholars as

Secretive and taciturn, he did not like to talk
about himself and was loath to reveal too much
about his thinking. ... His thought, however orig-
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Figure 7.1

inal or novel, operated within a range of possibil-
ities limited by that time [1600 -1650] and that
place [France].

7.2 Fermat’s Method

One of the fundamental ideas of calculus is to calculate the tangent line
to a given curve. Figure 7.1 exhibits the familiar idea of the tangent line
to a circle. This is a particularly simple situation. In classical geometry
texts, we are told that the tangent line to a circle C at a point P of the
circle is that line which passes through P and is perpendicular to the
radius at P. The figure amply illustrates this idea.

For a more general curve—say the graph of a function—we have an
intuitive idea of what the tangent line to a point on the curve might be
(Figure 7.2), but it is hard to define the idea precisely. How can we say
analytically what the tangent line is supposed to be? For the curve in the
figure, there is no notion of radius. The only thing that we know about
the tangent line is that it passes through P and “touches” the curve at
P. How can we come up with a precise formulation of “touches”?
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v

Figure 7.2

Fermat’s idea, a precursor of the full-bore version of calculus that
Newton and Leibniz developed some years later, was this: the tangent
line has the special feature that it only intersects the curve at one point.
This idea is not foolproof—for example, the tangent line to the curve in
Figure 7.2 actually intersects the curve in two points. Nonetheless, in
many examples Fermat’s idea gives us just what we are looking for.

In order to actually implement Fermat’s idea, we shall need the con-
cept of slope. Recall that if we are given a line ¢ in the plane and two
points (p1,q1) and (p2, g2) on that line, then the slope of the line is

q2 — 1
m = .
P2 — D1

Figure 7.3 illustrates the idea of slope. The number m represents the
ratio of “rise” over “run” for this line. It tells us how fast the line is
rising or falling.
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»

Figure 7.3

Example 7.1

Use Fermat’s idea to find the tangent line to the curve y = 22 at
the point (2,4).

SOLUTION  Refer to Figure 7.4 as you read along. Let us consider the equation
of a line passing through (2, 4). Say that it has slope m. Then the line is

y—4=m(r—-2). ()

We calculate the intersection of the line with the curve y = 2%, Our equations are

then

y=4+m(z—2)

y=a°.
Equating the two expressions for 9, we find that

=44+ m(z —2).
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In the more familiar format of a quadratic equation, this is
2> —mx+(2m—4)=0.

Using the quadratic formula, we find that

m o /m2—4-1-(2m —4)

We may rewrite this as

_ mEvm?—8m+ 16
- 5 .

T

We are in luck. The expression under the square root sign is a perfect square:

the square of (m — 4). Thus our solution becomes

m =+ (m —4)

Now we are looking for a choice of m so that the line only intersects the curve in
one point. So we want the system of equations to have only one solution. But (*)
certainly looks like two solutions. The only way to make this reduce to just one is to
have the expression coming from the square root go away. In other words, we want
(m —4) = 0. In conclusion, we want to choose m = 4.

What we have learned is that the only line that passes through the point (2, 4)
and intersects the curve y = x? just once is the line with slope m = 4 (recall our

discussion in connection with equation (1)). It has equation
y—4=4(x—2).

The line and the curve are exhibited in Figure 7.4. |

7.3 More Advanced Ideas of Calculus: The Derivative and
the Tangent Line

There is little doubt that Fermat’s work was one of the seminal inspira-
tions for the huge subject that today is known as differential calculus.
Thanks to his efforts, and to the work of Descartes, Newton, Leibniz,
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2.4
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Figure 7.4

and many others, we now have a body of mathematical machinery for
calculating tangents, finding maxima and minima of functions, and per-
forming many other important operations in analysis and mechanics.

We now give an idea of the general approach provided by calculus
for calculating the tangent line to the graph of a function f at a point
P = (p, f(p)) on it graph. As we saw in the example of the last section,
what this comes down to is finding the slope of the tangent line. Examine
Figure 7.5.

Now let us consider slope. Look at the graph of the function y = f(z)
in Figure 7.5. We wish to determine the “slope” of the graph at the point
x = c¢. This is the same as determining the slope of the tangent line to
the graph of f at x = ¢, where the tangent line is the line that best
approximates the graph at that point. See Figure 7.6. What could this
mean? After all, it takes two points to determine the slope of a line,
yet we are only given the point (¢, f(c)) on the graph. One reasonable
interpretation of the slope at (¢, f(c)) is that it is the limit of the slopes of
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Figure 7.5

secant lines' determined by (¢, f(c)) and nearby points (c+ h, f(c+ h)).
See the dotted line in Figure 7.6. When we say “limit”, we mean to
consider the behavior of the expression as h tends to 0. Let us calculate
this limit:

fleth) -~ f0) . fleth) ~ fe)
h—0 (c+h)—c h—0 h '

Now this last limit is what we shall call the derivative of f at c¢. We
denote the derivative by f’(c¢). When the limit exists, we say that the
function f is differentiable at c.

Notice that the definition of “derivative” involves the important lim-
iting process. We calculate the limit of the so-called Newton quotient

fle+h) = f(o)
- :

This means that we consider the behavior of the quotient as h tends to
zero. The theory of the limit is deep and subtle. It was considered by the

1In simple terms, a “secant line” is a line connecting two different points on the
curve.
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ancients, more than two thousand years ago, and they never got it right.
Isaac Newton himself used limits (with trepidation), but he never really
understood them. It is only in the past 150 years that we have developed
an accurate and rigorous way to think about limits. In the present book
we treat limits intuitively. As you will see in the first example, we write
out every step of our calculation so that the procedure of taking the limit
becomes transparent.

