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GENERAL PREFACE

Dov Gabbay, Paul Thagard and John Woods

Whenever science operates at the cutting edge of what is known, it ijuvariably
runs into philosophical issues about the nature of knowledge and reality. Scieutific
controversies raise such questions as the relation of theory and experiment, the
nature of explanation, and the extent to which science can approximate to the
truth. Within particular sciences, special concerns arise about what exists and
how it can be known, for example in physics about the nature of space and time,
and in psychology about the nature of consciousness. Hence the philosophy of
science is an essential part of the scientific Investigation of the world.

In recent dceades, philosophy of science has becomme an incrcasingly central
part of philosophy in gencral. Although there are still philosophers who think
that theories of knowledge and reality can be developed by pure reflection, much
currcnt philosophical work finds it necessary and valuable to take into account
relevant scientific findings. For example, the philosophy of mind is now closely
tied to cmpirical psychology, and political theory often intersects with economics.
Thus philosophy of science provides a valuable bridge between philosophical and
scientific inquiry.

More and more, the philosophy of science concerns itself not just with general
issues about the nature and validity of science, but cspecially with particular issues
that arise in specific sciences, Accordingly, we have organized this Handbook into
many volumes reflecting the full range of current research in the philosophy of
science. We invited volume editors who arc fully involved in the specific sciences,
and are delighted that they have solicited contributions by scientifically-informed
philosophers and (in a few cases) philosophically-informed scientists. The resuit
is the most compreheusive review ever provided of the philosophy of science.

Iere are the volumes in the Handbook:

Philosophy of Science: Focal Issuves, edited by Theo Kuipers.

Philosophy of Physics, edited by John Earman and Jeremy Butterficld.
Philosophy of Biology, edited by Mohan Matthen and Christopher Stephens.
Philosophy of Mathematics, edited by Andrew D. Irvine.

Philosophy of Logic, edited by Dale Jacquette.

Philosophy of Chemistry and Pharmacology, edited by Andrea Woody,
Robin Hendry and Paul Needham.



vi Dov Gabbay, Faul Thagard and John Woods
Philosophy of Statistics, edited by Prasanta 5. Bandyopadhvay and Malcolm
Forster.

Philosophy of Information, edited by Pieter Adriaans and Johan van Ben-
them.

Philosophy of Technological Sciences, edited by Anthonic Meijers.
Philoscphy of Complex Systems, edited by Cliff Hooker.

Philosophy of Ecology, edited by Bryson Brown, Kent Peacock
and Kevin de Laplante.

Philosophy of Psychology and Cognitive Science, edited by Pau Thagard.
Philosophy of Economics, edited by Uskali Mki.

Philosophy of Linguistics, edited by Ruth Kempson, Tim Fernando and
Nicholas Asher.

Philosophy of Anthropology and Scciology, edited by Stephen Turner and
Mark Risjord.

Philosophy of Medicineg, cdited by Fred Gifford.

Details about the contents and publishing schedule of the volumes can be found
at http://www_johnwoods.ca/HPS/.

As general editors, we are extremely grateful to the volume editors for arranging
such a distinguished array of contributors and for managing their contributions.
Production of these volumes has been a huge enterprise, and our warmest thanks
go to Jane Spuwrr and Carol Woods for putting them together. Thanks also to
Andy Deelen and Arjen Sevenster at Elsevier for their support and direction.



PREFACE

One of the most striking features of mathematics is the fact that we arc much
more certain about what mathematical knowledge we have than ahout what math-
ematical knowledge is knowledge of. Mathematical knowledge is gencrally accepted
to be more certain than any other branch of knowledge; but unlike other scientilic
disciplines, the subject matter of mathematics remains controversial.

In the scietices we may not be sure our theories are correct, but at least we know
what it is we are studying. Physics s the study of matter and its motion within
space and time. Biclogy is the study of living organisins and how they react and
interact with their environment. Chemistry is the study of the structure of, and
interactions between, the elements. When man first began speculating about the
naturc of the Sun and the Moon, he may not have been sure his theories were
correct, but at least he could point with confidence to the objects about which he
was theorizing. In all of these cases and others we know that the objects under
investigation -— physical matter, living organisms, the known elements, the Sun
and the Moon - exist and that ihey are objects within the (physical) world.

In mathematics we face a different situation. Although we are all quite certain
that the Pythagorean Theorem, the Prime Number Theorem, Cantor's Theorem
and inmunerable other theorems are true, we are much less confident about what
it is to which these theorcms refer. Arc triangles, numbers, sets, functions and
groups physical entities of some kind? Are they objectively existing objects in
some nou-physical, mathematical realm? Are they ideas that are present only in
the mind? Or do mathematical truths not involve referents of any kind? It Is these
kinds of questions that force philosophers and mathematicians alike to focus their
attention on issues in the philosophy of mathematics.

Orver the eenturies a number of reasonably well-defined positions have been de-
veloped and it is these positions, following a thorough and helpful overview by W.
D. Hart,' that are analyzed in the current volume. The realist holds that math-
ematical entitics exist independently of the human mind or, as Mark Balaguer
tells us, realism is “the view that our mathematical theories are true descriptions
of some real part of the world.”? The anti-rcalist claims the opposite, namely
that mathematical entities, if they exist at all, are a product of human invention.
Hence the long-standing debate about whether mathematical truths are discovered
or invented. Platonic realism {or Platonism) adds to realism the further provision
that mathematical entities cxist independently of the vatural {or physical) world.

W, D, [lart, “Les Lisisons Dangereuses”, this volume, pp. 1-33.
2xlark Balaguer, *Realism and Anti-realism in Mathematics,” this valume, pp. 35 -101.
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Aristotelian realism {or Aristotelianism) adds the contrary provision, namely that
mathematical entitics are somchow a part of the natural {or physical) world or,
as James Franklin puts it, that “mathematics is a science of the real world, just
as much as biology or sociology are.”® Platonic realists such as G.H. Hardy, Kurt
(Gadel and Paul Erdds are thus regularly forced to postulate some form of nonphys-
ical mathematical perception, distinct from but analogous to sense perception. In
contrast, as David Bostock reminds us, Aristotelian vealists such as John Stuart
Mill typically argue that cmpiricism - the theory that all knowledge, including
mathematical knowledge, is ultimately derivable from sense expericnce - “is per-
haps most naturally combined with Aristotelian realism.”*

The main difficulty associated with Platonism is that, if it Is correct, mathe-
matical perception will appear no longer to be compatible with a purely natural
understanding of the world. The main difficulty associated with Aristotelianism
is that, if it is correct, a great deal of mathematics (especially those parts of
mathematics that are not purely finitary) will appear to outrun our (purely finite)
observations and experiences. DBoth the Kantian (who holds that mathematical
knowledge is synthetic and a priort) and the logicist (who holds that mathematics
is reducible to logic, and hence that mathematical knowledge is analytic) attempt
to resolve these challenges by arguing that mathematical truths are discoverable
by rcason aleone, and hence not tied to any particular subject matter. As Mary
Tiles tells us, Kant’s claim that mathematical knowledge is synthetic o priori has
two separate components. The first is that mathematics claims to provide o priori
knowledge of certain objects because “it is the scicnce of the forms of intuition™;
the second is that “the way in which mathematical knowledge is gained is through
the synthesis {construction} of objects corresponding to its concepts, not by the
analysis of concepts.”® Similarly, initial accounts of logicism aimed to show that,
like logical truths, mathematical truths are “truths in every possible structure”
and it is for this reason that they can be discovered a priori, simply because “they
do not exclude any possibilitics.”® Exactly how much, if any, of such programs
can be salvaged in the face of contemporary meta-theoretical results remains a
matter of debate. Constructivism, the view that mathematics studies only enti-
ties that (at least in principle) can be explicitly constructed, attempts to resolve
the problem by focusing mathematical theories solely on activities of the human
mind. In Charles McCarty’s helpful phrase, constructivism in matheniatics ulti-
mately boils down to a commitinent to the “business of practice rather than of
prineiple.””  Critics claim that all three positious — Kantianism, logicism and
constructivisin — ignore large portions of mathematics’ central subject matter.
{Constructivisin in particular, because of the emphasis it places upon verifiability,
is regularly accused of failing to account for the impersonal, mind-independent

3James Frankiin, “Aristotelian Realism,” this volume, pp. 103- 155,

4David Bostock, “Empiricism in the Philosophy of Mathematics,” tins volume, pp. 157 229.

SMary Tiles, “A Kantian Perspective on the Philosophy of Mathematics,” this volume,
pp. 231-270.

8 Jaakko Hintikka, “Logicism,” this volume, pp. 271-200.

“Charles McCarty, “Constructivism in Mathematics,” this volume, pp. 311-343,
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parts of mathematics.}

Formalism, the view that mathematics is simply the *formal manipulations of
essentially nieaningless symbols according to strictly prescribed rules,”® goes a step
further, arguing that mathematics nced not be considered to be about numbers
or shapes or sets or probabilities at all since, technically speaking, mathematics
need not be aboul anything. But if so, an explanation of how we obtain our
non-formal, intuitive mathemnatical intuitions, and of how mathematics integrates
so effectively with the natural sciences, scems to be wanting. Fictionalism, the
view that mathematics is in an important sense dispensable since it is mercly a
conservative cxtension of non-mathematical physics (that is, that every physical
fact provable in mathematical physics is already provable in non-mathematical
physics without the use of mathematics), can be attractive in this context. But
again, it is a theory that fails to coincide with the intuitions many people —
including many working mathematicians — have about the need for a realist-based
semantics. As Daniel Bonevac tells us, even if Actionalist discourse in mathematics
is largely successful, we are still entitled to ask why *that discourse, as opposcd
to other possible competitors, succeeds™: and as he reminds us in response to
such a question, any citation of a fact threatens to collapse the fictionalist project
into cither a reductive or modal one, something not easily compatible with the
fictionalist’s original aims.®

The moral appears to be that mathematics sits uncomiortably half way between
logic and science. On the one hand, many are drawn to the view that mathematics
is an axiomatic, a priore discipline, a discipline whose knowledge claims arc in some
way independent of the study of the contingent, physical world. On the other hand,
others arc struck by how mathematics integrates so scamlessly with the natural
sciences and how it is the world — and not language or reason or anything clse
— that continually serves as the main intuition pump for advances even in pure
mathematics.

In fact, in spite of its abstract nature, the origins of almest all branches of
mathematics turn out to be intimately related to our innumerable observatious of,
and interactions with, the ordinary physical world. Counting, measnring, group-
ing, pambling and the many other activities and cxperiences that bring us into
contact with ordinary physical objects and events all play a fundamental role in
generating new pathematical intuitions. This is so despite the sometimes-made
claim that mathematical progress has often occurred independently of real-world
applications. Standardly cited advances such as early Greek discoveries concerning
the parabola, the ellipse and the hyperbola, the advent of Riemannian geometries
and other non-Buclidean geometries well in advance of their application in contem-
porary relativistic physics, and the initial development of group theory as long ago
as the early 1800s themseclves all serve as telling counterexamples to such claims.
Group theory, it turns out, was developed as a result of attemnpts to solve sim-
ple palynomial equations, cquations that of course have immediate application in

BParer Simons, “Formalism,” this volume, pp. 201 -310.
IDanicl Bonevae, “Fictionalism,” this volume, piv. 345393,



xi Preface

numerous areas. Non-Euclidian geometrics arcse in respouse to logical problems
intimately associated with traditional Euclidean geometry, a geometry that, at
the time, was understood to involve the study of real space. Early Greek work
studying curves resulted from applied work on sundials. Mathematics, it seems,
Iras always been linked to our interactions with the world arcund us and to the
careful, systematic, scientific investigation of mature.

It is in this same context of real-world applications that fundamental ques-
tious in the philosophy of mathematics have also arisen. Paradigmatic over the
past century have been questions associated with issues in set theory, probability
theory, computability theory, and theories of inconsistent mathematics, all now
fundamentally important branches of mathematics that have grown as much from
a dissatisfaction with traditional answers to philosophical questions as from any
other source. In the case of set theory, dissatisfaction with our understanding
of the relationship between a predicate’s intension and its extension has led to
the development of a remarkably simple but rich theory. As Akihiro Kanamori
reininds us, set theory has evolved “from a web of intensions to a theory of exten-
sion par excellence ™™ At the same time, striking new developments continue to
be made, as we see in work done by Peter Apostoli, Roland Hinnion, Akira Kanda
and Thierry Libert.!! In the case of probability theory, the frustrating issue of
how best to interpret the basic concepts of the theory has long been recognized.
But as Jon Williamson suggests, Bayesianismn, the view that understands probabil-
ities as “rational degrees of belicf”, may help us bridge the gap between objective
chance and subjective belief.!? Wilfried Sieg!® and Chris Mortensen™ pive us
similarly exciting characterizations of developments in computability theory and
in the theory of inconsistent mathematics respectively.

Over the centuries the philosophy of mathematics has traditionally centered
upon two types of problem. The first has been problems associated with discover-
ing and accounting for the nature of mathematical knowledge. For example, what
kind of explanation should be given of mathematical knowledge? Is all mathemat-
ical knowledge justified deductively? Is it all a4 priori? Is it known independently
of application? The second type of problemn has been associated with discovering
whether there exists s mathematical reality and, if so, what about its naturc can
be discovered? For example, what is a number? How are numbers, sets and other
mathematical entities related? Are mathematical entities needed to account for
mathematical truth? If they exist, are mathematical entities such as numbers and
fanctions transcendent and non-material? QOr are they in some way a part of, or
reducible to, the natural world? During much of the twentieth century it was the
first of these two types of problem that was assumed to be fundamental. Logicism,
formalisin and intuitionism all took as their starting point the presupposition that

10 Akihiro Kanamori, “Set Theory from Cantor to Cohen,” this volume, pp. 395 450,

Upeter Apostoli, Roland Hinnion, Akira Kanda and Thicrry Libert, “Altermative Set Theo-
ries,” this volume, pp. 461-4§1.

12 105 Williamson, “Philosophies of Probability,” this volue, pp. 493-533.

L3silfried Sieg, “Computability,” this volume, pp. 335630,

MChris Mortensen, “inconsistent Mathemalics,” this volume, pp. 631 649,
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it was necessary to account for the absolute certainty that was assumed to be
present in all genuine mathematical knowledge. As a result, all three schools cin-
phasized that they could account for the resolution of antinomies, such as Russell’s
paradox, in a satisfactory way. All three hoped that such a crisis in the foundations
of mathematics could be guaranteed never to happen again. Their disagreements
were over matters of strategy, not over ultimate goals. Only in the latter parts of
the century was there a shift away from attempting to account for the certainty
of mathematical knowledge towards other arcas in the philosophy of mathematics.
This leaves us, as Mark Colyvan says, “with one of the most intrigning features
of mathematics,” 1% its applicability to empirical science, and it on this topic that
the current volume ends.

For their help in preparing this volume, my thanks goes to Jane Spurr and Carol
Woods as well as to the series editors, Dov Gabbay, Paul Thagard and John Woods,
but most especially to the contributors for their hard work, generosity of spirit,
and cspecially their redoubtable expertise in such a broad range of fascinating and
important topics.

Andrew D. Irvine
University of British Columbia

Bhark Colyvan, “Mathematics and the World,” this voluine, pp. 651 -702,
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LES LIAISONS DANGEREUSES

W. D. Hart

Mathematics and philosophy are roughly coeval in our historical iimagination.
Plato’s dialogues form the oldest surviving extended body of work in the canon of
western philosophy. Euclid's Elements is the oldest surviving intact monurnent in
the evolution of our mathematics. Plato taught Aristotle, who died in 322 B.C.,
and Euclid’s floruit is arcund 300 B.C., so the gap from Plato to Euclid is like that
from grandparent to grandchild, and fromm nearly two and a half millennia later,
that gap looks small.

There was of course philosophy hefore Plato. We have fragments froin the pre-
socratics, and Plate made his teacher Socrates the star of most of his dialoguces.
There was mathernatics before Euclid. He scems to have beert as much an editor as
a ruathematician, and probably not the first, The Greeks had invented or discov-
ered proof centuries before; just think of the Pythagorean theorem or the proof of
the irrationality of the square root of two. In Plato’s day, Theatetus seems to have
proved that there are exactly five regular solids, a gorgeous result that impressed
Plato enough to give Theatetus a leading role in a major dialogue. As proofs pro-
liferate, patterns start to emerge, and aficionados want to organize the profusion
of arguments into a coherent whole developed logically fromi a minimal stock of
assumptions. Doubtless there were such cditions of geometry before Euclid, but
his Elements is the work whose authority lasted through the centuries.

Aristotle seems to have been less impressed by mathomatics than Plato. But
Aristotle did begin the systematic study of logic. His account of syliogisms is now
usually assimilated to our monadic quantification theory (and truth functional
logic is usually credited to the later Stoic philosophers).! An interest in logic
could have arisen from the cffort to piece disparate proofs together into a unified
and coherent system, though syllegistic is a pretty thin description of the reasoning
deployed in ancient geometry. 5till, we should not be impatient, since it was not
until the nineteenth century that people like de Morgan® and Peirce began to
work out a gysteinatic understanding of relations, which was crucial in the logicist
regimentation of mathematics.

But besides starting systematic logic, Aristotle alse articulated a version, or
a vision, of the axiomatic method. In the Poslerior Analytics he describes a
real body of knowledge as deduced by infallible logic from axioms. The axioms

LWilliam and Martha Kneale, The Development of Logic {Oxford: Clarendon Press, 1962),

?All horses are animals, from which it follows that all heads of horses are heads of aninals.
De Morpan observed that Aristotle’s syllogistic does not suflice to certify the validity of this
inference, which turns on relations and pelyadic quantification.

Handhook of the Philosophy of Sclence. Philosophy of Mathematios

Velume editor: Andrew T3 Irvine, General editors: Tov M. Gabbay, Paul Thagard and John
Woods.

© 2009 Elsevier B.V. All righus reserved.



2 W. D. Hart

should have an inunediate appeal, and the logic should transmit this appeal to
the theorems. As we said, Aristotle wrote before Euclid. But he might have been
trying to articulate an ideal he saw struggling to emerge from editions of geometry
older than Euclid. And one wonders whether Euclid might have been struggling
to realize an ideal carlicr articulated in Aristotle.

This is our theme, the dangerous liaisons between mathcematics and philosophy.
They are not just coevel, like strangers or distant acquaintances who happen to
have been born in the same town within a short span of time. They have also
becn bedfellows, sometimes strange even if not made so by politics. We will sketch
some of their offspring. Some does not mean all; ours will not be a family tree, but
a selection of hybrids. And because I am a philosopher who admires mathematics
but does not claim to be & mathematician, most of these compounds will have
more philosophical clements than mathernatical.

In some ways, the axiomatic method can seem like proof writ large. To be
sure, a proof aims fo establish a single theorem, while in an exiomatic system
we prove a sequence of theorems. Iu the heat of live mathematics, one does not
practice axiomaticallyv. Omne does not copy one’s premisses out of a constitution
written down and approved by the founding mathematical fathers and mothers.
One starts instead from what is clear, and clarity here prebably means what one’s
peers will accept without complaint. So one needs te be sensitive to one’s peers,
and for pretty much all of us this requires being admitted to the comununity of peers
through an education. But once the community has approved a body of proofs,
some of the pecrs may sct out to regiment it. This process includes collecting the
clear starting premisses that passed miuster, selecting from them some from which
the rest can be derived, and so on until we have axiomns {rom which a sequence
of theorems follow, where of course some later theorems are deduced from carlier.
Once such a system is established, incorporability of a new argument in it can
becouic a standard for being a proof. Euclid set such a standard in geomelry for
centuries, and set theory (usually in Zeninelo-Frankel form) did so for mathematics
generally in the twenticth century.

This is a rather sociological description of axiomatization. Philosophers and
inathematiciansg share a taste for long and abstract chains of reasoning, but they
often differ in how they get started. Mathematicians seem to like their premisses
t0 be shared, perhaps throughout their community, or as close to that as possible.
That way the community can be expected to follow their ressoning. There are
philosophers, like Aristotle end Kant, who seem not to want to frighten the horses,
but they nay be trying to calin things down after carlier philosophers like Plato
and Hune have stirred them up by going where the reasoning led from premisses
for which they may have claimed more popularity than was generally recognized.
At any rate, philosophy locks more contentious than mathematics. But however
mnuch they disagreed elsewhere, Plato and Aristotle seem to have agreed that a
version of the axiomatic method describes an ideal for knowledge.

Even if it is not perfectly clear whether this ideal starts life in mathematics
or in philosophy, the axiomatic method is a mode of exposition that has become
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a tried and true device in the mathematical reperteire. It was exaggerated by
philosophers into the ideal of foundations of knowledge. or this or that department
of knowledge. A vivid cxample is Spinoza writing his Ethics in more geometrico.
It is perhaps ironic to note that the Latin word “mos” from which “more” declines
means custom or usage, which sceris more sociological than Spineza probably had
in mind. {Anyone trying to formalize Spinoza’s system by modern lights is in for
a bad time.) The basic philosophical idea seems to be that there is a right way
to organize for justification truths, beliefs, or knowledge. This idea has gripped
philosophical imaginatious for centuries.

The ideal can be articulated in different ways. Sometimes the right order is
the right order in which to justify our beliefs or knowledge. In Descartes’s urban
renewal of knowledge we are to rebuild from clear and distinct ideas of indubitable
certainty like the cogito. In more empiricist philosophers like Locke, DBerkeley,
and Huine we arc to begin from sense experience, and increasingly their problem
is whether we can get beyond our impressions without losing the certainty that
meade perception an appealing foundation.

It was this empirical spectre of skepticisin that startled the horses and woke
Kant from his dogmatic slumbers. To trace out firm foundations for knowledge,
he looked to the surest systernatic body of knowledge going, and from the Greeks
on, mathematics had always been the best-developed system of the most absolite
truth known with the greatest certainty. In Kant’s day and before, mathematics
meant first and foremost geometry, and geometry meant Euclid’s system not just
of planes but also of the space in which we live and move and have our being.
The idea of other gpaces is later and quite unkantian, and the mathematics of
number (beyond elementary nunber theory like the infinity of the primes) achieves
independence only in the ninetcenth century. Kant does of course give sensibility
a basic role in contributing to knowledge. But it is his conception of the character
of geometrical knowledge that neot only gets his critical philosophy going, but also
sets an agenda for many later and rather unkantian philosophers.

To exposit this conception we need some distinctions.” Assume the anachro-
nistically labeled traditicnal analysis of knowledge as justified true belief. Episte-
niology 18 much morte about justification than knowledge. Kant calls knowledge o
posteriort when it is justified, even in part, by appeal to sense experience. Knowl-
edge is a priori when it is knowledge but not ¢ posteriori, that is, not justified
even in part by experience. Kant thought that mathematics, that is, geometry, and
logic arc systematic bodies of a priori knowledge. We will consider an argument
for this thought in a moment.

Consider next judgments. This is Kant's usual termn for mental states like belicfs
{such as that grass is green or seven is prime) and thoughts. Around the turn of

IKant draws his distinctions in the introduction to The Critigue of Pure Reason. trans. Nor-
man Kemp Smith (London: Machiilan, 1983). Moore discussed propositions in chapter 3 of
Some Main Problems of Philosophy (New York: Collier Books, 1862). The basic Tarski picce
is “The Coucept of Truth in Formalized Languages,” in Logic, Semantics, and Metamathemat-
ey, trans. J. 1. Woodger (Oxford: Clarendon Press, 1956). For Austin, see his “Truth,” in
Philosophical Papers, ed. I. O, Urmson and G. J. Warnock {Oxford: Clarendon Press, 1661},
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the twentieth century, G. E. Moore and Russell will replace judgments by propo-
sitions, which are platonic abstracta like numbers rather than mental. Frege's
thoughts are more like Russell’s propositions than Kant's judgments. During the
twentieth century, philosopher-logicians like Tarski will replace both judgments
and propositions with sentences. Sentences are linguistic items where judgments
and propositions were supposed to be independent of language. (Around 1950
J. L. Austin will try to replace sentences with statements thought of as actions
performed using scntences.) Kant divides judgments into analytic and synthetic.
Analytic judgments are reminiscent of Locke's trifling propositions {not to be con-
fused with russellian propesitions) and Hume’s relations of ideas.

One way to move in on analyticity is through examples. An example of Moore's
is the claim that all bachelors are unmarried. The Social Science Research Council
would be ill advised to fund a door-to-door survey in which bachelors are asked
whether they are married, the results are tallied, and lnally the bold hypothesis
that all of them are unmarried is advanced. This would be a waste because, so
the story goes, being unmarried is part of what it means to be a bachelor.

It secins clear that there is some sort of difference between the claim that bach-
elors arc unmarried and the claim that bachelors are more flush fnancially than
husbands. Controversy sets in when we try to articulate the difference. Kant
gave two accounts of analyticity. On ong, the predicate of an analytic judgment is
contained in its subject. Note three points about this account. First, it seems to
presuppose that all judgments are of subject-predicate fortn,. Whatever grammar-
ians may say, Russell was excited by the revelation in the logic reforming around
him of other forms, especially quantificational, of judgment. We fullow Russell,
so Kant’s account may seem too narrow to us. Sccond, his account presupposes
that judgments have subjects and predicates. That is. I{ant scems to be reading
sentence structure back into judgments. One role in which Kant’s judgments or
Russell’s propositions or Tarski’s sentences are cast is as bearers of the truth val-
1tes; these are the thiugs that are true or false. Whether it is true that Socrates wag
snub-nosed depends in part on the man Socrates and what his nose was like. That
ig, the truth bearers {or vehicles, as Austin called them) need to be articulated into
bits smaller than whole truth vehieles. Sentences wear such an articulation into
smaller bits, words, on their inscribed faces. It seems all but irresistible to read
this articulation back into the judgments or propositions expressed by sentences.
Bnt then Tarski’s choice of sentences as truth vehicles scems more up front than
Kant's judgments or Russell’s propositions. Third, Kant’s trope of the predicate
of a judgment being contained in its subject is clearly a metaphor, and this leaves
us without a literal account of analyticity. On Kant's other account of analytic-
ity, the denial of an analytic judgment cannot be thought without contradiction.
Never mind that thought here seems to assume the analyticity of logic without
argument. What might be worth noting here is the relativity of this account to
which premisses we are allowed. If, for example, it is one of our premisses that
bachelors are richer than husbands, we will not be able to think the dental of the
judgment that bachelors are richer than husbands without contradiction. That
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would make the judgment analytic contrary to the motivation for the notion.

For much of the twentieth century, the quick gloss on analyticity was that a
sentence (proposition, judgment) is analytic if it is true by virtne of the meanings
of the words in the sentence {used to express the proposition or judgment). This
gloss secms confused. Analyticity is at best a mode of justification, not of truth. It
is an ancient and honorable view that truth is correspondence to fact; for a sentence
to be true, the world should b¢ as the sentence says it is. Moreover, truth is
univocal. That is why the conjunction of two truths from areas however disparate
is nonctheless trne. The truth that bachelors are unmarried (or, for that matter,
bachelors) is as much about bachelors as the clabm that bachelors are richer than
husbands, and if true, they arc so because bachelors are unmarried, and richer than
husbands. What was distinetive about the claims attracting the label analytic was
cpistemic, a matter of justification rather than the nature of a kind of truth. The
judgment that bachelors are unmarried would then be analytic if knowledge of the
meanings of the words used to express the judgment sufficed without experience
of its subject matter {bachelors) to justify belief in the judgment.

This provisional story is no better than our grasp of what knowledge of the
meanings of words comes to, and that grasp is at best pretty shaky. How much
it makes analytic is unclear. Kant said it is synthetic that all bodies are heavy.
(The synthetic judgments arc those that arc not analytic. Analyticity wears the
trousers in its distinction, as being e posteriori does in ifs; they get a positive
account, and their opposites are defined by negation.) This example is plansible
if we are reluctant to build gravitational attraction into the meaning of the word
“body.” But it would be embarrassing to have {o give a justification for this
reluctance. Kant sald it is analytic that all bodics are extended. This is rather
an odd example for Kant to give. Like any eighteenth-century intellectual, Kant
admired Newton. Indeed, part of Kant's objective was to secure certainty for much
of Newton's physics, and Kant was not innocent of that science. Anyvone familiar
with Newton will remember how much he makes of mass-points. Does Kant mean
t0 exile the mass-points from the bodies by definition? Is he defining mass-points
out of existence? Analvticity is often a cloak for arbitrary legislation.

With two binary distinctions, we got four compounds. Kant ruled out the ana-
lytic @ pasterior:. A survey conld amass cvidence that all bachelors are unmarried,
but such cases do not scem worth fretting over. The synthetic a pasteriori would
include most of the natural science, the physics, astronomy, and chemistry coming
to be in Kant's day. Since a posteriori knowledge is justified by experience, we
have at least the beginnings of a story about how such science is known. But since
a priori knowledge is defined negatively as not o posieriori, there is a question
how it could be justified. Kant thought logic is known ¢ priori, but is analytic, and
so justified from the meanings of logical words like “if” and “all” and “is.” Kant
wrote during the low-water mark of the history of logic. The achievements of the
Schoolmen had been largely rejected during the enthusiasm of the Renaissance,
and what was loft was Aristotle’s syllogistic and some Stoic truth function theory.
It is hardly a blunder to think Barbara (If all cats are vertebrates and all verte-
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brates are animals, then all cats are animals) can be certified by an elaboration of
the meanings of “all” and “are,” but logic did not stick at its kantian low-water
mark.

The moneybox was a priort knowledge of synthetic truths. Such truths are not
known from experience, nor are they justilied from the meanings of the words used
to express them. So how are they kuown? How, Kant asks, is synthetic a priori
knowledge possible? This question is the pretext for the critical philosophy, and
Kant’s answer is transcendental idealism. But Kant’s question has purchase only
if there is synthetic @ priori knowledge. To appreciate one example whose consid-
eration goes back to the nineteenth century, we should make a third distinction,
this time between necessary and contingent truths. People don’t usually read for
long standing up, so you arc probably not standing as you read this. If so, it is true
that vou are not standing. But you could have been, so that truth is contingent.
You are also identical with yourself, and that is not soinething you could fail wo
be, so that truth is necessary. The contingent truths could be otherwisce, but the
nceessary ones could not. At B3 in the fivst Critigue, Kant says that experience
teaches us that a thing is so and so, but not that it cannot be otherwise. In the
ways we can sce color and shape, or feel shape and texture, we have no experi-
ence of necessity or (nonactual) possibility, only of actuality. So, Kant thought,
knowledge of necessity is a priori. Kripke! later observed that we sometimes can
infer a necessary truth from two premisses, one known a posteriori, so if a pri-
ort knowledge rules out all justification by experience, some necessary truths are
known o posteriort. Fair enough; these examples Kant missed out, and even in
them the necessity in the conclusion conies from the premiss known ¢ priori, which
vindicates Kant somewhat. The ninetecnth-century examnple is that nothing could
be red all over and green all over at the same time and place. That these colors
exclude each other docs scem to be a necessary truth; in general, determinants
(for example, being six feet tall and being seven feet tall) of a determinable (for
example, height} exclude one another necessarily. We cannot imagine an object
having both, and the lmagination is the royal rvad to knowledge of possibility
and necessity (even if it does not always accord with, say, materialist prejudices).
Granted that it is necessary that nothing is at once red all over and green all over,
knowledge of it would be a priori. But, the story continues, the colors red and
green are simple and basic enough that no definitions of them in more basic terms
arc available, so there are no definitions of them from which to show that this
necessity is analytic. It is then a synthetic necessity known e priori. This example
has been much discussed and no plausible definitions of the colors that would show
it analytic have been generally accepted.® On the other hand, it bucks the trend

1Saul A, Kripke, Noming and Necessity (Cambridge: Harvard University Press, 1972).

"See, for example, Arthur Pap, “Logical Nonsense," Philosophy and Phenomenological Re-
search 9 (1948}, 269-83; “Are All Necessary Propositions Analytic? Philosophical Heview 50
(1949), 200-320, Flements of dAnalytic Philosophy {New York: MacMillan, 1949), chap. 16b;
Hilary Putnam, “Reds, Greens, and Logical Anaiysis,” Philosophicel Review 85 {1956), 206-17;
Pap, “Once More: Colors and the Synthetic a Priori,” Philosophical Rewew 66 {1957), B4-99;
Putnam, “Red and Green All Over Again: A Rejoinder to Arthur Pap,” Philosophical Review
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in most twentieth-century analytic philosophy that uecessity is our creature; there
is no necessity out there in nature independent of us.

That determinants of the same determinable exclude one another necessarily
vields a relatively scattered fund of examples, so if that were the only synthetic
a priori knowledge, it would have been less front and center on the postkantian
philosophical agenda. But Kant thought that mathematics is synthetic a priori.
That it is & prior: might seem cvident, since mathematicians do not perform
experinients on prime numbers, nor do they make expeditions to examine exotic
ones; they just sit around and think, and what could be more a priori? His
argninent for the synmthetic is more dubious. His cxample is that 7 + 5 = 12.
He says that the concept of the sum of 7 and 5 contains nothing save the union
of the two numbers into one, and in this no thought is being taken as to what
that single number may be which combines both. He says that the concept of
12 is by no means already thought in merely thinking this union of 7 and 5, and
analyze our concept of such a sumn as we please, still we will never find the 12
in it. Instead, we mnst go outside the concepts of 7, 5, and addition, and call
in examples {like intuitions of fingers or points) to see the number 12 come into
being. It is probably anachronistic t0 be too fussy about whether Kant is here
discussing psychology (ideas of 7, 5, sun1, and 12) or semantics {the meanings of
numerals and fnnction signs). But in the way a dictionary definition for “bachclor™
scems forthicoming and uncontroversial, definitions for the numerals and function
signs are more problematic. We can, to be sure, label some claims tn which they
are usced defnitions, and from these deduce some conventional arithmetic wisdom
logically, but even if all this is necessarily true, where is the semantics independent
of the philosophy at issue to setile whether these claims arc analytic or synthetie?
No onc has stated such a senantics that convinces many others.

But maybe Hume can help Kant, out here. In part IX of his Dialogues Concern-
ing Natural Religion, Hume turns to the a priori arguments for the cxistence of
God, like Anselm’s ontological argnment. Usually Hume is as patient as all get out
at criticism; he likes to give his opponent all the rope he wants with which to hang
himself. But here Hume ig brisk. We might try to articulate what is eating Hume
Ly saying that no existence proposition is analytic; you cannot make things exist
however you define terms purporting to denote them. Of course Hume did not
use Kant's term of art “analytic.” In Hune's vocabulary we could say existence
is always a matter of fact, never a relation of ideas. But the thesis that no exis-
tence proposition is analytie seems to be one of the few constants in philesophical
cousciences. For alinost any philosophical view, one can find a streteh in Russell’s
life, for example, where he believed that view; novertheless, not cven Wittgenstein
vould con Russell into analytic existence.

Let us offer Kant Hume's thesis in kantian terms: no existence judgment is ana-
lytie. Now note that there are many existence claims in mathematics, witness the
infinity of primes, the five regular solids, and undecidable propositions of Principie

66 (1457}, 100-03.
SDavid Hurme, Dialogues Concerning Natural Religion (New York: Hofner Press, 1948}
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Muothematica and related systems. It would follow that some mathematical truths
are synthetic, and so granting that they arc kiown a prieri, mathematics provides
a fund of synthetic ¢ prior: knowledge. How extensive a fund would remain to be
seen, but if it requires making meaning out, the prospects are dim.

Frege agreed with Kant that geometry is synthetic a priori. Note here Euelid’s
Lfth and most faincus postulate. In the form made familiar by the eighteenth-
century editor Playfair,” this postulate says that given a line L in a plane and a
point P in that plane not on L, there is one and only one line in the plane through P
parallel to L. This is clearly an cxistence claim, and so by our earlier argument not
analytic but synthetic. But that argument would not have persuaded Frege. Frege®
said that the distinctions between the a priori and a posteriort and between the
analytic and synthetic concern not the content of the judgment but the justification
for making the judgment. {In a footnote to this remwark, Frege adds that he does
not mean to assign new scnses to these terms, but only fo state aecurately what
earlicr writers, Kant in particular, meant by them. The reader may wish to be
careful about whether Kant would have agreed with Frege on this point.) Frege
says that when a proposition is called « posteriori or analvtic in his sense, this is
not a judgment about how we mnight form the content of the proposition in our
cansciousness or about how one might come to believe it, but about the ultimate
ground upon which rests the justifieation for holding it to be true. This is au in-
your-face remark because if assumes flat out that there is a unique and ultimate
ground on which the justification for a proposition rests. Frege perhaps takes
the figure of foundations of knowledge more seriously than any other philosopher.
Frege initiated the analytic style of philosophy. and an important trend in its
development is a loss of confidence in the idea that knowledge has foundations;
in this process we diminished our cxaggeration of the mathematician’s axiomatic
method.

Frege says that to settle whether a truth is analytic or synthetic, @ priori or o
posteriori, we must find the proof of the proposition and follow it right. back to the
primitive trucths. So a truth has a single, unique proof that begins from a unique
stock of primitive truths { Urwaehrheiten). The presuppositions are so pronounced
that one wonders whether they are as metaphysical as epistemic, whether the right
order of truths is their logical order in being as much as the order in which we
may justify them. If the primitive truths from which the proof of the proposition
proceeds are nothing but general logical laws and definitions, then the truth is
analytic. (Here he remiuds us that when a singular term, for example, is defined
by a definite description, the definition is admissible only if the predicate in the
definitc description is true of at least and at most one thing, and we will need
to find the primitive truths on which rest these conditions for the admissibility of
the definition.) If the primitive truths belong to the sphere of a special science,

"teath says Playfair's axiom is stated by Proclus. See Euclid, The Thirteen Books of the
filements, trans. and intro. Sir Thoms Heath, vol. 1, 2nd ed. (New York: Dover), p. 220.

YGottlob Frege, The Foundations of Arithmetic, trans. J. L. Austin (Oxford: DBlackwell,
19593, sec. 3.
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then the truth is syuthetic. This account makes analyticity turn on generality
rather than meaning. But the generality cannot be that all the quantifiers in
the primnitive truths are universal, so the primitive truths would be true even if
there were nothing at all, and so cannot prove any existence claims. For Frege is
out to show that the truths of elementary number theory are analytic, and these
require the existence of inlinitely many natural numbers. For a truth to be «
posteriors it must be impossible to prove it without appeal to facts, that is, truths
that cannot be proved and are not general because they contain assertions about
particular objects. Note the absence here of any mention of justihication by sense
experience; the focus is instead on singulay truths about particular objects that in
some absolute sense cannot be proved, so it is almost as metaphysical as epistemic.
For a truth to be a priord, its proof should proceed exclusively from general laws
that neither need nor admit of proof. (Here Frege adds in a footnote an argnment
for general primitive truths.) So on Frege's view, the analytic and the a priori
both descend from utter generality, and we expect a substantial overlap between
them. He does say that the general law underlying the analytic should be logical,
while those underlying the a priori should neither need nor admit of proof. He may
have meant there arce general primitive truths besides those of logic underlying,
say, geametry. The intriguing notion here is of general laws that neither need nor
admit of proof. Need here might mean that we can know, and so be justified in
believing, these general laws without proof, and then the interesting question is
how we know them. To say that they do not admit of proof raises the question
how we would know of a general truth that it cannot be proved, and there is no
standard way to prove such an absolute claim.

Frege's account makes it analytic that logic is analytic. His strategy was to
take over ad hominem from Kant the premiss that logic is analytic. Then he
would reduce the mathematics of elementary number theory to logic. While Euclid
had axiomatized plane geometry millennia before, Dedekind had only recently
axiomatized the natural numbers.® Frege had to define Dedekind’s primitive terms
{zcro, the successor function, and being a number) in purely logical terms, and
then deduce Dedekind's axioms from logic and these definitions. This reduction
may be called logicism in a narrow sense. Given the reduction and the aualyticity
of logic, the analyticity of elementary number theory follows, and that may be
called logicism in a broader sense. Logicism in a broader sense would deprive
Kant’s critical philosophy of some of its presuppositions. From time to time, a
philosopher claims that thus-and-suches {material objects, say) are reducible to
so-and-so (like sense experience). What was new with Frege, and still impressive
to this day, is that instead of blustering, he gets on with it. Thereby he bepan
a constructional tradition in analytic philosophy that incindes Russell, Carnap,
Tarski, Goodman, and David Lewis,'®

PRichard Dedekind, “The Nature and Meaning of Numbers,” in Fssays on the Theory of
Nurithers, trans. W. W. Beman {(New York: Dover, 1963).