Now let us return to the concept of derivative. We have learned the
following:

Let f be a differentiable function on an interval
(a,b). Let ¢ € (a,b). Then the slope of the tan-
gent line to the graph of f at cis f(c).

Example 7.2

Calculate the slope of the tangent line to the graph of y = f(z) =

x® — 3z at x = —2. Write the equation of the tangent line. Draw
a figure illustrating these ideas.

SOLUTION  We know that the desired slope is equal to f'(—2). We
calculate

£(=2) = lim fl=2+ h})L — f(=2)
 Jimy [(=2+h)* —3(=2 +:)] —[(=2)° = 3(=2)]
i [(—8 + 12h — 6A? +hh3) + (6 — 3h)] + [2]
i h3—6Z2+9h

= lim[h* — 6h + 9]
h—0
=9.

Notice that, in the last equality, we have observed that h? tends to 0 and
6h tend to 0 as h — 0.
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y+2=9(x+2 b

Figure 7.7

We conclude that the slope of the tangent line to the graph of y =
3 — 3x at x = —2 is 9. The tangent line passes through (-2, f(—2)) =
(—2,—2) and has slope 9. Thus it has equation

y—(=2) =9 —(=2).

The graph of the function and the tangent line are exhibited in Figure
7.7. 1

For You to Try: Calculate the tangent line to the graph of f(z) =
42% — 5z + 2 at the point where z = 2.

The process that we have been describing has a number of important
interpretations. Another one of these is in terms of velocity. Suppose
that the position of a moving body at time ¢ is given by p(¢). This
position could be measured, for example, in feet. And time ¢t could be
measured in seconds (of course other choices are possible). Now the
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average velocity over a time interval [t,t + h] is given by “change in
position” divided by “change in time”. This quantity is

p(t +h) = p(t)
; :

(average velocity) =

The limit as h — 0 of this quantity is declared to be the instantaneous
velocity at time t. Of course this limit is just the derivative p/(t). We
conclude the following:

If the position of a moving body is represented by
the differentiable function p(¢) then the instanta-
neous velocity of the motion at time ¢ is p/(t).

Example 7.3

Calculate the instantaneous velocity at time ¢ = 5 of the moving
body whose position at time ¢ seconds is given by g(t) = t3+4t% +
10 feet.

SOLUTION  We know that the required instantaneous velocity is ¢'(5).
We calculate

I
g'(5) = lim

95 +h) —g()
h

— lim [(5+h)* +4(54+ h)*+10] — [5° + 4 - 52 + 10]
h—0 h

[(125 + 75h + 15k + h3) + 4 - (25 4+ 10h + h?) 4 10)
h—0 h

(125 + 100 + 10)
h

_ 115h + 19h% + A3
= lim
h—0 h

= }Lin% 115 + 19h + A2

=115.
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We conclude that the instantaneous velocity of the moving body at time
t=5is ¢/(5) = 115 ft/sec. 1

Remark: Since position (or distance) is measured in feet, and time in
seconds, then we measure velocity in “feet per second”. O

Example 7.4

A rubber balloon is losing air steadily. At time t seconds the

balloon contains 75 — 10t + t cubic inches of air. What is the
rate of loss of air in the balloon at time ¢t = 17

SOLUTION  Let ¢(t) = 75 — 10t> + t. Of course the rate of loss of air
is given by ¢/(1). We therefore calculate

P +h) —9()

¥(1) = lim h
_1 (75— 101+ h)*+ (1 +h)] — [75—10- 12+ 1]
o h
i [75 — (10 + 20 + 10h?) + (1 + h)] — [66]
o h
. —19h — 10h?
= hm e E—
h—0 h
= lim —19 — 10h
h—0
= —19.

In conclusion, the rate of air loss in the balloon at time t = 1 is ¢)'(1) =
—19 cu.in./sec. Observe that the negative sign in this answer indicates
that the change is negative, i.e., that the quantity is decreasing. |

For You to Try: The amount of water in a leaky tank is given by
W (t) = 50 — 5t> + t gallons. Here time ¢ is measured in minutes. What
is the rate of leakage of the water at time t = 27
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P=(p.f(p)

v

Q=(qflg)

Figure 7.8

Remark: We have noted that the derivative may be used to describe
a rate of change and also to denote the slope of the tangent line to a
graph. These are really two different manifestations of the same thing,
for a slope is the rate of change of rise with respect to run (see the dis-
cussion of Figure 7.3). O

7.4 Fermat’s Lemma and Maximum/Minimum Problems

Fermat’s lemma is based on a simple geometric observation about dif-
ferentiable functions. Examine the graph exhibited in Figure 7.8. The
points P and @) on the graph are special. Notice that, if we compare P
to points nearby on the graph, then we see that the point P is vertically
higher than its neighbors (see the blowup in Figure 7.9). We say that P
is a local mazimum. Likewise, if we compare () to points nearby on the
graph, then we see that the point () is vertically lower than its neighbors
(see the blowup in Figure 7.10). We say that @ is a local minimum.

From the point of view of calculus, what is special about the point P
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Figure 7.9

Q

Figure 7.10
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is that the graph goes neither uphill nor downhill there. In other words,
the tangent line is horizontal. That means that its slope is zero. Thus

The derivative of a function at a point of differen-
tiability where the function assumes a local max-
imum is 0.