Whesides Principia Mathematico, see also Russell's Our Knowledge of the Exzternal World
{New York: Mentor, 1960). Rudolf Carnap, The Logicel Structure of the World, trans. Rolf
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Frege viewed his reduction as an extension of the arithmetization of analysis,
which was a central focus of nincteenth-century mathematics. Analysis is the part
of mathematics with the calculus {differentiation and integration} at its core. New-
ton and Leibniz had invented or discovered the calculus in the seventeenth century,
and Newton put it to work in his physics. That physics was perhaps the single
most notable event in the emergence of natural science, which after the French
Revolution replaced theology as the most prestigious part of knowledge. But in
Principia, Newton did not express himself in terms of the new calculus. Instead his
arguments are mostly novel but recognizable extensions of Euclid, whose anthority
was unabated.!! The public face of the calculus was geometrical. The ounly nun-
bers the Greeks were comfortable recognizing as such were positive whole numbers
{and even one was maybe insufficiently plursl). They talked about proportions but
not fractions or rationals, and they did not have decimals for irrationals. Where
we now talk about funetions, like the square of a number, mathematicians from
the Grecks until Kant’s day might talk about curves, by which they meant literal
curves like the parabola. Differentiation was about tangents to a curve, and inte-
gration was about arca under a curve, and area was less a number than a patch
of the plane.

Euclid’s geometry is mostly finitary. Angles get bisected and polygons have
finitely many sides. Arclimedes had given some gorgeous limiting arguments,
but their infinitary aspect was much of what made them so striking. But as
the calculus developed during the eighteenth century, its infinitary aspect becatne
inescapable. In our expositions, for example, onc of the earliest concepts distinctive
of the caleulus is the notion of, say, a point being the limit of an infinite sequence
of points. The problem is that while in finitary Euclidecan geometry, intuition
(visual imagination) by and large did not lead people recognizably astray, intuition
had begun to founder on paradox among infinitary processes by the turn of the
nineteenth century.!? Here is an example that Henri Lebesque says was current
among schoolboys near the turn of the twentieth. In triangle ABC, let D be the
midpoint of side AB, E of side BC, and F of side AC. Join D and F. and join F
and £

A, George (Berkeley: University of California Press, 1968); Tarski oo trath cited above for the
notion of material adequacy conditions: Nelson Goodman, The Sfructure of Appearance (Indi-
anapolis: Bobbs-Merrill, 1966): David Lewis, Counterfactuals (Cambridge: Harvard University
Press, 1473).

Yivancois e Gandt, Force and Geometry in Newton's Principia, trans. Curtis Wilson
(Princeton: Princeton University Press, 1993).

Y2Henri Lebesgue, Measure and the Integrul, ed. Kenncth O. May (San Francisco. London,
Amsterdam: lolden-Day, 1966).
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It ig familiar from Euclid that quadrilateral ADEF is a parallelogram, and AF
is as long as DE, and EF is as long as DA, Hence, the broken line CFEDB is as
long as the two sides CA and AD together. Now repeat in the two little triangles
FEC and DBE the argument just carried our in ARC to get a four tooth jagged
line cqual to C'4 and AB together. Carry this repetition out ad infinitum, and
the length never changes fromn that of CA and AD together. But the limit of these
jagged lines certainly looks to be side BC. So the sum of two sides of a triangle
is not greater than the third, and a straight scgment is not the shortest distance
between two points. One wonders how the author of the antinomies of pure reason
would have reacted to this infinitary paradox. There may be some relief to be had
in noting that the angles of the teeth never flatten but are always equal to the
angle at A. So the limit of the infinite sequence of jagged lines, assuming we can
Hgure out what this limit is, is not the straight segment BC, but rather a line
that all too often has no single unique dircction. Analysis came to dote on such
examples during the ninetcenth century.

A line each of whose points is arbitrarily close to BC but mostly has no unique
direction {say from B to C or vice versa) is not easy to visualize. To understand
such things, mathematicians turned from intuition to understanding. The calculus
was transposed from geometry to nuinber. With hindsight we can see Descartes
pointing a way to do this. Analytic geometry is usually credited to him. We
are taught to begin cartesian coordinates with the pumber line. This hybrid is
rooted in a one-to-one correspondence between the points on an infinite Euclidean
straight linc and (what we now call) the real nunbers that preserves order, that
is, such that point p is left of point ¢ if and ouly if the number assigned to p is
less than that assigned to ¢. It is not patent how much of our conception of the
reals Descartes shared, so it is probably unfair to ask how he knew there is such
a onc-to-one correspondence. Where we are taught analytic geometry as a way to
use numbers to answer geometrical questions, Descartes used it as a way to answer
numerical questions with geometry. Dut once we lose confidence in the capacity
of geometrical intuition to answer infinitary questions, one strategy would be to
reverse direction and take real numbers more seriously.

To do so, we want a non-geometrical account of the reals, and that is where
the arithinetization of analysis comes from. Let us briefly rehearse the familiar
saga. Start with the natural numbers, the whole numbers 0, 1, and so on. We get
negative numbers by arranging to subtract § from 3. So let us sec how to handle
the ordered pair {n, &} of natural numbers as if it were the difference n — & no
matter whether n is bigger than k or not. A little algebra shows that {n, k) and
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{p.q) have the same difference when n + ¢ is p + k, addition being familiar on the
natural numbers. So we specify a relation R to hold between a pair {n, k) and a
pair {p,q) just in case n + ¢ = p+ k. Then R is reflexive (any pair is R to itsclf},
symmetric (if {n, k) is R to {p,q}, {p,q) is It to {n, k}), and transitive (if {n,k) is
It to {p,q) and {p,q} is R to {r, s}, then {n .k} is K to {r,s}). Such a rclation is
called an equivalence relation. Being as tall as is an equivalence relation, and it
partitions people into exclusive and exhaustive groups of people equally tall. The
philosophy starts to creep in if we think of these groups as the heights, like six
foot six. Our R partitions the ordered pairs of natural numbers into groups, or
equivalence classes as they are called, some think of as the integers. Write [{n, k)]
for the equivalence class of the pair {n, k). We should raise addition from the
natural numbers to the integers, and the evident way to do so is to set the sum of
[{n, k)] and [{p. ¢}] equel to [(n + p, &k + ¢}]. Then for any [{(p, g}], the sum of [{p. q}]
and [{n, n}! is [(p, ¢}], so [{n. n}] is the zero of the integers. For any [{p, ¢}], the sum
of [{p, q}] and [{q.p)}] is the zero of the integers, so [{g, p}] is the negative of [{p, g)1.
To subtract an integer [{p, ¢)] from [{n, k)], add [{g,p)] to [{n,k)]. The integers
[{n.0)] are a copy of the naturals, and the integers {{o, n)| are their negatives. In
a Hush of enthusiasm, some call this constructing the integers from the naturals.

Constructing the rationals is similar except that this time we start wanting to
be able to divide any integer ¢, even 3, by any non-zero integer j. even 5. We take
ordered pairs {i. 7} of integers, and we say (i, 7} is @ to {p,q} if and only if the
product ig equals the product jp, which should hold when tisto jaspistog. @ is
an equivalence relation, and its equivalence classes are the rational numbers. The
cquivalence relation is as old as Eudoxus’s theory of proportions, but we probably
did not step all the way to its equivalence classes, the rational numbers, until the
nineteenth century. The next step is to the real numbers, Oue way £0 see the need
is through the square oot of two. By Pythagoras’s theorem, this should be the
length of the diagonal of a square whose side is of length oue, but one can find
in Euclid a proof that no ratio of, in effeet, rational numbers can have 2 as its
square. There is a story that the Pythagorcans knew this proof long before Euclid
but hushed it up because it put the root of 2 beyond their reach. Here are two
ways to flesh out the rationals with irrationals. The first is Dedekind cuts.!? A
Dedekind cut is a pair {L, R} of sets of rationals such that every rational is in L
or R, no rational is in both, and every member of L is less than cvery member of
E. Picture I as the left part, and R the right, produced by cutting the rational
number line in fwo somewhere. If L is the rationals less than or equal to one but
I is those greater, this cui corresponds to the rational real one. Note that L has
a greatest member, namely one. Now let L be the rationals whose squares are
less than or equal to 2, while I is the rationals whose squares are greater than 2.
This time L has no greatest memnber, and R, no least. This cut corrcsponds to
the irrational real, root 2.

But square roots are an unrepresentative ground for irrationals. Decimals give &

B Dedekind, “Continuity and [rrational Numbers,” in Esseys on the Theory of Numbers, Lrans.
W. W. Beman (New York: Dover, 1963).



Les Liaisons Dangereuses i3

better picture. It is not difficult to show that the decimal for any rational number
is either hnite (like .25 for 1/4} or repeating {like .333 ... for 1/3), and conversely.
So the decimal for the root of 2 is neither finite nor repeating. But we can compute
its decimal as far as we like. Its first n digits are those in the Arabic numeral for the
least natural nunber k such that (k + 1)? > 2(10%?). So it starts off 1.414213 .. ..
We can break this decimal up into the sequence 1,1.4,1.41.1.434,1.4142,.... All
the members of this sequence are finite decimals and so represent rationals. These
rationals are all less than, say, 1.5, but they never decrease. So they got squeezed
closer and closer together, which makes us expect them to be pushing up against
a limit, a least number greater than or equal to all of them. But there is no such
rational number, so we need an irrational limit. A more general version of this
issue is that a non-decreasing sequence bounded above should have a least upper
bound. This property is called completeness, and the rationals do nat have i. But
now suppose Lq, Lo, ... are the left halves of an infinite sequence of Dedekind cuts
such that for each n there is a member L,,; greater than every member of L,, {(so
the sequence is increasing), but there is a rational greater than every member of
every L, (so the sequence is bounded above). Then the unmion of ali the Ly, Lo, ...
fixes the left half of the cut that is the desired least upper bound, or limit, of the
sequence of cuts. The reals are complete, and their completeness under limits is
part of their centrality in analysis.

We can also approach the reals and completeness by thinking about squeezing 4
Let S be a non-empty set we will call a space. A metric on S is a hinary function
d that assigns to any two points £ and y in § a number intended to represent
the distance between x and y. Usually these numbers are real, bui since we are
constructing the reals. let us start off with rational distauces. It is required that
the values of d be non-negative, that the distance between x and y be zero if and
only if = is y, that the distance between z and ¥ be the distance between y and x,
and that the sum of the distance from x to v and that from ¥ to z be less than or
equal to that from y to z. This last is called the triangle inequality; the sum of two
sides of a triangle is greater than the third. For any number z, its absolute value
|z| is = if x is positive, but -z if z is negative. (Intuitively the absclute value of
x is its distance from 0.) If for any rationals x and y we set d(z, ¥} = |z —y{, then
d is a metric on the space of rationals. In our sequence 1,1.4,1.41,1.414,... of
rationals, the distance between successive members gets smaller. In fact for any n
however big there comes a stage in the sequence after which any two members of
the sequence are less than 1/n apart. Such a scquence is ealled a Cauchy sequence.
Cauchy sequences get squeezed. Lot py,pa, ... be a sequence of points in a metric
space. A point p is a limit of the sequence if for every n however big there is a k
such that for m greater than or equal to &, the distance between p,, and p is less
than 1/n. Another version of completeness requires that every Cauchy sequence
have {or converge to) a limit. Our sequence 1,1.4,1.41, ... is Canchy but does not
converge. But now lel aq,aq,... and by, bs. ... be two sequences. Say that these

Mgee, for example, Patrick Suppes, Aziomatic Set Theory (Princeton: 1. Van Nostrand,
18603, chap. 6.
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sequences are C to each other if for every n however big there is a &k such that for
m greater than or equal to &, the distance from a,, to by, is less than 1/n. When
sequences are C they come together. C is an equivalence relation, and we can
construct the reals as the (' equivalence classes of the Cauchy sequences. Then
our sequence hias a limit, namely, its C equivalence class.

S0 we can construct integers from natural numbers, rationals from integers, and
reals from rationals. Kronecker said God made the natural numbers; all the rest is
the work of man.!® But construction and work are metaphors here. We construed
integers, for example, as equivalence classes of ordered pairs of natural numbers.
Nowadays we take equivalence classes and ordered pairs as sets. This is also true
of sequences. We do not build sets; there are too many of them, and they are too
abstract, for that. Instead, we assume them. Besides prying the various sorts of
numbers out of geometry, we also unify them ay applications of set theory to the
natural numbers.

If we go on to qualify, we wight say both Frege and Cantor complete the process
by reducing natural numbers to sets. The first qualification is that Frege works
not with sets but with functions.!® He recognizes two truth values, truth and
falsity, aud he defines a concept as a function whose value is always a truth value,
So the concept of humanity is the function whose value 1s truth for the argument
Socrates but falsity for the number seven as argument. The value range of a
function is roughly its graph, so the value range of humanity is the curve passing
through truth over people but falsity over everything else. Though Frege would
not like it, we can recover a set as the part of the domain of a concept on which it
takes the value trath. All Frege's functions have the same domain, the universe of
absolutely everything, so cur device attributes to Frege what Godel describes as
the conception of sets as all ways to divide the universe in two.!? Frege describes
numbers as cbjects belonging to concepts, and if we replace his concepts by sets,
we could say both Frege and Cantor think of cardinal nuinbers as answers to the
question how many merubers does a set have. For both the central notion is of
a fuuction f that maps a set A one-to-one onto a set B. If f assigns different
values in B to different arguments in A, it is one-fo-one, and since there is then
no collapsing of different arguments into a single value, I3 is at least as big as A.
iIf every member of I3 is also a value of f for some argument in A, the f maps
A onte B, and since everything in B is hit by f at least once, 4 is at least as
big as B. So if f is both onc-to-one and onto, B is at least as big as A, and
A is at least as big as A, and they are of the same s1ze. We can use one-to-one

Bilerman Weyl, Philosophy of Mathematics and Notural Seience (New York: Athenenm,
1963}, p. 33, cites Kronecker as saying God created the integers, but Kronecker does not give
us enough credit. Constructing the integers is so like constructing the rationals that we should
extend Kronecker's tropo.

Y Cottlob Frepge, “Function and Concept,” it Translations from the Philosophical Writings of
Gotilob Frege, trans. Peter Geach and Max Black (Oxford: Blackwell, 1960).

T urt Gadel, “What is Cantor’s Continuum Problem?”  in Collected Works, vol. 11, ed.
Solomon Federman, John Dawson, Stephen Kileene, Gregory Moore, Robert Solovay, and Jean
van Iejjenoort {Mew York: Oxford Universily Press, 1990), p. 180,
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and onto functions to explain having the same number of members without a
prior account of nuwber. You can exhibit such a function by putting your Anger
tips together, thereby showing you have as many digits on one hand as the other
without counting either.

The as-many-as relation is an equivalence relation between scts, and we could
try the equivalence class of A under it as the (cardinal) number of {(members of) A.
That was roughly Frege's approach, but Cantor construes the number of inembers
of A as something we abstract from the sets the same size as A" Abstraction in
this traditional sense is metaphysically and epistemically less sophisticated than
the equivalence class construction. (There is an interesting critique of abstraction
in Peter Geach’s Mental Acts.)!®

Frege and Cantor go in different directions from the number of members of
a set. Cantor was after infinite numbers. Fuclid took it as an axiomn that a
whole is always greater than any of its (proper) parts. When Galileo noted that
doubling maps the natural numbers one-to-one onto the even numbers, so there
are as many even nurbers as natural numbers even though the even numbers do
not exhaust the natural numbers, Euclid’s authority sufficed for Galileo to infer
that there is no completed totality comprised of either the even numbers or the
naturals, and Leibniz further concluded that there are no infinite numbers either.?®
Such views are of a piece with Aristotle’s doctrine that the infinite can only ever
be potential (though a possibility that cannot be actual secins contradictory).
Dedekind inverted this conventional wisdom. He defined an infinite set as one
the same size as one of its proper subsets.?! (One set is a subset of another if
all members of the first are members of the second, and it is proper if there arc
members of the second not in the first.} Dedekind also gave a truly dodgy proof
that there is an infinite set: we have, he said, an idea of each of our ideas. but
we also have an idea of oursclves, who are not ideas, so the set of owr ideas is
infinite.?*> Russell agonized over this argument?®® instcad of just denying that we
have an idea of each of our ideas. Nowadays we usnally just assume the existerce
of an infinite set.

A number is infinitec when it is the number of members of an infinite set. It is a
marked advantage of constructing numbers from scts that it makes sense of infinite
mumnbers. Cantor is perhaps most famous for proving that there are different
infinite numbers. He proved. for example, that there are more real numbers than
natural numbers. A set A is smaller than or equal in size to a set B if there is a

YBGeorg Cantor, Contributions to the Founding of the Theory of Transfinite Nuwmbers, trans.
Philip Jourdain (New York: Dover, n.d.; originally published 1915), p. 86.

9Porer Geach, Mental Acts (London: Routledge and Kegan Paul, ILEYSN

Dlerman Weyl, The Philosophy of Mathematics and Natural Science {New York: Athencum,
1963), pp. 4715,

2 edekind, “The Natnre and Meaning of Numbers,” in Fssays on the Theory of Numbers,
teans. W. W. Beman (New York: Dover, 1963).

Z2Dedekind, in Fsseys on the Theory of Numbers, article 66,

23 Bertrand Russell, Introduction to Mathematical Philosophy (London: George Allen and
Unwin, 1914}, pp- 138-40.
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ong-to-one function that assigns to each member of 4 a member of B. B is bigger
than A if A is smaller than or equal in size to B but B is neither smaller than
nor equal in sizc to A. A number # is less than or equal to a number £ if there
are sets A and I3 such that n is the number of members of A, k is the number of
inembers of B, and A is saller than or equal in size to B, and k is larger than n
if n is less than or cqual to k but k is neither less than nor equal to n. So Cantor
had at least two infinite numbers.

But he had more. He defined the power set of a set as the set of all its subscts.
It is called the power set because if it is fiuite and has, say, n members, then in
forming an arbitrary subset of it, there are only two things to be done with any
member of the set — either put it in the subsct or leave it out. So it has 2" subsets.
Aw induction shows that 2™ is always bigger than n, so the power set of a finite set
is always larger than the set. Cantor showed that this holds for infinite sets too.
He proved this by what is now called a diagoual argument, a mode of reasoning
Cantor discovered, though there secin to be many more diagonal arguments in
recursion theory than in set theory. Diagonal arguments remind some people of
the liar paradox and can be controversial. But Cantor’s theorem that the power
set of a given sct is always strictly larger than the given set is now as received
as any other theorem. It gives us a wealth of infinite sizes. Let 4p be the set of
natural numbers and for each n, let 4., be the power set of 4,,. Then Ag, 44, ...
give us as many infinite numbers as natural numbers. Next let A be the union of
all of Ag, 44, .... If 4 were saller than or equal in size to some A, it would be
smaller than A, 4, but since A, is a subset of 4, 4+ is smaller than or equal
in size to A, and thus A cannot be smalier than A, 4. Hence, A is larger than all
of Ag, A1,.... Now we iterate power set from 4 as we did from 4,. Indeed we go
on to iterating power set and union into an indefinite distance. For each infinite
numbcr n, there are more than » infinite numbers (just as for each natural number
k. there are more than k natural numbers). David Hilbert called this wealth of
infinite numbers, and its mathematics, Cantor's paradise.?®

Suppose we took Frege's truth values, truth and falsity, to be the numbers 0 aud
1. The characteristic function of a set 4 of natural numbers is the function that
assigus 0 (truth) to memnbers and 1 {falsity} to non-members, so the characteristic
function of A is reminiscent of Frege's concept of A-ness. We are used to decimals
written with the ten Arabic numerals, but we could as well write them with the
binary numerals 0 and 1 favored by eomputers. Then the binary decimal for a
non-negative real legs than 1 is a list of the values of the characteristic function
for a set of natural numbers, and converscly. So there are as many reals in that
interval as there are members of the power set of natural numbers. Sending cach
non-negative real z to £/(z + 1) and cach negative x to —(x/{x — 1)) shows there
are as many reals as there arc reals between —1 and 1. and sending point p to f(p)
Ak 1M

2t David Hilbert, “On the Infinite,” trans. Stefan Bauer-Mengelbery, in Jean van Heijenoort,
From Frege to Gdadel: A Sourcebook w Mathematical Logie, 1879-1031 (Cambridge: Ilarvard
University Press, 1967), p. 378,
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N

f(p)

shows that any two bounded iutervals contain the same number of points. So Can-
tor’s theorem generalizes his result that there are more real than natural numbers.
He conjectured that there is no infinite number between the size of the naturals
and the sizc of the reals. This is called the Continuum Hypothesis, and Hilbert put
it first on the agenda for mathematics in the twenticth century. In the 1930s Godel
showed that the continuum hypothesis is consistent with set theory (if set theory
is consistent}, and in the 1960s Paul Cohen showed that its negation is consistent
with set theory (if set theory is consistent). We will not settle the continuum
hypothesis without agrecing on new axioms.

Where Cantor was after the infinite, Frege was after the finite. To roduce the
natural numbers, Frege had to define Dedekind’s primitive notions. Zero is the
number of things not identical with themselves. and (for present purposes) the
successor of n is the number of numbers less than or cqual to n. The infinite
numbers show that the natural numbers do not exhaust the cardinal numbers,
so Frege needed to separate the natural nuinbers from the cardinals. He defines
thein as the members of all sets of which zero is 2 member and the successor of a
member is always a member. This definition makes the analyticity of mathematical
induction go down all too smoothly.

Frege’s and Cantor’s projects both founder in paradox.?® To reduce the mathe-
matics of natural munbers to logic, Frege had to beef up logic. Axiom V of his logic
says that all and only the objects falling under one concept fall under another just
in case the value ranges of those concepts are identical. This requires that every
concept have a value range, or in more familiar terms, that every predicate have
an extension, the set of all and only the things of which the predicate is truc. This
last is often called comprehension, as if a predicate comprehends, or collects, an
extension. Traditional logic was shot through with talk of extensions of concepts,
50 Frege's V could easily seem at home in logic. But thinking about Cantor's diag-
onal argument, Russell wondered about the extension of the non-self-membership
predicate. The set of all lions is not a lion, but the set of all sets is a set. Rus-
sell’s set R collects all sets like the Hrst, that is, all those that are not members
of themselves. But then A is a member of R if and only if R is not a member
of R. This reasoning is known as Russell's paradox. Russell sent it to Frege in a
letter in 1902. Frege lived until 1923, but to my mind nothing he did after 1902

25 All thvee original presentations of the paradoxes of set theory occur in van Heijenoort’s
Sourcebook, cited in the previous note.
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measures up to what he did betore. In Cantor’s case, consider the uiiverse, the
sct U of absolusely anything. The power set of U/ is, by Cantor's theorem, larger
than U, but it is also a subset of U, and so smaller than or equal in size to U.
This reasoning is known as Cantor'’s paradox, and Cantor sent it to Dedekind in a
letter in 1895. There is also a third paradox of set theory about ordinal numbers
and known ag the Burali-Forth paradox after the man who published it in 1897.

To those who take the figure of foundations of mathematics seriously, the para-
doxes of set theory are a crisis. But any crisis was philosophical. Frege’s axioin
V is not analytic. It is not necessarily true, and it is not known a prieri. It is
none of these things because it is just plain false. Russell’s paradox is a proof by
reductio ad absurdum that it is false.

1f someone says more or less out of the blue that the prime minister of Estonia
is at this very moment seated rather than standing, it scems scnsible to withheld
jndgment at least for a bit. Evidence may be forthcoming, but it hasn’t yvet. But
there are claims where, as it were, saying is believing. Playfair’s version of the
axiom of parallels says that given a line L in a plane and a point P in the plane
not on L, there is one and only one line in the plane through P parallel to L.
People largely innocent of geometry typically agree to Playfair's axiom without
argument. The same acquiescence typically greets Euclid’s axiom that the whole
is larger than any of its (proper) parts. Back when set theory was only naive, the
same acquiescence was also accorded assuming that for every predicate therc is a
set of all and only those things of whichi the predicate is truc. We might try to
rehabilitate an abused notion by taking intuitions as beliels for which we perhaps
should have justification but do not and yet nevertheless hold.?® Ou this account,
intuition is not some faculty whose exercise justifies belief and yiclds knowledge in
mysterions ways. On the contrary, intuitions are beliefs held without justification
but held anyway.

Suppose a person holds a belicf without justification. Suppose he is asked not
whether this belief is true but why he believes it. Often such a person responds by
digging in his heels and repeating his intuition with increasing assurance. Suppose
now that everyone clse (or almost everyone else} who considers the issue agrees
with himn, and no one {or almost no one) disagrees or withholds judgment. What is
emerging may be the sociology of analyticity and ¢ priori knowledge. If so, these
notions are table pounding in fancy dress. Necessary truth may differ somewhat
becanse claims that a truth is necessary can be tested againgt fertile imaginations.
With claims that a truth is analytic one may get nothing but question-begging
semantic claims, and with claims that a truth is known a priori one usually gets
nothing at all,

The case is worse when we are expected to believe that a claim is truc because
it is analytic, necessary. or known a priori. Axioms lack proof, at least in the
systems of which they are axioms. If the axiom is not independent of the others
but deducible from them. then the question just shifts over to the axioms from

B Compare W. V. Quine, Word and Object (Cambridge: Technology Press of the Massachusetts
Institute of Technology, and London and New York: John Wiley and Sons, 1960). p. 36 in.
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which it is deduced. Lacking proof means lacking proof, not having soine super
but incffable proof. So even if, like everyone else, I believe it, I still am better off if
1 acknowledge that T just do not have a proof of it. Kant thought Playfair’s axiom
was synthetic e priori, Frege thought comprchension was analytic, and Galileo
appealed to Euclid’s axiom that the whole is greater than the part to deny the
actual infinite. OQur best bet nowadays 1s that all three axioms are false. A shrewd
philosopher is wary when an interesting claim is called analytic, necessary, or «
priori, since often the really interesting stuff is to be broached by working out how
the claim could be false.

When set theory was nalve, it assumed only coinprehension (every predicate
has an extension) and cxtensionality (sets with the same members are identi-
¢al).?” Once comprchension had been refuted, set theory needed reform. 1t is
striking that Russell, who refuted comprehension, never quite gave it up. Instead
he denied meaning to the claim that the sct of all lions is not a member of itself.
He converted the two-way split between truth and falsity into a three-way split
between these two and meaninglessness. For any predicate counted as meaningful
by his theory of types, he allowed himself to form a singular term denoting its ex-
tension, but his allegiance to comprehension was so implicit that he never stated
that all meaningful predicates have extensions. Russell’s focus on meaning, and
especially his denial of meaning to claits we have no trouble understanding, is in
no small way responsible for the coming of philosophy of language. Ceomparing
the claim that the set of all lions is not a member of itsclf with Lewis Carroll’s line
that *twas brillig and the slithy toves did gyre and gimbel in the wabe, we might
want to ask an analogue of Prichard’s question®® whether moral philosophy rests
on a mistake.

When Russell was working out Principie Mathematica with Whitehead, his
niain oppoenent in the journals was Henri Poincaré. Poincaré's well-deserved pres-
tige in Irance coupled with his hostility to the new logic made that logic unpopular
in France for decades, which was a real loss to logic. But however much Russell
and Poincaré differed, they agreed in assimilating what we now in hindsight dis-
tinguish as the paradoxes of set theory to the semantic paradoxes. These last are
illustrated by a sentence which says of itself that it is false, for if it is falsc, it has
the property it ascribes to itself and so is true, while if it is true, then because it
says it is false, it must be falsc. The analogy was between self-memibership and
self-reference in Rnssell's paradox and the liar paradox. We owe the distinction
between the two sorts of paradox to Ramsey.?® He said logic need not address
the semantic paradoxes, and can solve the other by arranging things in types with
non-sets on the bottom, and sets of things of type n in type n + 1. It is striking
that only a few years later Tarski®® proposed to solve the semantic paradoxes with

27806 Panl R. Halmos, Nadve Set theory (Princeton: 13, Van Nostrand, 1960).

28H. A. Prichard. “Does Moral Philosophy Rest on a Mistake? in Moral Obligation {(Oxford;
Clarendon Press, 1949).

Mrank Rawsey, “The Foundations of Mathematics,” in The Foundations of Mathematics, ed.
R. B. Braithewaite {Paterson, N.J.: Littlefield, Adams, 1960).

30 Alfved Tarski, “I'he Concept of Ttuth in Formalized Languages” cited in note 3 above.
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levels of language in which talk not about language is on the bottom, and talk
about language of level n is conducted in language of level » + 1. From a suffi-
ciently abstract point of view, the similarity between Ramscy’s simplified types
and Tarski's levels of language makes one wonder whether Russell and Poincaré
were on to a good thing,

It is a basic tenet of the theory of types that no proposition may say anything
about itself. Nor could there be a claim, say C, about absolutely cverything, since
then C would have to be about € too, and that would violate the Arst tcnet.
Let K be the claim that no claim is about absolutely everything. It follows from
K that K is not about absolutely everything, so it cersainly looks as though the
theory of types violates itself. Such self-destruction is surprisingly frequent among
philosophical theories, and it is certainly a weapon that we want to remain in the
philosopher’s critical armory. We want, for example, to be able to fault a theory
T of theories that gives a good account of all theories except T, and any line like
the theory of types that purports to resist such self-applications should for that
reason be resisted.

In Principic Russell had to reconcile two conflicting objectives. On the one
hand he had to weaken logic enough to prevent the derivation of paradox, but on
the other hand he had to keep logic strong eucugh for the mathematics of number
to be reducible to it and to keep open the gates to Cantor's paradise. To do so, he
nceded four assuinptions that bothered him, or should have. He recognized that
he needed axioms of choice, infinity and reducibility, and he used his version of
comprchension even if he did not quite recognize it explicitly. For the philosopher it
matters right now less what these assumptions say than that they sre assumptions
of existence. Russell was not comfortable with the line that existence propositions
can be analytic. Indeed he looks to toy with inverting Frege's syllogism: since
mathematics is synthetic and mathematics is reducible to logic, logic is synthetic.
In the preface to Principia he said that the chief reason in favor of a theory
on the principles of mathematics must always be inductive.®! By this he meant
that instead of the conventional matheinatical wisdom being justified by deduction
froin the so-called foundations of mathematics, the foundation is justified only if it
suffices for the deduction of the conventional mathematical wisdom. This inversion
is an important moment in the eritique of the philosopher’s cxaggeration of the
mathewmatician’s axiomatic method, even if it was not properly appreciated for a
while. But eventually Quine® will say that no statement is any more intrinsically
a postulate than is a point in Ohio intrinsically a starting point. From Playfair's
axiom we can show that if two angles of one triangle equal two of another, the
triangles ave similar. Dut if we replace Playfair’s axiom with this theorem, then

3! Bertrand Russell and Alfred North Whitehead, Principie Mathernatica, 2" ed. (Cambridge:
Cambridge University Press, 19258}, vol. 1, p. v.

2% V. Quine, “Two Dogmas of Empiricism.” in From a Logical Point of View, 2% ed.
{(Cambridge: Harvard University Pregs, 1961}, p. 33. Frege and (Juine express exireme views
about foundations of knowledge. There are probably pairs of claims on which there would be a
conscosus as to which is episternically more basic. Bot we do not have a settied body of principles
of epistemic priority.
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we can deduce Playfair's axiom .

While Russell’s theory of types was the reform of sct theory best known among
philosophers, it was not much favored among mathematicians. It is hideous and
probably immune to thorough understanding. Hilbert’s student Zermelo inaugu-
rated in 1908 what has bocome pretty much received set theory.®® He had to
restrict comprehension, so he assumed instead that for every definite property P
and any set x, there is a set of all those members of ¥ having P. This is called
separation since it scparates out the members of z with P. There is no settled
mathematical consensus on properties, and about a decade later Frankel refor-
mulated separation in terms of the predicates of a first-order formal language.
Separation is weak enough that it needs supplementing by existence assumptions.
The more interesting of these include infinity (there is an infinite set), union (given
a set, there is a union of all its members), and the bhig one, power set {every sct
has a power set). Skolem added replacement, which says that if the domain of a
function is a sct, so is its range.*® Kripke pictures sets as corrals, and we might
similarly picture them as lassos, except that extensionality would forbid two Jassos
roping the same set. Functions can be pictured as collectious of arrows from the
domain to the range. If we have lassoed the dormaiu, slide the lasso along the
arrows to lasso the range.

Zermelo-Frankel set thecry, or ZF, had cimmerged by the early 1820s, though
in justice it should be cailed ZFS sct theory to give credit to Skelem. Iun 1929
vou Neumann worked with a structure in which therc are no infinite sequences
1, T2, ... of sets such that z,,:7 Is a member of x,,, that is, there are no
infinite descending membership chains.®” By around 1960 this assumption had
been incorporated into ZF. Indeed in those days some sct theorists lcaned on this
assumption, called foundation, and some remarks of Godel's in the 1940s.%% to
disparage some of Quine’s work on comparative set theory.®® Consensus creates
bullies. Foundation does make set theoretic life easier, but if we explore its denial
we can model selforeferential propositions.®® If the proposition that Socrates is
bald is the ordered pair whose first member is Socrates and whose second member
is the set of bald mien, we can say the proposition is true if its first member is

33 Ceorge David BirkhoH and Ralph Beatley, Basic Geometry, 372 ed. {New York: Chelsea
Publishing Company, 1959).

st Zermelo, “Investigations in the Foundations of Set Theory 1" in van Heijenourt’s
Sourcebook, cited in notc 24, See note 36 also.

3% Abraham A. Fraenkel, “The Notion ‘Definite’ aud the Independence of the Axiow of Choice,”
in van leijencorl’s Sourcebook, ciled in note 24

36 hovalf Skolem, “Some Remarks on Axiomatized Sct Theory,” in van Heijenoort's Source-
book, cited in note 24, This address is a major contribution.

37 John von Neumann, “Ueber wine Widerspruchsfreiheitsfrage in der axiomatischen Mengen-
lehre,” Jowrnal fir remme wnd angewandte Mathemaoiik 160 (1929), 227-41.

HS5ee note 17.
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a member of its second. A proposition that says of itself that it is a proposition
could then be an ordered pair p whose first member is p and whose second is the
set. of propositions. Foundation is neither analytic nor known a priori.

Zermelo’s axiom of separation turns Russell's paradox into a proof that the
universe does not exist. For if there were a sct of which absolutely everything, or
even just every set, were a member, the predicate for non-self-membership would
separate Russell's paradoxical set from it. So “is self-identical” and “is a set”
are predicates that do not have extensions. This does not mean that they have
empty extensions, since then they would have extensions, albelt empty ones. It
means that there is no set of all those things identical with themsclves, and there
is no set of all sets. Nor does auny set have a complement whose members are the
things not in the set, for otherwise the union of a set with its comnplement would
give us back the universe. Where Russell and Poincaré blamed the paradoxes on
sclf-inembership and its ilk like self-reference, ZF shies away from collections it
decms too big to exist. One might call the loss of the universe the revenge of the
potential infinite. By replacement, no collection as big as the universe can exist,
and this rules out a set of all {cardinal} numbers. Suppose there were a set N of
all cardinal numbers. For every cardinal &, the set N(k) of ordinals with fewer
than & predecessors is a set of cardinality &, so we have a function that maps the
cardinals one-to-one into the sets. On the other hand, for every set A there is a
cardinal n{A} which is the number of members of A. {In ZF we usc the axiom of
choice to show this, but set theory would be in a sorry state without it, so often we
assume ZFC, which is ZF with the axiom of choice. Choice says that for any set of
non-cmpty sets there is a function whosc value at each of these sets is a member
of it. Russell observed that while from cach of an infinity of pairs of shoes we can
pick the right shoe, we need choice to pick from an infinity of pairs of socks. !
Since Zermelo first articulated choice in 1904, there has been controversy about
it. In the 1920s, for example, Tarski and Banach used choice to show that any
sphere the size of a pea can be cut inte no more than four pieces that, without the
inflation of topology, can be reassembled into a sphere the size of the sun.)*? Given
that cvery sct has a unique number of members, we have a function mapping the
sets one-to-one into the cardinals. It follows (by the Schroder-Bernstein theorem)
that there are exactly as many sets as cardinals, so “is a cardinal number” has
no extension either. Note also that if N existed, it should have a number n of
members. Since N(k) is always a subset of N, each k is less than or equal to n.
But by Cauntor's theorein, the power set of N would have a number of members
bigger than n. ZF dodges {the usual proofs of) Cantor’s paradox by not asserting
the existence of the universe or NV,

Not accepting the universe has consequences for logic. Frege and Peirce liber-
ated logic by isclating the quantifiers, all and some, from the applied quantifiers, all

M ertrand Russell, Introduction o Mathemnatical Philosophy (London: George Allen and
Unwin, 1919), p. 126, Frankel’s proof of the independence of the axiom of choice in the paper
mentioned in note 35 above is A formalization of Russell’s observation.

428tan Wagon, The Banch-Tarski Peradoz (Cambridge: Cambridge University Press, 1983).
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As and some As, of Aristotle’s syllogistic. This made quantification into polvadic
predicates possible (everything is B to something), and that is the life’s blood of
the new logic. One should expect some fraternization between the universe and
the universal quantifier. For example, in the (admittedly peculiar) set theory in
“New Foundations,” Quinc accepts the universe and explains universal quantifica-
tion by saying that everything is F if and only if the set of Fs is the universe.®?
Without the universe, universal quantification will be limited. We mostly follow
Tarski in using models (or structnres) to interpret languages.** A model is a set
theoretic object with a domain required to be a {non-empty) set. The predicates
of the language are interpreted by assigning them extensions (of suitable polyadic-
ity) in the domain, the constants, by assigning them members of the domain, and
mutatis mmtandis for the function signs. The universal quantifier is interpreted
as all members of the domain. {Some go so far as to infer from this dependence
of quantification on the choice of domain that the quantifiers are not logical con-
stants.) Suppose we want to say that cverything is self-identical. Not accepting
the universe means that we are restricted to saying that every member of this
or that set taken as domain of a model is self-identical. An axiom of ZF assurcs
us that cverything is a member of a set, namely, the set whose only member is
that thing. This is called its unit set or singleton. So for everything there is a
modcel whose domain has that thing as a member, and we can use that model to
say that thing is self-identical. Tarski offers us a notion of validity under which
a clain is valid if it comes out true under all interpretations in all models, so by
saying the claim that everything is self-identical is valid we might scem to have
an indirect way of saying what we originally wanted to say. But then we wonder
how to imterpret the universal guantifiers in “Everything is a member of a set”
or “Such and such & claim comes out true under all interpretations in all mod-
els.” We meant absolutely everything by “everything,” and we are not allowed to.
There are as many models as scts, so we are not allowed to quantify over them all
at once. Neither Russell’s theory of types nor ZF accepts the universe, and this
restraint trips logic up enough to make us leck for ways to dodge the paradoxes
of sct theory while hanging on to the universe.*®

Frege took zero as the mumber of things not identical with themselves, and
on our sot theorctic construal of his reduction, this turns out to be the unit set
of the empty set, the set with no members. Then one, the successor of zero,
is the number of numbers less than or equal to zero, so since only zero is less
than or equal to zero, one is the set of all unit scts. But since everything has
a unit set, the set of unit sets is the same size as the universe. So the number
one does not exist, and neither do any other numbers except zero. Tt would be
a distinet embarragsinent for a reduction of mathematies to logic if it turned out

FW. V. Quine, “New Foundations for Mathematical Logic,” in From o Logical Point of View,
274 od, (Cambridge: Harvard University Press, 1960, p. 94.

M Alfred Tarski, “On the Concept of Logica] Consequence,” in Logic, Semantics, and Meta-
mathematics, trans. J. Il Woodger (Oxford: Clarendon Press, 1856).

45T he late Rl Orayen often stressed this diflicuity.
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that zero is the only cardinal number. Remember Russell’s insight that instead
of the conventional mathematical wisdom being justified by deduction from the
so-called foundations of mathematics, the foundation is justified only if it suffices
for the deduction of the conventional mathematical wisdom. So how are we to
save the numbers? John von Neumann did so by selecting from each of Frege's
equivalence classes o standard representative.®® Since Frege’s zero is the unit set
of the empty set, von Neumann’s zero is the empty set. Then von Neumann
takes the successor of n to he the union of »n with its unit sct. Thus cach n has
n inembers. So where Frege took o set A’s having n members as A's being a
member of 1, von Neumann takes it as A's being the same size as n. Zermeclo
also took zcro as the empty set, but he took the successor of n as ks unit set.
This works for the natural numbers too, and it has been argued that because
there is no unique right way to reduce rmumbers to sets, numbers are not sets after
all. Well, maybe. But von Neumann's fAinite cardinals generalize beautifully into
the infinite while Zermelo’s do not. Enthusiasm for von Neumann's construction
tempts one to think he discovered which sets the cerdinal numbers really are. it
is as if Cantor's nineteenth-century theory of transfinite cardinals reveals which
sets the prime numbers Euclid proved to be infinite in number really are {though
it has not vet helped to figure out the distribution of the primes).