From the point of view of calculus, what is special about the point ()
is that the graph goes neither uphill nor downhill there. In other words,
the tangent line is horizontal. That means that its slope is zero. Thus

The derivative of a function at a point of differen-
tiability where the function assumes a local mini-
mum is 0.

These two displayed rules are the content of Fermat’s lemma. For the
sake of the present discussion, let us (inspired by Fermat) call a point
x a critical point for the function f if f'(x) = 0. We illustrate, with
a simple example, how Fermat’s lemma can be used to gain important
information about a function.

In fact it is worth considering this matter in a bit more detail. Let
f be a function and x a point of its domain. Calculate the derivative
f'(x). If f'(x) > 0 then this says that the approximating quotients (or
Newton quotients)

fla+h) - f(z)
h

are positive. As Figure 7.11 shows, the graph is going uphill at x. If
instead f’(z) < 0 then we see that the approximating quotients (or
Newton quotients)

flx+h) = fz)
h

are negative. As Figure 7.12 shows, the graph is going downhill at z. Fi-
nally, if f'(z) = 0, then we have seen that the graph is (instantaneously)
horizontal—mneither uphill nor downhill—at x. These simple observations
will be useful in our discussions below.

Example 7.5
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Figure 7.12
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Sketch the graph of the function

f(z) =22 — 32> — 120 + 4.

SOLUTION We have seen cubic curves like this one in the past. When the
leading coefficient is positive, the graph will go up, then down, then up. So it will
have a local maximum and a local minimum. If we can find those two special points,
then we can draw a useful and compelling graph of f. We use the derivative, and
Fermat’s lemma, to do so.

We calculate, for any point (a?, f(a?)) on the curve, that

oy e J@+h) — fz)
fz) = Jim h

_ 1 [2(x + h)? — 3(x + h)?> — 12(z + h) + 4] — [22® — 3% — 122 + 4]
= s h
_ 1 (223 4 62%h + 62h? + 2h®) — (32% + 6xh + 3h?) — (122 + 12h) + 4]
= il h

[20° — 32% — 122 + 4]

h

_ 1 (622h + 6xh* + 2h3) — (6xh + 3h?) — (12h)
= s h

= lim (6:52 + 6xh + 2h* — 62 — 3h — 12)
= 62 — 62 — 12.
We are interested in points where f’(2) = 0. So we must solve the equation
0= f'(z) = 62" — 6z — 12.
In fact the quadratic equation factors:
0=6(zx+1)(z—2).

So we find that t = —1 or £ = 2.
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Figure 7.13

Let us examine points on either side of x = —1. Since f'(—3/2) = 21/2 and
f'(—=1/2) = —15/2, we sce that the graph is going uphill to the left of z = —1
and downhill to the right of © = —1. Thus * = —1 is the location of a local
maximum. See Figure 7.13.

Now let us examine points on either side of © = 2. Likewise, f'(3/2) = —15/2
and f'(5/2) = 21/2. So we see that the graph is going downhill to the left of © = 2
and uphill to the right of x = 2. Thus x = 2 is the location of a local minimum.
See Figure 7.14.

Noting that f(—1) = 11 and f(2) = —16, we can assemble all our information
and produce the graph shown in Figure 7.15. |

Example 7.6

A box is to be made from a sheet of cardboard that measures
12" x 12”. The construction will be achieved by cutting a square

from each corner of the sheet and then folding up the sides (see
Figure 7.16). What is the box of greatest volume that can be
constructed in this fashion?
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v

Figure 7.14

SOLUTION It is important in a problem of this kind to introduce a
variable. Let x be the side length of each of the squares that are to be
cut from the sheet of cardboard. Then the side length of the resulting
box will be 12 — 2z (see Figure 7.17). Also the height of the box will be
x. As a result, the volume of the box will be

V(z)=x-(12 —22) - (12 — 22) = 1442 — 4827 + 42°.

Our job is to maximize this function V.

Now
—4 244 31 — [144x — 4822 + 423
V,(x)zlim[144(a:+h) 8(x + h)* + 4(x + h)°] — [144x — 48x* + 427]
h—0 h
[(144x + 144h) — (4822 + 962k + 48h2)
= Jim h

+(42® + 122%h + 12zh* + 4h3)] — [144x — 482% + 42|
h
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12-2x
Figure 7.17

i 144h — 96zh — 48h? 4 122%h + 12xh? + 4h3
= lim
h—0 h

= }Lin(l] 144 — 962 — 48h + 122% + 122h + 4h®

= 144 — 96 + 1222

In summary, the derivative of the volume function is V'(x) = 144 —
96 + 122%. We may solve the quadratic equation

144 — 962 + 1222 = 0

to find the critical points for this problem. Using the quadratic formula,
we find that © = 2 and # = 6 are the points that we seek (i.e., the
potential maximum or minimum).

Of course V'(2) = 0. A little to the left of 2, we see that V'(1.5) = 27.
A little to the right of 2, we see that V’(2.5) = —21. We conclude that
T = 2 is a maximum.

We conclude that if squares of side 2”7 are cut from the sheet of
cardboard then a box of maximum volume will result.

Observe in passing that if squares of side 6” are cut from the sheet
then (there will be no cardboard left!) the resulting box will have zero
volume. This value for x gives a minimum for the problem. |
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garage

Figure 7.18

Example 7.7

A rectangular garden is to be constructed against the side of a
garage. The gardener has 100 feet of fencing, and will construct a
three-sided fence; the side of the garage will form the fourth side.
What dimensions will give the garden of greatest area?

SOLUTION  Look at Figure 7.18. Let = denote the side of the garden
that is perpendicular to the side of the garage. Then the resulting garden
has width x feet and length 100 — 2x feet. The area of the garden is

A(z) =z - (100 — 2z) = 100z — 227.

We calculate
[100(z + h) — 2(z + h)?] — [100z — 22

/ IR T
Alz) = im h
_i [100z + 100h — 222 — 4zh — 2h%] — [100z — 222
I h
~ 100h — 4zh — 2h?
= lim
h—0 h
= lim 100 — 42z — 2h
h—0
=100 — 4x

and solve the equation 0 = A’(x) = 100 — 4z. We find that the only
critical point for the problem is x = 25. By inspection, we see that the
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graph of A is a downward-opening parabola. So x = 25 must be the
global maximum that we seek. The optimal dimensions for the garden
are

width = 25 ft. length = 50 ft.

For You to Try: A cylindrical tin can is to be designed to hold 96
cubic inches of stewed tomatoes. What dimensions will minimize the
amount of material used to construct the can?

For You to Try: The sum of two numbers is 100. How can we choose
them so as to maximize their product?

FExercises

1. What is the slope of the curve f(z) = 32% — 42 + 7 at
the point where x = 27

2. What is the slope of the curve g(z) = 42® — x at the
point (—2, —30)?

3. The height in feet of a falling body at time ¢ seconds is
given by p(t) = —16t* + 20t + 34. At what rate is the
body falling when ¢ = 17 At what time ¢ does the body
hit the ground? What is its velocity at that time?

4. Write the equation of the tangent line to the curve in
Exercise 2 at the given point.

5. Write the equation of the line in Exercise 2 that is per-
pendicular to the given curve at the given point. Recall
that two lines are perpendicular if the product of their
slopes is —1.

6. Find all local maxima and minima of the curve h(z) =
—3x3 + 62% — 4x + 6.
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Of all the rectangles with perimeter 20, find the one of
greatest area.

. A cylinder is to be inscribed inside a sphere of radius

5, as shown in Figure 7.19. What dimensions of the
cylinder will result in the cylinder of greatest volume?

If you endeavor to calculate the slope of the tangent line
to the curve y = v/4 — x? at x = 2, you get an unpleas-
ant answer. What does it mean? What is the geometric
significance of your answer? You should be able to an-
swer this question without doing any calculations.

An arrow is shot into the air, and its path describes a
parabolic arc. The equation for the height in feet of the
arrow at time ¢ in seconds is h(t) = —16¢% + 42t + 100.
What is the greatest height that the arrow reaches? At
what time ¢ does the arrow hit the ground? What is
the terminal velocity of the arrow?
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11.

12.

The volume of a ball of radius r inches is V = [4/3]mrr?
cubic inches. What is the rate of change of volume with
respect to the radius when r = 47

The position of a moving body at time t seconds is given
by p(t) = 4¢3 — 7t + 18t — 5 feet . Focus on the time
range 0 < t < 4. At what time ¢ is the velocity greatest?
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Chapter 8

The Complex Numbers and the
Fundamental Theorem of Algebra

8.1 A New Number System

What is remarkable about the discussion we are about to provide is that
we are going to construct the complex numbers. We shall not say, “Let us
pretend that the number —1 has a square root and we’ll build a number
system around it.” That is the sort of thinking that can lead to contra-
dictions and paradoxes, and is best avoided. We will instead construct
our new number system with tools that we have at hand. Such a con-
structivist approach gives our mathematics a solid foundation that we
can rely on, and that we can be certain will not lead to later conundrums.

8.2 Progenitors of the Complex Number System

The complex numbers evolved over a period of several centuries. They
did not spring at once from the mind of any particular individual. This
number system arose from a need to have solutions to all polynomials.
While a polynomial like

p(z) = 2% — 5x 46

has roots z = 2 (that is to say, p(2) =22 —5-2+6 = 0) and = 3 (that
is to say, p(3) = 3% —5-3+ 6 = 0), the polynomial

glx)=2*+z+1

has no evident real roots. In fact it requires a larger number system—the
complex numbers—in which to find roots of the polynomial q.

205
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We shall say a few words here about some of the people who con-
tributed to the development of the complex numbers.

8.2.1 C(Cardano

We have treated the life of Girolamo Cardano (1501 C.E.-1576 C.E.)
elsewhere in this book. Cardano did not understand the complex num-
bers very well. But he was the first to use them to solve polynomial
equations. For example, Cardano would have understood what it meant
to say that 1+4 and 1 —4 are roots of the polynomial p(z) = x? — 2z + 2.

8.2.2 FEuler

Leonhard Euler (1707 C.E.-1783 C.E.) was born in Basel, but the family
moved to Riehen when he was only one year old. Euler’s father Paul
attended lectures of Jacob Bernoulli and lived in Bernoulli’s house when
he was a student. He was good friends with Johann Bernoulli (Jacob’s
brother). But in fact the father became a Protestant minister. Paul’s
strong mathematical background served the young Euler in good stead,
for he was able to provide some mathematical training for his young son.