Logicism like Frege's is a kind of platonism. Platonism is the metaphysical view
that there are non-mental, non-physical abstract objects like numbers that do not
depend on us or anything mental or physical for their existence. Plato’s theory of
forms was the first recorded metaphysical platonism. Very abstract objects like
numbers or platonic forms arc utterly inert, so siuce, as Grice" argues, perception
is hy its nature causal, there is an epistemological problem for empiricists about
how we might justify belief in and about abstract objects. Plato strugeles with this
problem: in the Symposium, the Meno, and the Republic. Sct theory can be viewed
as a contemporary version of the theory of forms. Both forins and sets answer to
predicates, and comparing Russell’s paradox with the third man argument shows
that as sct theory has a problem with self-membership, the theory of forms has
a problem with self-particivation. One difference may be that set theory has
an explicit commitment to extensionality, an issue Plato does not scem to have
addressed. We should be clear that even sets of concrete objects are not to be
identified with the physical aggregates of the members. An example of Quine's
points out that while the set of states in the US and the set of counties in the 1S
have the same physical aggregates, they have no members in common and so arc
different sets. 8

It may secm curious that while logicism is a form of platonism, Frege held that
logic and mathemaltics are analvtic. The curiosity is most acute for those content

183, Donald Monk, Introduction to Set Theory (New York: McGraw-11ill, 1960}, has a good
exposition of von Neumann's theory.

974, P. Grice, “The Causal Theory of Perception,” reprinted in Perceiving, Sensing and Know-
ing, ed. Robert J. Swartz (New York: Doubleday, 1963).

BW V. Quine, Mathematicol Logic, rev. o, {(New York: Harper Torchbooks. 1962), p. 120,
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with the quick gloss of analyticity as truth by virtue of meaning, If one takes truth
by meaning as an alternative to truth by correspondence to fact, the analyticity
of mathematics looks like a way to deny that the theorem that thete are infinitely
many primes ig truc only if there are infinitely many primes, and so numbers, and
50 to avold platonism. For Ayer in Language, Truth and Logic, a virtue of the
analyticity of the a priori is the exit it olfers to platonism, ®

For Frege, of course, analyticity is not truth by meaning but derivability from
logic, and his logic is pretty platonic. But platonism makes some people nervous;
they may be letting their ontological (what are the basic sorts of things?} view
be governed tacitly by the prevailing naturalist cosmelogy (how are the basic bits
unified inte the world?) put by Humie as the idea that causation is the cement of
the universe.30 Tor if abstract objects like numbers are utterly inert, how could
cansation cement thern to the meuntal and physical stuff in the system of the world?
Maybe membership is another cement of the world, not only binding sets in a
system, but also binding the concrete to the abstract as in sets of concrete things.
Then reducing mathematical objects to sets would have a unifying cosmological
advantage 5!

But suppose one favors naturalism. Medieval nominalists like William of Occam
rejected platonic forms and universals in favor of linguistic items like predicates,
and in the philosophy of mathematics those who favor signs like numerals over ab-
stracta like numbers are sometimes called formalists. (After the paradoxes, Hilbert
inaugurated a program to prove the consisteney of reformed mathematical systeins.
This was also called formalism since it took these systems as systems of notation.
But Hilbert thought consistency proofs would help justify belief in abstracta. He
was not a metaphysical formalist.) If numerals arc to have the cpistemic appeal of
concreta, they should be actnal physical inscriptions and utterances, and as Frege
ohserved long ago,®? there will never be enough inscriptions and utterances to do
duty for the infinity of natural numbers. One move often made at this point is
to replace actual inscriptions with possible cnes, or with sct theoretically defined
sequences of actual inscriptions, and then the epistemic appeal of numerals begins
to fade.?3

DBut truth is the crux. Formalists often take truth in mathematics to be not
correspondence to fact but provability. Proof looks to be a linguistic activity and
the favored way mathematicians settle mathematical questions. Of course, if proof
is deduction frem axioms, there will arise a question about how axioms are scttled,

19 Alfred Jules Aver, Language, Truth and Logic, 214 o, {(New York: Dover, 1946), chap. [V,

%OThe phrase comes from David Hume's abstract of A Treatise of [Juman Nature, ed. L. A
Selby-Bigge, 279 ed., ed. P. H. Nidditch {Oxford: Oxford University Fress, 1978), p. 662, as
John L. Mackie made plain in The Cemend of the Universe: A Study of Causation {Oxford:
Oxiord University Press, 1974).

31 Thus (uine sees set theory as unifying rather than founding mathematics,

“2Gottlob Frege, “Frege Against the Formalists,” in Transletions from the Philosophical Writ-
ings of Qottlob Frege, trans. Peter Geach and Max Black (Oxford: Blackwell, 19G0), p. 222

53560 W. V. Quine, “Ontological Relativity,” in Ontological Relotivity and Other Essuys (New
York: Colmnbia University Press, 1969}, pp. 41-42.
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but let us bracket that question. For there is a juicier confrontation between the
formalist conception of mathematical truth as provability and Godel’s Incomplete-
ness Theorem {1931). Let us sketch what the theorem says informally. Consider
any system of proof with three propertics. First, it should be consistent. (Ac-
tually, Gédel used a stronger property in 1931, but in 1936 Rosser showed that
consistency suffices.} Given that contradictions are false, any system in which
proof suffices for truth should be cousistent. Second, it should encode calculations
on natural numbers, like addition and nmwltiplication, for which there are algo-
rithms. A due respect for the conventional mathematical wisdom urges encoding,
for example, 7 + 5 = 12. Third, there should be an algorithm for whether a patch
of discourse in the language of the system is or is not a proof. Church argues that
the point of proof is to settle mathematical questions decisively and it cannot do
so unless there is such an algorithm.®? Then, for any such system we can write
down a sentence in the language of the system such that neither it nor its negation
is provable in the system. Since, by the law of the excluded middle, one of thesc
is true, there is an unprovable truth of the system.

Philosophy is probably supple enough for any of its interesting theses to dodge
knock-down refutation by a precise scientific result. Godel’s first incompleteness
theorem may knock down formalisin, but perhaps the formalist can get up again.
One maneuver might be to stretch the requirement for an algorithm for what
counts as a proof by allowing some infinitely large proofs. If we allow inferences of
a universally quantified sentence from all its instances, then any truth with enough
instances will be provable but proofs will in general be infinitely large and our
cpistemic access to them will be as mathematical as our grasp of other infinitics.
A palliative here might be to allow curseives only infinite patches of proofs that
can be grasped by finite algorithmns or acceptable generalizations of such. Jon
Barwise wrote an excellent exposition of some ways of doing this in Admissible Sets
and Structures,™ but as yot there is no reccived systcratic philosophical critique
of such expanded proof in print. Going second order is another stratagem. In
a first-order system oune quantifies only into subject position or other positions
in a sentence occupied by a singular terin, while in a second-order system onc
may also quantify into predicate position. Dedekind wrote down a single second-
order sentence from which every truth of clementary nuniber theory follows, so
a formalist might tryv saying that being a trnth of elementary number theory is
following from Dedekind’s sentence. The rub is in the logic. For fixst order systems,
Gé&del {and others) showed that we can write down rules of inference such that for
any premisses, anything that follows from those premisses may actually be deduced
from them by the rules. and conversely. In a first-order system any sentence
that follows from a set of premises can be deduced from them; this is what the
completeness of hirst-order logic says. But completencss fails sccond-order. So cven

5 Alonzo Church, Itroduction to Mathematieal Logic, vol. 1 (Princeton: Princeton University
Press, 1956}, pp. 50 .

55 jon Barwise, Admissable Sets and Structures (Berlin, Heidelberg, New York: Springer-
Verlag, 1975).
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though a truth of elementary number theory follows from Dedekind’s sentence,
showing that it does is just as much a mathematical problem as any other. We
are not guaranteed proofs to which we have epistemic access that would obviate
platonism.

Gédel himself suggested another maneuver.®® His theorem is about formalized
deductive theories. Maybe his theorem really shows that genuine proof in medias
mathematical res cludes thoroughgoing formalization. Consider our favorite such
formal systermn S and add to the language of § a unary scntence operator D (with
grammar like negation} such that for any sentence p in the language of 5, Dp is
intended to mean that it is provable {in the full-blooded mathematical way} that
p. We should have enough confidence in 8§ to add to it a rule allowing us to infer
from any theorem p of 8 to Dp, and we should have cnough confidence in proof
to add to 5 an axiom saying that if Dp, then p. If we write the dash for negation
and the ampersand for conjunction, it is then not difficult to show that

D=D{pdc—p)

is a theorem of 5. This says that it is absolutely provable that a contradiction is
not absolutely provable, that is, absolute provability proves its own consistency.
But Godel’s second incompleteness theorein shows that no system of proof sat-
isfying the three conditions stated above proves its own consistency. From this
one might infer that the absolute provability the formalist wants is not proof in
a formalized system. On the other hand one might also wonder just what such
absolute provability looks like, and how to be sure one has recognized it correctly.
Such uncertainty may drain some of the epistemic appeal from formalism. Gédel's
sccond incompleteness theorem also looks to impede Hilbert’s program for proving
the consisteney of reformed mathematical systems, since especially for strong sys-
tems like set theory, the second incompleteness theorem seems to say that proving
the consistency of the systemr requires methods stronger than those of the systemn,
thus depriving the consistency proof of its epistemic purpose. For now, formalism
is still down, though for all we know it will rise again. The history of philosophy
is not of solving problems but of extending the dialectic they generate.

Gadel's hrst incompletencss theorem shows that mathematical truth outstrips
provability. But by how much? The third condition on systems to which it applics
requires that the relation that holds when and only when a stretch of discourse is
a proof of a statement be decidable, that is, that there is an algorithm for whether
some discourse is or is nob a proof of a sentence. The property of theoremhiood
ariscs from this relation by existential quantification since a sentence is a thecrem if
and only if there is a proof of it. Suppose the system S in question is a typical first-
order formalization of elementary nunmiber theory, and assume S consistent. We
can show S is not decidable, that is, there is no algorithn for theoremmhood in 8. So
provability is one quantifier away from decidability, Godel proved incompleteness

S Kurt Godel, “An Interpretation of the Intuitionistic Propositional Caleulus,” in Collected
Works, vol. L, ed. Solomon Federman, John Dawson, Stephen Kleene, Gregory Moore, Robert
Solovay, and Jean van Heijenoort (New York: Oxford University Press, 1988), pp. 301-03.
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by arithmetizing (or gbdelizing) syntax. This involves a function g with three
properties. First, g maps expressions in the language of 5 {like sentences and
proofs) one-to-one into the natural numbers. Next, g is computable, that it, there
is an algorithm that given an expression e, yields the number g assigns to e. Last,
g is effective backwards. This requires two algorithms, one that given a natural
number n settles whether ¢ assigns an expression to n, and a second that, if ¢
assigns an expression to n, finds it. There are infinitely many different ways to
godelize theories like 5. The number g assigns e is called its gédel number. Since
the set of theorems of § is not decidable, neither is the sct of gédel numbers of
theorems. So an undecidable set of numbers is one quantifier from decidability.

Let A and Il be sets of natural numbers. Turing showed how to reconstruc
mathematically the subjunctive that if there were an algorithm for membership
in A, then there would be one for membership in B. In that case we say A is
(Turing) reducible to B. If 4 is reducible to B and -1 is reducible te A, then their
membership problems are of equal difficulty, and they are (Turing) equivalent.
This is an equivalence relation, and it partitions the sets of natural numbers into
the degrees of (Turing) unsolvabilty. One degree is higher than another if a problem
in the second is reducible to onc in the hirst but not vice versa. Let dy be the degree
of godel numbers of theorcms of 5. We can show that there is a sequence dy, d,. ..
of degrees such that for all n,d, . is higher than d,, and there is in d,, a relation
among natural numbers that is the extension of a formula fromn the language of
S iu the usuel model of § and has n quantifiers in its premex. That is, each
additional quantifier we allow increases the degree of unsolvability of relations we
can express with formulac in the language of 5. We can also show that the set
of godel numbers of sentences of 5 true in the usual model s undecidable. Let d
be its degrec. Then d is higher than all of dg,d,.... So truth in number theory
is infinitely many degrees, or quantifiers, higher than provability in that theory.
Truth outstrips provability by a good bit.3”

A first-order deductive theory is axiomatic if there is an algorithm for whether
a formula in the languape of the theory is or is not an axiom of i%. At least
prima facie, only the axiomatic theories are of epistemnic interest, for only there
are we sure of algorithing for whether a patch of discourse is or is not a proof of
a sentence, and that, as Church argued, is necessary for proof to satisfy its raison
d’étre of settling questions decisively. By 1944, many axiomatic theories had been
shown undecidable, and Post noted that any two of them were of the saine degree
of unsolvability {the one we called dy). He asked whether any two undecidable
axiomatic theories are of the same degree.® This is called Post’s Problem, and it
gave the part of logic called recursion theory a life of its own. In the mid-1950s, a
young American, Friedberg, and a young Russian, Muchnik, discovered indepen-

*TCompare Hartley Rogers Jr., Theory of Recursive Functions and Effective Computabitity
{New York: McGraw-Hill, 1967), sec. 14.7.

B Emil Post, “Recursively Enumerable Sets of Positive Integers and their Decision Problems,”
reprinted in The Undecidable, od. Martin Davis (Hewlitt, N.Y.: Raven Press, 1963), pp. 304-37.
This addvress is anocther major contribution.
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dently a method called the priority method that suffices to solve Post’s Problem.
There are undecidable axiomatic theories of different degrees of unsolvability. So
the structure of these degrees becomes of at least mathematical interest. Sacks, for
example, showed that they are dense, that is, there are sequences of such degrees
such that between any two there is a third.>®

But such degrees could be of more than mathematical interest only. A miner-
alogist can learn some things just by looking at rocks, but to figure out chemical
formulae, for example, he will probably use more indirect methods; how does the
rock interact with this or that acid, for example. When a cosmologist or astro-
physicist is looking into the curvature of spacetime. he does not pick up a handful
of spacetime and measure how bent it is. He looks instead to discriminating ob-
servable effects of such curvature. In psychology. introspection is not much trusted
as a way to examnine reason. So ouc strategy would be to look to discriminating
observable products of reason. Since the Greeks invented or discovered reason, de-
ductive theories have been among its most salient products. A critique of reason
niight seek structures occupied by such theories. A critique of pure reason might
look to structures of all possible such theories. It would be fun if recursion theory
could provide a denotation for Kant’s title.

On the mathematical side, logicism developed out of the arithmetization of
analysis, aud analytic geometfry was a crucial link in arithmetizing the curves of
analysis. It was basic to analytic geometry that therc be a one-to-one correspon-
dence between the real numbers and the points of a line that preserves order (so
less-to-greater goes to left-to-right). But even if the space around us is fiat, how
do we know such a correspondence exists? Could the lines in space actually need
more numbers as coordinates?

Think back to learning what a derivative is. You are looking at the parabola
that is the curve for the square function, %%, and you want to know the slope of
this curve above the abscissa z. Slope is rise over run, so you imagine increasing «
by tiny amount dz. The new square is 22 + 2zdz -+ (dz)?, so the rise is 2zdz + (dx)?
when the run is dr. Over means division so the slope is 2z + dz, and to get the
slope at z itself you want this increment dx to be so small it can be ignored, which
would put the slope at 2z, the passing answer on your calculus test.

This argument feels dodgy. To divide by dux it should not be zero, but to ignore
it in 2x + dx is to treat it as indistinguishable from zero. So dz is one of the noto-
rious infinitesimals of the calculus invented or discovered by Newton and Leibniz
indepeudently. Berkeley made fun of iufinitesimals in The Analyst as ghosts of
departed quantities. For anything we have said so far, infinitesimals do seem like
an embarrassment, and yet the caleulus is crucial in making Newton's physics the
first real natural science. Part of what people like Cauchy and Welerstrass did
during the arithmetization of analysis was to replace infinitesimals with the = - 4
methods notorious in clementary calculus classes. Then a number « is the deriva-
tive of a function f at an argument x if for any positive £ however small there is 2

995ec Robert I Soare, Recursively Enumerable Scts and Degrees {New York: Springer- Verlag,
1987).
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positive 4 small enough that for arguments y within distance ¢ of z, f(y) is within
distance £ of f{z}).

S0 we can avoid mfinitesimals. But should we? In the 1960s Abraham Robinson
discovered that we need not.5¢ Let M be a structure, or modcl, whose domain
is the set R of the (familiar) real numbers. The distinguished individuals of M
arc all the members of R, the relations, all those of R, and mutatis mutandis for
functions. A language of which A{ is an interpretation is pretty big, but it can
still be first order. Oune unary predicate N{z) of such a language would have as
extension the set of all natural numbers, and a binary predicate = y would have
the identity relation as extension. Let T” be the set of all sentences of this language
true in M. Add to the language 2 single new constant ¢, and form: T by adding
to T all of

Naha#0,a#1,...

whete 0,1,... are constants of the language denoting the natural numbers in R.
For any finite subset of 77, let % be the largest natural number such that the
sentence a 7 n is a member of this set. Then letting o denote n + 1 makes all of
this subsct true in M. So by the compactness of first-order languages, T has a
model M’ whose domain R’ is the same size as R. Let b be the denotation of ¢ in
R’. Then b has to obey all the laws of natural numbers in T, so b cannot be less
than zero, nor can it lie between n and n + 1, nor can it be any of 0,1,2..... But
it must he comparable in size fo all of 0, 1,2, .. ., so it can only be greater than all
of them.

Nor is it alone out there since each natural number other than zero has a
predecessor, and each natural nuinber has a successor. But none of & — n can be
a natural £ since then b = k + n, contrary to a sentence in 77 true in M’. So b is
surrounded by a clump .. .,b -2, - 1.5, 04+ 1.0+ 2, ... all of whose members lie
above 0.1,2,.... Nor is there a least elump above 0, 1,.... For b is odd or even.
Suppose it is even; a similar argiment works if it is odd. Then b = 2k for some
k. As before if k = b —n for some n.k +n+b =2k, s0 &k — n and then b = 2n,
contrary to a sentence in 77 true in M'; nor is k among 0.1,.... Moreover, given
a clump around ¢ and another around d, assume ¢ + d is ¢ven, and the clump
around ¢+ d/2 lies wholly between the two given clunips. So the natural numbers
of M’ start with a copy of the usual, or standard, natural numbers. These are
foliowed by the clumps, any cne of which looks like the integers (negative, zero,
positive) in usual order. and the clumps are ordered like the rationals or reals (a
dense linear order without top or bottom). The standard negative numbers look
like the standard positive integers in reverse order, so the iutegers of M’ look like
a dense linear order without endpoints, but of clumps.

Since b is not zero, it has a reciprocal 1/b, and since b is greater than all
of 1,2,3,..., its reciprocal 1/b is less than all of 1,1/2.1/3..... DBut since § is

505ee Robert Goldblatt, Lectures on the Hyperveals (New York: Springer-Verlag, 1998). His
exposition is more in the mathematical mainstream than ours, and both differ from Abrahain
Robinson, NMon-standerd Analysis (Princeton: Princeton University Press, 1996).
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positive, so is 1/b, so it is greater than 0. Hence 1/b is greater than 0 bnt less
than all of 1.1/2,1/3,.... So 1/b is infinitesimal. We found a ghost of departed
fractions.

In secondary school most of us thought of real numbers in terms of decimals.
Let a digit be onc of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Picture the set |
of integers shrinking in size to the left and increasing to the right. A sequence of
digits is a function f whose domain is I, whose values are digits, and such that for
some integer n, f(m) = 0 for all m < n, and such that for no integer n is f(m) =9
for all m > n {this last so we do not have two decimals, like .250. .. and .249. . ., for
any real. like _11) Then for any real r there is a unique sequence f of digits such that
¥ is the sum of f{n}/10™ for all integers n. This can be formalized as a sentence
of T true in M.%' So it is also true in M’, but in M’ there are more integers, and
sequences of digits are longer. The members of R arc called the hyperreals. Let
r be a hyperreal and let f be its sequence of digits. If f(n) is positive for some
non-standard negative integer n, then v is infinite. If for all negative »n and all
standard non-negative n, f{n} is zero, then r is infinitesimal. For a standard rcal
rin R, let r be its name in the language M intcrprets, and let #* be the hyperreal
in R’ denoted by r in M’. Then we think of v as the standard part of #*. Two
hyperreals r and s are close if their difference is infinitesimal. Being close is an
equivalence relation, so it partitions the hyperreals into equivalence classes. The
equivalence class of a given hyperreal is called its halo; it is a set of hyperreals
close to the given hyperreal.

In familiar expositions of the calculus we say that a standard real « is the limit
of a sequence a,, of standard reals if for any positive £ however small there is a k
such that for n greater than or equal to £, the distance between a, and a is less
than £. This is equivalent to saying that for infinite n, @, is within the halo of a,
OF 4y, s close to a. (Here we slip back and forth between a and a*.) To say that a
iz the derivative of f at z is equivalent to saying that when y and z are close but
differ, then the rige fron f{r) to f(y) divided by the run from z to ¥ is in the halo
of a. When hyperreals are closc but differ, they have the same standard part, and
the standard part of their difference is zero, but their difference is not zero, and
so is an acceptable divisor. That is how the hyperreals avoid the embarrassment
of older arguments with infinitesimals.

For any standard rcals r and s such that r is less than s, the halo of r* is bounded
above by s* but has no least upper bound among the hyperreals. So no oune-to-
one correspondence between the standard reals and the hyperreals preserves order.
Henee, the standard reals and the hyperreals cannot both be cartesian coordinates
for the peints on a line, What would space be like if the hyperreals were the right
coordinates?

Pick a standard messure. This could be a meter or a yard stick, but it could
also be an angstrom, or a lightyear stick. If we lay off our stick a first time to the

S10n the language of M we can name the unique binary function that assigns to cach real +
and each integer n the digit f{n), as we called i, in the decimal for r. S0 we need not say that
for each v there is such o sequence f of digits, which would be second order.



32 W. D, lart

left from here, then a second, and so on through all and only the standard natural
numbers, then do the same to the right, in frount. in back, up and down, then we
will have laid off axes that suffice to locate any point in space as we supposed it
back in school solid geometry before we heard of curvature or hyperreals. But if
the hyperreals are the right coordinates, we will only have measured out a clump
of hyperreals along each axis, and this biob will hardly be 2il of space.

So if the hyperreals are the right coordinates, space partitions into infinitely
large blobs each with three clumps of hyperreals as its coordinate axes. A gold
nugget that exactly fills out one such biob would use up all of our familiar space in
school solid geomnetry. But if the hyperreals are the right coordinates, there may
for all we know be such a nugget some way off {in fact an infinite number of miles)
to the west. Could we tell? On Newton's theory of gravity, bodies aktract one
another instantaneously, so if two bodies popped into being simultaneously and far
apart, there would be no lag time before each attracted the other gravitationally.
(If gravity acted by sending a pull to the attracted body, then on Newton's theory
the pull would have to be in more than one place at ouce, so if nothing can be
in more than one place at a time, Newton's gravity has 1o act at a distance, that
is, without transmission.) On Newton's theory, then, we would have been pulled
hard to the west long age by that nugget in a super gold rush. But on Einstein's
theory, gravitational attraction travels at the speed of light, which is finite. Let ¢
be the speed of light in miles per hour. If that nugget lies d miles to the west, but
has existed for fewer than d/c hours, then the nugget’s gravitational pull has not
yet had time to seize us. Since d is infinite and the age of the universe is finite,
we are safe for a while.

Infinitesimal, and infinite hyperreals, are probably too small in the hist case and
too big in the sccond for spatiotemporal and physical phenomena of those sizes to
be obvious to middle-sized wet goods like us. But it would be too parochial and
positivist to infer from that alone that the standard reals are the right coordinates
for space. Besides, ingenious experiments and observations may detect what is not
obvicus. Whether the standard reals or the hyperreals (or somne other numbers)
are the right coordinates for space is settled by the nature of space. Space, not
people, picks which numbers work as its coordinates, and space is a matter of fact,
not a relation of ideas. It is nether analytic nor known ¢ priori how to arithmetize
space.

Both the standard reals and the hyperreals exist. or at least a clear-headed
Platonist should be happy to grant that both exist. A mathematician should be
free to study cither, as he is free to study comnplex numbers or quaternions.5? But
consider how our study of the standard reals emerged historically from cur study
of geometry. Onc wonders whether settling whether the standard reals or the

52 here is an interesting sense in which the reals, the complex numbers and the gualcruions
exhaust an important subject. See . N. Herstein, Teopics in Algebra (New York: Blaisdell
Publishing Company, 1964}, chap. 7, sce. 3. But the reals are applied all over the place. and
the complex numbers arve applied in inany places, while the qualernions are pretty much just a
curiosity and comparatively neglected.
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hyperreals are the right coordinates for space might not chaunel the development
of mathematical analysis, and in at least that sense settle which are the real rcals.

The topics on which we have touched by no mcans exhaust the interactions
between philosophy and inathematics. The Loéwenheim-Skolem Theorem, for cx-
ample, has occasioned philosophy, and intuitionism, predicativism, and fOnitism
arc philosophical positions with mathematical aspects. But the samples on which
we have touched unify more or less under the issues of analvticity, ¢ priori knowl-
edge, and foundations, and they illustrate what can come of dalliance between
mathematics and philosophy.
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REALISM AND ANTI-REALISM IN
MATHEMATICS

Mark Balaguer

The purpose of this essay is {a) to survey and critically assess the various meta-
physical views -— i.e., the various versions of realism and anti-realism — that
people have held {or that one wight hold) about mathematics; and {b) to argue
for a particular view of the metaphysics of mathematics. Scction 1 will provide
a survey of the various versions of realism and anti-realism. In section 2, I will
critically assess the varicus views, coming to the conclusion that there is exactly
one version of realism that survives all objections (naincly, a view that I have
clsewhere called full-biooded platonism, or for short, FBP}) and that there is ex-
actly one version of anti-realism that survives all objections (namely, fictionalism).
The arguments of section 2 will also motivate the thesis that we do not have any
good reason for favoring either of these views (i.c., fictionalisin or FBP) over the
other and, hence, that we do not have any good reason for believing or dishe-
lieving in abstract {i.c., non-spatiotemporal} mathematical objects; I will call this
the weak cpistemic conclusion. Finally, in section 3, 1 will argue for two further
claims, namely, {i) that we could never have any good reason for favoring either
fictionalism or FBP over the other and, hence, could never have any goad reason
for believing or disbelieving in abstract mathematical objects; and (ii) that there
is no fact of the matter as to whether fictionalism or I'BI? is correct and, more
generally, no fact of the matter as to whether there exist any such things as ab-
stract objects; I will call these two theses the strong epistemic conclusion and the
metaphysical conclusion, respectively.

(I just said that in scction 2, I will argue that FBP and fictionalism survive
all objections; but if I'm right that there is no fact of the matter as to whether
FBP or fictionalism is correct, then it can’t be that these two views survive all
objections, for surely my no-fact-of-the-matter argument constitites an objection
of some sort to both FBI and fictionalisin. This, I think, is correct, but for the
sake of simplicity. I will ignore this point until section 3. Dnring sections 1 and
2, I will defend FBP and fictionalism against the varicus traditional objections
to realisin and anti-realism — e.g., the Benacerralian objections to platonism and
the Quine-Putnam objection to anti-realism — and in doing this, I will write as
if I think FBP and fictionalism arc completely defensible views; but my scetion-3
argument for the claim that there is no fact of the matter as to which of these two
views is correct does underinine the two views.}

Large pottions of this paper are reprinted, with a few editorial changes, from
my book, Platonism and Anii-Platonism in Mathematics {Oxford University Press,

Handbook of the Philosophy of Science. Philosophy of Mathematics

Volume editor: Andrew I Irvine. General editors: Dov M. Gabbay, Paul Thagard and John
Woods,

{© 2008 Elsevier B.Y. All rights reserved.
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1998)' — though I should say that there are also several new sections here. Now,
of course, because of space restrictions, many of the points and arguments iu the
book have not been included here, but the overall plan of this essay mirrors that of
the book. One important difference, however, is this: while the book is dedicated
more to developing my own views and arguments than to surveying and critiquing
the views of others, because this is a survey essay, the reverse is true here. Thus, in
general, the sections of the book that develop my own views have been pared down
far more than the sections that survey and critique the views of others. Indeed, in
connection with my own views, alt I really do in this essay is briefly sketch the main
ideas and arguments and then refer the reader to the sections of the book that fill
these arguments in. Indeed, I refer the reader to my book so many times here that,
I fear, it might get annoying after a while; but given the space restrictions for the
present essay, I couldn’t scc any other way to preserve the overall structure of the
bock — i.e., to preserve the defenses of FBP and fictionalism and the argument
for the thesis that there is no fact of the matter as to which of these two views is
correct -— than to omit many of the points made in the book and simply refer the
reader to the relevant passages.

1 A SURVEY OF POSITIONS

Mathematical realism (as T will use the term here) is the view that our mathemat-
ical theories are true descriptions of some real part of the world. Muathematical
anti-realism, on the other hand, is just the view that mathematical realism is false;
there are lots of different versions of auti-realism {e.g., formalism, if-thenism, and
fictionalism) but what they all have in common is the view that mathematics does
not have an ontology (i.e., that there are no objects that our mathewmatical the-
ories are about) and, hence, that these theories do not provide true descriptions
of some part of the world. In this section, I will provide a survey of the various
versions of realism and anti-realism that have been endorsed, or that one might
cndorse, about mathematics. Section 1.1 will cover the various versions of realism
and scction 1.2 will cover the various versious of anti-realism.

1.1 Mathematical Realism

Within the realist camnp, we can distinguish mathematical platonism (the view that
there exist abstract mathematical objects, i.e., non-spatiotemporal mathematical
objeets, and that our mathematical theories provide true descriptions of such ob-
jects) from andi-platonistic realism (the view that our mathematical theories arc
true descriptious of concrete, ie., spatiotemporal, objects). Furthermore, within
anti-platonistic realism, we can distinguish between psyehiologism (the view that
our mathematical theories are true descriptions of mental objects) and mathemat-
tead physicalism {the view that our mathematical theories arve true descriptions

'} would like to thank Oxford University Press for allowing the material to be reprinted,
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of some non-mental part of physical reality}. Thus, the three kinds of realism
are platonisin, psychelogisin, and physicalism. {One might think there is a fourth
realistic view here, namely, Meinongianism. I will discuss this view below, but for
now, let me just say that I do not think there is fourth version of realisin here;
I think that Meinongianisn: either isn't a realistic view or else is equivalent to
platonism.)

I should note here that philosophers of mathematics sometimes use the term
‘realisin’ interchangeably with ‘platonism’. This, I think, is not because they deny
that the logical space of possible views includes anti-platonistic realisin, but rather,
because it is widely thought that platonism is the only really tenable version of
realisni. I think that this is more or less correct, but since I am trying to provide
a comprehensive survey, I will cover anti-platouistic reslism as well as platonistic
realisiy. Nontheless, since I think the latter is much more important, I will have
far more to say about it. Before 1 go inte platonism, however, I will say a few
words about the two different kinds of anti-platonistic realism - - i.e., physicalism
and psychologism.

1.1.1  Anti-platonistic reatism (physicalism and psychologism)

The main advocate of mathematical physicalism is John Stuart Mill [1843, book
I, chapters 5 and 6]. The idea here is that mathematics is about ordinary physical
objects and, hence, that it is an empirical science, or a natural science, albeit a
very general one. Thus, just as botany gives us laws about plants, mathematics,
according to Mill's view, gives us laws about all objects. For instance, the sentence
241 =13 tells us that whenever we add onc object to 2 pile of two objects, we
will end up with three objects. It does not tell us anything about any abstract
objects, like the numbers 1, 2, and 3, because, on this view, there are simply no
such things as abstract objects. (There is something a bit arbitrary and poteutially
confusing about calling this view ‘physicalisin’, because Penclope Maddy [1990b]
has used the term ‘physicalistic platonism’ to denote her view that set theory is
about sets that exist in spacetime — e.g., sets of biscuits and eggs. We will sce
below that her view is different from Mill's and, indeed. not entircly physicalistic

it is platonistic in at least somc sense of the ternmi. Oue might alse call Mill's
view ‘empiricism’, but that would be misleading too, because one can combine
empiricism with non-physicalistic views {c.g., Resnik and Quine have endorsed
empiricist platonist views?); moreover, the view 1 am calling ‘physiealism’ here is
an ontological view, and in general, empiricisin is an epistemological view. Finally,
one might just call the view here ‘Millianisi’; 1 would have no objection to thas,
but it is not as descriptive as ‘physicalism’.)

Recently, Philip Kitcher [1984] has advocated a view that is similar in certain
ways to Millian physicalism. According to Kiicher, our mathematical theories
are about the activities of an ideal agent; for iustance, in the case of arithmetic,
the activities involve the ideal agent pushing blocks around, i.e.. making piles of

2The view is developed in detail by Resnik [1897], but see also Quine (1951, section §).
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blocks, adding blocks to piles, taking them away, and so on. [ will argue in section
2.2.3, however, that Kitcher's view is actually better thought of as a version of
anti-realism.

Let’s move on now to the second version of anti-platonistic realism -- that is,
to psychologism. This is the view that mathematics is about mental objects, in
particular, ideas in our heads; thus, tor instance, on this view, ‘3 is prime’ is about
a certain mental object, narmely, the idea of 3.

One might want to distinguish two different versions of psychologism; we can call
these views actualist psychologism and possibilist psychologism and define them in
the following way:

Actualist Psychologism is the view that mathematical statements are
about, and truc of, actual mental objects {or mental constructions) in
actual human heads® Thus, for instance, the sentence 3 is prime’ says
that the mentally constructed object 3 has the property of primeness.

Possibilist Psychologismn is the view that mathematical statements are
about what mental objects it’s possible to construct. E.g., the seutence
“There is a prime number between 10,000,000 and (10,000,000 + 2)°
says that it’s possible to construct such a number. even if no one has
ever constructed one.

But (according to the usage that I'm employing here) possibilist psychologism is
not a genuinely psychologistic view at all, because it doesn’t involve the adop-
tion of a psychologistic ontelogy for mathematics. It seems to me that possibilist
psychologism collapses into either a platonistic view {i.e., a view that takes mathe-
matics to be about abstract objects) or an anti-realist view (i.e., & view that takes
mathematics not to be ahout anything - -- i.e., a view like deductivigm, formalism,
or fictionalism that takes mathematics not to have an ontology). If one takes pos-
sible objects (in particular, possible mental constructions) to be real things, then
presumably (unless one is a Lewisian about the metaphysical nature of possibilia)
one is going to take them to be abstract objects of some sort, and hence, cne’s pos-
sibilist psychologism is going to be just a semantically weird version of platonisin.
{On this view, mathematics is about abstract ohjects, it is objective, and so on;
the only difference between this view and standard platonism is that it involves an
odd, non-face-value view of which abstract objects the sentences of mathematics
are ahout.) If, on the other hand, one rejects the existence of possibie cbjects,
then one will wind up with a version of possibilist psychologism that is essentially
anti-realistic: on this view, mathematics will not have an ontology. Thus, in this
essay, | am going to usc ‘psychologism’ to denote actualist psychologism.

By the way. one might claim that actualist psychologisin is better thought of
as a version of anti-realism than a version of realism; for one might think that

*Obvicusly, there's a question here about whoese heads we're talking about. Any human head?
Auny decently trained human head? Advocates of psychologisin need to address this issue, but [
won’t pursue this bhere.
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mathematical realism is most naturally defined as the view that our mathemnatical
theories provide true descriptions of some part of the world that exisis indepen-
dently of us human beings. I don’t think anything important hangs on whether we
take psychologism to be a version of realism or anti-realism, but for whatever it's
worth, I find it more natural to think of psychologism as a version of realism, for
the simpic reason that {in agreement with other realist views and disagreement
with anti-realist views) it provides an ontology for mathematics — i.e., it says that
mathematics is about objects, albeit mental objects. Thus, I am going to stick with
the definition of mathematical realism that makes actualist psychologisim come out
as a version of realism. However, we will see below (section 2.2.3} that it is indeed
true that actualist psychologism bears certain important similarities to certain
versions of anti-realism.

Psychologistic views seem tc have been somewhat popular around the end of
the nineteenth century, but very fow people have advocated such views since then,
largely, I think, because of the criticisins that Frege leveled against the psychol-
ogistic views that werce around back then — e.g., the views of Erdmann and the
early Husserl.? Probably the most famous psychologistic views are those of the
intuitionists, most notably Brouwer and Hevting. Heyting for instance said. “We
do not attribute an existence independent of our thought ... to ... ruathematical
objects,” and Brouwer made several similar remarks.® However, I do not think we
should interpret sither of these philosophers as straightforward advoeates of actu-
alist psychologism. I think the best interpretation of their view takes it to be an
odd sort of hybrid of an actualist psychologistic view of mathematical assertions
and a possibilist psychologistic view of mathematical negations. [ hope to argue
this point in more detail in the future, but the basic idea is as follows. Brouwer-
Heyting intuitionism is generated by endorsing the following two principles:

{A) A mathematical assertion of the form *Fu’ means ‘We are actually
in possession of a proof {or an effective procedurc for producing

a proof) that the mentally constructed mathematical object o is

.

(B} A mathematical sentence of the form ‘~ P’ means “There is a
derivation of a contradiction from ‘7 ".

Principle (A} commits them pretty straightforwardly to an actualist psychologistic
view of assertions. But (B} seems to commit them to a possibilist psychologistic
view of negations, for on this view, in order to assert ‘~ Fa', we need something
that entalls that we couldn’t construct the object a such that it was F (not merely
that we haven’t performed such a constructiou) — namely, a derivation of a con-
tradiction from ‘Fu’. I think this view is hopelessly confused, but 1 also think

4See, for instance, Husserl [1891] and Frege [1894] and [1893 1903, 12-15]. Husserl's and
Erdmann’s works have not been translated inte English, and so T am not cotirely certain that
either explicitly accepted what I am calling psychologism here. Resnik [1980, chapter 1] makes
a similar remark; all he commits to is that Frdmann and Husser] - and also Locke [1688]
catne close to endorsing psychologism.

Slleyting (1931, 33); and sce, e.g., Broower (1948, 90).
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it is the most coherent view that is consistent with what Brouwer and Heyting
actually say — though I cannot argue this point here. (By the way, none of this is
relevant to Dummniett’s [1973] view; his version of intuitionism is not psychologistic
at all.}6:7

1.1.2 Mathematical platonism

As I said above, platonism is the view that (a) there exist abstract mathematical
objects — objects that are non-spatiotemporal and wholly non-physical and non-
mental — and (b) our mathematical theories are true descriptions of such objects.
This view has been endorsed by Plato, Frege, Gédel, and in some of his writings,
Quinc.® {One might think that it’s not entircly clear what thesis (a) -— that there
exist abstract objects -— really amounts to. I think this is correct, and in section
3.2, I will argue that because of this, there is no fact of the matter as to whether
platonism or anti-platouism is true. For now, though, T would like to assume that
the platonist thesis is entirely clear.)

Therc are a couple of distinctions that need to be drawn between different
kinds of platonism. The most important distinction, in my view, is between the
traditional platonist view cndorsed by Plato, Frege, and Gédel {we might call
this sparse platonism, or non-plenitudinous platonism) and a view that 1 have
developed elsewhere [1992; 1995; 1998 and called plenitudinous platonism, or full-
blooded platonism, or for short, FBP. FBP differs from traditional platonism in
several ways, but all of the differences arise out of one bottom-level difference
concerning the question of how many mathematical objects there are. FBP can
be expressed very intuitively, but perhaps a bit sloppily, as the view that the
mathematical realm is plenitudinous; in other words, the idea here is that all the
mathematical objects that (logically possibly) cowld exist actually do exist, i.c.,
that there actually exist mathematical objeets of all logically possible kinds. {More
needs to be said about what exactly is meant by ‘logically possible’; T address this
in my [1998, chapter 3, section 5].}) In my book, I said a bit more about how to
define FBP, but Greg Restall [2003] has recently argued that still more work is

SIntuitionism itself (which can be defined in terms of principles {A) and (B} in the text) is not
a psychologistic view. It is often assumed that # goes Logeiher naturally with psychologism, but
in work currently in progress, I argue that intuitionism is independent of psychologism. More
specifically, T argue that {i) intultivnists can just as plausibly endorse platonism or anti-vealisin as
psychiologism, and (ii) advoeates of psychologismm can (and indeed should} avoid intuitionism and
hang onto classical logic. Intuitionism, then, isn’t a view of the inctaphysics of mathematics at all.
It is a thesis about the semantics of mathematical discourse that is consistent with both realism
and aoti-realismu,. Now, my own view on this topie is that intuitionism is a wildly impiausible
view, but I will not pursue this here becanse it is not a version of realism or anti-realism. (And by
the way, a similar point can be made about logicism: it 1s not a version of realism or anti-realisin
(it is consistent with both of these views) and so I will not discuss it here.)

TRecently, a couple of non-philosophers — namely, Hersh (1997} and Dehaene [1097] - - have
endorsed views that sound somewhat psychologistic. But 1 do not think these views should he
interpreted as versious of the view that 'm calling psychologism {and [ should nnte here that
Hersh at least is careful Lo distance himself from this view).

8%ee, e.g., Plato's Meno and Phaedo; Frege [1893-1903]; Godel [1064): and Quine [1948; 1951}
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required on this front; [ will say mare about this below, in section 2.1.3.