Leonhard Euler was sent to the University of Basel in 1720, at the
age of fourteen. His father expected him to enter the ministry. The level
of education in Basel was very poor, and there was no mathematics.
So Euler engaged in general studies. He did study mathematics on his
own, and he took some private lessons. It was thus a matter of great
good fortune that Johann Bernoulli discovered Euler’s talents. Euler’s
remarks on the matter were

... I soon found an opportunity to be introduced
to a famous professor Johann Bernoulli. ... True,
he was very busy and so refused flatly to give me
private lessons; but he gave me much more valu-
able advice to start reading more difficult math-
ematical books on my own and to study them as
diligently as I could; if I came across some obstacle
or difficulty, I was given permission to visit him
freely every Sunday afternoon and he kindly ex-
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plained to me everything I could not understand

In 1723 Euler wrote a thesis comparing the philosophical ideas of
Descartes and Newton. He thus earned his Masters Degree. He then
engaged in exclusive studies of theology. In fact Euler found the study of
theology, Hebrew, and Greek to be unsatisfying. With Johann Bernoulli’s
help, he obtained his father’s permission to switch his studies to mathe-
matics. By 1726 Euler had completed his studies, and actually published
a paper. His second article, in 1727, won second prize in a contest for
new ideas in shipbuilding.

Euler needed an academic post, and the position of Nicolaus Bernoulli
in St. Petersburg happened to open up at the time. Euler was lucky
enough to secure the position, but he deferred his acceptance because
he was also applying for a physics position in Basel. He failed to obtain
the latter post, and so found himself in St. Peterburg in May, 1727. He
joined the St. Petersburg Academy of Sciences two years after it was
founded by Catherine I, wife of Peter the Great. Daniell Bernouli and
Jakob Hermann arranged for Euler to be appointed to the mathematical-
physical division of the Academy rather than to the physiology post that
he originally had been offered. This certainly suited his talents nicely.

St. Petersburg offered Euler quite a number of brilliant and stimu-
lating colleagues, including

e Jakob Hermann (geometry);

Daniel Bernoulli (geometry, applied mathematics);

Christian Goldbach (analysis, number theory);
e F. Maier (trigonometry);
e J.-N. Delisle (astronomy and geography).

Euler began his time in Russia by serving as a medical lieutenant in the
Russian Navy. He actually assumed his Professorship in 1730. He was
then a full member of the Academy, and was thus able to relinquish his
Navy post.
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Daniel Bernoulli held the Senior Chair in Mathematics in St. Peters-
burg. But he was unhappy in Russia and departed in 1733. At that time
Euler assumed the Senior Chair. The resulting financial enhancement
enabled Euler to marry Katharina Gsell, daughter of a painter from the
St. Petersburg Gymnasium. Leonhard and Katharina had a total of 13
children, although only 5 of them survived infancy. Euler liked to observe
that he made a number of his most notable discoveries while holding a
baby in his arms with others playing at his feet.

Leonhard Euler began having health problems in 1735. He had a
severe fever which threatened his life. In 1740 he lost an eye, possi-
bly because of eyestrain brought on by cartographic work. Euler won
the grand prize of the Paris Academy both in 1738 and 1740. As a re-
sult, his reputation was at the highest level in those days. At the same
time, political conditions for foreigners in Russia were becoming quite
uncomfortable. As a result Euler accepted a position at the Academy
of Science in Berlin. In fact Euler was Director of Mathematics for the
new Academy. In a letter to a friend, Euler indicated that the King was
his special benefactor, and he had complete freedom to spend his pro-
fessional time as he wished. He received salaries both from Russia and
from Germany. He was able to spend some of his funds to help equip his
former Academy in St. Petersburg.

Euler spent twenty-five years at the Berlin Academy. During that
time he wrote 380 scientific papers and several books. Among these
latter were:

e a book on the calculus of variations;

e a book on the calculation of planetary orbits;

a book on artillery and ballistics;

a book on analysis;

a book on shipbuilding and navigation;

a book on the motion of the moon;

a book on differential calculus;
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e a book containing a popular exposition of scientific ideas.

In 1759 Leonhard Euler became the President of the entire Berlin
Academy. He served in that position for four years, but was rather
alarmed when Frederick the Great then planned to appoint d’Alembert
to that post (Euler and D’Alembert had had professional disagreements).
d’Alambert declined the offer, but Euler decided that it was time for
him to leave Berlin. He returned to a position in St. Petersburg, much
to the chagrin of Frederick. In 1766, then, it came about that Euler
returned to Russia. Soon after, Euler became almost entirely blind; also
his house was destroyed by fire. He was able to save only himself and
his mathematical manuscripts. In spite of the loss of his sight, Euler
continued his work on optics, algebra, and lunar motion. Remarkably,
he produced almost half of his total scientific output after going blind.

Of course, without sight, Euler required help in order to do his work.
His son Johann Albrecht Euler was Chair of Physics at the Academy
in St. Petersburg. Christoph Euler had a military career. The other
members of the academy, including W. L. Krafft, A. J. Lexell, and N.
Fuss, were generous with their time and assistance. Fuss was in fact
Euler’s grandson-in-law; he became the great man’s formal assistant in
1776. It should be stressed that Fuss’s work was not merely clerical; he
was in many ways a scientific consultant and collaborator.

Euler died of a brain hemorrhage on September 18, 1783. He had a
full day of scientific activity, including vigorous discussions of the newly-
discovered planet Uranus. But he was struck down, and lost conscious-
ness, at 5:00pm with the cry “I am dying.” He expired at 11:00pm.

Leonhard Euler was one of the most prolific scientists of all time.
The St. Petersburg academy continued to publish Euler’s unpublished
manuscripts for 50 years after he died. He had an impact on almost all
parts of modern mathematics, and many parts of engineering, astronomy;,
and physics as well.