I should note here that the non-plenitndinousness of traditional platonisin is, I
think, more or less unreflective. That is, the question of whether the mathematical
realm is plenitudinous was almost completely ignored in the literature until very
recently; but despite this, the question is extremely important, for as I have argued

- and 'l sketch the argument for this here (scetion 2.1} — platonists can defend
their view if and only if they endorsc FBP. That is, I have argued (and will argue
here) that {a) FBP is a defensible view, and {b} non-plenitudinous versions of
platonisin are not defensible.

I don’t mean to suggest, however, that [ am the only philosopher who has ever
defended a view like FBP. Zalta and Linsky [1995] have defended a similar view:
they cleim that “there are as inany abstract objects of a certain sort as there
possibly could be.” But their conception of abstract objects is rather unorthodox,
and for this rcason, their view is quite different, in several respects, from FBP.¥
Moreover, they have not used FBP in the way that T have, arguing that platonists
can solve the traditioual problems with their view if and only if they endorse FBP.
{1 do not know of anyone else who has claimed that the mathematical realm is
plenitndinous in the manner of FBP. In my book {1998, 7-8], I quote passages from
Hilbert, Poincaré, and Resnik that bring the FBP-ist picture to mind, but I argue
there that none of these philogophers really endorses FBP. Hilbert and Poincaré
don’t even endorse platonism, let alone FBP; Resnik does endorse (a structuralist
version of) platonism, but it’s unlikely that he would endorse an FBP-ist version
of structuralistic platonism. It may be that Shapire would endorse such a view,
but he has never said this in print. In any event, whatever we end up saying
about whether these philosophers endorse views like FBP, the main point is that
they do not give FBP a prominent role, as I do. On my view, as we have scen,
plenitudinousness is the key prong in the platonist view, and FBP is the only
defensible version of platonism.)

A second divide in the platonist camp is between object-platonism and struc-
turelism. I have presented platonism as the view that therc exist abstract ath-
ematical objects (and that our mathematical theories deseribe such objects). But
this is not exactly correct. The real core of the view is the belief in the abstract,
i.e., the belief that there is something real and objective that exists outside of
spaccetime and that our mathematical theories characterize. The claim that this
abstract something is a collection of objects can be jettisoned without abandoning
platonism. Thus, we can say that, strictly speaking, mathematical platonism is the
view that our mathematical theorics are descriptions of an abstract mathematicnl
realm, e, a non-physical, non-mental, non-spatiotemporal aspect of reality.

Now, the most traditional version of platonism — the one defended by, eg.,
Frege and Gédel — is a version of object-platonism. Object-platonism is the view
that the mathematical realm is a systemn of abstract mathematical objects, such as
nunbers and sets, and that our mathematical theories, e.g., number theory and
set theory, describe these objects. Thus, on this view. the sentence °3 is prime’

ISee also Zalta [1983; 19881



42 Mark Balagner

says that the abstract object that is the number 3 has the property of primeness.
But there is a very popular alternative to object-platonism, wz., structuralism.
According to this view, our mathematical theories are not descriptions of par-
ticular systems of abstract objects; they are descriptions of abstract structures,
where a structure is something like a paftern, or an “objectless template” -— ie.,
a system of posifions that can be “filled” by any system of objects that exhibit
the given structure. One of the central motivations for structuralism is that the
“internal properties” of mathematical objects seem to be mathematically unim-
portant. What is mnathematically important is structure — i.e., the relations that
hold between mathematical objects. To take the example of arithmetic, the elaim
is that any sequence of objects with the right structure (i.e., any w-sequence) would
suit the needs of arithmetic as well as any other. What structuralists mainfain is
that arithmetic is concerned not with some particular one of these w-sequences,
but rather, with the strncture or pattern that they all have in common. Thus,
according to structuralists, therc is no object that is the number 3; there is only
the fourth position in the natural-number pattern.

Some people read Dedekind [1888] as having held a view of this general sort,
though I think that this is a somewhat controversial interpretation. The first
person to explicitly endorse the structuralist thesis as I have presented it here -
i.c., the thesis that mathematics is about structure and that different systems of
objects can “play the role” of, e.g., the natural numbers — was Benacerraf [1965].
But Benacerraf's version of the view was anti-platonistic; he sketched the view
very quickly, but later, Hellman [1989] developed an anti-platonistic structuralism
in detail. The main pioneers of platonistic structuralisin - - the view that holds
that mathematics is about structures and positions in structures and that these
structures and positions are real, objective, and abstract —— arc Resnik [1981; 1997)
and Shapiro [1989; 1997], although Steiner [1975] was also an early advocate.

In my book, T argued that the dispute between object-platonists and structural-
ists is less important than structuralists think and, indced, that platonists dou’t
need to take a stand on the matter. Resnik and Shapiro think that by adopting
structuralism, platonists improve their standing with respect to both of the great
objections to platonism, i.e., the epistemological cbjection and the non-uniqueness
objection, both of which will be diseussed in section 2.1. But I have argued {and
will sketch the argument here) that this is false. The first thing I have argued here
is that structuralism doesn’t do any work in connection with these problems alter
all (in connection with the epistemological problem, I argue this point in my [1998,
chapter 2, section 6.5] and provide a brief sketch of the reasoning below, in section
2.1.1.4.3; and in connection with the non-uniqueness problem, [ argue the point
in my [1998, chapter 4, section 3] and provide a skctch of the reasoning below, in
section 2.1.2.3). But the more important thing I've done is to provide FBP-ist solu-
tions to these two problems that work for both structuralism and object-platonism
(1998, chapters 3 and 4]; below (scetion 2.1), I will quickly sketch my account of
how FBP-ists can solve the two problems; I will not take the space to argue that
FBP 1s consistent with structuralism as well as with object-platonism, but the
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point is entirely obvious.!?

The last paragraph suggests that there is no reason to favor structuralism over
object-platonism. But the problem here is even deeper: it is not clear that struc-
turalism is even distinet from object-platonism in an important way, for as [ argue
in my book {chapter 1, section 2.1), positions In structures — and, indeed, strue-
tures themselves - seem to be just special kinds of mathematical objects. Now,
in light of this point, onc might suggest that the structuralists’ “objects-versus-
positions”™ rhetoric is just a distraction and that structuralism should be defined in
some other way. Onc suggestion along these lines, advanced by Charles Parsons, !
is that structuralism should be defined as the view that mathematical objects
have no internal properties, i.e., that there is no more to them than the rclations
that they bear to other mathematical objects. But (a} it scems that mathemati-
cal objects do have non-struetural properties, e.g., being non-spatiotemporal and
being non-red; and (b} the property of having only structural properties is ifself
a non-structural property (or so it would seem), and so the above definition of
structuralisin is simply incoherent. A second suggestion here is that structural-
ism: should be delined as the view that the internal properties of mathematical
objects are not mathematically important, i.e., that structure is what is important
in mathematics. But whercas the last definition was too strong, this one is too
weak. For as we'll see in section 2.1.2, traditional object-platonism is perfectly
consistent with the idea that the internal propertics of mathematical objects are
not mathematically jmportant; indeed, it scems to me that just about cveryone
who claims to be an object-platonist would endorse this idea. Therefore, this can-
not be what separates structuralism from traditionzl object-platonism. Finally,
structuralists might simply define their view as the thesis that mathematical ob-
jects are positions in structures that ean be “hlled” by other objects. But if I'm
right that this thesis doesn’t do any work in helping platonists solve the problems
with their view. then it’s not clear what the motivation for this thesis could be, or
indeed, why it is philosophically important.!?

I think it is often convenient for platonists to speak of mathematical theories
ay describing structures, and in what follows, 1 will sometimes speak this way.
But as I see it, structures are mathematical objects, and what's more, they are
made up of objects. We can think of the clements of mathematical structurces as
“positions” if we want to, but {a) they are still mathematical objects, and (b} as

107 have formulated FBP (and my solutions to the problems with platonism) in object-platonist
terins, but it is obvious that this material could simply be reworded in structuralistic FBP-ist
terms (or in a way that was neutral between structuralism and object-platonism).

HGee the first sentence of Parsons [1990].

2Regnik has suggested to me that the differcoce between structuralists and object-platonists
s that the latter often see facts of the matter where the former do not. Oune might put this
in terms of property possession again, that is, one might say that according to slructuralism.
there are some cases wheve there is no fact of the matier as to whether some mathematical
object @ possesses some mathematical property P. But we will see below {sections 2.1.2 2.1.3)
that chject-platonists are not cominitted to all of the fact-of-the-matter claims (or property-
possession claims) normally associated with their view. It will become clearer at that point, I
think, that there is no important difference between structuralism and object-platonism.
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we'll see below, there is no good reason for thinking of them as “positions”.

1.2 Mathemnatical Anti-Realism

Anti-realism, recall, is the view that mathematics does not have an ontology, i.e.,
that our mathematical theories do not provide true descriptions of some part of
the world. Therc are lots of different versions of anti-realism. One such view is
conventionalism, which holds that mathematical sentences are analytically true.
On this view, 2+ 1 = 3’ is like *‘All bachelors are unmarried’: it is true solely
in virtue of the meanings of the words appearing in it. Views of this sort have
been endorsed by Ayer (1946, chapter IV], Hempel [1945], and Carnap [1934; 1952;
19561,

A second view here is formealisra, which comes in a few different varieties. One
version, known as gawme formalism, holds that mathematics is a game of symbol
manipulation; ou this view, ‘2+ 1 = 3’ would be one of the “legal results” of the
“game” specified by the axioms of PA (i.c., Peano Arithmetic}. The only advo-
cates of this view that I know of are those, e.g., Thomae, whom Frege criticized in
his Grundgesetze (sections 88-131). A second version of formalism - - - metamath-
ematical formalistn, endorsed by Curry [1951] — holds that mathematics gives us
truths about what holds in various formal systems; for instance, ou this view, one
truth of mathematics is that the sentence 2 + 1 = 3’ is a theorem of the formal
system PA. One might very well doubt, however, that metamathematical formal-
ism is a genuinely anti-vealistic view; for since this view says that mathematics is
about theorems and formal systems, it seems to entail that mathematics has an on-
tology. in particular, one consisting of sentences. As a version of realism, however
~— that is, as the view that mathematics is about actually existing sentences - -
the view has nothing whatsoever to recommiend it.!% Finally, Hilbert sometimes
seems to accept a version of formalism, but again, it's not clear that he really had
an anti-realistic view of the metaphysics of mathematics (and if he did, it’s not
clear what the view was supposed to be}. I think that Hilbert was by far the most
brilliant of the formalists and that his views on the philesophy of mathematics
were the most important, insightful, and original. But I also think that the meta-
physical component of his view - i.e., where he stood on the question of realism

- was probably the least interesting part of his view. His finitism and his carlier
view that axiom systems provide definitions are far more important; I will touch
on the axiom-systems-are-definitions thesis later on, but I will not discuss this

130ne might endorse an anti-platonistic version of this view {maintaining that mathematics is
aboul sentence tokens) or a platonistic version {maintaining that mathematics is about sentence
types). But {(a) the aoli-platonistic version of this view is untenable, because there aren't enough
tokens lying around the physical world to account for all of mathematical truth (indeed, to
account even for finitistic mathematical truth). And (b) the platonistic version of this view has
no advantage over traditional platonism, and it has a serious disadvantage, because it provides a
non-standard, non-face-value semantics for mathematical discourse that fies in the face of actual
mathemalical practice (1 will say more about this problem below, in section 2.2.2).
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view {or Hilbert’s finitism) in the present section, because neither of these views
is a version of anti-realism, and neither entails anti-realism. As for the question
of Hilbert’s metaphysics, in the latter portion of his career he seemed to endorse
the view that finitistic arithmetical claims can be taken to be about sequences of
strokes — e.g., ‘2 -+ 1 = 3’ can be taken as saying something to the effect that if
we concatenate ‘||” with ‘", we get ‘|I|" — and that mathematical claims that go
beyend finitary arithmetic can be treated instrumentally, along the lines of game
formalism. 3o the later Hilbert was an anti-realist about infinitary mathematics,
but I think he is best interpreted as a platonist about finitary arithmetic, because
it is most natural to take him as saying that finitary arithmetic is about stroke
types, which are abstract objects.'4:1°

Anocther version of anti-realism -- a view that, 1 think. cen be characterized as
a descendent of formalism - is deductivism, or ifthenism. This view holds that
mathematics gives us truths of the form ‘if 4 then T (or ‘it is necessary that if
A then 77} where A is an axiom, or a conjunction of several axioms, and T is
a theorem that is provable from thesc axioms. Thus, for instance, deductivists
claim that ‘2 +1 = 3’ can be teken as shorthand for the sentence ‘(it is necessary
that) if the axioms of arithmetic are true, then 2 + 1 = 3. Thus, on this view,
mathematical sentences come out true, but they are not ebout anything. Putnam
originally introduced this view, and Hellman later developed a structuralist version
of it. But the early Hilbert also hinted at the view.!S

Another anti-realistic view worth mentioning is Wittgenstein’s (see, e.g., his
[1956]). His view is rclated in certain ways to game formalism and conventionalism,
but it is distinet from both. I do not want to try to give a quick formulation of
this view, however, because I do not think it is possible to do this; to capture
the central idcas behind Wittgenstein’s philosophy of mathematics would take
quite a bit more space. (I should point out here that Wittgenstein’s view can be
interpreted in a number of different ways, but I think it’s safe to say that however
we cnd up interpreting the view, it is going to be a version of anti-realism.)

Another version of anti-realism that I don't want to try to explain in full is
due to Chihara [1890]. Chihara’s project is to reinterpret all of mathematies,
and it would take a bit of space to adequately describe how he does this, but
the basic anti-realist idea is very simple: Chihara’s goal is to replace sentences
involving ontologically loaded existential quantification over mathematical objects
{e.g., ‘there is a set x such that...’) with assertions about what open-sentence
tokens it is possible to construct {e.g., ‘it is passible to construct an open sentence

MGee Hilbert [1925] for a formulation of the formalism/finitism that he endoryed later in his
career. For his earlier view, including the idea that axioms are definitions, sce his [1899] and his
letters to Frege in  Frege, 1980).

5 he idea that mathematics is about symbols — e.g., strokes - - is a view that has been called
terme formalism, This view is deeply related to metamathematical formalism, and in particular, 1t
runs into a problem that is exacily analogous to the problem with metamathematical formalism
described above (note 13).

1$Sce Putnam [1967a; 1967b], Heliman [1989), and Hilbert {1899] and his letters to Frege in
Frege, 1980].
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@ such that...’). Chihara thinks that (a) his reinterpreted version of mathematics
does evervthing we need mathematics to do, and (b} his reinterpreted version of
mathematics comes out true, even though it has no ontology {i.c., is not about
some part of the world} because it merely makes claims about what is pessible.
In this respect, his view is similar to certain versions of deductivism; Hellman,
for instance, holds that the axioms of our mmathematical theories can be read as
making claimns about what is possible, while the theorems can be read as telling
us what would follow if the axioms were true.

Another version of anti-realism — and I will arguc in section 2.2 that this is the
best version of anti-realism - is fictionalism. This view differs from other versions
of anti-realistic anti-platonisin in that it takes mathematical sentences and theories
at face value, in the way that platenism: does. Fictionalists agree with platonists
that the sentence °3 is prime’ is about the number 317 - - in partieular, they think
it says that this number has the property of primeness — and they also agree that
if there is any such thing as 3, then it is an abstract ocbject. But they disagree with
platonists in that they do not think that there is any such thing as the number
3 and, hence, do not think that sentences like ‘3 is prime’ are true. According to
fictionalists, mathematical sentences and theories arc hetions; they are comparable
to sentences like ‘Santa Claus lives at the North Pole.” This sentence is not true.
because ‘Santa Claus’ is a vacuous term, that is, it fails to refer. Likewise, ‘3 is
prime’ is not true, because ‘3’ is a vacuous term — because just as there is nio such
person as Santa Claus, so there is no such thing as the number 3. Fictionalism
was first introduced by Hartry Ficld [1980; 1989]; as we’ll see, he saw the view as
being wedded to the thesis that cmpirical science can be nominalized, i.e., restated
so that it does not contain any reference to, or quantification over, mathematical
objects. But in my [1996a] and [1998], I defend a version of fictionalism that
is divorced from the nominalization progran, and similar versions of fictionalism
have been endorsed by Rosen [2001] and Yablo [2002).

One obvious question that arises for fictionalists is this: "Given that 2+1=3
is false, what is the difference between this sentence and, say, ‘2+ 1 = 4'?" The
difference, according to fictionalism, is analogous to the difference between ‘Santa
Claus lives at the North Pole’ and ‘Santa Claus lives in Tel Aviv’. In other words,
the difference is that *2+1 = 3’ is part of a certain well-known mathematical story,
whereas ‘2+1 = 4" is not. We might express this idea by saying that while neither
‘241 = 3 nor ‘2+1 =4 is true simpliciter, there is another truth predicate
(or pseudo-truth predicate, as the case may be) — wiz, ‘is true in the story of
mathematics’ - that applies to ‘2+ 1 = 3" but not to ‘2 + 1 = 4°. This scemns to
be the view that Ficld endorses, but there is a bit more that needs to be said on

177 am using ‘about’ here in a thin sense. I say nore about this in my book {see, c.p., chapler
2, section 6.2), but for present purposes, all that inatiers is that in this sense of ‘about’, °S is
about b’ does not entail that there is any such thing as 6. For instance, we can say that the novel
Oliver Tuwnist is about an orphan named *Gliver’ without committing to the existence of such an
orphan. Of course, one might also use ‘about’ in a thicker way: in this sense of the terin, a story
{or a belicf state, or a sentence, or whatever) can be about an object only if the object exists and
the author {or believer or speaker or whatever) is “connected” to it in some appiopriate way.
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this topic. In particular, it is important to realize that the above remarks do not
lend any metaphysical or ontelogical distinction to sentences like ‘2 + 1 = 3°. For
according to fictionalisim, there are alfernetive mathematical “stories” consisting
of sentences that are not part of standard mathematics. Thus, the real difference
between sentences like 2 + 1 = 3’ and sentences like ‘2 + 1 = 4’ is that the
former are part of our story of mathematics, whereas the latter are not. Now, of
course, fictionalists will need to explain why we use, or “accept”. this particular
mathematical story, as opposed to some alternative story, but this is not hard to
do. The reasons are that this story is pragmatically useful, that it's aesthetically
pleasing, and most important, that it dovetails with our conception of the natural
numibers.

On the version of fictionalism that I defend, sentences like ‘3 is prime’ are simply
false. But it should be noted that this is not essential to the view. What is essential
to mathematical fictionalism is that {a) there are no such things as mathematical
objects, and hence, {b) mathematical singular terms are vacuous. Whether this
means that sentences like ‘3 is prime’ are false, or that they lack truth value, or
something else, depends upon our theory of vacuity. 1 will adopt the view that
such sentences are false, but nothing important will turn on this.!®

It is also important to note here that the comparison between mathematical and
Ketional discourse is actually not central to the fictionalistic view of mathematics.
The fictionalist view that we're discussing here is a view about mathematics only;
it includes theses like {a) and (b) in the preceding paragraph, but it doesn’t say
anything at all about Actional discourse. In short, mathematical fictionalismm —
or at any rate, the version of fictionalism that I have defended, and I think that
Field would agree with me on this —— is cntircly neutral regarding the analysis of
fictional discourse. My own view {though in the present context this doesn’t really
matter) is that there are important differences between mathematical sentences
and sentences involving fictional names. Consider, c.g., the following two sentence
tokens:

(1) Dickens's original token of some sentence of the form ‘Oliver was F’ from
Qliver Twist;

(2} A young child’s utterance of ‘Santa Claus lives at the North Pole’.

Both of these tokens, it seems, are untrue. But it seemns to mce that they arc
very different from one another and from ordinary mathematical utterances {fie-
tionalistically understood). (1) is a bit of pretense: Dickens knew it wasn’t truc
when he uttered it; he was cngaged in a kind of pretending, or literary art, or
some such thing. (2), on the other hand, is just a straightforward expression of
a false belief. Mathematical fictionalists needn’t claim that mathematical utter-
ances are analogous to either of these utterances: they needn’t claim that when

181t should be noted here that Hetionalists allow that some mathematical sentences are true,
albeit vacuously so. For instance, they think that sentences lke “All natural numbers are integers’
-—or, for that matter, *All natural numbers are zebras’ — are vacuously true for the simple reason
that there are no such things as numbers. But we needn’t woiry about Lhis complication bere.
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we use mathematical singular terms, we're engaged in a bit of make-believe (along
the lines of (1)} or that we're straightforwardly mistaken (along the lines of {2}).
There are a number of different things fictionalists can say here; for instance, one
line they could take is that there is a bit of imprecisicn in what might be called our
communal intentions regarding sentences like '3 is prime’, so that these senteuces
arc somewhere between {1} and (2). More specifically, one wight say that while
sentences like ‘3 is prime’ are best read as being “about” abstract objects — i.e.,
thinly about abstract objects (see note 17} -— there is nothing built into our us-
age or intentions about whether there really do exist abstract objects, and so it's
not true that we're explicitly involved in make-believe, and it's not true that we
clearly intend to be talking about an actually existing platonic realm. But again,
this is just one line that fictionalists could take. {(Sce my [2009] for more on this
and, in particular, how fictionalists can respond to the objection raised by Burgess
[2004].)

One might think that ‘3 is prime’ is less analogous to (1) or (2) than it is to, say,
a sentence about Oliver uttered by an informed adult who intends to be saying
something true about Dickens’s novel, ¢.g.,

{3) Oliver Twist lived in London, not Paris.

But we have to be careful here, because (a} one might think (indecd, I do think)
that (3) is best thought of as being about Dickens’s novel, and not Oliver, and
(b} fictionalists do net clalin that sentences like ‘3 is prime’ are about the story
of mathematics {they think this sentence is about 3 and is true-in-the-story-of-
mathematics, but not true simpliciter). DBut some people — e.g., van Inwagen
[1977], Zalta [1983: 1988], Salmon [1998], and Thotnasson [1999] — think that
sentences like (3} are best interpreted as being about Oliver Twist, the actual
literary character, which on this view is an abstract object; a fictionalist who ac-
cepted this platonistic semantics of (3) could maintain that ‘3 is prime’ is analogous
to (3).

Finally, I end by discussing Meinongianism. There are two different versions
of this view; the first, I think, is just a terminological variant of platonism; the
second is a version of anti-realism. The first version of Mecinongianism is more
well known, and it is the view that is commonly ascribed to Meinong, though
I think this interpretation of Meinong is controversial. In any cvent, the view is
that our mathematical theories provide true descripiions of objects that have some
sort of being (that subsist, or that are, in some sense) but do not have full-blown
existence. This sort of Meinongianism has been alinost universally rejected. The
standard argumncut against it (see, e.g., [Quine 1948]} is that it is not genuincly
distinct from platonism; Meinongians have merely created the dlusion of a differ-
ent view by altering the nicaning of the term ‘exist’. On the standard meaning
of ‘exist’, any object that is —- that has any being at all — exists. Therefore, ac-
cording to standard usage, Meinongianism entails that mathematical ohjects exist
{of course, Meinongians wouldn't assent to the sentence “Mathematical objects
exist’, but tlds, it seems, is simply because they don't know what ‘exist’ means);
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but Meinongianism clearly doesn’t take mathemnatical objects to cxist in space-
time, and s0 on this view, mathematical objects are abstract objects. Therefore,
Meinongianism is not distinct from platonism.'®

The second version of Meinongianism, defended by Routley i1980] and later by
Priest [2003], holds that {a} things like numbers and universals don’t exist at all
(i.e., they have no sort of being whatsoever}, but {b) we can still say true things
about them — e.g., we can say (truly) that 3 is prime, even though there is no
such thing as 3. Moreover, while Azzouni [1994] would not use the term ‘Meinon-
glanism’, he has a view that is very similar to the Routley-Priest view. For he
seems to want to say that {a) as platonists and fictionalists assert, mathematical
sentences — e.g., ‘3 is prime’ and ‘There are infinitely many transfinite cardinals’
- should be read at face value, i.e., as being about mathematical objects (in at
least some thin sense}; (b} as platonists assert, such sentences arc true; and {c) as
fictionalists assert, there arc really no such things as mathematical objects that
cxist independently of us and our mathematical theorizing. I think that this view
is flawed in a way that is similar to the way in which the Hrst version of Meinon-
gianism is fawed, except that here, the problen: is with the word ‘true’, rather
than ‘exists’. The second version of Mcinongianism entails that a mathernatical
sentence of the form *#e’ can be true, even if there is no such thing as the object
a (Azzouni calls this a sort of truth by convention, for on his view, it applies by
stipulation; but the view here is different from the Ayer-Hempel-Carnap conven-
tionalist view described above). But the problem is that it scoms to be buils into
the standard meaning of ‘true’ that if there is no such thing as the object a, then
sentences of the form ‘Fe’ cannot be literally true. Or equivalently, it is a widely
accepted criterion of ontological commitment that if you think that the sentence ‘o
is £ is literally true, then you are committed to the existence of the object a. One
might also put the point here as follows: just as the Hrst version of Meinongianism
isu’t genuinely distinet from platonism and only creates the illusion of a difference
by misusing ‘cxists’, so too the second version of Meinongianism isn't genuinely
distinct from fictionalism and only creates the illusion of a difference by misusing

19$3riest 12003] argues that (a) Meinongianism is different from traditional platonism, because
the latter is non-plenitudinous; and (b) Meinougianism is different from FBP, because the former
admits as legitimate the objects of inconsistent mathematical theories as well as consistent ones;
and {c) if platonists go for a plenitudinous view that also embraces the inconsistent {i.e, if they
endorse what Beall [1999] has called reelly full-blooded platonism), then the view looks more like
Meinongianism than platonism. But I think this last claim is just false; unless Meincngians can
sive some appropriate content to the claim that, e.g., 3 is but doesn’t exist, it seems that the
view should be thought of as a version of platonism. (I should note here that in making the
above argument, Priest was very likely thinking of the second version of Meinonpgianisin, which
I will diseuss presently, and so my argument here should not be thought of as 2 refutation of
Priest's arpument; it s rather a refutation of the idea that Priest’s argument can be used to save
first-version Meinongianism from the traditional argument against it. Moreover, as we'll see, |
do not think the second version of Meinongianism is equivalent to platonism, and so Priest’s
argument will be irrelevant there.) Finally, T might also add here that just as there arve different
versions of platonism that correspond to points {a)—{c) above, so too we can define analogous
versions of Meinongianisin, So T don't think there’s any difference Letween Lhe Lwo views on this
front either.
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‘true’; in short, what they call truth isn’t real truth, because on the standard
meaning of ‘true’ -- that is, the meaning of “true’ in Fnglish — if a sentence has
the form *Fa'. and if there is no such thing as the object a, then *Fa' isn't true. To
simply stipulate that such a sentence is true is just to alter the meaning of ‘truc’.

2 CRITIQUE OF THE VARIOUS VIEWS

I will take a somewhat roundabout critical path through the views surveyed above.
In seetion 2.1, I will discuss the main criticisms that have becn levcled against pla-
tonismn; in section 2.2, I will critically assess the various versions of anti-platonism,
including the various anti-platonistic versions of realism (i.e., physicalisin and psy-
chologism); finally, in section 2.3, I will discuss & lingering worry about platonism.
I follow this secmingly circuitous path for the simple reason that it seems to me to
generate a logically pleasing progression through the issucs to be discussed - even
if it doesn’t provide a clean path through rcalism first and anti-realism second.

2.1 Critigue of Platonism

In this section, I will consider the two main objections to platonism. In section
2.1.1, I will consider the epistemological objection, and in section 2.1.2, I will con-
sider the non-uniquencss {or multiple-reductions) objection. {There are a few other
problems with platonistu as well, c.g.. problems having to do with mathematical
reforence, the applications of mathematics, and Ockham’s razor. 1 will address
these below.} As we will see, [ do not think that any of these objections succeeds
in refuting platonism, because I think there are good FBP-ist responses to all of
them, though we will also sec that these objections (especially the epistemnological
one) do succeed in refuting non-full-blooded versions of platonism.

2.1.1 The Epistemological Argument Against Platonism

In section 2.1.1.1, T will formulate the epistemological argnment; in sections 2.1.1.2—
2.1.1.4, I will attack a number of platonist strategics for responding to the argu-
ment; and in section 2.1.1.5, I will explain what I think is the correct way for
platonists to respond.

2.1.1.1 Formulating the Argument While this argument goes all the way
back to Plato, the locus clessicus in contemporary philosophy is Benacerral's
i{1673]. But Bcenacerraf’s version of the argument rests on a causal theory of
knowledge that has proved vulnerable. A better formnulation of the argument is as
follows:

{1} Human beings exist entirely within spacetime.

(2} If there exist any abstract inathematical objects, then they exist outside of
spacetime.
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Therefore, it scems very plausible that

(3} If there cxist any abstract mathematical objects, then human beings could
not attain knowledge of them.

Therefore,

(4) If mathematical platonisin is correct, then luman beings could not attain
mathematical knowledge.

{5) Human beings have mathematical knowledge.
Thercfore,
(6) Mathematical platonism is not correct.

The argument for (3} is everything here. If it can be established, then so
can (6}, because (3) trivially cntails (4), (5) is beyond doubt, and (4) and {5)
trivially entail (6}. Now, (1} and (2) do not deductively entail {3}, and so even
if we accept (1) and (2), there is room here for platonists to maneuver — and
as we'll see, this is precisely how most platonists have responded. However, it is
important to notice that (1} and (2) provide a strong prima facie motivation for
(3), because they suggest that mathematical objects (if there are such thiugs) are
totally inaccessible to us, i.e., that information cannot pass from mathematical
objects to huinan beings. But this gives rise to a prima fecie worry {which may or
may not be answerable) about whether human beings could acquire knowledge of
abstract mathematical objects {i.e., it gives rise to a prima facie reason to think
that (3) is true). Thus, we should think of the cpistemological argument not as
refuting platonism, but rather as issuing a challenge to platonists. In particular,
since this argumnent gencrates a prima fucie reason to doubt that human beings
could acquire knowledge of abstract mathematical objects, and since platonists
are committed to the thesis that human beings can acquire such knowledge, the
challenge to platonists is simply to explain how human beings could acquire such
knowledge.

There are three ways that platonists can respoud to this argument. First. they
can argue that (1) is false and that the human mind is capable of, somehow,
forging contact with the mathematical realm and thereby acquiring information
about that realm; this is Gadel's strategy, at least on some interpretations of
his work. Sccond, we can argue that (2) is false and that human beings can
acquire information about mathematieal objects via normal perceptual means;
this strategy was pursued by the early Maddy. And third, we can accept (1) and
(2) and try to explain how (3) could be false anyway. This third strategy is very
different from the first two, because it involves the construction of what might
be called a no-contact epistemology: for the idea here is to accept the thesis that
human beings cannot come into any sort of information-transferring contact with
mathematieal objeets - - this is the result of accepting (1) and (2) — and to try to
explain how humans could nonetheless acquire knowledge of abstract objects. This
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third strategy has been the most popular among contemporary philosophers. Its
advocates include Quine, Steiner, Parsons, Hale, Wright. Resnik, Shapiro, Lewis,
Katz, and myself.

In sections 2.1.1.2-2.1.1.4, [ will describe (and criticize) the strategy of rejecting
{1}, the strategy of rejecting (2}, and all of the various no-contact strategies in the
literature, cxcept for my own. Then in section 2.1.1.5, | will describe and defend
my own no-contact strategy, ie., the FBP-based epistemology defended in my
[1995] and [1998].

2.1.1.2 Contact with the Mathematical Realm: The Gédelian Strategy
of Rejecting {1} On Godel's {1984] view, we acquire knowledpe of abstract
mathematical objects in much the same way that we acquire knowledge of concrete
physical objects: just as we acquire information about physical objects via the
faculty of sense perception, so we acquire information about mathematical objects
by means of a faculty of mathematical intuition. Now, other philosophers have
endorsed the 1dea that we possess a faculty of mathematical intuition, but Gédel’s
version of this view involves the idea that the mind is non-physical in some sense
and that we are capable of forging contact with, and acquiring information from,
non-physical mathematical objects. {Others who endorse the idea that we possess
a faculty of mmathematical intuition have a mo-contact theory of intuition that
is consistent with a materialist philosophy of mind. Now, some people might
argue that Godel had such a view as well. T have argued elsewhere (1998, chapter
2, scction 4.2] that Goédel is better interpreted as endorsing an immaterialist,
contact-based theory of mathetnatical intuition. But the guestion of what view
(Godet actually held is irrclevant here.)

This reject-{1)} strategy of responding to the epistemclogical argument can be
quickly dispensed with. One problem is that rejecting (1} doesn’t seem to help
solve the lack-of-access problem. For even if minds are immaterial, it is not as
if that puts them into informational contact with mathematical objects. Indeed,
the idea that an inunaterial tnind could have some sort of information-transferring
contact with abstract objects seemns just as incoherent as the idea that a physical
brain could. Abstract objects, after all, arc causally inert; they cannot gener-
ate information-carrying signals at all; in short, information can’t pass from an
abstract object to anything, material or immaterial. A sccond problem with the
rcject-(1) strategy is that (1) is, in fact, true. Now, of course, | caunot argue for
this here, because it would be entirely inappropriate to break out into an argument
against Cartesian dualism in the middle of an essay on the philosophy of math-
cmatics, but it is worth noting that what is required heve is a very strong and
puplausible version of dualism. One cannot motivate a rejection of (1} by merely
arguing that there are real mental states, like beliefs and pains, or by arguing that
our mentalistic idiomns cannot be reduced to physicalistic idioms. One has to argue
for the thesis that there actually exists immaterial human mind-stuff.
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2.1.1.3 Contact in the Physical World: The Maddian Strategy of Re-
jecting (2) I now move on to the idea that platonists can respond to the episte-
mological argument by rejecting (2). The view here is still that human beings are
capable of acquiring knowledge of mathematical objects by coming into contact
with thetn, ie., receiving information from them, but the strategy now is not to
bring human beings up to platonic heaven, but rather, to bring the inhabitants
of platonic heaven down to earth. Less metaphorically, the idea is to adopt a
naturalistic conception of mathematical objects and argue that human beings can
acquire knowledge of these objects via sense perception. The most important ad-
vocate of this view is Penelope Maddy (or rather, the early Maddy, for she has
since abandoned the view}.2® Maddy is concerned mainly with set theory. Her
two central claiins are (a) that sets are spatiotemporally located — a set of eggs,
for instance, is located right where the eggs are - and (b) that we can acquire
knowledge of sets by perceiving them, i.e., by sceing, hearing, smelling, feeling,
and tasting them in the usual ways. Let’s call this view naturalized platonism.

1 have argued against naturalized platonism elscwhere [1994; 1998, chapter 2,
section 5]. [ will just briefly sketch one of my arguments here.

The first point that needs to be made in this connection is that despite the fact
that Maddy takes sets to exist in spacctime, her view still counts as a version of
platonism (albeit a non-standerd version). Indeed, the view has to be a version
of platonism if it is going to be {a) relevant to the present discussion and (b)
tenable. Point {a) should be entirely obvious, for since we are right now looking
for a solution to the epistemological problem with platenism, we are concerned
only with platonistic views that reject (2), and not anti-platonistic views. As for
point (b), if Maddy were to endorse a thoroughgoing anti-platonisin, tlien her
view wolld presmunably be a version of physicalism, since she claims that there
do exist sets and that they exist in spacetime, right where their members do; in
other words, her view would presumably be that sets are purely physical objects.
But this sort of physicalisin is untenable. Oune problem here (there arc actually
many problems with this view; see section 2.2.3 below) is that corresponding to
every physical object there are infinitely many sets. Corresponding to an egg, for
mstance, there is the set coutaining the egg, Lhe set containing that set, the set
containing that set, and so on; and there is the set containing the egg and the
set containing the egg, and so on and on and on. But all of these sets have the
samc physical basc; that is, they are made of the cxact same matter and have
the exact same spatiotemiporal location. Thus, in order to maintain that these
sets are different things, Maddy has to claim that they differ from one another in
non-physical ways aud, heuce, that sets are at least partially non-physical objects.
Now, T suppose one might adopt a psychologisiic view here according to which scts
are mental objects (e.g., one might claim that only physical objects exist “out there

205ee Maddy [1980; 1990]. She abandons the view in her (1097} for reasons completely difflerent
from the ones [ present here. Of course, Maddy isn't the first philosopher to bring abstract
mathematical ohjects into spacetime. Aside from Aristotle, Armstrong (1978, chapter 18, section
V] attempts this as well, though he doesn’t develop the idea as thoroughly as Maddy does.
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in the world” and that we then come along and somehow construct all the various
ditferent sets in our minds); but as Maddy is well aware, such views are untenable
(sce section 2.2.3 below). Thus, the only initially plausible option for Maddy (or
indeed for anyone who rejects (2}} is to maintain that there is something non-
physical and non-mental about sets. Thus, she has to claim that sets are abstract,
in some appropriate sense of the term, although, of course, she rejects the idea
that they are abstract in the traditional sense of being non-spatictemporal.

Maddy, I think, would admit to all of this, and in ey bock (chapter 2, section
5.1) I say what I think the relevant sense of abstractness is. I will not pursue this
here, however, because it is not relevant to the argument that [ will mount against
Maddy's view. All that matters to my argnment is that according to Maddy's
view, scts are abstract, or non-physical, in at least some non-trivial sense.

What I want to argue here is that buisan beings cannot receive any relevant
perceptual data from naturalized-platonist sets (i.c., scts that exist in spacetime
but are nonetheless non-physical, or abstract, iu some non-traditional sense) -—
and hence that platonists cannot solve the epistemological problem with their view
by rejecting (2. Now, it’s pretty obvicus that I can acquire perceptual knowledge
of physical objects and aggregates of physical matfer; but again, there is more to a
naturalized-platonist set than the physical stulf with which it shares its location —
there is something abstract about the set, over and above the physieal aggregate,
that distinguishes it from the aggregate (and from the infinitely many other sets
that sharc the same matter and location). Can I perceive this abstract component
of the set? It scems that I cannot. For since the set and the aggregate are made of
the same matter, both lead to the same retinal stimulation. Maddy herself admits
this [1990, 65]. But if I reccive only onc retinal stimnulation, then the perceptual
data that I receive about the sct are identical to the perceptual data that I receive
about the aggregate. More generally, when I perceive an aggregate, T do not receive
any data about any of the infinitely many corresponding naturalized-platonist
sets that go beyond the data that I receive about the aggregate. This means that
naturalized platonists are no better off here than traditional platonists, becanse
we receive no morve perceptual information about naturalized-platonist sets than
we do about traditional non-spatiotemporal sets. Thus, the Benacerrafian worry
still remains: there is still an unexplained epistemic gap between the information
we receive in sense perception and the relevant facts about sets. (It should be
noted that there are a couple of ways that Maddy could respond to this argument.
However, I argued in my book (chapter 2, section 5.2} that these responses do not
succeed. )

2.1.1.4 Knowledge Without Contact e have scen that mathemnatical pla-
tonists cannot solve the epistemological problem by claiming that human beings
are capable of coming into some sort of contact with (i.e., recciving information
from) mathematical objects. Thus, if platonists are to scive the problem, they
inust explain how human beings could acquire knowledge of mathematical objects
without the aid of any contact with them. Now, a few different no-contact pla-
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tonists (most notably, Parsons [1980; 1994, Steiner 19751, and Katz [1981; 1998]}
have started out their arguments here by claiming that human beings possess a
{no-contact) faculty of mathematical intuition. But as almost all of these philoso-
phers would admit, the epistemological problem cannot be solved with a mere
appeal to a no-contact faculty of intuition; onc must also explain how this faculty
of intuition could be reliable --- and in particular, how it could lead to knowledge
-— given that it’s a ne-contact faculty. But to explain how the faculty that gen-
erates our mathematical intuitions and heliefs could lead to knowledge, despite
the fact that it's a no-contact faculty, is not significantly different from explaining
how we could acquirc knowledge of mathematical objects, despite the fact that
we do not have any contact with such objects. Thus, no progress has been made
here toward solving the epistemological problem with platonism.?! {For a longer
discussion of this, sec my 1998, chapter 2, section 6.2].)

In scetions 2.1.1.4.1-2.1.1.4.3, T will discuss and criticize three different attempts
to explain how human beings could acquire knowledge of abstract objects without
the aid of any information-transierring contact with such objects. Aside from my
own explanation, which I will defend in section 2.1.1.5, these three explanations
are (as far as I know) the only ones that have been suggested. (It should be
noted, however, that two no-contact platonists — - namely, Wright [1983, section
xi] and Hale [1987, chapters 4 and 6] — have tried to solve the cpistemological
problem without providing an explanation of how we could acquire knowledge of
non-spatiotemporal objects. I do not have the space to pursue this here, but in
my book (chapter 2, scetion 6.1) [ argue that this cannot be done.}

2.1.1.4.1 Holism and Empirical Confirmation: Quine, Steiner, and
Resnik One explanation of how we can acquire knowledge of mathematical ob-
jects despite our lack of contact with them is hinted at by Quine [1951, section
6] and developed by Steiner [1975, chapter 4] and Resnik [1997, chapter 7]. The
claim here is that we have good reason to believe that our mathematical theo-
ries are true, because {a) these theories are central to our overall worldview, and
(L) this worldview has been repeatedly confirmed by empirical evidence. In other
words, we don’t ueed contact with mathematical objects in order to know that our
theories of these objects are true, because confirmation is holistic, and s0 these
theories arc confirmed every day, along with the rest of our overall worldview,

One problem with this view is that confirmation holisin is, in fact, false. Con-
firmation may be holistic with respect to the nominafistic parts of our cmpirical
theories (actually, I doubt cven this), but the mathematical parts of our empir-

2t Again, most platonists who appeal to a no-contact faculty of intuition would acknowledge
my peint here, and indecd, most of them go on to offer explanations of how no-contact intuitions
could be reliabie (or what comes to the same thing, how we could acquire knowledge of abstract
mathematical objects without the aid of any contact with such objects). The exception to this is
Parsons; he never addresses the worry about how a no-contact faculty of intuition could penerate
knowledge of non-spatiolemnporal objeets. This is extremely puzzling, for it's totally unclear how
an appeal to 2 no-contact faculty of intuition can heip solve the epistermnological problem with
platonism if it's not conjoined with an explanation of reliability.
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ical theories are not confirmed by empirical findings. Indeed, empirical Andings
provide no reason whatsoever for supposing that the mathematical parts of our
empirical theories are true. T will sketch the argument for this claim below, in
section 2.2.4, by arguing that the nominalistic contents of cur empirical theories
could be true even if their platonistic contents are Hetional (the full argumnent can
be found in my [1998. chapter 7}).

A second problem with the Quine-Steiner-Resnik view is that it leaves un-
explained the fact that mathematicians arc capable of acquiring mathematical
knowledge without waiting to see if their theories get applied and confirmed in
empirical science. The fact of the matter is that mathematicians acquire mathe-
matical knowledge by doing mathematics, and then empirical scientists come along
and use our mathematical theories, which we already know are true. Platonists
need to explain how human beings could acquire this pre-applications mathemat-
ical knowledge. And, of course, what’s nceded here is precisely what we needed to
begin with, namely, an explanation of how human beings could acquire knowledge
of abstract mathematical objects despite their lack of contact with such objects.
Thus, the Quinean appeal to applications hasn't helped at all — platonists ure
right back where they started.

2.1.1.4.2 Necessity: Katz and Lewis A sccond version of the no-contact
strategy. developed by Katz [1981: 1998] and Lewis [1986, scction 2.4], is to argue
that we can know that our mathematical theories are true, without any sort of
information-transfoerring contact with mathematical objects, becausce these theories
arc necessarily true. The reason we need information-transferring contact with
ordinary physical objects in order to know what they're like is that these objects
could have heen different. For instance, we have to look at fire cngines in order to
kuow that they're red, because they could have been blue. But on the Katz Lewis
view, we don't need any contact with the number 4 in order to know that it's the
sum of two primes, because 1t is necessarily the sum of two primes.

This view has been criticized by Field [1989, 233-38] and mysclf {1698, chapter
2, section 6.4. In what follows, I will briefly sketch what 1 think is the main
problen.

The first point to note here is that even if mathematical truths are necessarily
true, Katz and Lowis still need to explain how we know that they're true. The
mathematical realm might have the particular nature that it has of necessity. but
that doesn’t mean that we could know what its nature is. How could huruan beings
know that the mathematical realin is composed of structures of the sort we study
in mathematics -— i.e., the natural munber scrics, the set-theoretic hierarchy, and
50 on —- rather than structures of some radically different kind? It is true that
if the mathematical realin is composed of structures of the familiar sort, then it
follows of necessity that 4 is the sumn of two prirnes. But again, how could we know
that the mathematical realm is composed of structures of the familiar kind?

It is important that this response not be misunderstood. 1 am not demanding
here an account of how human beings could know that there exist any mathemat-
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ical objects at all. That, I think, would be an illegitimate skeptical demand; as
is argued in Katz’s [1981, chapter VI] and my [1998, chapter 3i, all we can legiti-
mately demand from platonists is an account of how human beings could know the
nature of mathematical objects, given that such objects exist. But in demanding
that Katz and Lewis provide an account of how humans could know that there are
objects answering to our mathematical theories, ! mmean to be making a demand of
this latter sort. An anti-platonist might put the point here as follows: “Even if we
assume that therc exist mathematical objects -— indeed, even if we assume that
the mathematical objects that exist do so of necessity - we cannot assume that
any theory we come up with will pick out a system of actually existing objects.
Platonists have to explain how we could know which mathematical theories are
true and which aren’t. That is, they have to explain how we could know which
kinds of mathematical objects exist.”

The anti-platonist who makes this last remark has overlooked a move that
platonists can make: they can say that, in fact, we can assume that any purely
mathematical theory we come up with will pick out a system of actually existing
objects {or, morce precisely, that any such theory that’s internally consistent will
pick out a system of objects). Platonists can motivate this claim by adopting
FBP. For if all the mathematical objects thai possibly could exist actually de
exist, as FBP dictates, then cvery {consistent) purely mathematical theory picks
out a system of actually cxisting mathematical objects. It is important to note,
however, that we should not think of this appeal to FBI? as showing that the
Katz-Lewis necessity-based epistemology can be made to work. It would be more
accurate to say that what's going on here is that we are replecing the necessity-
based cpistemology with an FBI*-based epistemology. More precisely, the point is
that once platonists appeal to FBP, there is no more reason to appeal to necessity
at all. (This point is already implicit in the above remarks, but it is made very
clear by my own epistemology (sec section 2.1.1.5 below, and my 1998, chapter 3),
for I have shown how o develop an FBP-based cepistemology that doesn’t depend
upon any claims about the necessity of mathematical truths.) The upshot of this
is that the appeal to necessity isn't doing any epistemological work at all; FBP is
doing all the work. Moreover, for the reasons alrecady given, the nccessity-based
epistemology cannot be made to work without falling back on the appeal to FBP.
Thus, the appeal to necessity seems to be utterly unhelpful in connection with the
epistemological problem with platonism,

But this is not all. The appeal to necessity is not just epistemologically un-
helpful; it is also harmful. The reason is that the thesis that our mathematical
sentences and theories are necessary is dubious at best. Consider, for instance,
the null set axiom, which savs that there exists a set with no members. Why
should we think that this sentence is nceessarily true? It seems pretty obvious
that it isn’t logically or conceptually necessary, for it is an existence claim, and
such claims aren’t logically or conceptually true.??> Now, one might claimn that

221 should note, however, that in opposition to this, Hale and Wright i1992) have argued that
the existenee of mathematical objects is conceptually necessary. But Field 119%3] has argued
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our mathematical thecries are metaphysically necessary, but it’s hard to see what
this could really amount to. One might claim that sentences like ‘2 4+ 2 = 4’ and
“7 > b’ are metaphysically necessary for the same reason that, e.g., ‘Cicero is Tully’
is metaphysically necessary — because they are true in all worlds in which their
singular terms denote, or something along these lines — but this doesn't help at
all in connection with existence claims like the null set axiom. We can’t claim that
the null set axiomn is metaphysically necessary for anvthing like the reason that
‘Cicero is Tully’ is mectaphysically necessary. If we tried to do this, we would end
up saying that *There exists an empty set’ is metaphysically necessary because
it is true in all worlds in which there exists an empty set. But of course, this
is completely unacceptable, because it suggests that all existence claims - e.g.,
‘There exists a purple hula hoop’ —- are metaphysically necessary. In the end., it
doesn’t scem to me that there is any interesting sense in which ‘There exists an
empty set’ is necessary but “There exists a purple hula hoop’ is not.

2.1.1.4.3 Structuralism: Resnik and Shapiro Resnik [1997, chapter 11,
section 3] and Shapiro 1897, chapter 4, section 7] both claim that human beings
can acquire knowledge of abstract mathematical structures, without coming into
any sort of information-transferring contact with such structures, by simiply con-
structing mathematical axiom systems; for they argue that axiom systems provide
implicit definttions of struetures. I want to respond to this in the sane way that [
responded to the Katz-Lewis appeal to necessity. The problem is that the Resnik-
Shapiro view does not explain how we conld know which of the various axiom
systems that we might formulate aetually pick out structures that exist in the
mathematical realm. Now, as was the case with Katz and Lewis, if Resnik and
Shapire adopt FBP, or rather, a structuralist version of FBP, then this problem
can be solved; for it follows from {strueturalist versions of) FBP that any consis-
tent purely mathematical axiom system that we formulate will pick out a structure
in the mathematical realm. But as was the case with the KatzLewis epistemol-
ogy, what's going on here is not that the Resnik-Shapiro epistemology is being
salvaged, but rather that it's being replaced by an FBP-based epistemnology.

It is important to note in this connection that FBP is not built into struc-
turalism; one could endorse a non-plenitudinous or non-full-blooded version of
structuralism, and so it is FBP and not strocturalisin that delivers the result
that Resuik and Shapiro need. In fact, structnralism is entirely irrelevant to the
implicit-defAnition strategy of responding to the epistemological problem, because
one can claim that axiom systems provide implicit definitions of collections of
mathematical cbjects as casily as one can claim that they provide implicit defini-
tions of structures. What onc needs. in order to make this strategy work, is FBP,
not structuralism. (Indeed, [ argue in my book {chapter 2, section 6.5) that similar
remarks apply to evervthing Resnik and Shapire say about the epistemology of
mathematics: despite their rhetoric, structuralism doesn’t play an essential role in
their arguments, and so it is episternologically irrelevant.)

convincingly that their argumment is flawed.
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Finally, [ should note here, in defense of not just Resnik and Shapiro, but Katz
and Lewis as well, that it may be that the views of these four philosophers are
best interpreted as involving (in some sense} FBP. But the problem is that these
philosophers don't acknowledge that they need to rely upon FBP, and so obviously

- and more importantly —— they donr't defend the reliance upon FBP. In short,
all four of these philosophers could have givenn FBP-based epistemologies without,
radically altering their metaphysical views, but none of them actually did.

(This is just a sketch of one problem with the Resnik-Shapire view; for a more
thorough critique, see my [1998, chapter 2, scction 6.5].)

2.1.1.5 An FBP-Based Epistemology Elscwhere [1992: 1995; 1998], T ar-
gue that if platonists endorse FBP, then they can solve the episternological problem
with their view without positing any sort of information-transferring contact be-
tween human beings and abstract objects. The strategy can be summarized as
follows. Since FBP says that all the mathematical objects that possibly could
exist actually do exist, it follows that if FBP iy correct, then all consistent purcly
mathematical theories truly describe some collection of abstract mathematical ob-
jects. Thus, to acquire knowledge of mathematical objects, all we need to do is
acquire knowledge that some purely mathematical theory is consistent. (It doesn’t
matter how we come up with the theory; some creative mathematician might sim-
ply “dream it up”.) But knowledge of the consistency of a mathematical theory --
or any other kind of theory, for that matter - — does not require auy sort. of contact
with, or access to, the objects that the theory is about. Thus, the Benacerrafian
lack-of-access problemn has been solved: we can acquire knowledge of abstract
mathematical objects without the aid of any sort of information-transferring con-
tact with such objects.

Now, there are a uumber of objections that might occur to the reader at this
point. Here, for instance, are four different objections that one might raise:

1. Your account of how we could acquire knowledge of mathematical objects
seems to assume that we are capable of thinking ebout mathematical ob-
jects, or dreaming up sfories about such objects, or formulating theories
about then. But it is simply not clear how we could do these things. Af-
ter all, platonists need to cxplain not just how we could acquire &nowledge
of mathematical objects, but also how we could do thingy like have beliefs
about mathematical objects and refer to mathematical objects.

2. The above sketch of your cpistemology scems to assume that it will be easy
for TBP-ists to account for how human beings could acquire knowledge of the
consistency of purely mathematical theories without the aid of any contact
with mathematical objects; but it’s not entirely clear how FBP-ists could do
this.

3. You may be right that if FBP is true, then all consistent purcly mathematical
theories truly describe some collection of mathematical objects, or some part
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of the mathematical realm. But which part? How do we know that it will
be true of the part of the mathematical rcalm that its authors intended
to characterize? Indeed, it seems mistaken to think that such theorics will
characterize unigue parts of the mathematical realm at all.

4. All your theory can cxplain is how it is that human beings could stumble onto
theories that truly describe the mathematical realm. On the picture you've
given us, the mathematical community accepts a mathematical theory T for
a list of reasons, one of which being that T is consistent (or, more precisely,
that mathematicians belicve that T is consistent). Then, since FBP is true,
it turns out that T truly describes part of the mathematical realm. But
since mathematicians have no conception of FBP, they do not know why T
truly describes part of the mathematical rcahn, and so the fact that it does
is, in some sense, lucky. Thus, let’s suppose that T is a purely mathematical
theory that we know {or reliably believe) is consistent. Then the objection
to your cpistemology is that you have only an FEBP-ist account of

(M1}  our ability to know that #f FBP is true, then T truly describes part
of the mathematical realm

You do not have an FBP-ist account of

(M2) our ability to know that T truly describes part of the mathematical
realm,

because you have said nothing to account for
(M3}  our ability to know that FBD is true.

In my book {chapters 3 and 4). I respond to all four of the above worries, and 1
arguc that FBP-ists can adequately respond to the epistemological objection to
platonism by using the strategy sketched above. 1 do not have the space to develop
these arguments here, although 1 should note that some of what I say below (section
2.1.2) will be relevant to one of the above objections, namely, objection number 3.

In addition to the above objections concerning my FBP-ist cpistermology, there
are also a unmber of objections that one might raise against FBP itself. For in-
stance, onc might think that FBP is inconsistent with the objectivity of mathemat-
ics, becausce one might think that FBP entails that, e.g., the continnum hypothesis
(CH) has no deterniinate truth value, because FBIP entails that both CH and ~CH
troly describe parts of the mathematical realm. Or, indeed, one might think that
because of this, FBP leads to contradiction. In my book (chapters 3 and 4), and
my [2001] and [2009], T respond to both of these worries — Le., the worrles about
objectivity aud contradiction - - as well as several other worries about FBP. In-
deed, 1 argue not just that FBP is the best version of platonism there is, bot that

23The FEP-ist account of (M1) is simple: we can learn what FBP says and recognize that
if FBP is true, then any theory like T {i.e., any consistent purely mathematical theory) truly
describes part of the mathematical realm.
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it is entirely defensible -—i.e., that it can be defended against all objections (or at
any rate, all the objections that I could think of at the time, cxeept for the objec-
tion inherent in my argument for the claim that there is no fact of the matter as
to whether FBP or fictionalism is true (see section 3 below)). I do not have any-
where near the space to develop all of these arguments here, though, and instead
of trying to summarize all of this material, I simply refer the reader to my earlier
writings., However, 1 should say that responses {or at least partial responses) to
the two worries mentioned at the start of this paragraph — i.¢., the worries about
objectivity and contradiction — will emerge below, in sections 2.1.2-2.1.3, and I
will also address there some objections that have been raised to FBI since my
book appeared. (I dont’t want to respond to thesc objections just vet, because my
responses will make more sense in the wake of my discussion of the non-uniqueness
problem, which I turn to now.)

2.1.2 The Non-Uniqueness Objection to Platonism

2.1.2.1 Formulating the Argument Aside from the epistemological argu-
ment, the most important argument against platonism is the non-unigqueness ar-
gument, or as it's also called, the multiple-reductions argument. Like the episte-
mological argument, this argument also traces to a paper of Benacerraf’s [1965),
but again, my formnulation will diverge from Benacerraf’s. In a nutshell, the non-
uniqueness problem is this: platonism suggests that our mathematical theories
describe unique collections of abstract objects, but in peint of fact, this does not
seem to be the case. Spelling the reasoning out in a bit more detail, and couching
the point in terms of arithmetic, as is usually dene, the argument proceeds as
follows.

(1) Ifthere arc any sequences of abstract objects that satisfy the axioms of Peano
Arithmetic (PA), then there are infinitely many such sequences.

{2} There is nothing “metaphysically special” about any of these sequences that
makes it stand out from the others as the sequence of natural nuinbers.

Therefore,
(3) There is no unique sequence of abstract objects that is the natural numbers.
But

{4) Platonism entails that there 45 a unique sequence of abstract objects that is
the natural mnnbers.

Therefore,
(5) Platonism is false.

The only vulnerable parts of the non-uniquencss argument are (2) and {4). The
two inferences from (1) and (2) to (3) and from (3) and (4) to (5) - are
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both fairly trivial. Moreover, as we will see, {1} is virtually undeniable. (And
note that we cannot make (1) any less trivial by taking PA to be a second-order
theory and, hence, categorical. This will only guarautee that all the models of
PA are isomorphic to one another. Tt will not deliver the desired result of there
being only one model of PA.) So it seems that platonists have to attack cither
(2) or {4). That is, they have to choose between trying to salvage the idea that
our mathernatical theories are about unique collections of objects (rejecting {2})
and abandoning unigqueness and endorsing a version of platonism that embraces
the idea that our mathematical theories are not {or at least, might not be) about
unique collections of objects (rejecting (4)}). In seetion 2.1.2.4, I will argue that
platonists can successfully solve the problem by using the latter strategy, but
before going into this, I want to say a few words about why I think they can’t
solve the problem using the former strategy, i.e., the strategy of rejecting (2).

2.1.2.2 Trying to Salvage the Numbers I begin by sketching Benacerraf's
argument in faver of (2). He proceeds here in two stages: first, he argues that
no sequence of sefs stands out as the sequence of natural numbers. and second,
he extends the arguinent so that it covers sequences of other sorts of objects
as well. The first claimn, i.c., the claim about sequences of sets, is motivated
by reflecting on the numerous set-theoretic reductions of the natural numbers.
Benacerraf eoncentrates, in particular, on the reductions given by Zermelo and
von Neumann. Both of these reductions begin by identifying 0 with the nnll set.
but Zermelo identifics 741 with the singleton {n}, whereas von Neumann identifies
n + 1 with the union n U {n}. Thus, the two progressions proceed like so:

8,403, ({03}, {{{0}}3, -

and
9,{0}.40.{01}.{0. {0}, {0, {6}}}. ..

Benacerraf argues very convincingly that there is no non-arbitrary reason for iden-
tifving the natural numbers with one of these sequences rather thau the other or,
indeed, with any of the many other set-theoretic sequences that would secem just
as good here, ¢.g., the sequence that Frege sugeests in his reduction.

Having thus argued that no sequence of sets stands out as the sequence of nat-
ural numbers, Benacerraf extends the point to sequences of other sorts of objects.
His argument here proceeds as follows. From an arithmetical point of view, the
only propertics of a given sequence that maoifter to the question of whether it is
the sequence of natural numbers ave structural propertics. In other words, noth-
ing about the individual objects in the sequence matters -- all that matuors is the
structure that the objects jointly possess. Therefore, any sequence with the right
structure will be as good a candidate for being the natural numbers as any other
sequence with the right structure. In other words, any w-sequence will be as good
a candidate as any other. Thus, we can conclude that no one seguence of objects
stands out as the sequence of natural numbers.
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It seems to me that if Benacerraf’s argument for {2) can be blocked at all, it
will have to be at this second stage, for I think it is more or less beyond doubt
that no sequence of sefs stands out as the sequence of natural numbers. So how
can we attack the second stage of the argument? Well, one strategy that some
have followed is to argue that all Benacerraf has shown is that numbers cannot
be reduced to objects of any other kind; e.g., Resnik argues [1980, 231] that while
Benacerraf has shown that numbers aren’t scts or functions or chairs, he hasn’t
shown that numbers aren’t objects, because he hasn’t shown that munbers aren’s
numbers. But this response misses an important point, namely, that while the
first stage of Benaccrraf’s argument is conched in terms of reductions, the second
stagc is not — it is based on a premise about the arithmetical irvelevance of
non-structural properties. But one might think that we can preserve the spirit
of Resnik’s idea while responding more directly to the argument that Benacerraf
actually used. In particular, one might try to do this in something like the following
way.

“There is some initial plausibility to Benacerraf’s claim that only structural facts
are relevant to the question of whether a given sequence of objects is the sequence
of natural numbers. For (a) only structural facts are relevant to the question of
whether a given sequence is arithmeticelly adequate, i.e., whether it satishes PA;
and (b} since PA is our best theory of the natural nuinbers, it would seem that
it captures everything we krow about those numbers. But a moment’s reflection
reveals that this is confused, that PA does nof capture everything we know abous
the natural numbers. There is nothing in PA that tells us that the number 17
is not the inventor of Cocoa Puffs, but nonctheless, we know (pre-theorctically)
that it isn't. And there is nothing in PA that tells us that numbers aren’t sets,
but again, we know that they aren’t. Likewise, we know that numbers aren’t
functions or properties or chairs. Now, it's true that these facts about the natural
nuimmbers aren't methemetically smportent - that's why none of them is included
in PA — but in the present context, that is irrelevant. What matters is this: while
Benacerraf is right that if there are any sequences of abstraet objects that satisfy
PA, then there are many, the same cannot be said about our full conception of
the naturel numbers (FCNXN). We know, for instance, that no scquence of sets or
functions or chairs satisfies FCNN, because it is built into our econception of the
natural numbers that they do not have members, that they cannot be sat on, and
so forth. Indeed, we seem to know that no sequence of things that aren’t natural
numbers satisfies FCNN, beeause part of our conception of the natural numbers is
that they are natural numbers. Thus, it scems that we know of only one sequence
that satisfics FCXN, viz,, the sequenee of natural numbers. But, of course, this
means that (2) is false, that one of the sequences that satisfics PA stands out as
the sequence of natural nambers.”

Before saying what [ think is wrong with this response to the non-uniqueness
argument, I want to say a few words about FCXN| for I think this is an important
notion, independently of the present response to the non-unigueness argument. [
say more about this in my [1998] and my {2009], but in a nutshell, FCNN is just
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the collection of everything that we, as a community, believe about the natural
numbers. It is not a formal theory, and so it is not frst-order or second-order,
and it does not have any axioms in anything like the nortnal sense. Moreover, it is
likely that there is no clear fact of the matter as to preciscly which sentences are
contained in FCNN (although for moest sentences, there is & clear fact of the matter
— e.g., ‘3 is prime’ and ‘3 is not red’ are clearly contained in FCNN, whereas ‘3
is not prime’ and ‘3 is red’ are clearly not). Now, I suppose that onc might think
it is somehow illegitimate for platonists to appeal to FCNN, or alternatively, one
might doubt the claim that it is built into FCNN that numbers aren’t, e.g., scts
or propertics. | cannot go into this here, but in my book [1998, chapter 4], [ argue
that there is, in fact, nothing illegitimate about the appeal to FCNN, and I point
out that in the end, my own responsc to Benacerraf doesn't depend on the claim
that it Is built into FCNN that numbers aren’t sets or propertics.

What, then, is wrong with the above respounse to the non-uniqueness argument?
In a nutshell, the problem is that this response begs the question against Benac-
erraf, because it simply helps itself to “the natural numbers”. We can take the
point of Benacerraf's argumeut to be that if all the w-sequences were, so to speak,
“laid out beforc us”, we could have no good reason for singling one of them out
as the sequence of natural numbers. Now, the above response does show that the
situation here is not as grim as Benacerraf made it seem, because it shows that
some w-sequences can be ruled out as definitely not the natural numbers. In par-
ticular, any w-sequence that contains an object that we recognize as a non-number

- c.g., a function or a chair or (it seems to me, though again, I don’t need this
claimm here) a set — can be ruled out iu this way. In short, any w-sequence that
doesn’t satisfy FCNN can be so ruled out. But platonists are not i any position
to claim that all w-sequences but one can be ruled out in this way; for since they
think that abstract objects exist independently of us, they must admit that there
arc very likely nmumerous kinds of abstract objects that we've never thought about
and, hence, that there are very likely nmncrous w-sequences that satisfy FCNN
and differ from one another only in ways that no human being has ever imagined.
I don’t see any way for platonists to escape this possibility, and so it sceins to me
very likely that (2) is true and, hence, that (3) is also true.

(I say a bit more on this topic, responding to objections and so on, in my book
{chapter 4, section 2); but the above remarks are good enough for our purposes
here.)

2.1.2.3 Structuralism Probably the most well-known platonist response to
the non-uniqueness argument - developed by Resnik [1981; 1997]) and Shapiro
[1989; 1997] — is that platonists can solve the non-uniqueness problem by merely
adopting a platonistic version of Benacerraf’s own view, i.c., a platonistic version
of structurafissn. Now, given the way I formulated the non-uniquencss argument
above, structuralists would reject (4), because on their view, arithmetic is not
about some particular sequence of offects. Thus, it might seein that the non-
uniquencss problem just doesn'’t arise at all for structuralists.
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This, however, is confused. The non-uniqueness problem does arise for struc-
turalists. To appreciate this, all we have te do is reformulate the argument in
{1)-(5} so that it is about parts of the mathematicul realm instead of objects. I
did this in my book (chapter 4, section 3). On this alternate formulation, the two
crucial premises — i.e., {2) and (4} — are rewritten as follows:

{2") There is nothing “metaphysically special” about any part of the mathemat-
ical realm that makes it stand out from all the other parts as the sequence
of natural numbers (or natural-number positions or whatever}.

{4’} Platonism entails that there #s a unique part of the mathematical realm
that is the sequence of natural numbers (or patural-number positions or
whatever).

Seen in this light, the move to structuralism hasn't helped the platonist cause at all.
Whether they endorse structuralism or not, they have to choose between trying to
salvage uniqueness (attacking {2'}) and abandoning unigueness, i.e., constructing
a platonistic view that embraces non-uniqueness (attacking (4')). Morcover, jnst
as standard versions of object-platonism seem to involve uniqueness (i.e., they
scem to accept (4) and reject (2)), so too the standard structuralist view scems to
involve uniqueness {1.e., it scems to accept (4') and reject {2°)). For the standard
structuralist view seerus to involve the claim that arithmcetic is about fhe structure
that all w-sequences have in common — that is, the natural-number structure, or
pattern.?* Finally, to finish driving home the point that structuralists have the
samme problem here that object-platonists have, we need merely note that the
argument 1 used above (soction 2.1.2.2) to show that platonists cannot plausibly
reject (2) also shows that they cannot plausibly reject (2). In short, the point
here is that since structures exist independently of us in an abstract mathematical
realm, it scems very likely that there are numercus things in the mathematical
realm that count as structures, that satisfy FCNN, and that differ from one another
only in ways that no human being has ever imagined.

In my book (chapter 4) T discuss a few responses that structuralists might make
here, but I argue that none of these responses works and, hence, that (27) is cvery
bit as plausible as {2). A corollary of these arguments is that contrary to what
is cornmonly believed, structuralism is wholly irrelevant to the non-uniqueness
objection to platonisin, and so we can {for the sake of rhetorical simplicity) forget
about the version of the non-uniqueness argument couched in terms of parts of
the mathematical realm, and go back to the original version couched in terms of
mathematical objects — i.c., the version in (1}-{5). In the next section, I will

24 Actually, | should say that this is how [ interpret the standard structuralist view, for to
the best of my koowledge, no siructuralist has ever explicitly discussed this point. This is a bit
puzzling, since one of the standard arguments for structuralisen is supposed to be that it provides
a way of avoiding the non-uniqueness problem. I suppose that structuralists just haven’t noticed
that there are general versions of the non-uniqueness argumnent that apply to their view as well
as to object-platonism. They seem to think that the non-unigueness problem just disappears as
soon as we adopt suructuralisin,



66 Mark Balaguer

sketch an argument for thinking that platonists can successfully respond to the
non-nniguencss argument by rejecting {4), i.e., by embracing non-uniqueness; and
as I pointed out in my book, structuralists can monnt an exactly parallel argurnent
for rejecting {4’). So again, the issue of structuralism is simply irrelevant here.

(Before leaving the topic of {2} entirely, I should note that I do not think
platonists should commit to the truth of (2). My claim is that platonists should
say that (2) is very likely true, and that we humans could never know that it was
false, but that it simply doesn’t matter to the platonist view whether {2) is true
or not (or more generally, whether any of our mathematical theories picks out
a unique collection of objects). This is what I mean when I say that platonists
should reject {4} they should reject the claim that their view is committed to
uniqueness. )

2.1.2.4 The Solution: Embracing Non-Uniqueness The only remaining
platonist strategy for responding to the non-uniqnencss argument is to reject (4).
Platonists have to give up on uniquencss, and they have to do this in connection not
just with arithmetical theories like PA and FCINN, but with all of our mathematical
theories. They have to claim that while such theories truly describe collections
of abstract mathematical objects, they do not pick out unigue collections of such
objects {or more precisely, that if any of our mathematical theories does describe
& unique collection of abstract objects, it is only by blind luck that it does).

Now, this stance certainly represents a departure from traditional versions of
platonisni, but it cannot be seriously maintained that in making this move, we
abandon platonism. For since the core of platonism is the belief in abstract ob-
jects — and since the core of mathematical platonism is the belief that onr math-
ematical theories truly describe such objects — it follows that the above view is a
version of platonisin. Thus, the only question is whether there is some reason for
thinking that platonists cannot make this move, i.c.. for thinking that platonists
are committed to the thesis that our mathematical theories describe unique col-
lections of mathematical objects. In other words, the question is whether there is
any argument for (4) — or for a generalized version of {4) that holds not just for
arithmetic but for all of cur mathematical theories.

It seems to me -- and this is the central claim of my response to the non-
uniqueness objection — that there sn't such an argnment. First of all, Benacerraf
didn't give any argument at all for {4).° Moreover, to the best of my knowledge,
no one else has ever argued for it either. DBut the really important point here
is that, prima facie, it seems that therc couldn't be a cogent argument for (4)
— or for a generalized version of {4) because, on the face of it, {4} and its
generalization arc both highly implausible. The generalized version of {4) says
that

25 Actually, Benacerraf's [1963] paper doesn’t even assert that (4) is true. [t is arguable that
{1} iz implicit in that paper, but this is controversial. One might alse maintain that there i an
argument for (4) implicit in Benacerraf's 1973 argument for the claim that we ought to use the
same seinantics for mathematese that we use for ordinary English. [ will vespond t¢ this below,
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(P} Our mathematical theories truly describe collections of abstract mathemat-
ical objects

entails

(U} Our mathematical theories truly describe unique collections of abstract math-
ematical objects.

This is a really strong claim. And as far as | can tell, there is absolutely no reason
to believe it. Thus, it seems to me that platonists can simply accept {P) and
reject (U}. Indeed, they can endorse {P} together with the contrary of {U); that
is, they can claim that while our mathematical theories do describe collections
of abstract objects, ncone of them describes a unique collection of such objects.
In short, platonists can avoid the so-called non-unigquencss “problem”™ by simply
embracing non-uniqueness, i.e., by adopting nen-unigueness platonism (NUP).

In my book (chapter 4, section 4) — and see also my [2001] and [2009] in this
connection — I discuss NUP at length. I will say just a few words about it here.
According to NUP, when we do mathematics, we have objects of a certain kind
in mind, namely, the objects that correspond te our full conception for the given
branch of mathematics. For instance, in arithmetic, we have in mind objects of
the kind picked out by FCNN; and in set theory, we have in mind cbjects of
the kind picked out by our full conception of the universe of sets (FCUS); and
so on. These arc the objects that our mathematical theories are about; iu other
words, they are the intended objects of our mathematical theories. This much,
I think, is consistent with traditional platonisrn: NUP-ists claiin that while our
mathematical theories might be satisbed by all sorts of different colicetions of
mathematical objects, or parts of the mathematical realm, they are only really
about the intended parts of the mathematical recalm, or the standard parts, where
what ig intended or standard is determined, very naturally, by our intentions,
i.e., by our full conception of the objects under discussion. {Sometimes, we don't
have any substantive pretheoretic conception of the relevant objects, and so the
intended structures are just the structures that satisfy the relevant axioms.} But
NUDP-ists differ froin traditional platonists in maintaining that in any given branch
of mathematics, it may very well be that there are multiple intended parts of the
mathematical realm - - i.e., multiple parts that dovetail with all of our intentions
for the given branch of mathematics, i.e., with the FC for the given branch of
mathematics.

Now. according to WUP, when we do mathematics, we often don't worry about
the fact that there might be multiple parts of the mathematical realm that count as
intended for the given branch of mathematics. Indeed, we often ignore this possibil-
ity altogether and proceed as if there is just onc intended part of the mathematical
realm. For instance, in arithmetic, we proceed as if there is a unigne scqnence of
objects that is the natural numbers. According to NUP-ists, proceeding in this
way is very convenient and completely harmless. The reason it’s convenient is that
it’s just intuitively pleasing (for us, anyway} to do arithmetic in this way, assuming
that we're talking about a unique structure and thinking about that structure in
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the normal way. And the reason it’s harmless is that we simply aren’t interested
in the differences between the various w-sequences that satisfy FCNN. In other
words, because all of these sequences are structurally cquivalent, they are indis-
tinguishable with respect to the sorts of facts and properties that we are trying to
characterize in doing arithmetic, and so no harm can comne from proceeding as if
there is only one sequence here.

Onc might wonder what NUP-ists take the truth conditions of mathematical
sentences to be. Their view is that a purcly mathematical sentence is true sim-
pliciter (as opposed to true in some specific model or part of the mathematical
realm)} iff it is true in all of the intended parts of the niathematical realni for the
given branch of mathematics (and there is at least oue such part of the mathe-
matical realm}. (This is similar to what traditional (U}-platonists say; the only
difference is that NUP-ists allow that for any given branch of mathematics, there
may be numerous intended parts of the mathematical realm.) Now, NUP-ists go
on to say that a mathematical sentence is false simpliciter iff it’s false in all in-
tended parts of the mathematical realin. Thus, NUP allows for failures of bivalence
{and I argue in my [2009) that this does not lead to any problems; in particular,
it doesn’t require us to stop using classical logic in mathematical proofs). Now,
some failures of bivalence will be mathematically uninteresting — e.g., if we have
two intended structuves that are isomorphic to one another, then eny sentence
that's true in onc of these structures and false in the other will be mathematically
uninteresting (and note that within the langnage of mathematics, there won't even
be such a sentence}. But suppose that we develop a theory of Fs, for some math-
ematical kind F, and suppose that our concept of an F is not perfectly precise, so
that therc are multiple structurcs that all fit perfectly with our concept of an F,
and our intentions regarding the word ‘F', but that aren’t structurally equivalent
to one another. Then, presumably, there will be some mathematically interesting
sentences that are true in somce intended structures but false in others, and so we
will have some mathematically interesting failures of bivalence. We will have to
say that there is no fact of the matter as to whether such sentences are true or
false, or that they lack truth value, or some such thing. This may be the case
right now with respect to the continnum hypothesis (CH). It may be that our
full conception of sct is compatible with both ZF+CH hierarchies and ZF4{-~CH
hierarchies. If so, then hierarchies of both sorts count as intended structures, and
hence, CH is true in some intended structures and false in others, and so we will
have to say that CH has no determinate truth value, or that there is no fact of the
matter as to whether it is true or false, or somne such thing. On the other hand,
it may be that there is a fact of the matter here. Whether there is a fact of the
matter depends upon whether CH or ~CH follows from axioms that are true in all
intended hierarchies, i.c., axioms that arc buils into our conception of sct. Thus,
on this view, the question of whether there is a fact of the matter about CH is
a mathematicel question, not a philosophical question. Elsewhere [2001; 2009, I
have argued at length that (a} this is the best view to adopt in conncction with
CH, and {b) NUP (or rather, FBP-NUP) is the only version of realism that yields
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this view of CH.26

This last sentence suggests that platonists have independent reasons for favor-
ing NUP over traditional (U}-platonism — ie.. that it is not the case that the
only reason for favoring NUP is that it provides a solution to the non-uniqueness
objoection. There is also a second independent reason here, which can be put in the
following way: {a) as I point out in my book {chapter 4, section 4), FBP leads very
naturally into NUP -- ie., it fits much better with NUP than with {U)-platonisn:
-— and (b} as we have seen here {and again, this point is argued in much more
detail in iy book (chapters 2 and 3)), FBP is the best version of platonism there
is; indeed, we've seen that FBD is the only tenable version of platonisin, because
non-full-bleoded (i.c., non-plenitudinous) versions of platonism arc refuted by the
epistemological argument.

But the obvious question that needs to be answered here is whether there are
any good arguments for the opposite conclusion, i.e., for thinking that traditional
{U)-platonism is superior to NUP, or to FBP-NUTP. Well, there are many arguments
that onc might attempt here. That is, there are many cobjections that one might
raise to FBP-NUP. In iny book, I responded to all the objections that 1 could
think of (see chapter 3 for a defense of the FBP part of the view and chapter 4 for
a defense of the NUP part of the view). Some of these objections were discussed
above; I cannot go through all of them here, but in section 2.1.3, T will respond to
a fow objections that have been raised against FBP-XUP since my book appeared,
and in so doing, I will also touch on some of the objections mentioned above.

In brief, then, my respouse to the non-uniqueness objection to platonism is
this: the fact that our mathematical theories fail to pick out unique collections
of mathematical objects {or probably fail to do this) is simply not a problem for
platonists, because they can endorse NUP, or FBP-INUP.

I have now argued that platonists can adequately respond to both of the Benac-
errafian objections to platonisin. These two objections arc widely considered to
be the only objections that really challenge mathematical platonisin, but there are
some other objections that platonists need to address - objections not to FBP-
NUT in particular, but to platonism in general. For instance, therc is a worry
about how platonists can account for the applicability of mathematics; there are
worries about whether platonism is consistent with our abilities to refer to, and
have belicfs about, mathematical objects; and there is a worry based on Ockham’s
razor. I responded to these objections in my book (chapters 3, 4, and 7); I cannot
discuss all of themn here, but below (section 2.3} I will say a few words about the

25 These remarks are relevant to the problem of accounting fur the objectivity of mathematics,
which 1 mentioned in section 2.1.3.5. 1L is important to note that FBP-ists can account for lots
of objectivity in mathematics. On this view, sentences iike '3 is prime’ are objectively true,
and indeed, sentences that are undecidable in currently accepted mathematical theories can be
objectively true. E.g., 1 think it'’s pretty clear that the Godel sentence for Peano Arithmetic and
the axiom of choice are Loth true in all intended parts of the mathematical realm. But unlike
traditional platonism, FBE also allows us to account for how it could be Lthat seme vndecidable
sentences do not have objective truth values, and as { argue in my [2001] and [2009], this is a
strength of the view.
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QOckham’s-razor-based objection.

2.1.3 Responses to Some Recent Qbjections to FBP-NUP

2.1.3.1 Background to Restall’s Objections Greg Restall [2003] has raised
some objections to FBP-NUP. Most of his criticisius concern the question of how
FBP is to be formulated. In my book [1998, section 2.1], I offcred a few different
formulations of FBP, although I wasn't entirely happy with any of them. I wrote:

The idea behind FBP is that the ordinary, actually existing mathe-
matical objects exhaust all of the logical possibilities for such objects;
that is, that there actually exist mathematical objects of all logically
possible kinds; that is, that all the mathematical objects that logically
possibly could exist actually do exist; that is, that the mathematical
rcalm is plenitudinous. Now, I do not think that any of the four formu-
lations of FBP given in the previous sentence avoids all ... difficultics
..., but it scems to me that, between them, they make tolerably clear
what FBP savs.

I'm now no longer sure that these delinitions are unacceptable - this depends on
what we say about logical possibilities, and kinds, and how clear we take *‘plenitudi-
nous’ to be. Moreover, to these four fornlations, I might add a fifth, suggested
to me by a remark of Zalta and Linsky: There are as rmnany mathematical objects
as there logically possibly could be.?” In any event, I want to stand by what I said
in my book: together, these formulations of FBP make it clear enough what the
view is.

Restall doesn’t object to any of these defiuitions of FBP; rather, he objects to
two other definitions — definitions that, in my book. I explicitly distanced mysclf
from. One of these definitions is a statement of second-order modal logic. After
making the above informal remarks about FBP, I said that I do not think “that
there is any really adequate way to formalize FBP”, that “it is a mistake to think
of FBP as a formal theory”, and that “FBP is, first and foremost, an informal
philosophy of mathematics” {p. 6). But having said this, I added that one might
fry to come close to formalizing FBI? with this:

(1) (WYHO(Fey{( Mx&Yz) O (Fz)(Mz&Yx)) - where 'Y’ is a sccond-ovder

variable aud ‘Mz’ means ‘r is a mathematical object’.
The second definition of FBP that Restall attacks can be put like this:
{0) Every logically consistent purely mathematical theory truly describes a part

of the mathematical realm. (Note that to say that T truly describes a part
P of the mathematical realm is not just to say that P is a medel of T, for

2T This isn’t an exact quote, but see their [1995, 533] for a similar remark.
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theories can have very unnatural miodels;?® rather, the idea here is that if
T truly describes I, then T is intuitively and straightforwardly ebout P
that is, P is a part of the mathematical realm that is, so to speak, lifted
straight off of the theory, and not some convoluted, unnatural model.)