Of particular interest to us are Euler’s contributions to complex anal-
ysis. He published his theory of logarithms of complex numbers in 1751.
He investigated analytic functions of a complex variable in several differ-
ent contexts, including the study of orthogonal trajectories and cartog-
raphy. He discovered the important Cauchy-Riemann equations in 1777
(although it seems that he was anticipated here by d’Alembert in 1752).
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It may be noted here that Euler’s theory of the complex logarithm in-
teracts very nicely with Argand’s geometric theory of complex numbers
(see below). As is often the case in mathematics, different streams of
thought flow together and create new synergies.

8.2.3 Argand

Jean-Robert Argand (1768-1822) was an accountant and bookkeeper in
Paris. His interest in mathematics was strictly as an amateur. Very little
is known about his childhood or his education. His parents were named
Jacques and Eves.

Argand had two children: a boy who lived his adult life in Paris
and a girl named Jeanne-Francoise-Dorothée-Marie-Elizabeth. The lat-
ter married and moved to Stuttgart, Germany.

Argand is remembered for providing us with geometric interpreta-
tions of the complex numbers. As we shall see below, we can think of a
complex number as an ordered pair of real numbers. Thus we can asso-
ciate to the complex number a point in the plane. This is now known
as the Argand plane, and the resulting picture is called an Argand di-
agram. Perhaps more interesting, and certainly more profound, is the
fact that multiplication by the complex number ¢ can be interpreted as
rotation through an angle of +90°. We see this because if z = x+1y then
iz = —y + iz. Certainly the vector (—y, ) is perpendicular to (z,y).
And a moment’s thought shows that in fact iz is a 90° rotation of z in the
counterclockwise direction (just try a specific example, let z = 1 + 137).

Since Argand was not a regular academic, he was not plugged into
the regular academic system of publication and accreditation. In fact
it is through an interesting sequence of accidents that we now associate
Argand’s name with this collection of ideas.

It is notable that the first publication of the geometric interpretation
of the complex numbers was authored by Caspar Wessel. In fact Wessel
notes the concept in a (unpublished) work of 1787 but it appeared in
published form, under Wessel’s byline, in a paper of 1797. That paper
actually appeared in print in 1799. The paper received scant attention
from the mathematical community.

In fact it was not until 1895, when Juel drew attention to the work
and Sophus Lie actually republished it that Wessel began to receive some
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credit for these ideas. Like Argand himself, Wessel was not an academic
mathematician. He was in fact a surveyor. So it is not surprising that
he was not a part of the flow of scholarly discourse.

Argand in fact published his own ideas in a small book—published
at his own expense!—in 1806. Such publications generally are not widely
noticed; by contrast, Wessel’s work was published by the Royal Danish
Academy. To make matters worse, Argand’s name did not appear on his
own book, so that even those few who noticed the work had no idea to
whom to attribute it.

As luck would have it, a copy of Argand’s work was sent to the
noted mathematician Adrien-Marie Legendre. He, in turn, sent it to
Francois Francais. Still, neither man knew the identity of the author
of this privately published volume. When Francois Francais died, his
brother Jacques came to be in charge of his papers. Finding Argand’s
book, Jacques took a great interest in geometric representations of the
complex numbers. In 1813 he published a tract describing these ideas.
He could easily have claimed them to be his own, but he did not. In
fact he announced in the work that the ideas came from the work of an
unknown mathematician and he asked that that mathematician come
forward and claim credit.

Jacques Francais’s article appeared in Gergonne’s journal Annales de
mathématiques, and Argand read it. He responded, acknowledged that
he was the author of the ideas, and submitted to that same journal a
revised and updated version of his ideas. The upshot of these publishing
events was a public row, and there is nothing like clamourous dissension
to gain real publicity for a set of ideas.

For the mathematician Servois claimed that complex numbers should
not be viewed geometrically. The only correct way to think about the
complex number system is algebraically. Argand and Francais disagreed.
In the end, the geometric viewpoint won out, and has proved to be a
valuable source of ideas and powerful tools in modern mathematics.

Although Argand is certainly best known, and best remembered, for
his contributions to the geometric theory of complex analysis, he in fact
published a number of other works. He was the first to formulate a ver-
sion of the fundamental theorem of algebra for general polynomials (i.e.,
polynomials with complex coefficients). His proof, although it contained
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a few defects, was very close to a modern proof of this important theo-
rem. He published several papers amplifying his theory of the geometric
interpretation of complex numbers, and he published several commen-
taries on the work of other mathematicians. His final publication, in
1816, was about combinatorics and counting.

Argand is remembered as a gifted amateur mathematician who made
significant contributions that received only belated recognition. His work
was significant and timely and has had lasting value.

8.2.4 Cauchy

Augustin Louis Cauchy (1789 C.E.—1857 C.E.) was born in Paris during
a tumultuous period of French history. His father feared for the family’s
safety because of the political events connected with the French revolu-
tion, so he moved the family to Arcueil. There life was hard. The family
often did not have adequate food.

We shall treat the details of Cauchy’s life in Chapter 10. Suffice it for
now to say that Cauchy had a profound influence over the development of
complex analysis. The Cauchy-Riemann equations, the Cauchy integral
theorem, and the Cauchy integral formula are all named after him. These
are among the most central and far-reaching ideas in the subject. In
modern treatments, all the key ideas of complex analysis flow from the
Cauchy integral formula.

Cauchy led a chaotic and unsatisfying personal life. But his influence
over modern mathematics continues to be profound.

8.2.5 Riemann

Bernhard Riemann (1826 C.E.-1866 C.E.) was born into a poor fam-
ily with a Lutheran minister father. He was tormented by disease and
poverty all his life, and he died at the young age of forty. We treat his
life in greater detail in Chapter 13.

Even so, Riemann achieved a great many mathematical triumphs
during his short time on earth. He discovered the Cauchy-Riemann equa-
tions, created Riemann surfaces, and developed the Riemann mapping
theorem. Much of the geometric theory of complex analysis is due to Rie-
mann. The Riemann zeta function arises from considerations of complex
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analysis, but has become of seminal importance in number theory. The
distribution of the zeros of the Riemann zeta function contains profound
information about the distribution of the prime numbers. Riemannian
geometry was created by Riemann as part of his oral examinations for
Gauss; but in fact this idea of geometry now plays a major role in mod-
ern research on complex variables. We shall say more on this matter in
Chapter 13.

Riemann certainly left his mark on complex analysis. But he also
studied geometry, partial differential equations, calculus, Abelian func-
tions, Fourier series, and many other parts of mathematics. His contri-
butions are still the basis for much modern research.

8.3 Complex Number Basics

We are already familiar with the real numbers R. Just to review, these
are all numbers given by decimal expansions. These include the whole
numbers or integers (denoted by Z), the fractions or rational numbers
(denoted by Q), and the irrational numbers. An integer has a decimal
expansion with no non-zero digits to the right of the decimal point.
Examples of integers are 2.0, —6.0, 15.0. A rational number has just
finitely many non-zero digits to the right of the decimal point, or else
finitely many digits that repeat infinitely often. Examples of rational
numbers are

3
- =0.75
4
9
—=0.9
10
L 0.33333
5 =0 e
125 —
— = 125125125 . ..
999 ’

where the overbar indicates that the designated string is repeated in-
finitely often.

An irrational number has a decimal expansion that goes on indef-
initely and never repeats. These are the most subtle numbers in the
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Figure 8.1

system, and they are difficult to identify (although, in our chapter on
Pythagoras, we learned for instance that /2 is irrational). The decimal
expansion for v/2 is

V2 = 1.414213562.. . . |

where the dots indicate that the string of integers in the decimal ex-
pansion goes on indefinitely but there is no repetition (because v/2 is
irrational).

Another irrational number is 7. Its decimal expansion is

T = 3.141592654 . . . |

where again the dots indicate that the decimal expansion goes on indef-
initely but there is no repetition (because the number 7 is irrational).

All of these numbers taken together constitute the real number sys-
tem R. We typically picture the real number system as a number line
(Figure 8.1).

Now we will begin our construction of the complex number system.
We will create a new number system C consisting of all ordered pairs
of real numbers. Thus an element of C is a pair (z,y) of real numbers.
As examples, (3, —2), (—6,1.74), and (7, —/2) are complex numbers.
Now, in order to have a useful system of numbers, we need to know the
arithmetic operations on C.

If (a,b) and (¢, d) are complex numbers then we define

(a,b)+ (¢,d) = (a+c,b+d).
As an example,
(—3,6)+(2,4) = (-3+2,6+4) =(—1,10).
We define subtraction similarly:

(a,b) — (c,d) = (a—c,b—d).
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For instance,
(—=3,6) —(2,4) =(-3—-2,6—4) =(-5,2).

Observe that the number 0 = (0,0) is the additive identity in our
new number system. This means that if you add this 0 to any complex
number then that number is reproduced:

(a,b) +(0,0) = (a+0,b+0) = (a,b).

Now multiplication is more complicated. It would be a mistake to
define
(a,0) - (¢,d) = (ac, bd) . (%)

Why is this a mistake? It seems so obvious that we should do mul-
tiplication like this. But with the definition (%), it would hold that
(1,0) - (0,1) = (0,0). And we do not want the product of two non-zero
numbers to be zero. So definition () will not do.

Thus our definition of multiplication will be non-obvious. But, as
you will see, it will get the job done in a very nice way. If (a,b) and (¢, d)
are complex numbers then we set

(a,b) - (c,d) = (ac — bd,ad + bc) . (xx)

Let us look at a couple of examples to be sure we understand the idea.
First,

(—3,2) - (4,6) = ((—3)-4—2-6,(=3) -6 +2-4) = (—24,—10) .
Second,
(2,8)-(1,-9)=(2-1-8-(-9),2-(-9)+8-1) = (74,-10) .

Now the justification for the rather exotic' definition in (*x) of mul-
tiplication is that it gives us the results that we want. First of all, we
want to have a complex number that plays the role of “1”. This is the

I Certainly Leonhard Euler (1707 C.E.-1783 C.E.) knew how to multiply complex
numbers. But it was William Rowan Hamilton (1805 C.E.—1865 C.E.) who came up
with the algebraic formalism that we are using here.
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multiplicative identity. If you multiply any number by 1 then you should
get that number back again. The complex number that will play this
role for us is (1,0). Let us see why. Let (a,b) be any other complex
number. Then, according to (kx),

(1,0) - (a,b)=(1-a—0-b,1-b+0-a)=(a,b).

So we see explicitly that multiplication by 1 = (1, 0) reproduces any com-
plex number. For a specific example, take the complex number (—3,7).
Then

(1,0)- (=3,7)=(1-=3—-0-7,1-7+0--3) = (=3,7).