Now, as we saw above, it is true that thesis () follows from FBP and, indeed, that
(0) is an important feature of my FBP-ist epistemology; but I never intended to use
(0) as a definition of FBP (I make this point in my book {chapter 1, endnote 13}).
One reason for this is as follows: if {0} is true, then it requircs explanation, and
as far as I can sce, the explanation could only be that the mathematical reahn is
plenitudinous.?? Thus, by defining FBP as the view that the mathematical realm
is plenitudinous, [ am simply zeroing in on something that is, in some sense, prior
to {0}: so again, on this approach, (0) doesn’t define FBP — it follows from FBP.
Moreover, this way of proceeding dovetsils with the fact that FBP is, at bottom,
an ontological thesis, le., & thesis about which mathematical objects exist. The
thesis that the mathematical realm is plenitudinous (which is what I take FBP to
be) is an ontological thesis of this sort, but intuitively, (0) is not; intuitively, (0)
is a thesis about mathematical theories, not mathematical objects.

Nonetheless, Restall’s objections are directed toward (1) and (0), taken as def-
initions. Now, since I don’t cndorse (1) or (0) as definitions, these objections arce
irrelevant. Nonetheless, I want to discuss Restall’s objections to show that they
don’t raise any problems for the definitions I do use {or any other part of iy view).
So let us turn to his objections now.

2.1.3.2 Restall’s Objection Regarding Formalization Restall begins by
pointing out that if FBP-ists are going to use a definition along the lines of (1),
they need to insist that the second-order predicate Y be a mathematical predicate.
I agree with this; as I made clear in the book, FBP is supposed to be restricted to
purely mathematical theories, and so, obviously, I should have insisted that Y be
purely mathematical. Thus, letting “Math (Y)' mean ‘Y is a purely mathematical
property’, we can replace (1) with

(3) (YY)[(Math(Y) & O(3Ix){(Mx & Yx}) O (Ix)(Mx & Yx])].

Restall then goes on to arguc that (3) is unaceeptable because it is contradictory;
for, Restall argues, since CH and ~CH are both logically possible, it follows from
{3) that CH and ~CII are both {rue.

As T pointed out above (section 2.1.1.5), this worry ariscs not just for definitions
like (3), but for FBP in gencral. In particular, one might worry that because FBP

2By oreover, T could truly describe a part of the mathematical realm that isn't a model at all;
e.g., one might say of a given set theory that it truly describes the part of the mathematical
realm that conststs of all pure sets. But there 1s no model that corresponds to this part of the
mathermatical realin, because the domain of such a model would be the set of all sets, and there
is no such thing.

2% Alternatively, one might i1y to explain (0} by appealing to Henkin's theorem that all syn-
tactically consistent first-order theories have models, butl this won’t work; see my book {chapter
3, note 10) for more on this.
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entails that all consistent purely mathematical theories truly describe collections
of abstract objects, and because ZF+CH and ZF+~CH are both consistent purely
mathematical theories, FBP entails that CH and ~CH are both true. [ responded
to this objection in my book (chapter 3, section 4); I won't repeat here everything
I said there, but I would like to briefly explain how I think FBP-ists can respond
to this worry. (And after doing this, I will also say a few words about the status
of (3) in this connection.)

The rnain poini thai needs to be made here is that FBP does not lead to conira-
diction, because it does not entail that either CH or ~CH is true. It entails that
they both truly describe parts of the mathematical realm, but it does not entail
that they arc frue, for as we saw above, on the FBP-NUP-ist view, a mathematical
statement is true simpliciter iff it is true in all intended parts of the mathematical
reahin {and there is at least one such part); so truly describing a part of the math-
ematical realin is not sufficient for truth. A second point to be made here is that
while FBI* entails that both ZF+-CH and ZF+4+~CH truly describe parts of the
matheratical realm, there is nothing wrong with this, because on this view, they
describe different parts of that realm. That is, they describe different hierarchies.
(Again, this is just a sketch of my response to the worry about contradiction; for
niy full response, sce my book {chapter 3, section 4).)

What do these considerations tell us about formalizations like (3)? Well, it re-
veals another problem with them (which we can add to the problems I mentioned
in nrv book}, namely, that such formalizations fail to capture the true spirit of
FBE because they don't distinguish betweeu truly describing a part of the math-
ematical reafm and being true. To solve this problein, we would have to replace
the occurrences of “Yx' in {3} with “Yx’ truly describes x*, or something to this
effect. But of conrse, if we did this, we would no longer have a formalization of
the sort I was considering.

2.1.3.3 Restall’s Objection Regarding FCININ  Next, Restall argues against
the following potential definitions of FBP:

{5} Every consistent mathematical theory has a model; and

(7) Every consistent matheinatical theory truly describes some part of the math-
ematical realm.

I wouldn’t use either of these delinitions, however; if I were going to use a delinition
of this general sort, I would use {0} rather than {5) or (7). Again, [ don’t think
of {0} as definitional, but if I were going to fall back to a definition of this general
kind, it would be to (0) and not to () or (7). I disapprove of (5) because it uses
‘has a model’ instead of ‘truly describes part of the mathematical realin’, and as I
pointed out above, these are not cquivalent; and 1 disapprove of (T} because it isn't
restricted to purely mathematical theories. Because of this, Restall’s objections to
(5) and (7} arc irrclevant.

At this point, however, Restall claims that even if we restrict our attention to
purcly mathematical theories - and hence, presumably, move to a definition like
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{0y — two problems still remain. I will address one of these problems here and the
other in the next section. The first alleged problem can be put like this: (a} if FBP
applies only to purely mathematical theories, then it won’t apply to FUNXN: but
(b) if FBP doesn’t apply to FCNN, “then we need some other reason to conclude
that FONN truly describes some mathematical structure” {Restall, 2003, p. 908).

My response to this is simmple: I never claimed {and don’t need the claim) that
FCNN truly describes part of the mathematical realm. The purpose of the FBP-
NUP-ist’s appeal to FCNN is to limit the set of structures that count as intended
structures of arithinetic; the elalin, put somewhat roughly, is that a structure
counts as an intended structure of arithmetic just in case FCNN truly describes
it.30 But it is not part of FBP-NUP that FCNN does truly describe part of
the mathematical realm. If it doesn’t truly describe any part of the mathemati-
cal realm {even on the assumption that I'BP is true), then that's a problem for
arithmetic, not for the FBP-NUP-ist philosophy of arithmetic - it means that
there s something wrong with our conception of the natural nnmbers, because it
means that {even if FBP is true) there are no structures that correspond to cur
number-theoretic intentions and, hence, that our arithinetical theories aren’t truc.
Now, for whatever it's worth, I think it's pretty obvicus that there ésn't anything
wrong with our conception of the natural mumbers, and so I think that if FBP is
true, then FONN does truly describe part of the mathematical realm. For {a} it
seerng pretty obvious that FCNN is consistent, and given this, FBP entails that
the purely mathematical part of FCINXN (i.e., the part consisting of sentences like
the axioms and theorems of PA, and sentences like ‘Numbers aren’t sets’) truly
describes part of the mathematical realm; and {(b) I think it’s pretty obvious that
the mixed part of PCNN {i.e., the part containing sentences like ‘Numbers aren’t
chairs’) ts more or less trivial and, in particular, that it doesn’t rule out all of the
parts of the mathematical realm that are truly described by the purely mathe-
matical part of FCNN; it is just very implausible to suppose that there are mixed
sentences built into the way that we conceive of the natural numbers that rule
out el of the “candidate structures™ (from the vast, plenitudinous mathematical
realm) that are truly described by the purely mathematical part of FCNN. Of
course, this is concetvable - -- it could be {in some sensc) that it's built into FCNN
that 2 is such that snow is purple. But this just scems very unlikely. {(Of course, it
is also very unlikely that it’s built into FCNN that 2 is such that snow is white; our
conception of 2 is pretty obviously neutral regarding the color of snow, althongh
I think it does follow from our conception of 2 that it isn't made of snow.) In
any event, if the above remarks are eorrect, and if FBP is true, then it is very
hikely that FCNN truly describes part of the mathematical realm. But again, the
FBP-NUP-ist doesn’t need this result.

30} say this is “somewhat rough” because it is a bit simplified; in particular, it assumes that
FCNN is consistent. [ say a few words about how to avoid this assumption in my [2001,, especially
in endnotes 5, 18, and 20 (and the corresponding text).
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2.1.3.4 Restall's Objection Regarding Non-Uniqueness The second al-
leged problem that still remains after we restrict FBP to purely mathematical
theories {and the last problem that Restall raises) is that definitions of FBP along
the lines of (0} are inconsistent with NUP. Restall claims that if NUP is true, and
if we have a standard semantics, so that only one thing can be identical to the
number 3, then mathematical theories don't truly describe their objects in the
manner of {0}.

First of all, it strikes me as an utter contortion of issuves to take this as an
objection to {0}-type definitions of FBP. Restall’s objection can be put in the
following way: “If you embrace (0}-type FBP and NUP, then you’ll have to endorse
the thesis that

{M} The numeral ‘3’ doesn't have a unique reference; i.e., there are multiple
things that are referents of ‘3.

But (M) is absurd, for if ‘3" rvefers to two different objects x and 3, then we’ll
have z = 3 and y = 3 and x # y, which is a contradiction. Thercefore, we have to
give up on (0)-type FBP or on NUP.” It seems to me, however, that it is clearly
NUP, and not FBP, that is the culprit in giving rise to {M); for {a} any version of
NUP, whether it is FBP-ist or not, will run into {M)-type problems, but (b} this
is not true of FBP - if it is not combined with NUP, it will not run into any such
problem. Conclusion: this argument isn’t an argument against FBP, or {0)-type
definitions of FBP, at all; rather, it is an argument against NUP.

Nonetheless, as an arpument against NUP, it is worth considering. Now, the
first point I want to make in this connection is that the overall problem here is
one that I addressed in my book. I pointed cut myself that FBP-NUP entails (M),
and I spent several pages (84-90) arguing that it is acceptable for platonists to
endorse (M) and responding to several arguments for the contrary claim that it is
not acceptable for platonists to endorse (M). Restall has a different argumens for
thinking (M) unacceptable, however, and so I want to address his argument.

Restall’s argument against (M) is that it lcads to contradiction, because if ‘3
refers to two different objects 2 and y, then we'll have » = 3 and y = 3 and
x # y. But in fact, iny FBP-NUP-ist view doesn’t lead to this contradiction. Of
course, there are some theories that endorse (M) that do lead to this contradiction.
Cousider, for instance, a theory that {a) talks about two different structures —
eg., 0%, 1*,2%, 3% .., and 0/, 1", 2/ 3. .. — that both satisfy FCNN and, hence,
are both candidates for being the natural numbers, and (b} says that ‘3 = 3%,
‘3 = 3", and *3* # 3" are all true. This theory is obviously contradictory. Bnt this
isn't my FBP-NUP-ist view; in particular, FBP-NUP doesn’t lead to the result
that sentences like ‘3 = 3*’ and *3 = 3" are true. Why? DBecause neither of these
sentences is true in all intended parts of the mathematical realm — which, recall,
is what is required, according to FBP-NUP, for a mathematical sentence to be
true, or true simpliciter. Sentences like ‘3 = 3*7 and '3 = 3 arc true in some
intended structures, but they are not true in el intended structures.

{Of course, according to FBP-NUP, sentences like this aren't folse simpliciter
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cither, and so we have here a failure of bivalence, though of course, not a mathe-
matically interesting or important failure of bivalence. See section 2.1.2.4 above.)

2.1.3.5 Colyvan and Zalta: Non-Uniqueness vs. Incompleteness It is
worth noting that if they wanted to, FBP-ists could avoid committing to NUP and
{(M). To see how, notice first that FBI-ists can say that among all the abstract
mathematical objects that exist in the plenitudinous mathematical realm; some are
tncomplete objects. (Some thought would need to be put into defining ‘incomplete’,
but here’s a quick definition off the top of my head that might need to be altered:
an object o is incomplete with respect to the property PP iff there Is no fact of
the matter as to whether o possesses PP.) Given this, and on the assumption
that FCNIN does truly describe part of the mathematical realm, FBI-ists could
claim that PCXN picks out a unique part of the mathematical realm, namely, the
part that (a) satisfies FONN and (b) has no features that FCNN doesn’t entail
that it has. Call this view incompleteness-FBP. Zalta [1983] endorses a version
of platonism that’s similar to this in a couple of ways (but also different in a
few important ways — e.g., on his view, FCNN doesn’t play any role at all),
and in a review of my book, he and co-author Mark Colyvan [1999] point out
that ne argument is given in my book for thinking that NUP-FBP is superior to
incompleteness-FBI.

Colyvan and Zalta are right that I didn't address this in my book, so let me say a
few words about why I think FB*-ists should favor NUDP-FIP over incompleteness-
FBI. It seems to me that incompleteness-FBP would be acceptable only if it were
built into our intentions, in ordinary mathematical discourse, that we are speaking
of objects that don’t have any properties that aren's built into our intentions. Now,
of course, it is an empirical question whether this 4y built into our intentions, but
it scems to me implausible to claim that it is. If T am right about this, then in fact,
our arithmetical intentions just don’t zero in on unique objects. Now, I suppose
one might object that regardless of whether the above kind of incompleteness is
built into our intentions, unigueness is built into our intentions, so that if FCXN
doesn’t pick out a unique part of the mathematical realm, then it doesn't count
as being true. But I think this is just false. If God informed us that there are two
different structures that satisfy FCNN and that differ from one another ounly in
ways that no human being has ever imagined (and presumably these differences
would be non-structural and, hence, mathematieally unintercsting), I do not think
the mathematical cormnunity {or common sense opinion) would treat this infor-
mation as falsifying our arithmetical theories. Indeed, 1T think we wouldn’t care
that there were two such structures and wouldn't feel that we needed to choose
between them in order to make sure that our future arithmetical claims were true.
And this is evidence that a demand for uniqueness is not built into FOCNN. In
other words, it suggests that NUDP docsn’t fly in the face of our mathematical
intentions and that it is perfectly acceptable to say, as NUP-FBD-ists do, that in
mathematics, truth sémpliciter can be defined in terms of truth in all intended
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parts of the mathematical realm,

2.2 Critique of Anti-Platonism
2.2.1 Introduction: The Fregean Argument Against Anti-Platonism

There are, 1 suppose, numergus arguments against mathematical anti-platonism
{or, what comes to the same thing, in favor of mathematical platonisni), but it
seemns to me that there is only one such argument with a serious claim to cogency.
The argument I have in mind is due to Frege {1884; 1893-1903], though 1 will
present it somewhat differently than he did. The argument is best understood as
a pair of ecmbedded inferences to the best explanation. In particular, it can be put
in the following way:

(i) The only way to account for the truth of our mathematical theories is to
adopt platonism.

(ii) The only way to account for the fact that our mathematical theories are
applicable and/or indispensable to empirical science is to admit that thesc
theories are true.

Therefore,
(iii) Platonism is true and anti-platonism is false.

Now, primae facie, it might seem that (i) is sufficient to establish platonism by
itself. But (ii) is needed to block a certain response to (i). Anti-platonists might
claim that the alleged fact to be explained in {i) — that our mathematical theories
are true - is really no fact at all. More specifically, they might respond to (i)
by denying that our mathematical theories are true and endorsing fickionalism
- - which, recall, is the view that (a) mathematical sentences like ‘2 +1 = 3’ do
purport to be about abstract objects, but (b) there are no such things as abstract
objects, and so (¢) these sentences are not true. The purpese of (ii) is to argue
that this sort of fictionalist response to (1) is unacceptable; the idea herc is that
our mathermatical theories have to be true, because if they were fictions, then they
would be no more useful to empirical scientists than, say, the novel Oliver Twist is.
{This argument -- ie., the one contained in (ii} — is known as the Quine-Putnam
indispensability argument, but it does trace to Frege.”!)

I think that the best — and, in the cnd, the only tenable - anti-platonist
response to the Fregean argument im (i)-(iii) is the fictionalist response. Thus,
what I want to do here is (a) defend fictionalism (I will do this in section 2.2.4, as
well as the present section), and (b) attack the various non-fictionalistic versions of
anti-platonisin {1 will argue against non-fctionalistic versions of anti-realistic anti-
platonisin in section 2.2.2. and I will argue against the two realistic versions of anti-
platonism, i.c.. physicalisin and psychologisni, in section 2.2.3). Now, in connection

Hbrege appealed only to applicability bere; see his [1893-1903, section $1]. The appeal to
indispensebifity came with Quine (see, c.g., his [1948] and [1951]) and Puotnam [1971; 1975].
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with task (a) -- ie., the defense of fictionalism -- the most important objection
that needs to be addressed is just the Quire-Putnain objection mentioned in the
last paragraph. I will explain how fctionalists can respond to this objection in
section 2.2.4. It is worth noting, however, that there are a few other “minor”
objections that fictionalists need to address. Here, {or instance, are a few worries
that one might have about fictionalism, aside from the Qnine-Putnam worry:

1. One might worry that fictionalism is not genuinely anti-platonistic, i.e., that
any plausible foripulation of the view will involve a conumitment to ab-
stract objects. E.g., one might think that {a) fictionalists nced to appeal
to modal notions like necessity and possidility (or perhaps, consistency} and
{b) the only plausible ways of interpreting these notions involve appeals to
abstract objects, e.g., possible worlds. Or alternatively, one might claim
that when fictionalists endorse sentences like *3 is primc’ is true-in-the-
story-of-mathematics,” they commit to abstract objects, c.g., sentence types
and stories. {One might also worry that Field’s nominalization progran:
commits fictionalists to spacetime points and the use of sccond-order logic,
and so one might think that, for these reasons, the view is not genuinely
anti-platonistie; but we necdn’s worry here about objeetions to Field's nom-
inalization program, because I am going to argue below that [fietionalists
don’t need to - and, indeed, shouldn® - rely upon that program.)

2. Omne might worry that fictionalists cannoct account for the objectivity of math-
ematics; e.g., one might think that fictionalists can't account for how there
could be a correct answer to the question of whether the continuum hypoth-
esis (CH) is true or false.

3. One might worry that fictionalism flies in the face of mathematical and
scientific practice, i.e., that the thesis that mathematics consists of a body
of truths is inherent in mathcmatical and scientific practice.

In my book {chapter 1, section 2.2, chapter 5, section 3, and the various passages
cited in those two sections), I respond to these “minor” objections to fictionalism
— Le., objections other than the Quine-Putnam objection. I will not take the
space to respond to all of these worries here, but 1 want to say just a foew words
about worry 2, i.e., about the problem of objectivity.

The reader might recall from section 2.1.1.5 that an almost identical problem of
objectivity arises for FBP. {The same problem arises for both FBP and fictionalisn:
because both views entail that from a purely metaphysical point of view, ZF+CH
and ZF4+~CH are equally “good” theories; FBP says that both of these theorics
truly describe parts of the niathematical realm, and fictionalism says that both of
these theorics are fictional.) Now, in scction 2.1.2.4, T hinted at how FBP-ists can
respond to this worry, and it is worth pointing out here that fictionalists can sav
essentially the same thing. FBP-ists should say that whether ZF+CH or ZF+~CH
is correct comes down to the question of which of these theories {if either) is true
in all of the intended parts of the mathematical realm, and that this in turn comes
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down to whether CH or ~CH is inherent in our notion of set. Likewise, Actionalists
should say that the question of whether CH is “correct” is determined by whether
it’s part of the story of set theory, and that this is determined by whether CH
would have been true {in all intended parts of the mathematical realm} if there
had existed sets, and that this in turn is determined by whether CH is inhcrent
in our notion of set. So even though CH is undecidable in current sct theories like
ZF, the question of the correctness of CH could still have an objectively correct
answer, according to fictionalism, in the same way that the question of whether 3
is prime has an objectively correct answer on the fictionalist view. But fictionalists
should also allow, in agrecment with FBI*-ists, that it may be that neither CH
nor ~CIH is inherent in our notion of set and., hence, may be that there is no
objectively correct answer to the CH question. (I say a bit more about this below,
but for a full defense of the FBP-ist/fictionalist view of CH, see my [2001] and
[2009], as well as the relevant discussions in my book (chapter 3, section 4, and
chapter 5, section 3}.)

Assuming, then, that the various “minor™ objections to fictionalism can be
answered, the only objection to that view that remains is the Quine-Putnam in-
dispensability objection. In section 2.2.4, I will defend fictionalism against this
objection. (Ficld tried to respond to the Quine-Putnam objection by arguing
that mathematics is not indispensable to empirical science. In contrast, I have
argued, and will argue here, that Actionalists can (a) admit (for the sake of ar-
gument) that there are indispensable applications of mathematics to empirical
science and (b} account for these indispensable applications from a fictionalist
point of view, i.e., without admitting that our mathematical theories are true.)
Before I discuss this, however, I will argue against the various non-fictionalistic
versions of anti-platonism (sections 2.2.2-2.2.3).

2.2.2 Critique of Non-Fictionalistic Versions of Anti- Reolistic Anti-Plotonism

In the next two sections, 1 will critique the various non-hetionalistic versions
of anti-platonisin. [ will discuss non-fictionalistic versions of anti-rcalistic anti-
platonisor in the present section, and I will discuss realistic anti-platonism (i.e.,
physicalism and psychologism) in the next scction, i.e., section 2.2.3.

Given the result that the Quine-Putnam worry is the only binportant worry
about fictionalism, it is easy to show that no version of anti-tealistic anti-platonism
possesses any advantage over fictionalism, For it seems to me that all versions of
anti-realism encounter the same worry about applicability and indispensability
that fictionalisin encounters. Consider, for example, deductivisin. Unlike fiction-
alists, deductivists try to salvage mathematical truth. But the truths they salvage
canuot be lifted straight off of our mathematical theories. That is. if we take
the theorems of our various mathematical theories at face value, then according
to deductivists, they ave not true. What deductivists claimn is that the theo-
rems of our mathematical theories “suggest” or “represent” certain closely related
mathematical assertions that are true. For instance, if T is a theoremn of Peano
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Arithmetic (PA), then according to deductivists, it represents, or stands for, the
truth *AX 2 77 or ‘O(AX O T)', where AX is the conjunction of all of the
axioms of PA used in the proof of T'. Now, it should be clear that deductivists
encounter the same problem of applicability and indispensability that fictionalists
cncounter. For while sentences like *AX 2 77 are true, according to deductivists,
AX and T and PA are not true, and so it is still mysterious how mathematics
could be appiicable {or, indeed, indispensable) to empirical science.

Now, one might object here that the problem of applicability and indispensabil-
ity that deductivists face is nof fhe seme as the problem that fctionalists face,
beeause deductivists have their “surrogate mathematical truths”, i.e., their condi-
tionals, and they might be able to solve the problem of applicability by appealing
to these truths, But this objection is confused. If these “surrogate mathematical
truths” are really anti-platonistic truths — and they have to be if they are going
to be available to deductivists — then fictionalists can endorse them as casily as
deductivists can, and moreover, they can appeal to them in trying to solve the
problem of applicability. The only difference between fictionalists and deductivists
in this connection is that the former do not try to use any “surrogate mathematical
truths” to interpret mathematical theory. But they can still endorse these sruths
and appeal to them in accounting for applicability and/or indispensability. More
generally, the point is that deductivism doesn't provide anti-platonists with any
truths that arcn’t available to fictionalists. Thus, deductivists do not have any
advantage over fictionalists in connection with the problem of applicability and
indispensability. 2

In my book {chapter 5, scction 4}, I argue that analopous points can be made
about all non-fictionalist versions of anti-realistic anti-platonisim — e.g., conven-
tionalism, formalism, and s0 on. In particular, 1 argue that (a) all of these views
give rise to prima facie worries about applicability and indispensability, because
they all make the sentences and theories of mathematics factually empty in the
sense that they're not “about the world”, because they all maintain that our
mathematical singular terms arc vacuous, i.e., fail to refer; and (b} nonc of these
views has any advantage over fictionalism in counection with the attemnpt to solve
the problem of applications, because insofar as these views deny the existence of
mathematical objects, their proponents do not have available to them any means
of salving the problem that aren’t also available to fictionalists.

These remarks suggest that, for our pnrposes, we could lump all versions of anti-
realistic anti-platonism together and treat them as a single view. Indeed, I argued
in my book (chapter 5, section 4) that if I replaced the word ‘fictionalism’ with the
expression ‘anti-realistic anti-platonisin’ throughout the book, all the same points
could have been made; I would have had to make a few stylistic changes, but

2 phus, for instance, Aetionalists are free to endorse Hellman's [1989, chapter 3] account of
applicability. For whatever it’s worth, [ do not thiok that Hellman’s account of applicability
is a good one, because [ think that the various problems with the conditional interpretation of
mathematics carry over to the conditional interpretation of empicical theory, [ will say a fow
words about these problems below.
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nothing substantive would have needed to be changed, because 2ll the important
features of fictionalism that are relevant fo the arguments I mounted in my book
are shared by all versions of anti-realistic anti-platonism.

But I did not proceed in that way in the book; instead, I took fictionalism as a
representative of anti-realistic anti-platonism and concentrated on it. The reason,
very simply, is that I think there are good reasons for thinking that fictionalism is
the best version of anti-realistic anti-platonism. One argument {not the only one)
c¢an be put in the following way.

The various versions of anti-realistic anti-platonism do not differ from fiction-
alismn {or from one another} in any metaphysical or ontological way, because they
all deny the existence of mathematical objects. {This, by the way, is precisely why
they don’t differ in any way that is relevant to the arguments concerning fictional-
ismn that I develop in my book.) With a couple of exceptions, which I'll discuss in
a moment, the various versions of auti-realism differ from fictionalism (and from
one another) only in the inferpretations that they provide for mathematical the-
ory. But as soon as we appreciate this point, the beauty of fictionalisin and its
superiority over other versions of anti-realism begin to emerge. For whereas fic-
tionalisim interprets our mathematical theories in a very standard, straightforward,
face-value way, other versions of anti-realisrn — e.g., deductivisn:, formalism, and
Chihara’s view - - advocate controversial, non-standard, non-face-value interpreta-
tions of mathematics that seem to fiy in the face of actual mathematical practice.
Now, in my book (chapter 5, soction 4}, [ say a bit about why these non-standard
interpretations of mathematical theory are implausible; but since T don't really
need this result — since I could lump all the versions of anti-realism together —
I will not pursue this here. (It is worth noting, however, that in each casec, the
point is rather obvious — or so it seems to me. If we see the various non-standard
interpretations of mathematics as claims about the semantics of actual mathemat-
ical discourse, they just don’t scem plausible. E.g., it doesn’t seemn plausible to
suppose, with deductivists, that ordinary utterances of ‘3 is prime’ really mean
*{Necessarily) if there arc natural mmmbers, then 3 is prime’. If we're just doing
empirical semantics (that is, if we're just trying to discover the actual semantic
facts about actual mathematical discourse), then it scems very plausible to sup-
posc that '3 is prime’ means that 3 is prime which, of course, is just what
fictionalists say.*3}

There are two versions of non-fictionalistic anti-realism, however, that don’t

33 at least one advocate of reinterpretation anti-realism — namely, Chihara — would admit
my point here; he does not claim that his theory provides a good interpretation of actual mathe-
matical discourse. But given this, what possible reason could there be to adopt Chihara’s view?
If (a) the fictionalistic/platonistic semantics of mathematical discourse is the correct one, and
(b) there’s no reason to favor Chihara'’s anti-realism over fictionalisn - - after all, it encounters
the indispensability problem, provides no advantage in solving that problem, and so on — then
isn't fctionalism the superior view? It seems to me that if point {a) above is correct, and if {as
fictionalists and Chihara agree) there arve no such things as abstract objects, then fictionalism
is the correct view of actual mathematics. Chihara’s view might show that we conld have done
mathematics differently, in 2 way that would bave made cur mathematical asserlions corne out
trie, bot f don't see why this provides any motivation for Chihara's view.
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offer non-standard interpretations of mathematical discourse. But the problems
with these views are just as obvious. One view here is the second version of
Meinongianism discussed in section 1.2 above; advocates of this view agree with
the platonist /fictionalist semantics of mathematese; the only point on which they
differ from fictionalists is in their claim that the sentences of mathematics are true;
but as we saw in section 1.2, second-version Meinongians obtain this result only
by using ‘true’ in a non-standard way, maintaining that a sentence of the form
‘Fa’ can be true even if its singular term (i.e., ‘a’) doesn’t refer to anything. The
second view here is conrventionalisin, which holds that mathematical sentences like
*3 is primne’ are analytically true. Now, advocates of this view might fall back on
a non-standard-intcrpretation strategy, maintaining that the reason ‘3 is prime’
is analytic is that it really means, say, ‘If there are numbers, then 3 is prime’ —-
or whatever. But if conventionalists don’t fall back on a reinterpretation strategy,
then their thesis is just implausible, and for much the same reason that second-
version Meinongianism is implausible: if we read ‘3 is prime’ {or better, “There
is a prime nuinber between 2 and 4') at face value, then it'’s clearly not analytic,
becanse (a} in order for this sentence to be true, there has to exist such a thing ag
3, and (b) sentcnces with existential commitments are not analytic, because they
cannot be conceptually true, or true in virtue of meaning, or anything else along
these lines.

One might ohject to the argument that I have given here — i.e., the argument
for the supremacy of fictionalism over other versions of anti-realism — ou the
grounds that fictionalism alse runs counter to mathematical practice. In other
words, one might think that it is built into mathematical and for scientific practice
that mathematical sentences like *3 is prime’ are true. But in my book (chapter
5, section 3}, I argue that this is not the case.

{This is just a sketch of my argument for taking fictionalism to be the best
version of anti-realisin; for more detail, see my book {chapter 5, section 4} and
for & different argument for th supremacy of fictionalism over other versions of
auti-realisin, see my [2008].)

2.2.8 Critique of Realistic Anti-Platonism {i.e., Physicalism and Psychologism)

In this section, I will argue against the two realistic versions of anti-platonisin,
thus completing my argument for the claim that fictionalisin is the only tenable
version of anti-platonism. 1 will discuss psychologism first and then move on to
physicalism.

I pointed out in section 1.1.1 that psychologism is a sort of watered-down version
of realism; for while it provides an ontology for mathematics, the objects that it
takes mathematical theories to be about do not exist independently of us and our
theorizing (for this reason, one might even deny that it is a version of realisin, bug
this doesn't matter here}. Because of this, psychologism is similar in certain ways
to fictionalism. For onc thing, psychologisim and fictionalism both involve the idea
that mathematics comes entirely from us, as opposed to something independent
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of us. Now, of course, fictionalists and psychologists put the idea here in different
ways: fictionalists hold that our mathematical theorics are fictional storvies and,
hence, not. true, whereas advocates of psychologism allow that these theories are
true, because the “characters” of the fictionalist’s stories exist in the mind; but this
is a rather empty sort of truth, and so psychologism does not take mathematics
to be factual in a very deep way. More importantly, psychologism encounters the
same worry about applicability and indispensability that Actionalism encounters;
for it is no less mysterious how a story about ideas in our heads could be applicable
to physical science than how a fictional story could be so applicable.

What, then, does the distinction between psychologisin and fictionalisn: really
come to? Well, the difference certainly doesn’t lie in the assertion of the ezistence
of the mental eutities in guestion. Fictionalists admit that human beings do have
ideas in their heads that correspond to mathematical singular terms. They admit,
for instance, that T have an idea of the nnmber 3. Moreover, they admit that we
can make claiins about these mental entities that correspond to our mathematical
claims; corresponding to the sentence ‘3 is prime’, for instance, is the sentence *AMy
idea of 3 is an idea of a prime number’. The only difference between fictionalisin
and psychologisin is that the latter, unlike the former, involves the claim that
our mathematical theorics are about these ideas in our heads. In other words,
advocates of psychologisin maintain that the sentences ‘3 is prime’ and My idea of
3 is an idea of a prime number’ say essentially the same thing, whereas fictionalists
deny this. Therclore, it seems to me that the relationship between fictioualism and
psychologism is essentially equivalent to the relationship between Actionalism and
the versions of anti-realistic anti-platonism that I discussed in section 2.2.2. In
short, psychologism interprets mathematical theory in an empty, non-standard way
in an elfort to salvage mathematical truth, but it still leads to the Quine-Putnam
indispensability problen: in the same way that fictionalisin does, and moreover, it
doesn’t provide anti-platonists with any means of solving this problem that aren’t
also available to hHetionalists, because it doesu’t provide anti-platonists with any
entitics or truths that aren't available to fictionalists.

It follows from all of this that psychologism can be handled in the same way that
I handled the various versions of non-fictionalistic anti-realism and, hence, that I
do not really need to refute the view, But as is the case with the various versions
of non-fictionalistic anti-realism, it is easy to see that fictlonalism is superior to
psychologism, because the psychologistic interpretation of mathematical theory
and practice is implausible. The arguments here have been well-known since Frege
destroyed this view of mathematics in 1884. TFirst of all, psychologism seems
incapable of accounting for any talk about the class of «fl real numbers, since
human beings could never construct them all. Second, psychologism seems to
entail that assertions about very large nnmbers (in particular, numbers that no
one has ever thought about) are all untrue; {or if uone of us has ever constructed
some very large number, then any proposition about that number will, according to
psychologisin, be vacuous. Third, psychologismn seemns incapable of accounting for
mathematical error: il George claiims that 4 is prime, we cannot argue with him,
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because he is presumably saying that his 4 is prime, and for all we know, this could
very well be true*? And finally, psychclogism turns mathematics into a branch
of psychology, and it makes mathcmmatical truths contingent upon psychological
truths, so that. for instance, if we all died, ‘2 + 2 = 4" would suddenly become
untrue. As Frege says, “Weird and wonderful .. . are the results of taking seriously
the suggestion that number is an idea.”%®

Let me turn now to Millian physicalism. The idea here, recall, is that mathe-
matics is simply a very general nafural science and, hence, that it is about ordinary
physical objects. Thus, just as astronomy gives us laws concerning all astronom-
ical hodies, so arithmetic and set theory give us laws concerning all objects and
piles of objects. The sentence ‘2 +1 = 3, for instance, says that whenever we add
one cobject to a pile of two objects, we end up with a pile of three objects.

Let me begin my critique of physicalism by reminding the reader that in section
2.1.1.3, 1 argued that because (a) there are infinitely many numerically distinct
sets corresponding to every physical olxject and (b) all of these sets share the same
physical base (i.e., are made of the same matter and have the same spatiotenmiporal
location}, it follows that (¢) there must be something non-physical about these
sets, over and above the physical base, and so it could not be true that sets are
purely physical objects. A second problem with physicalism is that there simply
isn’t enough physical stuff in the universe to satisfy our mathematical theories.
ZF, for instance, tells us that there are infinitely many t{ransfinite cardinals. It
is not plausible to suppose that this is a true claiin about the physical world. A
third problem with physicalism is that (a) it secms to entail that matheinatics
is an empirical science, contingent on physical facts and susceptible to empirical
falsiication, bui {b} it seems that mathematics is not empirical and that its truths
cannot be empirically falsified. (These arguments are all very quick; for a more
thorough argument against the Millian view, see my book {chapter 5, section 5}.)

Some of the problems with Millian physicalism are avoided by Kitcher's view
[1684, chapter 6]. But as I argue in my book (chapter 5, section 5), Kitcher
avoids thesc problems only by collapsing back into an anti-realistic version of anti-
platouism, i.c., a view that takes mathematical theory to be vecuous. In particular,
on Kitcher's view -~ and he readily admits this [1984, 117] —-- mathematical the-
ories make claims about non-existent cobjects, namely, ideal agents. Thus, since
Kitcher's view is a version of anfi-realisin, it can be handled in the same way that
I handled all of the other versions of non-fictionalistic anti-realism: (a) I do not
have to provide a refutation of Kitcher’s view, because it would be acceptable to
lunip it together with fictionalism; and (b) while Kifcher's view has no advantage

M One might reply that the notion of error can be analyzed in terms of non-standardness, bug
I suspect that this conid be cashed out only in terms of types. That is, the clalin would have to
be that a person’s theory of arithmetic could be ervoneous, or bad, if her concepts of 1, 2. 3, etc.
were not of the culturally accepied types. But to talk of types of 1's, 2°5, 3's, ete. is to collapse
back into platonism.

35800 Frege [1884, section 27]. Just about all of the arguinents mentioned in this paragraph
trace to Frege. His arguments against psychologism can be found in his [1884, introduction and
section 27; 1893-1903, introduction; 183% and 1919].
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over fictionalism (it still encounters the indispensability problem, delivers no way
of solving that problem that’s not also available to fictionalists, and so on}, we do
have reason to favor fictionalisin over Kitcher's view, because the latter involves
a non-standard, non-face-value interpretation of mathematical discourse that flies
in the face of actual mathematical practice. {(Once again, this is just a sketch of
my argument for the claim that fictionalism is superior to Kitcher’s view; for more
detail, see my book (chapter 5, section 5).)

2.2.4 Indispensability

I have now criticized all of the non-Actionalistic versions of anti-platonism, but
I still need to show that fictionalists can respond to the Quine-Putnam indis-
pensability argument {other objections to fictionalism were discussed in section
2.2.1}. The Quine-Putnam argument is based on the premises that {a} there are
indispensable applications of mathematics to empirical science and (b) fictionalists
cannot account for these applications. There are two strategies that fictionalists
can pursue in trying to respond to this argument. The first strategy, developed
by Ficld [1980], is to arguc that

(NI} Mathematics is not indispensable to emnpirical science: and

(AA} The mere fact that mathematics is applicable to empirical science — ie.,
applicable in « dispensable way - - can be accounted for without abandoning
hetionalism.

Most critics have been willing to grant thesis {(AA) to Field,* but (NI) is extremely
controversial. To motivate this premise, one has to argue that all of our empirical
theorics can be nominalized, i.¢., reformulated in a way that avoids reference to,
and quantification over, abstract objects. Field tries to do this by simply showing
how to carry out the nominalization for onc empirical theory, namely, Newtonian
Gravitation Theory. Field's argument for {NI) has been subjected to a number of
objections,?” and the consensus opinion among philosophers of mathematics scems
to be that his nominalization program cannot be made to work. [ am not convinced
that Field’s program cannot be carried out - the most important objection, in
my opinion, is Malament’s [1982] objection that it is not clear how Field’s program
can be extended to cover quantnm mechanics, but in my 11996b], and in my book
{chapter 6). I explain how Field's program can be so extended - but [ will not
pursue this here, becanse in the end, I do not think fictionalists should respond
to the Quinc-Putnain objection via Field’s nominalization strategy. I think they
should pursue another strategy.

The strategy I have in mind here is (a) to grant (for the sake of argument) that
therc are indispensable applications of mathematics to empirical science - i.c.,

3 But see Shapire [1983] for one objection 1o Field's argument for (AA), and see Ficld [1989.
essay 4l for a response.

T Malament [1982] discusses almost all of these objections, but see also Resnik [1985] and
Chihara [1990, chapter &, section 3-.
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that mathematics is hopelessly and inextricably woven into some of our empirical
theories -- and (b) to simply account for these indispensable applications from a
fictionalist point of view. I developed this strategy in my book (chapter 7}, as well
as my [1996a] and [1998b]; the idea has also been pursued by Rosen [2001] and
Yablo [2002], and a rather different version of the view was developed by Azzouni
{1994] in conjunction with his non-fictionalistic version of nominalism. 1 cannot
even come close here to giving the entire argument for the claim that fictionalists
can successfully block the Quine-Putnain argument using this strategy, but I would
like to rehearse the most salient points.

The ceniral idea behind this view is that because abstract objects are causally
inert, and because our empirical theories don't assign any causal role to them, it
tfollows that the truth of empirical science depends upon two sets of facts that are
entirely independent of one another, i.e., that hold or don’t hold independently of
one another. Onec of these sets of facts is purcly platonistic and mathematical, and
the other is purely physical (or more precisely, purely nominalistic). Consider, for
instance, the scntence

(A) The physical system S is forty degrees Celsius.

This is a mized sentence, because it makes reference to physical and abstract
objects (in particular, it says that the physical system S stands in the Celsiug
relation to the number 40). But, trivially, (A} docs not assign any causal role to
the number 40; it is not saying that the number 40 is responsible in somne way
for the fact that S has the temperature it has. Thus, if (A) is true, it is true in
virtue of facts about S and 40 that are entircly independent, of one another, i.e.,
that hold or don't hold independently of one another. And again, the same point
seems to hold for all of empirical science: since no abstract objects are causally
relevant to the physical world, it follows that if emnpirical science is true, then its
truth depends upon twe entircly independent sets of facts, vz, o set of purely
nominalistic facts and a set of purely platonistic facts.