It is also the case—and this is a very important property of the com-
plex numbers—that any non-zero complex number has a multiplicative
inverse. This means that, given a non-zero complex number (a, b), we can
find another complex number whose product with (a, b) is the unit (1, 0).
In fact—and again you may find this a bit surprising—the multiplicative

inverse of (a,b) is
a —b
a?+0> 7 a®+b2)

Let us test this out using rule (xx):

a -b
(a,0) - <a2 + b2 a? —I—b2>

I R S U SR
A\ 202 2w a? + b2

a’® + b?
_<;:ﬁﬁ>—ﬁﬂ)

For a concrete example of multiplicative inverse, consider the com-
plex number (—2,1). According to what we have just said, its multi-
plicative inverse should be (—2/5, —1/5). Let us test this assertion:

-2 -1 -2 -1 -1 -2
o (= Z)=(-2. 1. — 2.~ 4+1.=
(=2,1) (5’5) ( b} 5’ 5+ 5)

_ (§o> —(1,0).
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Finally, we can divide complex numbers. Let us divide (a, b) by (¢, d):
(a,b) 1
= (a,b) - )
ea) Y e
Of course we know what the multiplicative inverse of (c,d) is, and we
use that information now. Thus
(a,b) 1
—= b .
ea) Y ea

c —d
= (a.0)- <02+d2’02—|—d2>

I —d .- —d b c
Y et 2+ 2r e 7
B (ac—l—bd —ad—l—bc)

A4+ d? A+ d?
It always helps to look at a concrete example: The quotient
(2,—5) 1
(1,6) ~ |

__(—28 —17)
S \377 37/
And the wonderful thing about mathematics is that we can check our

work: If
(2,—5) B (—28 —17)
(1,6)  \ 37 37
then it should be the case that
—28 —17
1,6) [ —=,—) = (2, -5).
(1,6) (5 5 ) = (2.-9)

Let us try it and see:

—28 —17 —28 17 17 —28
1 == ) = . —6- 1- 6 -
(’6)(37’37> ( 37 37 37+ 37)
—28 + 102 —185
( 37 ’37> (2,-5)
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So now we have a working number system: We can add, subtract,
multiply, and divide. In the next section we shall return to Gauss’s
Fundamental Theorem of Algebra, and get an idea of why it is actually
true that every non-constant polynomial has a root.

Before we turn to that task, let us note a special feature—for some
purposes the most important feature—of the complex number system.
In the complex numbers, the number —1 has a square root. Now our
number 1, the unity, is (1,0). And therefore —1 is (—1,0). Its square
root is in fact (0,1). Let us verify this claim:

(0,1)-(0,1)=(0-0—1-1,0-1+1-0) = (—1,0),

as claimed.

In practice, when we use the complex numbers, we use the simpler
symbol 1 to denote (1,0) and the special symbol i to denote (0,1). This
means that we can write any complex number (a, b) as

(a,0)=a-(L,0)+b-(0,1)=a-14+b-i=a+bi.

If you consult mathematics books? about the complex numbers, this is
how you will find them written. Observe that, in this new notation,
1-1=—1.

Just for practice, let us add two complex numbers using our new
notation:

(3—9)+(4+6i)=3+4+4)+i((-9)+6)=T7-—3i.
Now let us multiply two complex numbers using the new notation:

(3—9i)- (A+6i)=3-4+3-6i—9i-4—9i-6i
=12 + 18i — 36i — 54i”
=12 —18i — 54 - (—1)
=66 — 18¢.
21t is worth noting that electrical engineers use the letter j to denote the square root

of —1. This rarely gives rise to any confusion, since one can tell from context whether
one is dealing with mathematicians or engineers.
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For You to Try: Verify that the complex numbers 7 —¢ and 7+ ¢ are
both roots of the polynomial equation p(z) = x* — 152% + 642 — 50.

For You to Try: Calculate the reciprocal of the complex number
2z = 4 — 51 using the x + iy notation for complex numbers.

8.4 The Fundamental Theorem of Algebra

Gauss’s theorem (the celebrated Fundamental Theorem of Algebra) is
that any polynomial with real coefficients

p(2) = ap+ arz + az2® + -+ ap_1 2"+ ap2®,

a; € R, of degree at least one has a complex root. To get an idea of why
this is true, let us return to our original definition of complex numbers
in the last section: ordered pairs (x,y) of real numbers. It is natural to
picture the complex numbers in a plane. [This is called, for historical
reasons, an Argand diagram.] See Figure 8.2. Now we will think of the
polynomial function p as mapping the complex plane to itself. We may
suppose that the constant term agy of the polynomial is non-zero—for
otherwise 0 itself would be a root of the polynomial and there would be
nothing more to prove.

Now we think of the complex plane as a union of circles centered at
the origin—Figure 8.3. If we consider the action of p on a wvery large
circle—with some huge radius R—then of course the term of the poly-
nomial that is most significant is the top degree term a;z*. It dwarfs all
the other terms when it is applied to a complex number on that circle
of the huge radius R (Figure 8.4). And what it does to that huge circle
is it wraps it around itself k£ times. The image of the circle of radius R
under that top-order monomial is another huge circle of radius |ax|RF.
See Figure 8.5.

Let us instead now consider the action of the polynomial p on a very
tiny circle, with some very small (much less than 1) radius r, centered
at the origin (Figure 8.6). Now larger powers of the variable, lying on
this little circle, will make it even smaller. So the most significant terms
in the action of p on this circle are the zero-degree term ag and the



220 Chapter 8: Complex Numbers and Polynomials

A\

Figure 8.2

Figure 8.3
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v

Figure 8.4

first-degree term a;z. The image of the little circle centered at the origin
under ag+ay 2 is another circle of radius |a,|r—centered at ay. See Figure
8.7.

Now the important thing to notice, as you examine Figures 8.4, 8.5,
8.6 and 8.7, is that the one circle of radius R is mapped to a circle that
surrounds the origin, and the othe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>