But since these two scts of facts are independent of one another - - that is, hold
or don't hold independently of one ancther — it could very casily be that (a)
there does obtain a sct of purcly physical facts of the sort required here, ie., the
sort needed to make empirical science true, but (b) there are no such things as
abstract ohjects, and so there doesn’t obtain a set of purely platonistic facts of the
sort required for the truth of empirical science. In other words, it could be that the
notninalistic content of empirical science is correct, even if its platonistic content
is fictional. But it follows from this that mathematical fictionalism is perfectly
consistent with the claim that empirical science paints an essentially accurate
picture of the physical world. In other words, fictionalists can endorse what T have
called nominalistic scientific realism [1996a; 1998, chapter T, 1998b]. The view
here, in a nutshell, is that there do obtain purely physical facts of the sort needed
to make empirical science true {regardless of whether there obtain mathematical
facts of the sort needed to make empirical science true); in other words, the view
is that the physical world holds up s end of the “empirical-science bargain”.
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Nominalistic scientific realisin is different from standard scientific realism. The
latter entails that our empirical theories are strictly true, and fictionalists cannot
make this claim, because that would commit them to the existence of mathematical
objects. Nonetheless, nominalistic scientific realism is a genuinely realistic vicw;
for if it is correct — i.e.. if there does obtain a set of purely physical facts of the
sort needed to make cmpirical science true — then even if there are no such things
as mathematical objects and, hence, our empirical theories arc (strictly speaking}
not true, the physical world is nevertheless just the waey empirical science makes
it out to be. So this is, Indecd, a kind of scientific realism.

What all of this shows is that fActionalism is consistent with the actual role
that mathemstics plays in empirical science, whether that role is indispensable or
not. It simply doesn’t matter {in the present context) whether mathematics is
indispensable to empirical science, because even if it is, the picture that empirical
science paints of the physical world could still be essentially accurate, even if there
are no such things as mathematical objects.

Now, onc might wonder what mathematics is doing in empirical science, if it
doesn’t need to be true in order for empirical science to be essentially accurate. The
answer, I argue, is that mathematics appears in empirical science as a descripiive
aid; that is, it provides us with an easy way of saying what we want to say
about the physical world. In my book, I argue that (a) this is indeed the role
that mathematics plays in empirical science, and (b} it follows from this that
mathematics doesn't need to be true in order to do what it’s supposed to do in
empirical science.

{Again, this is just a quick summary; for the full argument that fictionalism can
be defended against the Quine-Putnam argument along these lines, see my book
(chapter 7), as well as my [19962] and [1998bj.)

{Given that I think that Field’s response to the Quine-Putnam argnment may
be defensible, why do 1 favor my own response, i.c., the response just described in
the last foew paragraphs? Well, one reason is that my response is simply less con-
troversial --- i.e., it’s not open to all the objections that Field's response is open to.
A sccond reason is that my response fits better with mathematical and scientific
practice {I argue this point in my book {chapter 7, section 3)). A third reason is
that whereas Field’s strategy can yield only a piecemeal response to the problem
of the applications of mathematics, [ account for all applications of mathematics
at the same time and in the same way {(again, I argue for this in my book {chapter
7, sectionr 3)). And a fourth reason is that unlike Field’s view, my view can be
generalized so that it accounts not just for the nsc made of mathematics in emnpir-
ical science, but also for the use made there of non-mathematical-abstract-object
talk — e.g., the use made in belief psychology of ‘that’-clauses that purportedly
refer to propositions (the argument for this fourth reason is given in my {1998b]}.)
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2.8 Critique of Platonism Revisited: Ockham’s Razor

I responded above to the two Benacerralian objections to platonism, i.e., the episte-
mological objection and the non-uniqueness objection. These are widely regarded
as the two most important objections to platonismn, but there are other objections
that platonists need to address. For one thing, as I pointed out above, there are a
number of objections that one might raise against FBP-NUP in particular; I dis-
cussed these above (section 2.1) and in more detail in my book {chapters 3 and 4).
But there are also some remaining objections to platonism in general; e.g., there
is a worry about how platonists can account for the applicability of mathematics,
and there are worrics about whether platonismn is consistent with our abilities to
refer to, and have beliefs about, mathematical objects. In my book, 1 responded
to these remaining objections {(e.g., I argued that FBP-NUP-ists can account for
the applicability of mathematics in much the same way that fictionalists can, and
I argued that they can solve the problems of belief and reference in much the
same way that they solve the epistemological problem}. In this section, I would
like to say just a few words about one of the remaining objections to platonisin,
in particular, an objection based on Ockham's razor (for my full response to this
objection, see niy book {chapter 7, section 4.2)).

I am trying to argue for the claimn that fictionalisin and FBP are both defensible
and that they arc equally well motivated. But one might think that such a stance
cannot be maintained, because one might think that if both of these views are
really defensible, then by Ockham’s razor, fictionalism is superior to FBP, because
it is more parsiimonious, i.e., it doesn’t comnmit to the existence of mathematical
objects. To give a bit more detail here, one might think that Ockham’s razor
dictates that if any version of anti-platonism is defensible, then it is superior to
platonism, regardless of whether the latter view is defensible or not. That is, one
might think that in order to motivate platonism, one needs to refute every different
version of anti-platonism.

This, I think, is confused. If realistic anti-platonists (e.g., Millians) could
make their view work, then they could probably employ Ockhaimn’s razor against
platonisin. But we've already seen (section 2.2.3) that realistic anti-platonism
is untenable. The only tenable version of anti-platonism is anfi-realistic anti-
platonism. But advocates of this view, e.g., fictionalists, cannot employ Ockham’s
razor against platonism, becaunse they simply throw away the facts that platonists
claim to be explaining. Let me develop this point in some detail.

One might formulate Ockhain's razor in a number of different ways, but the
basic idea behind the principle is the following: if

{1} theory A cxplains cvervthing that theory B explains, and
{2} A is more ontologically parsimonious than I3, and
{3} A is just as simple as B in all non-ontological respects,

then A is superior to 3. Now, it is clear that fictionalism is more parsimonious than
FI3P, so condition {2} is satished here. But despite this, we cannot use Ockham’s
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razor to argue that fictionalism is superior to FBI’, because neither of the other
two conditions ig satisfied here.

With regard to condition {1}, FBP-ists will be quick to point out that Action-
alism does not account for everything that FBP accounts for. In particular, it
doesn't account for facts such as that 3 is prime, that 2 + 2 = 4, and that our
mathematical theories are true in a face-value, non-factually-empty way. Now, of
course, fictionalists will deny that these so-called “facts” really are facts. More-
over, if my response to the Quine-Putnam argument is acceptable, and if I am right
that the Quine-Putnam argument is the only initially promising argument for the
(face-value, non-factually-empty) truth of mathematics, then it follows that FBP-
ists have no argument for the claim that their so-called “facts” really are facts.
But unless fictionalists have an argument for the claim that these so-called “facts”™
really aren’t facts — and more specifically, for the claim that our mathematical
theories aren’t true (in a face-value, non-factually-empty way) — we will be in a
stalemate. And given the results that we've obtained so far, it's pretty clear that
fictionalists don’t have any argument here. To appreciate this, we need merely note
that (a) fictionalists don’t have any good non-Ockham’s-razor-based argument here
(for we've already seen that aside from the Ockbam’s-razor-based argument we're
presently considering, there is no good reason for favoring fictionalism over FBP};
and {b) fictionalists don't have any good Ockham 's-razor-besed argument here —
i.e., for the claim that the platonist’s so-called “facts” really aren’t facts — be-
cause Ockham’s razor cannot be used to settle disputes over the question of what
the facts that require explanation are. That principle comes into play only after
it has been agreed what these facts are. More specifically, it comes into play only
in adjudicating betwcen two explanations of an agreed-upon collection of facts.
So Ockhain’s razor cannot be used to adjudicate hetween realism and anti-realism
{whether in mathematics, or empirical science, or conimon sense) because there is
no agreed-upon set of facts here, and in any event, the issue between realists and
anti-realists is not which explanations we should accept, but whether we should
suppose that the explanations that we eventually settle upon, using criteria such
as Ockhan'’s razor, are really true, i.c., provide us with accurate descriptions of
the world.

Fictionalists might try to respond here by claiming that the platonist’'s appeal
to the so-called “fact” of mathematical truth, or the so-called “fact” that 242 = 4,
is just a disguised assertion that platonism is true. But platonists can simply turn
this argument around on fictionalists: if it is question begging for platonists simply
to asscrt that mathematics is true, then it is question begging for fictionalists
simply to assert that it’s not true. Indeed, it seems to me that the situation here
actually favors the platonists, for it is the fictionalists who are trying to mount a

positive argument here and the platonists who are merely trying o defend their
view.

Another ploy that fictionalists inight attempt here is to claim that what we need
to counsider, in deciding whether Ockham’s razor favors fictionalism over FBD, is
not whether fictionalism accounts for all the facts that FBP accounts for, but
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whether fictionalism accounts for all the sensory ezperiences, or all the empirical
phenomena, that FBP accounts for. I will not pursuc this here, but I argue in my
book {chapter 7, scction 4.2) that fictionalists cannot legitimately respond to the
above argument in this way.

Before we move on, it is worth noting that there is also a historical point to be
made here. The claim that there arc certain facts that hictionalism cannot account
for is not an ad koc device, invented for the sole purpose of staving off the appeal to
Ockham's razor. Since the time of Frege, the motivation for platonism has always
been to account for mathematical truth. This, recall, is precisely how I formulated
the argument for platonism {or against anti-platonism} in section 2.2.1.

I now move on to condition: (3} of Qckham’s razor. In order to show that this
condition isn't satisfied in the present case, I need to show that there are certain
non-ontological respects in which FBP is simpler thau fictionalisin. My argurment
here is this: vnlike fictionalism, FBP enables us to say that our scientific theories
are true {or largely true) and it provides a uniform picture of these theories. As
we have seen, fictionalists have to tell a slightly longer story here; in addition
to claiming that our mathematical theories are fictional, they have to maintain
that our empirical theorics are, so to speak, half truths — in particular, that
their nominalistic contents are true (or largely true) and that their platonistic
contents are fictional. Moreover, FBP is, in this respect, more commonsensical
than Actionalism, because it enables us to maintain that sentences like ‘2+2 = 4’
and ‘the number of Martian moons is 27 are true.

Now, I do not think that the difference in simplicity herc between FBP and
fictionalism is very substantial. But on the other hand, I do not think that the
ontological parsimony of fictionalismi creates a very substantial difference between
the two views either. In general, the reason we try to avoid excess ontology is
that ontological excesses tend to make our worldview more cumbersome, or less
elegant, by adding unnecessary “loops and cogs” to the view. But we just saw in
the preceding paragraph that in the case of FBF, this is not true; the immense
ontology of FBP doesn’t make our worldview more cumbersome, and indeed, it ac-
tually makes it less cumbersome. Moreover, the introduction of abstract objects is
extremely uniform and non-arbitrary within FBP: we get all the abstract objects
that there could possibly be. But, of course, despite these considerations, the fact
remains that FBP docs add a category to our ontology. Thus, it is less parsimo-
nious than fictionalism, and so, in this respect, it is not as simple as fictionalism.
Morcover, since the notion of an abstract object is not a commonsensical one, we
ean say that, in this respect, fictionalisni is 1nore commonsensical than FBP.

It seems, then, that FBP is siimpler and more commonsensical than fictionalism
in some ways but that fictionalism is simpler and more commonsensical in other
ways. Thus, the obvious question is whether one of these views is simpler over-
all. But the main point to be made here, once again, is that there are no good
arguments on cither side of the dispute. What we have herc is a matter of brute
tntuition: platonists are drawn to the idea of being able to say that our mathe-
matical and empirical theories are straightforwardly true, whereas fictionalists are
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willing to give this up for the sake of ontological parsimony, but neither group has
any argument here {assuming that I'm right in my claim that therc are acceptable
responses to all of the known arguments against platonism and fictioualisni, e.g.,
the two DBenacerrafian arguments and the Quine-Putnam argument}. Thus, the
dispute between FBP-ists and fictionalists seems to come down to a head-butt of
intuitions. For my own part, I have both sets of intuitions, and overall, the two
views seem equally simple o me.

3 CONCLUSIONS: THE UNSCLVABILITY OF THE PROBLEM AND A
KINDER, GENTLER POSITIVISM

I the arguments sketched in section 2 are cogent, then therc are no good argu-
ments against platonism or anti-platonism. More specifically, the view I have been
arguing for is that {a) there are no good arguments against FBP {although Be-
nacerrafian arguments succeed in refuting all other versions of platonism}; and (b}
there are no good arguments against fictionalism (although Fregean arguments
succeed in undermining all other versions of anti-platonism). Thus, we arc left
with exactly one viable version of platonisin, wiz., FBP, and exactly one viable
version of anti-platonism, wiz., fictionalism, but we do not have any good reason
for favoring one of these views over the other. My first conclusion, then, is that we
do not have any good reason for choosing between mathematical platomism and
anti-platonism; that is, we don’t have any good arguments for or against the exis-
tence of abstract mathematical objects. I call this the weak epistemic conclusion.

Tn: the present section. I will argue for two stronger conclusions, which can be
formulated as follows.

Strong epistemic conclusion: it's not just that we currently lack a
cogent argument that settles the dispute over mathematical objects —
it’s that we could newer have such an argument.

Metaphysicel conclusion: #t’s not just that we could never settle the
dispute between platonists and anti-platonists —— it's that there is no
fact of the maiter as to whether platonism or anti-platonism: is true,
i.e., whether there exist any abstract objects.®®

I argue for the strong epistemic conclusion in section 3.1 and for the metaphysical
conclusion in section 3.2.

38 Note that while the two epistemic conclusions are stated in terms of mathematical objects in
particular, the metaphysical couclusion is staied in terms of abstract objects in general, Now, [
actually think that generalizal versions of the epistemic conclusions are true, but the arguments
given here support only local versions of the epistemic conclusions. In contrast, my argunent
for the metaphysical conclusion is about abstract objects in general.
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3.1 The Strong Epistemic Conclusion

If FBP is the only viable version of mathematical platonism and fictionalisin is
the only viable version of mathematical anti-platonism, then the dispute over the
existence of mathematical objects comes down to the dispute between FBP and
fictionalismm. My argument for the strong epistemic conclusion is based on the
observation that FBP and fictionalism are, surprisingly, very stmsler philosophies
of mathematics. Now, of course, there is a sense in which these two views are polar
opposites; after all, FBP holds that all logically possible mathematical objects exist
whereas fictionalism holds that no mathematical objects exist. But despite this
obvious difference, the two views are extremely similar. Indeed, they have much
more in common with one another than FBP has with other versions of platonism
{c.g., Maddian naturalized platonism) or fictionalism has with other versions of
anti-platonism (e.g., Millian empiricism). The easiest way to bring this fact out
is simply to list the points on which FBP-ists and fictionalists agree. (And note
that these are all points on which platonists and anti-platonists of various other
sorts do not agree.)

1. Probably the most important point of agreement is that according to both
FBP and fictionalism, all consistent purely mathematical theories are, from
a metaphysical or ontological point of view, equally “good”. According to
FBP-ists, all theories of this sort truly describe some part of the mathemati-
cal realm, and according to fictionalists, none of them do -~ they are all just
fictions. Thus, according to both views, the only way that one consisteut
purely mathematical theory can be “better” than another is by being aes-
thetically or pragmatically superior, or by fitting better with our intentions,
intuitions, concepts, and so on.*®

2. As a result of point number 1, FBP-ists and fictionalists offer the samne ac-
count of undecidabie propositions, e.¢g., the continuumn hypothesis (CH). First
of all, in accordance with point number 1, FBP-ists and fictionalists both
maintain that from a metaphysical point of view, ZF+CH and ZF+~CH are
equally “good” theories; neither is “better” than the other; they simply char-
acterize different sorts of hierarchies. (Of course, FBP-ists believe that there
actually exist hierarchies of both sorts, and fictionalists do not, but iu the
present context, this is irrelevant.} Second, FBP-ists and fictionalists agree
that the question of whether ZF4+CH or ZF+~CH is correct comes down
to the question of which is true in the intended parts of the mathematical
realm (or for fictionalists, which would be true in the intended parts of the
mathematical realm if there were sets) aud that this, in turn, comes down to
the question of whether CH or ~CH is inhcrent in our notion of set. Third,
both schools of thought allow that it may be that neither CH nor ~CH is
inherent in our notion of set and, hence, that there is no fact of the matter as

%9n my book (chapter 8, note 3) [ also argue that there’s no important difference between
FBP auwd fictioualisin in connection with inconsistent purely mathematical theories.
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1o which is correct. Fourth, they both allow that even if there is no correct
answer to the CH question, therc could still be good pragmatic or aesthctic
reasons for favoring one answer to the question over the other {and perhaps
for “modifying our notion of set” in a certain way}. Finally, FBP-ists and
fictionalists both maintain that questions of the form ‘Does open question
@ (about undecidable proposition P} have a correct answer, and if so, what
is it?' are questions for mathematicians to decide. Each different question
of this form should be scttled on its own merits, in the above manner; they
shouldn’t all be decided in @dvance by some metaphysical principle, e.g., pla-
tonism or anti-platonism. (Scc my [2001] and [2009} and my book (chapter
3, section 4, and chapter 5, section 3} for more on this.)‘m

. Both FBP-ists and fictionalists take mathematical theory at face value, i.e.,

adopt a realistic scmantics for mathematesc. Thercfore, they both think
that our mathematical theories are straightforwardly about abstract mathe-
matical objects, although neither group thinks they are about such objects
in a2 metaphysically thick sense of the term ‘about’ (sece note 17 for a quick
description of the thick/thin distinction here). The reason FBP-ists deny
that our mathematical theories are “thickly about” mathematical objects is
that they deny that there are unigue collections of objects that correspond
to the totality of intentions that we have in connection with our mathemat-
ical theories; that is, they maintain that certain collections of objects just
happen to satisfy these intentions and, indeed, thai numerous collections
of objects satisfy them. On the other hand, the reason fictionalists deny
that our mathematical theories are *thickly about” n:athemnatical objects is
entirely obvious: it is because they deny that there are any such things as
mathematical objects. (See my book {chapters 3 and 4) for more on this.}

I didn’t go into this here, but in my book (chapter 33, I show that according
to both FBP and fictionalisin, mathematical knowledge arises directly out
of logical knowledge and that, from an epistemological point of view, FBP
and fictionalism are on all fours with one another.

Both FBP-ists and fictionalists accept the thesis that there are no causally
efficacions mathematical objects and, hence, no causal relations between
mathematical and physical objects. (See my book (chapter 5, section 6) for
more on this.)

. Both FBP-ists and fictionalists have available te them: the same aecounts

of the applicability of mathematics and the same reasons for favoring and
rejecting the various accounts. (In this essay I said only a few words about

107 am not saying that every advocate of fictionalism holds this view of undecidable propo-
sitions. For instance, Field {1998] holds a different view. Dut his view is available to FEP-ists
as well, and in general, FBP-ists and fictionalisis have available to thom the same views on
undecidable propositions and the same reasons for favoring and rejecting these views, The view
outlined in the text is just the view that 7 endorse.



Realism and Anti-Realism in Mathematics 93

the account of applicability that I favor (section 2.2.4); for more on this
account, as well as other accounts, see my book (chapters 5-7}.)

7. Both FBP-ists and fictionalists are in exactly the same situation with respect
to the dispute about whether cur mathematical theories are contingent or
necessary. My own view here is that both FBP-ists and fictionalists should
maintain that (a) our mathematical theories are logically and conceptually
contingent, because the existence claims of mathematics - e.g., the null
set axjom — ave neither logically nor conceptually true, and (b) there is
no clear sense of metaphysical necessity on which such sentences come out
metaphysically necessary. {For more on this, see my book {chapter 2, section
6.4, and chapter 8, scction 2).)

8. Finally, an imprecise point about the “intuitive feel” of FBP and fiction-
alism: both offer a neutral view on the question of whether mathematical
theory construction is primarily a process of invention or discovery. Now,
prima focie, it seems that FBDP entails a discovery view whereas fietional-
ismn entails an invention view. But a closer look reveals that this is wrong.
FBP-ists admit that mathcmaticians discover objective facts, but they main-
tain that we can discover objective facts about the mathematical realm by
merely inventing consistent mathematical stories. Is it best, then, to claim
that FBP-ists and fictionalists both maintain an invention view? No. For
mathematicians do discover objective facts. For instance, if a mathematician
settles an open question of arithmetic by proving a theorem from the Peano
axioms, then we have discovered something about the natural numbers. And
notice that ficttonalists will maintain that there has been a discovery here
as well, although, on their view. the discovery is not about the natural num-
bers; rather, it is about our concept of the natural numbers, or our story
of the natural numbers, or what would be true if there were mathematical
numbers.

I could go ou listing similarities between FBP and fictionalism, but the point I want
to bring out should alrcady be clear: FBP-ists and fictionalists agree on almost
everything. Indeed, in iny book (chapter §, sectiou 2), [ argue that there is only one
significant disagreement between them: FBP-ists think that mathematical objects
cxist and, hence, that cur mathematical theories are true. whereas fictioualists
think that there arc no such things as mathematical objects and, hence, that
our mathematical theorics are fictional. My argument for this — i.e., for the
only-one-gignificant-disagreernent thesis — is based crucially on peints 1 and 3
above. But it is also based on point 5: because FBP-ists and fictionalists agree
that mathematical objects would be causally incrt if they existed, they both think
that the question of whether or not there do exist such objects has no bearing on
the physical world and, hence, no bearing on what goes on in the mathematical
community or the heads of mathematicians. This is why FBP-ists and fictionalists
can agree on so muich - - why they can offer the same view of mathematical practice
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— despite their bottom-level ontological disagreement. In short, both groups are
free to say the saime things about mathematical practice, despite their bottom-level
disagreement about the existence of mathematical objects, because they both agree
that it wonldn’t inatter to mathematical practice if mathematical objects existed.

If I'm right that the only significant disagreement between FBP-ists and fic-
tionalists is the bottom-level disagreement about the existence of mathematical
objects, then we can use this to motivate the strong epistemic conclusion. My
argument here is based upon the following two sub-arguinents:

(I) We could never scttle the dispute between FBP-ists and Actionalists in a
direct way, i.c., by looking only at the bottom-level disagreement about the
existence of mathematical objects, because we have no epistemic access to
the alleged mathematical recalm (because we have access only to objects that
exist within spacetime), and so we have no direct way of knowing whether
any abstract mathematical objects exist.?!

and

(I1) We could never settle this dispute in an indirect way, i.e., by looking at the
consequences of the two views, because they don't differ in their consequences
in any important way, i.c., because the only significant point on which FBP-
ists and fictionalists disagree is the bottom-level disagreement about the
existence of 1nathematical objects.

This is just a sketch of my argument for the strong epistemic conclusion; for more
detail, see chapter 8, section 2 of my book.

3.2  The Metaphysical Conclusion

In this section, I will sketeh my argument for the metaphysical conclusion, i.e., for
the thesis that there is no fact of the matter as to whether there exist any abstract
objects and, hence, no fact of the matter as to whether FBP or fictionalisiy is truc
{for the full argument, see my book (chapter 8, section 3)). We can formulate
the metaphysical conclusion as the thesis that there is no fact of the matter as to
whether the sentence

(*} There exist abstract objects; i.e., there arc objects that exist outside
of spacetime {or more preciscly, that do not exist in spacetime)

41This might seem similar to the Benacerrafian epistemological argument against platonism,
but il is different: that argument is supposed Lo show that platonism is false by showing that even
if we assume thal mathematical objects exist, we could not know what they are #tke. [ refuted
this argument in my book {chapter ), and I sketched the refutation above (section 2.1.1.3}. The
argument T am using here, on the other hand, is not directed against platonism or anti-ptatonism;
it is aimed at showing that we cannol know (in any direct way} which of these views is correct,
i.e., that we cannol know {in a direct way) whether there are any such things as abstract objects.
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is true. Given this, my argument for the metaphysical conclusion proceeds {in a
nutshell} as follows.

(i} We don't have any idea what a possible world would have to be like in order
to count as a world in which there are objects that exist outside of spacetime.

(ii) If (i} is true, then there is no fact of the matter as to which possible worlds
count as worlds in which there are objects that exist outside of spacetime,
i.e., worlds in which (*) is true.

Therefore,

(iii) There is no fact of the matter as to which possible worlds count as worlds
in which {*} is true — or in other words, there is no fact of the matter as to
what the possible-world-style truth conditions of (*) are.

Now, as I make clear in my book, given the way I argue for (iii} -— i.e., for the
claim that there is no fact of the matter as to which possible worlds count as
worlds in which (*} is true — it follows that there is no fact of the matter as to
whether the actual world counts as a world in which (*} is true. But from this,
the metaphysical conclusion - that there is no fact of the matter as to whether
(*} is true — follows trivially.

Since the above argument for (iii) is clearly valid, { merely have to motivate (i)
and (ii). My argument for {i} is based on the observation that we don’t know —
or indeed, have any idea --- what it would be like for an object to exist outside
of spacetime. Now, this is not to say that we don't know what wbstract ebjects
are like. That, I think, would be wrong. Of the number 3, for instance, we know
that it is odd, that it is the cube root of 27, and so on. Thus, there is a sense
in which we know what it is like. What [ am saying is that we cannot imagine
what ezistence outside of spacetime would be like. Now, it. may be that, someday,
somebody will clarify what such existence might be like; but what I think is correct
is that no one has done this yet. There have been many philosophers whe have
advocated platonistic views, but I don’t know of any who have said anything to
clarify what non-spatiotemporal existence would really amount to. All we are ever
given is a negative characterization of the existence of abstract objects -~ we're
told that such objects do not exist in spacetime, or that they exist non-physically
and non-mentally. In other words, we are told only what this sort of existence
isn’t like; we're never told what it is like.

The reason platonists have nothing to say here is that our whole conception of
what existence emounts to seems to be bound up with extension and spatiotem-
porality. When you take these things away from an object, we are left wondering
what its existence could consist in. For instance, when we say that Oliver North
exists and Qliver Twist does not, what we mean is that the former resides at some
particular spatiotemporal location {or “spacetime worm”) whereas there is nothing
in spacetime that is the latter. But there is nothing analogous to this in connection
with abstract objects. Contemporary platonists do not think that the coxistence
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of 3 consists in there being something more encompassing than spacetime where 3
resides. My charge is simply that platonists have nothing substantive to say here,
i.e., nothing substantive to say about what the existence of 3 consists in.

The standard contemporary platonist would respond te this charge, [ think, by
claiming that existence outside of spacetime is just like existence inside spacctime
— i.c., that there is only one kind of existence. But this doesn’ solve the problem;
it just relocates it. I can grant that “there is only one kind of existence,” and simply
change my cbjection to this: we only know what certain instances of this kind are
like. In particular, we know what the existence of concrete objects amounts to, but
we do not know what the existence of abstract objects amounts to. The existence
of concrete objects comes down to extension and spatiotemporality, but we have
nothing comparable to say about the existence of abstract objects. In other words,
we don't have anything more general to say about what existence amounts to than
what we have to say abont the existence of concrete objects. But this is just to
say that we don't know what non-spatiotemporal existence amounts to, or what
it might consist in, or what it might be fike.

If what I have been arguing here is correct, then it would seem that (i) is true:
if we don’t have any idea what existence outside of spacetime could be like, then
it would seem that we don’t have any idea what a possible world would have to be
like in order to count as a world that involves existence outside of spacetime, f.e.,
a world in which there are objects that exist outside of spacetime. In my book
{chapter 8, section 3.3), I give a more detailed argument for (i), and I respond to
a fow objections that one might raise to the above argument.

I now proceed to argue for {ii), ie., for the claim that if we don’t have any
idea what a possible world would have to be like in order to count as a world
in which there are objects that exist outside of spacetime, then there is no fact
of the mnatter as to which possible worlds count as such worlds — i.e., no fact
of the matter as to which possible worlds count as worlds in which (*) is frue,
or in other words, no fact of the matter as to what the possible-world-style truth
conditions of (*} are. Now, af first blush, (ii} might seem rather implausible, since
it has am epistemic antecedent and a metaphysical consequent. But the reason the
metaphysical consequent follows is that the ignorance mentioned in the episteric
antecedent is an ignorance of truth conditions rather than truth value. If we don’t
know whether some sentence is true or false, that gives us absolutely no reason to
doubt that there is a definite fact of the matter as to whether it really s true or
false. But when we don’t know what the truth conditions of a sentence are, that
is a very different matter. Let me explain why.

The main point that needs to be made here is that English is, in somc relevant
sense, our language, and (*} is our sentence. More specifically, the point is that the
truth conditions of English sentences supervene on our usage. 1t follows from this
that if our nsage doesn’t determine what the possible-world-style truth conditions
of {*} arc - i.e., doesn’t determine which possible worlds count as worlds in which
(*) is true — then (*) simply doesn’t hawe any such truth conditions. In other
words,
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{iia) If our usage doesn’t determine which possible worlds count as worlds in which
(*) is true, then there is no fact of the matter as to which possible worlds
count as stich worlds.

Again, the argument for (ia) is simply that {*) is our sentence and, hence, could
obtain truth conditions only from our usage.

Now, given (iia), all we need in order to establish (ii), by hypothetical syllogism,
is

(iitb) If we don’t have any idea what a possible world would have to be like in
order to count as a world in which there are objects that exist outside of
spacctime, then our usage doesn’t determine which possible worlds count as
worlds in which {*) is true.

But (iib) seems fairly trivial. My argument for this, in a nutshell, is that if the
conscquent of (iib) were false, then its antecedent couldn’t be truc. In a kit more
detail, the arpument proceeds as follows. If our usapge did determine which possible
worlds count as worlds in which (*) is true - - i.e., if it determined possible-world-
style truth conditions for {*} — then it would also determine which possibie worlds
count as worlds in which there are objects that cxist outside of spacetime. (This is
trivial, because (*} just says that there arc objects that exist outside of spacetime.)
But it seems pretty clear that if our usege deterinined which possible worlds count
as worlds in which there are objects that exist outside of spacetime, then we would
have at least some idea what a possible world would have to be like in order to
count as a world in which there are objects that exist outside of spacetime. For
(2) it seems that if we have no idea what a possible world would have to be like in
order count as a world in which there are ohjects that exist outside of spacetime,
then the only way our usage could determine which possible worlds count as such
worlds would be if we “lucked into” such usage: but {b} it's simply not plausible
to suppose that we have “lucked into” such usage in this way.

This is just a sketch of my argument for the metaphysical conclusion. In my
book {chapter 8, section 3), I develop this argument in much more detail, and
I respond to a number of different objections that one might have about the
argument. For instance, onc worry that one might have here is that it is illegitimate
to appeal to possible worlds in arguing for the metaphysical conclusion, because
possible worlds are themnselves abstract objects. I respond to this worry (and a

“20ne way to think of a language is as a function from sentence types to meanings and/or
truth conditions. And the idea here is that every such function constitutes a language, 5o that
English is just one abstract language among a huge infinity of such things. But on this view,
ithe truth conditions of English sentences do nof supervene on our usage, for the siinple reason
that they don't supervene on anyiiing in the physical world. We ncedn't worry about this here,
though, becanse (a) even on this view, which abstract language is our language will supervene
on our wsage, and (b) [ could simply reword my argument in these terms. More generally,
there are lots of ways of conceiving of langnage and meaning, and for cach of those ways, the
supervenience poiut might have to be put somewhat differently. But the basic idea here — that
the meanings and truth conditions of eur words come from us, i.e., from our usage and intentions
--- is undeniable.
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number of ether worries) in my book, but I do not have the space to pursue this
here.

8.8 My Official View

My official view, then, is distinct from both FBP and fictionalism. I endorse the
FBP-fictionalist interpretation, or picture, of mathematical theory and practice,
but I do not agree with either of the metaphysical views here. More precisely, I
am in agreement with almost everything that FBP-ists and fictionalists say about
mathematical theory and practice,* but I do not claim with FBP-ists that therc
exist mathematical objects {or that our mathematical theories are true), and I do
not claim with fictionalists that there do not exist mathematical objects {or that
our mathematical theorics arc not true}.
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ARISTOTELIAN REALISM

James Franklin

1 INTRODUCTION

Arigtotelian, or non-Platonist, realism holds that mathematics is a science of the
real world, just as much as biology or sociology are. Where biology studies living
things and sociclogy studies human social relations, mathematics studies the quan-
titative or structural aspects of things, such as ratios, or patterns, or complexity,
or numerosity, or symmetry. Let us start with an example, as Aristotelians always
prefer, an example that introduces the essential thewres of the Aristotelian view of
mathematics. A typical mathematical trnth is that therc are six different pairs in
four objects:

Figure 1. There are 6 different pairs in 4 objects

The objects may be of any kind, physical, mental or abstract. The mathematical
statement does not refer to any properties of the objects, but only to patterning
of the parts in the complex of the four objects. If that scems to us less a solid
truth about the real world than the causation of flu by viruses, that may be simply
due to our blindness about relations, or tendency to regard them as somehow less
real than things and properties. But relations (for example, relations of equality
bhetween parts of a structure) are as real as colours or causes.
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The statement that there ave 6 different pairs in 4 objects appears to be neces-
sary, and to be about the things in the world. It does not appear to be about any
idealization or model of the world, or necessary only relative to axioms. Further-
more, by reflecting on the diagram we can not only learn the truth but understand
why it must be so.

The example is also, as Aristotelians again prefer, about a small finite structure
which can easily be grasped by the mind, not about the higher reaches of infinite
sets wherc Platonists prefer to End their examples.

This perspective raises a munber of questions, which ave pursued in this chapter.

First, what exactly does “structure” or “pattern”™ or “ratio” mmean, and in what
scnse are they properties of real things? The next question concerns the neces-
sity of mathematical fruths, from which follows the possibility of having certain
knowledge of them. Philosophies of inathematics have generally been either em-
piricist in the stvle of Mill and Lakatos, denying the necessity and certainty of
mathematics, or admitting necessity but denying mathematics a direct applica-
tion to the real world {for different reasons in the case of Platonism, formalism
and logicism). An Aristotelian philosophy of mathematics, however, finds neces-
sity in truths directly about the real world (such as the one in the diagramn above).
We then compare Aristofelian realismy with the Platonist alternative, especially
with regard to problems where Platonism might seem more natural, such as unin-
stantiated structures such as higher-order infinities. A later section deals with
epistemology, which is very different from an Aristotelian perspective from tradi-
tional alternatives. Direct knowledge of structure and guantity is possible from
perception, and Aristotelian epistemology connects well with what is known from
rescarch on baby development, but there are still difficulties explaining how proof
leads to knowledge of mathematical necessity. We conclude with an examination
of experimental mathematics, where the normal methods of science are used to
explore a pre-existing mathematical realm.

The fortunes of Aristotelian philosophy of mathematics have fluctuated widely.
From the tine of Aristotle to the eighteenth century, it dominated the ficld. Math-
ematics, it was said, is the “science of quantity”. Quantity is divided inte the
discrete, studied by arithmetic, and the continuous, studied by geometry [Apos-
tle, 1952, Barrow, 1734, 10-15; Encyclopaedia Britannice 1771; Jesseph, 1993, ch.
1; Sinith, 1954]. But it was overshadowed in the nineteenth century by Kantian
perspectives, except possibly for the much maligned “empiricism™ of Mill, and in
the twenticth by Platonist and formalist philosophies stemming largely from Frege
(and reactions to them such as extreme nomiualism). The quantity theory, ot
something very like it, has also been revived in the 1990s, and a mainly Australian
school of philosophers has tried to show that sets, numbers and ratios should also
be interpreted as real properties of things (or real relations between universals: for
example the ratio ‘the double’ inay be something in conunon between the relation
two lengths have and the relation two weights have.) [Armstrong, 1988; 1991;
2004, ch. §; Bigclow, 1988; Bigelow & Pargetter, 1990, ch. 2; Forge, 1995; Forrest
& Armstrong, 1987; Michell, 1994; Mortensen, 1998; Irvine, 1990, the “Sydney
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School”]. The project has as yet made little impact on the mainsteam of northern
hemisphere philosophy of mathematics.

The “structuralist” philosophy of Shapiro [1997], Resnik [1997] and others could
naturally be interpreted as Aristotelian, if structure or pattern were thought of as
properties that physical things could have. Those authors themselves, however,
interpret their work more Platonistically, conceiving of structure and patterns as
Platonist entities similar to sets.

2 THE ARISTOTELIAN REALIST POINT OF VIEW

Sinee many of the difficultics with traditional philosoply of mathematics come
from its oscillation between Platonism and nominalism, as if those are the only
alternatives, it is desirable to begin with a brief introduction to the Aristotelian
alternative. The issues have nothing o do with mathematics in particular, so we
deliberately avoid more than passing reference to mathematical examples.

“Orange is closer to red than o blue.” That is a statement about celours, not
about the particular things that have the colours — or if it is about the things,
it is ouly about them in respect of their colour: orange things are like red things
but not blue things in respect of their colour. There is no way to avoid reference
to the colours themselves.

Colours, shapes, sizes, masses are the repcatables or “universals” or “types” that
particulars or “tokens” share. A certain shade of blue, for example, is something
that can be found in many particulars - - it is a “one over mauy” in the classic
phrase of the ancient Greek philosophers. On the other hand, a particular clectron
is a non-repeatable. It is an individual; another electron can resembic it {perhaps
resemble it exactly except for position), but caunct literally be it. (Introductions
to realist views on universals appear in [Moreland, 2001, ch. 1; Swoyer, 2600].)

Science is about universals. There is perception of universals — indecd. it is
universals that have causal power. We see an individual stone, but only as a certain
shape and colour, because it is those properties of it that have the power to affect
our senses. Science gives us classification and understanding of the uuniversals
we perceive -—— physics deals with such properties as mass, length and electrical
charge, biology deals with the properties special to living things, psychology with
mental propertics and their effects, mathematics with quantitics, ratios, patterns
and structure.

This view is close to Aristotle’s account of how mathematicians arc natural
scientists of a sort. They arc scientists who study patterns or formns that arise in
nature. In what way, then, do mathematicians differ from other natural scientists?
In a famous passage at Physics B. Aristotle says that mathematicians differ from
physicists (in the broad sense of those who study nature) not in terms of subject-
matter, but in terms of emphasis. Both study the properties of natural bodies, but
concentrate on different aspects of these properties. The mathematician studies
the properties of natural bodies, which include their surfaces and volumes, lines,
and points. The mathematician is not interested iu the properties of natural bodies
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considered as the properties of natural bodies, which is the concern of the physicist.
|Physics 11.2, 193b33-4] Instead, the mathematician is interested in the propertics
of natural bodies that are ‘separable in thought fromn the world of change’. But,
Aristotle says, the procedure of separating these properties in thought from the
world of change does not make any difference or result in any falsehood. [Aristotle,
Physics 11.2, 193a36-b35]

Science is also the arbiter of what universals there are. To know what universals
there are, as to know what particulars there are, one must investigate, and acecept
the verdict of the best science (including inference as well as observation). Thus
universals are not created by the meanings of words. On the other hand, language
is part of nature, and it is not surprising if our common nouns, adjectives and
prepositions name some approximation of the propertics there are or scem to be,
just as our proper names label individuals, or if the subject-predicate forin of many
basic sentences often mirrors the particular-property structure of reality.

Not everyone agrees with the foregoing. Nominalism holds that universals are
not real but only words or concepts. That is not very plausible in view of the
ability of all things with the saine shade of blue to affect us in the same way —
“causality is the mark of being”. It also leaves it mysterious why we do apply
the word or concept “blue” to some things but not to others. Platonism (in
its extreme version, at least) holds that there are universals, but they are pure
Forms in an abstract world, the objects of this world being related to them by
a mysterious relation of “participation”. {(Arguments against nominalism appear
in in [Armstrong, 1989, chs 1-3]; against Platonism in [Armstrong, 1978, vol. 1
ch. 71} That too makes it hard to make sensc of the direct perception we have
of shades of blue. Blue things affect our retinas in a characteristic way because
the blue is in the things themselves, not in some other realm to which we have
no causal access. Aristotelian realism about universals takes the straightforward
view that the world lias both particulars and universals, and the basic structure
of the world is “states of affairs” of a particular’s having a universal, such as this
table’s being approximately square.

Because of the special relation of mathematics to complexity, there are three
issues inx the theory of universals that are of comparatively minor importance
in general but criucial in understanding mathematics. They are the problem of
uninstantiated universals, the reality of relations, and guestions about structural
and “unit-making” universals.

The Aristotelian slogan is that universals are in re: in the things themselves
{as opposed to in a Platonic heaven). It would not do to be too fundamentalist.
about that dictum, cspecially when it comes to uninstantiated universals. such as
numbers bigger than the numbers of things in the universe. How big the universe
is, or what colours actually appear on real things, is surely a contingent master,
whercas at least some truths about universals appear to be independent of whether
they are instantiated — for example, if some shade of blue were yninstantiated, it
wonld still lie between whatever other shades it does lie between. One expects the
scicnce of colour to be able to deal with any uninstantiated shades of blue on a par
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with instantiated shades — of course direct experimental evidence can only be of
instantiated shadesg, but science includes inference from experiment, not just heaps
of experimental data, so extrapolation {or interpolation} arguments are possible
te “fill in” gaps between experimental results. Other uninstantiated universals
are “combinatorially constructible” from existing properties, the way “unicorn” is
made out of horses, horns, etc. More problematic are truly “alien” universals, like
nothing in the actual universe but perhaps nevertheless possible. Howcever, these
seem beyond the range of what nceds to considered in mathematics - for all the
vast size and esoteric nature of Hilbert spaces and inaccessible cardinals, they seem
to be in some sense made out of a small range of simple concepts. What those
concepts are and how they make up the larger ones is something to be considered
later.

The shade of blue example suggests two other conclusions. The first is that
knowledge of a universal such as an uninstantiated shade of blue is possible only
because it is a member of a structured space of universals, the (more or less)
continnous space of colours. The second conclusion is that the facts known in this
way. such as the betweenness relations holding among the colours, are necessary.
Surely there is no possible world in which a given shade of blue is between scarlet
and vermilion?

At this point it may be wondered whether it is not a very Platonist form of
Aristoteliamism that is being defended. It has a structured space of universals,
not all instantiated, into which the soul has necessary insights. That is so. There
arc three, not two, distinet positions covered by the names Platonism and Aris-
totelianism:

¢ (Extreme) Platonism -~ the Platonism fonnd in the philosophy of mathe-
matics -— according to which universals are of their nature not the kind of
entities that could exist (fully or exactly) in this world, aud do not have
causal power (also called “objects Platonism” [Hellman, 1989, 3}, #standard
Platonism” [Cheyne & Pigden, 1996}, “full-blooded Platonisni™ {Balaguer,
1998; Restall, 2003]; “ontological Platonism™ [Steiner, 1973])

¢ Platonist or modal Aristotelianism, according to which universals can exist
and be perceived to exist in this world and often do, but it is an contingent
matter which do so exist, and we can have knowledge even of those that are
uninstantiated and of their necessary interrelations

e Strict this-worldly Aristotelianism, according to which uninstantiated uni-
versals do not exist in any way: all universals really arc #n rem.

It is true that whether the gap between the second and third positions is large
depends on what account one gives of possibilities. If the “this-worldly” Aris-
totelian has a robust view of merely possible universals (for example, by granting
full existence to possible worlds), there could be little difference in the two kinds
of Aristotelianismi. But supposing s deflationary view of possibilities (as would
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be expected from an Aristotelian), a this-worldly Aristotclian will have a much
narrower realm of real entities to consider. The discrepancy is not a matter of
great urgency in considering the usual universals of science which are known to
be instantiated because they cause perception of themselves. It is the gargantuan
and esoteric specimens in the mathematical zo00 that strike fear into the strict
empirically-oriented Aristotelian realist. Our knowledge of mathematical entities
that are not or may not be instantiated has always been a leading reason for be-
lieving in Platonism, and rightly so, since it is knowledge of what is beyond the
here and now. It does create insuperable difficulties for a strict this-worldly Aris-
totelianism; but it needs to be considered whether one might mave only partially
in the Platonist divection. There is room to move only halfway towards strict
Platonisn: for the same reason as there is space in the blue spectrum between
two instantiated shades for an uninstantiated shade. The non-adjacency of shades
of blue is a necessary fact about the blue spectrum (as Platonism holds), but
whether an intcermediate shade of blue is instantiated is contingent {contrary to
extreme Platonism, which holds that universals cannot be literally instantiated in
reality). It is the same with uninstantiated mathematical structurcs, according to
the Aristotclian of Platonist bent: a ratio (say), whether smiall and instantiated or
huge and nninstantiated, is part of a necessary spectrmmn of ratios (as Platonists
think) but an instantiated ratio is literally 2 relation between two actnal (say)
lengths (as Aristotelians think). The fundamental reason why an intermediate po-
sition between extreme Platonism and extreme Aristotelianisin is possible is that
the Platonist insight that there is knowledge of uninstantiated universals is com-
patible with the Aristotelian insight that instantiated universals can be directly
perceived in things.

The gap between “Platonist” Aristotelianisin and extreme Platonism is un-
bridgeable. Aristotelian universals are ones that eould be in real things {even if
some of them happen not to be), and knowledge of them comes from the senses
being dirveetly affected by instantiated universals {even if indircctly and after infex-
enee, so that knowledge can be of universals beyond those directly experienced).
Extreme Platonism — the Flatonisin that has dominated discussion in the phi-
losophy of mathematics —-- calls universals “abstract”. meaning that they do not
have cansal powers or location and hence cannot be perceived {but can only be
postulated or inferred by arguments such as the indispensability argurnent).

Aristotelian realisin is comuitted to the reality of relations as well as proper-
ties. The rclation being-taller-than is a repeatable and a matter of obscrvable fact
in the same way as the property of being orange. |Armstrong, 1978, vol. 2, ch.
19] The visual systein can make an immediate judgement of comparative taliness,
even if its internal arrangements for doing so inay be somewhat more complex than
those for registering orange. Equally important is the reality of relations between
universals thomselves, such as betweenness among colours — if the colours are
real, the relations between them are *locked in” and also real. Western philosoph-
ical thought has had an ingrained tendency to ignore or downplay the reality of
rclations, from ancient views that attempted to regard relations as properties of
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the individual related terms to early moedern ones that they were purely mental.
[Weinberg, 1963, part 2; Odegard, 1969]

But a solid grasp of the reality of relations such as ratios and symmetry is essen-
tial for understanding how mathematics can divectly apply to reality. Blindness to
relations is surely behind Bertrand Russecll’s celebrated saying that “Mathematics
may be defined as the subject where we never know what we are talking about,
nor whether what we are saying is true” [Russell, 190171993, vol. 3, p.366).

Considering the importance of structure in mathematics. impertant parts of the
theory of universals are those concerning structural and “unit-making” properties.
A structural property is one that makes essential reference to the parts of the
particular that has the property. “Being a certain tartan pattern” means having
stripes of certain colours and widths, arranged in a certain pattern. “Being a
methane molecule” means having four hydrogen atoms and one carbon atom in
a certain configuration. “Being checkmated™ iniplies a complicated structure of
chess pieces on the board. [Bigelow & Pargetter, 1990, 82-92] Propertics that are
structural without requiring any particular properties of their parts such as colour
could be called “purely structural”. They will be considered later as objects of
mathematics.

“Being an apple” differs from “being water” in that it structures its stances
discretely. “Being an apple” is said to be & “unit-making” property, in that a heap
of apples is divided by the universal “being an apple” into a unique number of
non-overlapping parts, apples, and parts of those parts are not themselves apples.
A given heap may be differently structured by different unit-making propertics.
For example, a heap of shoes consists of one number of shoes and another number
of pairs of shoes. Notions of (discrete) number should give some account of this
phenomenon. By contrast, “being water” is homoiomerous, that is, any part of
water is water {at least until we go below the molecular level). [Armstrong, 2004,
113-5]

One special issuc concerns the relation between sets and universals. A set,
whatever it is, is a particular, not a universal. The set {Sydney, Hong Kong} is as
unrepcatable as the citics themselves. The idea of Frege's “comprehension axiom™
that any property ounght to define the set of all things having that property is a
good one, and survives in principle the tweakings of it necessary to avoid paradoxes.
It emphasises the difference between properties and sets, by calling attention to
the possibility that different properties should define the same set. In a classical
{philosophers’) example, the properties “cordate” (having a heart) and *renate”
(having a kidiey) are co-extensive, that is, define the same set of animals, although
they are not the samie property and in another possible world would not define the
same set,

Normal discussion of sets, in the tradition of Frege, has tended to assume a
Platonist view of them, as “abstract” entities in some other world, so it is not
clear what an Aristotelian view of their natnre might be. One suggestion is that a
set iz just the heap of its singleton sets, and the singleton set of an object » is just
z’s having some unit-making property: the fact that Joe has some unit-making
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property such as “being & human” is all that is needed for there to be the set
{Joe}. [Armstrong, 2004, 118-23]

A large part of the general theory of universals concerns causality, dispositions
and laws of nature, but since these are of litile concern to mathematics, we leave
them aside here.

3 MATHEMATICS AS THE SCIENCE OF QUANTITY AND STRUCTURE

If Aristotelian realists are to establish that mathematics is the science of some
properties of the world, they must explain which properties. There have been two
main suggestions, the relation between which is far from clear. The first theory,
the one that dominated the field from Aristotle to Kant and that has been revived
by recent authors such as Bigelow, is that mathernatics is the “science of quantity”.
The second is that its subject matter is structure.

The theory that mathematics is about quantity, and that quantity is divided
into the discrete, studied by arithmetic, and the continucus, studicd by geometry,
plainly gives an initially reasonable picture of at least elementary mathematics,
with its emmphasis on counting and measuring and manipulating the resulting num-
bers. It promises direct answers to questions about what the object of mathemat-
ics is {certain properties of physical and possibly non-pliysical things such as their
size}, and how they are known (the same way other natural properties of physical
things are known). It was the guantity theory, or something very like it, that was
revived in the 1990s by the Australian school of realist philosophers.

Following dissatisfaction with the classical twentieth-ceutury philosophics of
mathematics such as formalisin and logicism, and in the absence of a gencral wish
to return to an unreconstructed Platonism about numbers and sets, another realist
philosophy of methematics became popular in the 1990s. Structuralism holds that
mathematics studies structure or patterns. As Shapiro [2000, 257-64] explains it,
number theory deals not with individual numbers but with the *natural uvumber
structure”, which is “a single abstract structure, the pattern common to any infi-
nite collection of objects that has a successor relation, a unique initial ebject, and
satisfies the induction principle.” The structure is “exemplified by" an infinite
sequence of distinct moments in time. Number theory studies just the properties
of the structure, so that for nuinbor theory, there is nothing to the number 2 but
its place or “office” near the beginning of the system. Other parts of mathemat-
ics study different structures, such as the real nuinber system or abstract groups.
(Classifications of various structuralist views of mathematics are given in [Reck &
Price, 2000; Lehrer Dive, 2003, ch. 1; Parsons, 2004]}. It is truc that Shapiro [1997;
2004] favours an “ante rem structuralism” which he compares to Platonism about
universals, and Resnik is also Platonist with certain qualifications [Resnik, 1997,
10, 82, 261]. But Shapiro and Resnik allow arrangenients of physical objects. such
as basketball defences, to *exemplify” abstract structures, thus allowing mathe-
matics to apply to the real world in a somewhat more direct way that classical
Platonism and so cncouraging an Aristoteliav reading of their work, while certain
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other structuralist authors place much greater emphasis on instantiated patterns.
[Deviin, 1994; Dennctt, 1991, section II]

The structuralist theory of mathematics has, like the quantity theory, some ini-
tial plausibility, in view of the concentration of modern mathematics on structural
propertics like symmetry and the purcely relational aspects of systems both physi-
cal and abstract. It is supported by the widespread concentration of modern pure
mathematics on “abstract structures” such as groups and topological spaces {em-
phasised in [Mac Lane, 1986] and [Corficld, 2003}; backgrouud in [Corry, 1992]).

The relation between the concepts of quautity and structure are unclear and
have been little examined. The position that will be argued for here is that quantity
and strncture are different sorts of universals, both real. The seienices of them are
approximately those called by the {philosophically somewhat unsatisfying) names
of elementary mathematics and advanced mathematics. That is 2 more excitiug
conclusion than might appear. It means that the quantity theory will have to be
incorporated into any acceptable philosophy of mathematics, something very far
from being done by any of the current leading contenders. It also means that
modern {post eighteenth-ceutury) mathematics has discovered a completely new
subject matter, creating a science unimagined by the ancients.

Let us begin with some examples, chosen to point up the difference between
structure and quantity. This is especially necessary in view of the inability of sup-
porters of either the quantity theory or the structure theory to provide convincing
dehnitions of what properties exactly should count as quantitative or structural.
{An attempt will be made later to remedy that deficiency, but the attempted
definitions can only be appreciated in terms of some clear examples. }

The earliest case of a mathematical probleru that scemed clearly not well de-
seribed as being about “gquantity” was Buler’s example of the bridges of Kénigsberg
(see Pigure 2). The citizens of that city in the eighteenth century noticed that it
was impossible to walk over all the bridges once, without walking over at least onc
of them {wice. Euler [1776] proved they were correct.

Figure 2. The Bridges of Konigsberg

The result is intuitively about the “arrangement™ or pattern of the bridges,
rather than about anything quantitative like size or number. As Euler puts it, the
result is “concerned only with the determination of position and its properties; it
does not invelve measurements.” The length of the bridges and the size of the
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islands is irrelevant, That is why we can draw the diagram so schematically, All
that matters is which land masses are connected by which bridges. Euler's result
is now regarded as the pioneering effort in the topology of networks. There now
exist large bodies of work on such topics as graph theory, networks, and operations
research problems like timetabling, where the emphasis is on arrangements and
connections rather than quantities.

The second kind of example where structure contrasts with quantity is symme-
try, brought to the fore by nineteenth-century group theory and twentieth-century
physics. Symmetry is a real property of things, things which may be but necd
not be physical {an argument, for exemple, can have symmetry if its second half
repeats the steps of the first half in the opposite order; Platonist mathematical
cntitics, if any cxist, can be symmetrical.} The kinds of symmectry arc classified
by group theory, the central part of modern abstract algebra [Weyl, 1952].

The example of structure most discussed in the philosophical world is a different
one. In a celebrated paper, Benacerraf [1965] observed that if the sequence of
natural numbers were constructed in set theory, there is no principled way to
c¢hoose which sets the munbers should be; the sequence

o, {a} {a}} {{{e}}}

would do just as well as

@,{2}.{2.{2}}.{2.{2}.{2,{a}}},...

simply because both form a ‘progression’ or ‘w-sequence’ — an infinite sequence
with a start, which does not come back on itself. He concluded that “Arithmetic
is ... the science that elaborates the abstract structure that all progressions have
in common merely in virtue of being progressions.” The assertion that that is all
there is to arithmetic is more controversial than the assertion that w-sequences
arc indecd one kind of order structure, and that the study of them is a part of
mathematics.

Now by way of contrast let us consider some cxamples of quantitics which
scem to have nothing inherently to do with structurc. The universal ‘being 1.57
kilograms in mass’ stands in a certain relation, a ratio, to the universal ‘being 0.356
kilogramns in mass’. DPairs of lengths can stand in that same ratio, as can pairs
of time intervals. (It is not so clear whether pairs of temperature intervals can
stand in a ratio to one another; that depends on physical facts about the kind of
scale temperature is.} The ratio itself is just what those binary relations betwceen
pairs of masses, lengths and time intervals have in common (“A ratio is a sort of
relation in respect of size between two magnitndes of the same kind”: Euclid, book
V delinition 3). A (particular) ratic is thns not merely a “place in a structure” {of
all ratios}, for the same reason as a colour is not merely a position in the space
of all possible colours — the individual ratio or colour has intrinsic properties
that can be grasped without reference to other ratios or colours. Though there is
indeed a system or space of all ratios or all colours, with its own structure, it makes
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sense to say that a certain one is instantiated and a neighbouring one not. It is
perfectly determinate which ratios are instantiated by the pairs of encrgy levels of
the hydrogen atom, just as it is perfectly determinate which, if any, shades of bluc
are missing.

Discrete guantities arise differently from ratios. It is characteristic of ‘unit-
making' or ‘count’ universals like ‘being an apple’ to structure their instances
discretely. That is what distinguishes them from mass universals like ‘being water’.
A heap of apples stands in a certain relation to ‘being an apple’; that relation is
the number of apples in the heap. The same relation can hold between a heap of
shoes and ‘being a shoe'. The number is just what these binary relations have in
common. The fact that the heap of shoes stands in one such numerical relation
to ‘being a shoe’ and another numerical relation to ‘being a pair of shoes’ {made
much of by Frege [1884, §22, p. 28 and §54, p. 66]) does not show that the number
of a heap is subjective or not about something in the world, but only that number
is relative to the count universal being considered. (Similarly, the fact that the
probability of a hypothesis is relative to the evidence for it does not show that
probability is subjective, but that it is a relation between hypothesis and evidence.)
Like 2 ratio, a number is not merely a position in the system of numbers. There
is a perfectly determinate number of apples in a heap, independently of anything
systematic about numbers (and independent of any knowledge about it, such as
that obtained through counting).

The differing origins of continuous and discrete quantity led to some classical
problems in Aristotelian philosophy of quantity. The distinction between the two
kinds of quantity was reinforced by the discovery of the incommensurability of the
diagonal (a significance somewhat obscured by calling it the irrationality of /2):
there can exist a continuous ratio that is not the ratio of any two whole numbers,
That only increased the mystery as to why some of the more structural features
of the two kinds of ratios should be identical, such as the principle of alternation
of ratios (that if the ratio of a to b equals the ratio of ¢ to d, then the ratio of
@ to ¢ equals that of b to d). Is this principle part of a “universal mathematics”,
a science of quantity in general (Crowley 1980)7 Is there anything to be gained,
philosophically or mathematically, by Euclid’s attempt to define equality of ratios
without defining a way of measuring ratios (Book V definitiou 5)7 Genuine and
interesting as these questions are, they will not be attacked here. The purpose of
mentioning them is simply to indicate the scope of a realist theory of qnantity.

Two tasks remain. The first is to indicate where in the body of known truths
the sciences of quantity and of structure, respectively, lie. The second is to inquire
whether there are convincing definitions of ‘quantity” and ‘structure’, which would
support proofs of their distinctness, or other mutual relations.

The theory of the ancients that the science of quantity comprises arithmetic plus
geometry may be approximately correct, but needs some qualification. Arithinetic
ay the science of discrete quantity is adequate, though as the Benacerraf cxam-
pie shows, the study of a certain kind of order structurc is reasonably regarded
as part of arithinetic too. The distinction between cardinal and ordinal numbers
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corresponds to the distinction between pure discrete quantity and linear order
structures. But geometry as the science of continuous quantity has more serious
problems. It was always hard to regard shape as straightforwardly ‘quantity’ — it
contrasts with size, rather than resembling it - though geometry certainly studies
it. Froin the other direction, there can be discrete gecinetries: the spaces in com-
puter graphics are discrete or atomiic, but obviously geometrical. Hume, though
no mathematician, certainly trounced the mathematicians of his day in arguing
that rcal space might be discrete {Franklin, 1994]. Further, there is an alternative
body of knowledge with a better claim to being the science of continuous quantity
in general, namely, the calculus. Study of continuity requires the notion of a limit,
as defined and made use of in the differential calculus of Newton and Leibniz,
and made more precise in the real analysis of Cauchy and Weierstrass. On vet
ancther front, there is another body of knowledge which seems to concern itself
with quantity as it exists in reality. It is measurement theory, the science of how to
associate numbers with quantities. It includes, for example, the requirement that
physical guantitics to be equated or added should be dimensionally homogeneous
[Massey, 1971, 2] and the classification of scales into ordinal, linear interval and
ratio scales ({Ellis, 1968, ch. 4]; many references in [Diez, 1997], conclusions for
philosophy of mathematics in [Pincock, 2004}).

In summary, the science of quantity is clementary mathematics, up to and
including the calculus, plus measurement theory.

That leaves the higher’ mathematics as the science of structure. It includes on
the one hand the subject traditionally called mathematical ‘foundations’, which
deals with what structures can be made from the purely topic-neutral material
of scts and categories, using logical concepts, as well as matters concerning ax-
iomatization. On the other hand. most of modern pure mathematics deals with
the richer structures classified by Bourbaki into algebraic, topological and order
structurcs {Bourbaki, 1950; Mac Lanc, 1986].

There is then the final question of whether there are formal definitions of *quan-
tity’ and ‘structurc’. which will exhibit their inutual logical relations. For ‘quan-
tity’, one may loosely call any order structure a kind of quantity (in that it permits
comparisons on a kind of scale), but a true or paradigmatic quantity should be a
relation in a system isomorphic to the continuuin, or to a piece of it {for example,
the interval from 0 to 1, in the case of probabilities) or a substructure of it {such as
the rationals or integers) [Hale, 2000, 106]. One might go so far as to allow fuzzy
quarntities by a family resemblance, as they share the properties of the confinumin
except for absolute precision.

It must be admitted that the difficulty of defining ‘structure’ has been the
Achilies heel of structuralism. As one observer says, “It's probably not too gross
a generalization to say that the main problems that have faced structuralism have
bLeen concerned with lack of clarity. After all, the slogans used to describe the
view arc nothing but highly cvocative metaphors. In particular, philosophers have
wondered: What is a structure?” {Colyvan, 1998, p. 6531, The matter is far from
resolved, but one suggestion involves mereology. “Structure’ it is proposed, can be
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defined as follows.

A property 8 is structural if and only if “proper parts of particulars having S
have some properties T ... not identical to 8. and this state of affairs is, at least
in part, constitutive of S." [Armstrong, 1978, vol. 2, 69] Under this definition,
structural properties include such examples as “being a certain tartan pattern”
[Armstrong, 1978, vol. 2, 70] or “heing a baseball defence” [Shapirvo, 1997, 74,
98} Plainly the reference in such properties to the parts having colours or being
baseball players makes such structures not appropriate as objects of mathematics
—- not of pure mathematics, at least. Something more purely structural is needed.
As Shapiro puts it in more Platonist language, a baseball defence is a kind of
system, but the purer structure to be studied by mathematics is “the abstract form
of a systein, highlighting the interrelationships among the objects, and ignoring any
features of them that do not affect how they relate to other objects in the system.”
{Shapiro, 1997, 74]; or again, “a position {in a pattern] ... has no distinguishing
teatures other than those it has in virtue of heing the particular position it is in
the pattern to which it belongs.” [Resnik, 1997, 203] These desiderata can be
achieved by the following definition.

A property is purely structurel if it can be defined wholly in terms of the concepts
same and different, and part and whole {along with purely logical concepts).

To be symmetrical with the simplest sort of symmmetry, for example, is to consist
of two parts which are the samc in some respect. To demonstrate that a concept
is purely structural, it is sufficient to construct a model of it out of purely topic-
neutral building blocks, such as sets -— the capacities of set theory and pure
mercology for construction being identical [Lewis, 1991, especially 112].

4 NECESSARY TRUTHS ABOUT REALITY

An cssential theme of the Aristotelian viewpoint is that the truths of mathematics,
being about universals and their relations, should be both necessary and about
reality. Aristotelianism thus stands opposed to Einstein’s classic dictum, ‘As far
as the propositions of mathematics refer to reality, they are not certain; and as
far ag they are certain, they do not refer to reality.’ [Einstein, 1954, 233]. It is
clear that by ‘certain’ Einstein meant ‘necessary’, and philosophers of recent times
have mostly agreed with him that there cannot be mathematical truths that are
at once necessary and about reality.

Mathematics provides, however, many prima facie cases of necessities that are
directly abont reality. One is the classic case of Euler’s bridges, mentioned in the
previous section. Buler proved that it was impossible {or the citizens of Kénigsberg
to walk exactly once over (not an abstract model of the bridges but) the actual
bridges of the city.

To take another example: 1t is impossible to tile my bathroom foor with
{equally-sized) regular pentagonal lines. It is a proposition of geometry that ‘it is
impaossible to tile the Euclidean plane with regular pentagons’. That is, although
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it is possible to fit together (equally-sized) squares or regular hexagons so as to
cover the whole space, thus:

Figure 3. Tiling of the plane by squares

and

Figure 4. Tiling of the plane by regular hexagons

it is impossible to do this with regular pentagons:

No matter how they are put an the plane, there is space left over between them.

Now the ‘Euclidean plane’ is no doubt an abstraction, or a Platonic form. or an
idealisation, or a mental being - - in any case it is not ‘reality’. If the ‘Euclidean
plane’ is something that could have real instances, my bathroom floor is not one of
them, and it may be that there are no exact real instances of it at all. 1t is a further
fact of mathematics, however, that the proposition has ‘stability’, in the sensc that
it remaius true if the terms in 14 are varied slightly. That is, it is inpossible to
tile (a substantial part of) an almost Euclidean-plane with shapes that are nearly
regular pentagons. {The qualification ‘substantial part of’ is simply to avoid the
possibility of taking a part that is cxactly the shape and size of one tile; such
a part could of course be tiled). This proposition hag the same status, as far as
reality goes, as the original one, since ‘being an alost-Euclidean-plane’ and ‘being
a nearly-regular pentagon’ are as purely abstract or mathematical as *being an
exact Euclidean plane’ and ‘being an cexactly regular pentagon’. The proposition
has the consequence that if anything, real or abstract, does have the shape of
a nearly-Euclidean-plane, then it cannot he tiled with nearly-regular-pentagons.
But my bathroom floor does have, exactly, the shape of a nearly-Euclidean-plane.
Or put another way, heing a nearly-Euclidean-plane is not an abstract model of
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Figure 5. A regular pentagon, with which it is impossible to tile the plane

my bathroom floor, it is its literal shape. Therefore, it cannot be tiled with tiles
which are, nearly or exactly, regular pentagons.

The ‘cannot’ in the last sentence is a uecessity at once mathernatical and about
reality. (A further cxample in [Franklin, 1939))

That exampie was of intpossibility. The next is an examiple of necessity in the
full sense.

For simplicity, let us restrict ourselves to two dimensions, though there ave
similar examples in three dimensions. A body is said to be symmetrical about an
axis when a point is in the body if and only if the point opposite it across the
axis is also in the body. Thus a sguare is symmetrical about a vertical axis, a
horizontal axis and both its disgonals. A body is said to be syminetrical ahout a
point P when a point is in the body if and only if the point directly opposite it
across I” is also in the body. Thus a square is symmetrical about its centre. The
followiug is a necessarily true statement about real bodies: All bodies symmetrical
about both a horizontal and a vertical axis are also symmetrical about the point
of interscction of the axes:

Figure 6. Symmetry about two orthogonal axes implies symmetry about centre

Again, the space need not be Buclidean for this proposition to be truc. All that



118 James Franklin

is needed is 2 space in which the terms make sense.

These examples appear to be necessarily true mathematical propositions which
are about reality, It remains to defend this appearance against some well-kuown
objections.

Objection 1.

The propositior 7 + 5 = 12 appears at first both to be necessary and to say
somnething about reality. For example, it appears to have the consequence that if
put seven apples in a bowl and then put in another five, there will be twelve apples
in the bowl. A standard objection beging by noting that it would be different for
raindrops, since they may coalesce. So in order to say something about reality, the
mathematical proposition must need at least to be conjoined with scme proposition
such as, ‘Apples don't coalesce’, which is plainly contingent. This consideration
is reinforced by the suspicion that the proposition 7 -+ 5 = 12 is tautological, or
alinost so, in somc sense.

Perhaps these objections can be answered, but there is plainly at least a prima
facie case for a divorce between the necessity of the nathematical proposition and
its application to reality. The application seems to be at the cost of introducing
stipulations about bodies which may be empirically false.

The examples above are not susceptible to this objection. Being nearly-pentagonal,
being symmetrical and so on are properties that veal things can have, and the math-
ematical propositions say something about things with these properties, without
the need for any cmnpirical assuniptions.

Chijection 2.

This objeetion is perhaps in cffect the same as the first one, but historically it has
been posed scparately. It does at least cast more light on how the examples given
escape ohjections of this kind.

The objection goes as follows: Geometry does unot study the shapes of real
things. The theory of spheres, for example, cannot apply to bronze spheres, since
bronze spheres arc not perfectly spherical ([Aristotle, Metaphysics 997h33-998a6,
1036a1-12; Proclus, 1970, 10-11j). Those who thought along these lines postulated
a relation of ‘idealisation’ variously understood, between the perfect spheres of
geomnetry and the bronze spheres of mundane reality. Any such thinking, even if
not leading to fully Platonist conclusions, will result in 2 contrast between the ideal
(and hence necessary)} realm of mathematics and the physical {and contingent)
world.

It has been found that the problern was simply a result of the primitive state of
Greek mathematics. Ancient mathematics could only deal with siniple shapes such
as perfect spheres. Modern mathematics, by studying continuous variation, has
been able to extend its activities to more complex shapes such as imperfect sphetes.
That is, there are results not about particular immperfect spheres, but about the
ensemble of imperfect spheres of various kinds. For exainple, consider all imperfect
spheres which differ little from a sphere of radius one metre — say which do not
deviate by inore than one centimetre from the sphere anywhere. Then the volume
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of any such imperfect sphere differs from the volume of the perfect spherc by
less than one tenth of a cubic metre. So imperfect-sphere shapes can be studied
mathematically just as well as — though with more difficulty than — perfect
spheres. But rcal bronze things do have imperfect-sphere shapes, without any
‘idealisations” or ‘simplification’. So mathematical results about imperfect spheres
can apply directly to the real shapes of real things.

The examples above involved no idealisations. They thercfore escape any prob-
lems from objection 2.

Objection 3.

The third objection proceeds from the supposed hypothetical nature of mathemat-
ics. Bertrand Russell’s dictum, ‘Pure mathematics consists entirely of assertions
to the effect that, if such and such a proposition is true of anything, then such
and such another proposition is true of that thing’ [Russell, 1917, 75| suggests a
conuection between hypotheticality and lack of content. Even those who have not
gone so far as to think that mathematics is just logic have generally thought that
mathematics is not about reality, but only, like logic, relates statewments which
may happen to be about reality. Physicists, Einstein included, have been espe-
cially prone to speak in this way. since for them mathematics is primarily a bag
of tricks uscd to deduce consequences from theorics.

The answer to this objection consists fundamentally in a denial that mathemat-
ics is more hypothetical than any other science. The exainples given above do not
look hypothetical, but they could easily be cast in hypothetical form. But the fact
that mathematical statements arc often written in if-then form is not in itself an
argument that mathematics is cspecially hypothetical. Any science, even a purely
classificatory one, containg universally quantified statements, and any ‘All As are
Bs’ statement can equally well be expressed hypothetically, as ‘If anything is an
A, itisa B’. A hypothetical statement may be convenient, especially in a complex
situation, but it is just as much about real As and Bs as *All As arc Bs’.

No-one argues that

All applications of 350 nils/hectare Igran are elfective against normal
infestations of capewced

is not about reality nerely because it can be expressed hypotheticelly as

If 550 mis/hectare Igran is applied to a norinal infestation of capeweed,
the weed will dic.

Neither should mathematical propositions such as those in the examples be thought
to be not about reality because they can be expressed hypothetically. Real portions
of liquid can be {approximatcly} 550 mls of Igran. Real tables can be (approxi-
mately)} symmetrical about axes. Real bathroom Hoors can be (nearly} flat and
real tiles (nearly) regular pemtagons iMusgrave, 1977, §5).

The impact of this srgument is not lessencd cven if the process of recasting
mathematics into if-then forn: goes as far as axiomatisation. Einstein thought it
was. His quotation with which the section began continues as follows:
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Asg far as the propositions of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality. It
seems to me that complete clarity as to this state of things became
common property only through that frend in mathematics which is
known by the name of ‘axiomatics’. [Einstein, 1954, 233}

Einsteiu gocs on to argue that deductive axiomatised peometry is mathematics,
is certain and is ‘purely forinal’, that is, uninterpreted; while applied geometry,
which includes the proposition that solid bodies are related as bodies in three-
dimensional Euclidean space, is a branch of physics. Granted that it is a contingent
physical proposition that solid bodics are related in this way, and granted that an
uninterpreted system of deductive ‘geometry’ is possible, there remain two main
problems about Einstein’s conclusion that ‘mathematics as such cannot predicate
anything about ... real objects’ [Einstein, 1954, 234].

Firstly, non-mathematical topics, such as special relativity, can be axiomatiscd
without thereby eeasing to be about real things. This remains so even if one sets
up a parallel system of ‘purcly formal axiomatised special relativity’ which one
pretends not to interpret.

Secondly, even if some of the propositions of ‘applied geometry’ are contingent,
not. all are, as the cxamples above showed. Doubtless there is a ‘proposition’ of
‘purely formal geometry’ corresponding to ‘It is impossible to tile my bathroom
floor with regular pentagonal tiles’; the point is that the modality, ‘iinpossible’, is
still there when it is interpreted.

In theory this completes the reply to the objection that mathematics is necessary
only hecause it is hypothetical. Unfortunately it does nothing to explain the strong
feeling among ordinary users of mathematics, such as physicists and engineers,
that mathematics is a kind of tool kit for getting one scientific proposition out of
another. If an clectrical engincer is accustomed to working out currents by reaching
for his table of Laplace transforims, he will incvitably see this mathematical method
as a tool whose ‘necessity’. if any. is because mathematics is not about anything,
but is only a kind of theoretical juice extractor.

It must be admitted that a certain amount of applicable mmathematics really
does consist of tricks or caleulatory devices. Tricks. in mathematics or anywhere
clse, are not abont anything, and any real mathematics that concerns them will
be in explaining why and when they work; this is a problem the engincer has little
interest in, except perhaps for the final answer. The difficulty is to explain how
mathematics can have both necessity and application to reality, without appearing
to do so to many of its users.

The short answer to this lies in the mind’s tendency to think of relations as not
really existing. Since mathematics is so tied up with relations of certain kinds,
its subject matter is easy to overlook. A familiar example of how mathematics
applics in physics will make this clearer.

Newton postulated the inverse square law of gravitation, and derived from it
the proposition that the orbits of the planets are elliptical. Let us look a little
more closely at the derivation, to see whether the mathematical reasoning is in
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some way about reality or is only a logical device for deriving one scientific law
from another.

First of all, Newton did not derive the shape of the orbits from the law of
gravitation alone. An orbit is a path along which a planet moves, so there needs
to be a proposition connecting the law of force with movement; the link is, of
course,

force = mass x acceleration.

Then there must be an assertion that net accelerations other than those caused
by the gravitation of the sun are negligible. Ideally this should be accompanied
by a stability analysis showing that small extra net forces will only produce small
deviations from the calculated paths. Adding the necessary premises has not,
however, introduced any ellipses. What the premises give is the local change of
motion of a planet at any point; given any planet at any point with any speed,
the laws give the force, and hence the acceleration — change of speed — that the
planet undergocs. The job of the mathematics — the only job of the mathematics
— i5 to add together these changes of motion af all the points of the path, and
reveal that the resulting path must be an ellipse. The mathematics must track
the path, that is, it must extract the global motion from the local motions.

There are two ways to do this mathematics. In this particular case, there arc
some neat tricks available with angular momentum. They are remarkable enough,
but arc still purely matters of technique that luckily allow an exact solution to
the problem: with litile work. The other method is more widely applicable and is
here more revealing because more direct; it is to use a computer to approximatce
the path by cutting it into small pieces. At the initial point the acccleration is
calculated and the motion of the planet calculated for a short distance, then the
new acceleration is calculated for the new position, and so on. The smaller the
pieces the path is cut into, the more accurate the calculation. This is the method
actually used for calculating planetary orbits, since it can easily take account
of small extra forces, such as the gravitational interaction of the planets, which
render special tricks useless. The absence of computational tricks exposcs what
the mathematics is actually doing — extracting global structure from local.

The example is typical of how mathematics is applied, as is clear from the large
proportion of applied mathematics that is concerned one way or another with
the solution of differential equations. Solving a differential equation is, normally,
entircly a matter of getting global structure from loeal - - thie equation gives what is
happening n the neighbourhood of each point; the solution is the global behaviour
that results. [Smale, 1969] A good deal of mathematical modelling and operations
research also deals with caleulating the overall effeets of local causes. The examples
above all involve some kiud of interaction of local with global structure.

Thongh it is notoriously difficult to say what ‘structure’ is, it is at least some-
thing to do with rclations, cspecially internal part-whole relations. If an orhit is
elliptical globally, its curvature at cach point is necessarily that given by the inverse
square law, and vice versa. In general the connections between local and global
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structure are necessary, though it seems to make the matter more obscure rather
than less to call the necessity ‘logical’. Seen this way, there is litile temptatiou to
regard the fuuctiou of mathematics as merely the deducing of consequences, like a
logical engine. It is easy to see, though, why mathematics has been seen as having
no subject matter -- the western mind has had enormous difficulty focussing on
the reality of relations at all [Weinberg, 1965, section 2], let alone such abstract
relations as structural ones. Nevertheless, symmetry, continuity and the rest are
just as real as relations that can be measured. such as ratios of masses; bought
and sold, sueh as interest rate futures; and litigated over, such as paternity.

Typically, then, a scicntist will postulate or observe some simple local behaviour
in a svstom, such as the inverse squarce law of attraction or a population growth
rate proportional to the size of the population. The mathematical work, whether
by hand or computer, will put the picces together to find cut the global effect
of the continued operation of the proposed law - in these cases elliptical orbits
and exponential growth. There are bad reasons for thinking the mathematics is
just ‘turning the handle’ — for example it costs less than expertment, and many
scicntists’ expertisc runs to only simple matheinatical techniques. But there are
no good reasons. The mathematics investigates the necessary interconnections
between the parts of the global structure. which arc as real properties of the
system studied as any other.

This completes the explanation of why mathematics seems to many to be just
a deduction engine, or to be purely hypothetical, even though it is not.

Objection 4.

Certain schools of philosophy have thought there can be no necessary truths that
are genuinely about reality, so that any uecessary truth must be vacuous. ‘There
can be no necessary connections between distinet existences.’

Answer: The philosophy of mathematics has enough to do dealing with math-
ematics, without taking upon itself the refutation of outmmoded metaphysical dog-
mas. Mathematics must be appreciated on its own terms, and wider metaphysical
theories adjusted to take aecount of whatever is found.

Nevertheless something can be sald about the exact point where this objection
fails to make contact with the examiples above. The clue is the word “distinet’.
The word suggests a kind of logical atomism, as if relations can be thought of
as strings joining point particulars. One need not be F.H. Bradley to find that
view foo sitnple. It is especially inappropriate when treating things with internal
structure. as is typical in mathematics. In an infinitely divisible thing like the
surface of a bathroom [loor, where are the point particulars with purely external
relations? (The points of space, perhaps? But the rclations between tile-sized
parts of space and the whole space either have nothing to do with points at all or
are properties of the whole system of relations between points.)

All the objections are thus answered. The conclusion stands, thercfore, that
the threc cxamples are, as they appear to be, mathematical, necessary and about
reality.

The thesis defended has been that some necessary mathematical statements
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refer directly to reality. The stronger thesis that ol mathematical truths refer
to reality seems too strong. It would indeed follow, if there were no rclevant
differences between the examples above and other mathematical truths. But there
are differences. In particular. there are more things dreained of in mathematics
than could possibly be in reality. Sonie mathematical entities are just too big; cven
if something in reality could have the structure of an infinite dimensional vector
space, it would be too big for us to know it did. Other mathematical entities secin
obviously fictions from the way they are introduced. such as negative numbers,
Statements about negative numbers can refer to reality in soine way, since one can
make true conclusions about debts by using negative numbers. But the reference is
indirect, in the way that statements about the average wage-earncr refer to reality,
but net in the direct sense of asserting something about an entity, ‘the average
wage-earner’. Indirect reference of this kind is not in principle mysterious, though
it needs to be explained in each particular case. So it can be conceded that many
of the entities mentioned in mathematics are fictional, without any admission
that this makes mathemafics unique; minus-1 can be seen as like fictional entities
elsewhere, such as the typical Londoner, holes, the national debt, the Zeitgeist and
5O OIL

What has been asserted is that there are propertics, such as syminetry, continu-
ity, divisibility, increase, order, part and whole which are possessed by real things
and are studied directly by mathematics, resulting in necessary propositions about
them.

5 THE FORMAL SCIENCES

Aristotelians deplore the narrow range of examples chosen for discussion in tradi-
tional philosophy of mathematics. The traditional diet - - numbers, sets, infinite
cardinals, axioms, theorems of formal logic — is far from typical of what math-
ematicians do. It has led to intellectual anorexia. by depriving the philosophy
of mathematics of the nourishment it would and should receive fromn the expan-
sive world of mathematics of the last hundred years. Philosophers have almost
completely ignored uot only the broad range of pure and applicd mathematics
and statistics, but a whole suite of ‘formal’ or ‘mathematical® sciences that have
appeared only in the last seventy years. We give here a few Dbrief examples to
indicate why thesc developments are of philosophical interest to those pursuing
realist views of mathematics.

It used to be that the classification of sciences was clear. There were natural
sciences, and there were social sciences. Then there were mathematics and logic,
which might or might not be described as sciences, but scemed to be plainly dis-
tinguished from the other sciences by their use of proof instead of experiment,
measurement and theorising. This neat picture has been disturbed by the ap-
pearance in the last several decades of a number of new scicnces, veriously called
the ‘formal’ or ‘mathematical’ sciences, or the ‘sciences of complexity’ [Pagels,
1988; Waldrop, 1992: Wolfram. 2002} or ‘scicnces of the artificial.” [Simon, 1969)
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The number of these sciences is large, very many people work in them, and even
more use their resulfs. Their formal nature would seem to entitle them to the
special consideration mathematics and logic have obtained. Not only that, but
the knowledge in the formal sciences, with its proofs about network Hows, proofs
of computer program correciness and the like, gives every appearance of having
achieved the philosophers’ stone; a method of transmuting opinion about the base
and contingent beings of this world into the neccssary knowledge of purc reason.
They alse supply a number of concepts, like ‘feedback’, which permit ‘in principle’
explanatory talk about complex phenomena.

The oldest properly constituted formal science is perhaps operations research
(OR). Its origin is normally dated to the years just before and during World War
I, when multi-disciplinary scientific teams investigated the most efficient pat-
terns of search